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ABSTRACT 1 

 2 

For all types of concrete structures, controlling of cracking, as well as the enhancement of 3 

serviceability and ultimate flexural capacity are important issues for deck slabs. This study 4 

presents an experimental campaign and accompanying nonlinear analysis of a series of Strain 5 

Hardening Cementitious Composite (SHCC) and reinforced concrete slab systems, 6 

simply-supported and subjected to four-point loading. In order to improve flexural 7 

performance both at the service and ultimate limit states, an SHCC layer with thickness of 8 

150 to 400 mm was placed on the soffit of the composite slab; the SHCC was manufactured 9 

using two different processes, namely cast-in-situ SHCCs and extruded precast SHCC panel. 10 

Nonlinear analysis of SHCC and reinforced concrete slabs was also carried out to predict 11 

moment and curvature as well as deflections of the slab systems. The developed slab systems 12 

were found to have enhanced performance with regard to both at serviceability and flexural 13 

capacity, compared to the conventional reinforced concrete slab.   14 

 15 

 16 
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1. Introduction 1 
 2 

Strain Hardening Cementitious Composite (SHCC) or Engineered Cementitious Composite 3 

(ECC) is a type of composite material consisting mainly from cementitious binders and short 4 

polymeric fibres, such as polyvinyl alcohol (PVA) fibres, as shown in Fig. 1 [1-3]. The SHCC 5 

was designed to control secondary cracks, increasing tensile stress and fracture energy and 6 

hence preventing brittle failure subsequent to the occurrence of the initial flexural cracks [2-6]. 7 

The tensile stress-strain behaviour of SHCC is shown in Fig. 2; after initial cracks formed, the 8 

tensile stress of the SHCC was sustained until a tensile strain up to 2.0 % was reached [1-4, 9 

6-7]. This is the reason why SHCC exhibits a highly ductile flexural behaviour (shown in Fig. 10 

3) as opposed to plain concrete which is a brittle material in bending [1-4]. The phenomenon 11 

that gives rise to this ductility is the inclusion of dispersed short fibres that functioned as 12 

bridges between microscopic cracked surfaces of cementitious binder matrix.  13 

Therefore, SHCC is expected to improve the structural performance of concrete members 14 

by controlling cracking and deformation, hence allowing longer spans, reducing the amount 15 

of required steel bars, and enhancing both the ductility and durability of reinforced concrete 16 

members [8-12]. 17 

On the other hand, conventional reinforced concrete slab systems are commonly adopted in 18 

the design and construction of building structures [13]. However the thickness and the amount 19 

of reinforcing bars in such slabs could be reduced if they are made composite by applying 20 

profiled steel sheets or high performance composite materials [14-16]. Several types of steel 21 

sheet composite slabs were developed and applied in building structures offering advantages 22 

in both the construction process and the structural performance [14-16]. High performance 23 

materials such as Fibre-reinforced polymer (FRP) composite sheets or bars could also be used 24 
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to strengthen reinforced concrete slabs, beams, and columns by enhancing their flexural 1 

capacity and controlling cracking [17-20]. 2 

This study reports on experiments and nonlinear analysis carried out to evaluate a series of 3 

reinforced concrete composite slabs wherein cast-in-situ SHCCs or extruded precast SHCC 4 

panels were used. A series of SHCC and reinforced concrete composite slab specimens was 5 

tested; the specimens were simply-supported and subjected to four-point loading, and their 6 

response was compared with that of a conventional reinforced concrete slab. The series of 7 

specimens were also evaluated using nonlinear analysis, and the structural characteristics of 8 

the developed SHCC and reinforced concrete slab systems are discussed herein with focus on 9 

their ability to control cracking and enhance the flexural performance.  10 

 11 

 12 

2. Nonlinear Flexural Analysis of SHCC and Reinforced Concrete 13 

Composite Slabs 14 

 15 

2.1 Layered approach for flexural analysis of SHCC and reinforced 16 

concrete sections  17 

 18 

An inelastic layered approach to predict nonlinear flexural behaviour of SHCC and 19 

reinforced concrete sections was formulated as shown in Fig. 4 wherein stress-strain 20 

relationships of concrete, reinforcing bars, and SHCC were considered respectively [7, 19]. 21 

For concrete, the ascending portion was considered as a quadratic function; after reaching its 22 

peak, compressive stress follows a linearly descending branch (strain-softening), while 23 
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concrete in tension is treated as a linear elastic brittle material with stress dropping to zero 1 

subsequent to reaching the tensile strength. The constitutive law adopted for reinforcing bars 2 

was a bilinear one (elastic and strain-hardening branches). The stress - strain relationship for 3 

SHCC was modelled as shown in Fig. 2, i.e. subsequent to tensile cracking, stress was 4 

assumed to remain constant until the tensile strain reaches 0.02, while the compression regime 5 

was modelled similarly to plain concrete in compression. The material properties of concrete, 6 

reinforcing bars, and SHCC used in the nonlinear analysis were based on the results of the 7 

corresponding tests as could be seen in the next section.  8 

From the strain profile of a cross-section shown in Fig. 4, the axial strain increment, od , 9 

could be derived from the resultant axial force increment,dN , and the curvature increment, 10 

d , as follows. 11 

 12 

( ) /o M Nd d N E d E                     (1) 13 

where 14 

1 1 1

conc As SHCC

N ci ci s j s j SH k SH k
i j k

E f A f A f A
  

 
   
 
  

           (2)
 15 

1 1 1

conc As SHCC

M ci c i i s j s j j SH k SH k k
i j k

E f A z f A z f A z
  

 
   
 
  

           (3)
 16 

 17 

The nonlinear sectional responses such as the moment-curvature relationship, stresses and 18 

strains in each layer at each stage could be predicted by a layered sectional approach with an 19 

incremental and iterative scheme based on Eq. (1). The analysis was terminated when 20 

compressive strain in a concrete layer reached the ultimate strain (crushing of concrete).  21 

 22 
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2.2 Prediction of nonlinear load vs. deflection relationship  1 

 2 

From the predicted moment vs. curvature curve of the section, three important curvature 3 

values, those at initial cracking, 
cr , initial yielding of tensile bar, 

y , and ultimate load, 
u , 4 

could be found and based on them a multilinear approximation of the d curvature diagram can 5 

be drawn. For the standard four-point loading test, the curvature distributions at the 6 

aforementioned stages could be estimated by the pertinent three curvatures as shown in Fig. 5. 7 

Therefore, the mid-span deflection, 
C , at these three stages could be calculated from the 8 

moment-area method respectively as follows: 9 

 At concrete cracking; 10 

2 21 1 1 1

2 2 6 2C A cr m mL S L S L         
                    (4) 11 

1

2A cr mS L     
 

                         (5) 12 

At yielding of tensile reinforcement; 13 

 1 2 1 2 2 2 2

1 1 1 1 1 1 1

2 2 3 2 2 3 2C A cr m cr m y cr m y m mL L L L L L L L L L L L L                             
       

        (6) 14 

 1 2

1 1

2 2A cr cr y y mL L L                              (7) 15 

 16 

At ultimate; 17 

   

1 3 2 1 2 3 2

2 3 2 3 3 3 3

1 1 1 1

2 2 3 2

1 1 1 1 1 1

2 3 2 2 3 2

C A cr m cr m

y cr m y m u y m u m m

L L L L L L L L L L

L L L L L L L L L L L L

  

     

              
   
                       
       

       (8) 18 

   1 2 3

1 1 1

2 2 2A cr cr y y u u mL L L L                               (9) 19 

 20 

In the above equations, A  is the rotation at the support at each loading stage. Therefore, a 21 

tri-linear load vs. deflection relationship could be estimated for SHCC and reinforced 22 



7 
 

concrete composite slabs subjected to a standard bending test. It is clear that this procedure is 1 

valid when the contribution of both shear deformations and bond slip to the total deflection 2 

can be ignored.  3 

 4 

3. Cast-in-situ SHCC and Reinforced Concrete Composite Slabs 5 

 6 

3.1. Details of cast-in-situ slab specimens 7 

 8 

In this series of composite slabs, flexural performance was improved by controlling 9 

cracking at the bottom of the slabs; the specimens were manufactured by casting in-situ an 10 

SHCC bottom layer after positioning of longitudinal, transverse, and vertical reinforcing bars 11 

and then casting a top layer of normal concrete that constitutes the upper part of the composite 12 

slab as shown in Fig. 6. The dimensions of the simply-supported one-way slab specimens, as 13 

well as details, diameters, and spacing of reinforcing bars are shown in Fig. 7. For three slab 14 

specimens, the span length was 3,400 mm and the thickness of the composite cross-section 15 

was 180 mm, with a width of 600 mm. Specimen RC-180 was a conventional reinforced 16 

concrete slab, used as a reference specimen, while the two specimens SHCC-20 and 17 

SHCC-40 were manufactured as SHCC and reinforced concrete composite slabs, the 18 

thickness of the SHCC layer being 20 mm and 40 mm, respectively, as shown in Fig. 8.  19 

 20 

3.2. Manufacturing of cast-in-situ Slab Specimens 21 

 22 

Fig. 9 shows the manufacturing process of the slab specimens, i.e. placement of formwork, 23 

positioning of reinforcing bars, casting of SHCC, and finally casting of topping concrete. It is 24 
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noted that to sustain the composite action between the SHCC and the topping concrete, 1 

vertical shear reinforcement that crossed the interface was placed, while the top surface of the 2 

SHCC layer was roughened 7 days after casting the SHCC. The specimens were cured under 3 

wet conditions for four weeks.  4 

The SHCC was manufactured using Ordinary Portland Cement (OPC) as the main binder 5 

and silica sand as an additive, both of which were made in Korea, and combining with 6 

additional admixtures, PVA fibres, and water [4,7,8]. As shown in Table 1, the PVA fibres 7 

used as reinforcement of the cementitious binder had a tensile strength of 1,600 MPa, a 8 

diameter of 40 μm and a length of 12 mm, and the surface of the fibres was treated using an 9 

oiling agent, to improve mixing with cementitious binders [4,7,8]. As for the powdered 10 

materials of SHCC, dry mixing was conducted using an omni-mixer and the mixing water 11 

was added in two stages for the even distribution of fibres, thus the volumetric ratio of fibres 12 

was 2.0 %. Total mixing time was 20 minutes, including 5 minutes of dry mixing, 5 minutes 13 

of wet mixing, and 10 minutes of placing.  14 

The concrete mix was designed for a uniaxial compressive strength of 30 MPa as shown in 15 

Table 2, while the reinforcing bars had a yield stress of 400 MPa [8]. 16 

 17 

3.3. Loading of Slab Specimens 18 

 19 

Three simply supported slab specimens with a span of 3,400 mm (wherein the pure bending 20 

length was 700 mm) were tested under four-point bending using a 1,000 kN UTM actuator. 21 

Loading was increased until the specimen was no more able to resist it, as it reached failure 22 

by crushing of concrete. The deflection at mid-span was measured using two vertical LVDTs. 23 
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Curvature was measured with additional four LVDTs attached in the horizontal direction at 1 

the bottom and top side of specimens, while strain gauges were attached to top and bottom 2 

longitudinal bars near the mid-span with the same spacing as the transverse bars. 3 

 4 

3.4. Test Results for the Three Specimens 5 

 6 

At the end of the test, after failure was reached, the three specimens showed crack and 7 

failure patterns at mid-span as shown in Fig. 10, while bending moment vs. curvature curves 8 

and transverse load vs. deflection curves at mid-span were as shown in Fig. 11 and 12, 9 

respectively.  10 

In specimen RC-180 the cracks were early initiated near mid-span at a load of 6.6 kN and 11 

continued to propagate from mid-span to the support, the spacing of cracks being about 12 

100~150 mm. Subsequent to yielding of the longitudinal bars, the width of the existing cracks 13 

increased rapidly and they further propagated in the direction of the top surface of the slab 14 

until the specimen reached failure. The load was increased up to reaching a deflection of 48.8 15 

mm and slightly decreased afterwards. The slab failed at a deflection of 87.5 mm 16 

corresponding at a load of 49.5 kN (7.5 times the load at first cracking). 17 

In specimen SHCC-20, micro-cracks were observed initially at mid-span at a load of 8.5 18 

kN (29% higher than in the reinforced concrete specimen). From that instance up to yielding 19 

of reinforcing bars, multiple micro-cracks consecutively formed near the middle of the soffit 20 

of the slab but no further opening of cracks was observed and cracking was localised. Due to 21 

controlling of multiple micro-cracks, the cracked stiffness of SHCC-20 was found to be 22 

higher than that of RC-180. Subsequent to yielding of reinforcing bars, crack opening was 23 

restrained to some existing cracks near the mid-span and the specimen continued to resist the 24 
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transverse load and finally reached failure at a load of 59.8 kN. The specimen SHCC-40 has 1 

shown similar trends, i.e. multiple micro-cracking and failure patterns similar to those 2 

observed in specimen SHCC-20, and reached failure at a load of 65.2 kN (9% higher than that 3 

of SHCC-20).  4 

 5 

3.5. Analytical Prediction of the Response of the Specimens 6 

 7 

The response of the three slab specimens tested as reported in the previous sections was 8 

analysed using the nonlinear analysis model described in section 2. Regarding material 9 

characteristics of SHCC, it was assumed that the compressive and tensile strength of SHCC 10 

was 31.2 MPa and 3.12 MPa respectively, and the maximum tensile strain was 2.0 %, while 11 

after this point the tensile stress dropped to zero as shown in Fig. 2. Material properties of 12 

concrete and reinforcing bars were taken from the mechanical tests described in section 3.2.  13 

The predicted bending moment vs. curvature and transverse load vs. deflection 14 

relationships for the three slabs are shown in Figs. 13 and 14, respectively. As also found in 15 

the experimental study, the two specimens SHCC-20 and SHCC-40 show a markedly 16 

improved flexural behaviour compared to the reference specimen RC-180, with increased 17 

stiffness after cracking as well as enhanced yield and ultimate resistance of the slabs. 18 

Comparing Figs. 13 and 14 with Figs 11 and 12, it is seen that for all three specimens, the 19 

predicted yielding and failure loads are very close to those found in the experiments, with 20 

differences ranging from 0.7% to 2.2%.  21 

 22 

 23 
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4. Extruded SHCC and Reinforced Concrete Composite Slab 1 

 2 

4.1. Extrusion of SHCC panel 3 

 4 

SHCC can be manufactured using various methods such as cast-in-situ, precast, spray, and 5 

extrusion [4, 8-12, 21-22]. SHCC products manufactured using the extrusion process have 6 

more reliable mechanical characteristics, i.e. strength, modulus of elasticity, and ductility, 7 

which are attributed not only to the mechanical compaction of fresh SHCC caused from the 8 

lower porosity after extrusion but also to the aligned orientation of fibres embedded in the 9 

cementitious composite [21, 22]. By means of the extrusion process it is easy to manufacture 10 

thin and slender precast SHCC panels, which are difficult to achieve using the cast-in-situ 11 

method. For mixing SHCC in the framework of the extrusion process, Ordinary Portland 12 

Cement (OPC) as the main binder and silica powder as an additive, were used, all made in 13 

Korea, to which admixtures and PVA fibres were added, and finally water, following the 14 

specified mixing proportions [22]. The PVA fibres used as reinforcement in the cementitious 15 

composite binder had a diameter of 39 μm, length of 8mm, and tensile strength of 1,700 MPa 16 

[22]. After mixing for about 15 minutes, the fresh SHCC was extruded through a mould 17 

which could form the desired shape of the cross-section. Mechanical properties of concrete 18 

and reinforcing steel bars were the same as mentioned in the previous sections. 19 

Fig. 15 shows an extruded SHCC panel which was applied to manufacture a specimen of 20 

SHCC and reinforced concrete composite slab. To achieve sufficient mechanical 21 

characteristics, the curing process of the extruded SHCC panel consisted of two processes, i.e. 22 

pre-curing for five hours soon after the extrusion had finished and main curing at 50◦C during 23 
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a period of three days.  1 

 2 

4.2. Manufacturing of specimen EXT-P1 3 

 4 

A specimen of SHCC and reinforced concrete composite slab was manufactured wherein 5 

the precast SHCC panel was manufactured by the extrusion process shown in Fig. 15. The 6 

SHCC extrusion panel had a thickness of 15 mm and three ribs on its top surface in order to 7 

ensure full composite action between the precast SHCC panel and the topping concrete. The 8 

height of each rib was 26.5 mm. Fig. 16 shows the dimensions of the cross-section and details 9 

of the slab specimen EXT-P1, which has not only the same dimensions and details of 10 

reinforcing bars but also the same loading and support conditions in the four-point bending 11 

test as the specimens reported in the previous chapter.  12 

 13 

4.3. Test results of EXT-P1 14 

 15 

Fig. 17 shows the cracking and failure patterns of specimen EXT-P1, while moment vs. 16 

curvature and mid-span load vs. deflection relationships of the specimen are shown in Fig. 18 17 

and 19 respectively; these should be compared with the response of specimen RC-180, the 18 

conventional reinforced concrete slab (Figs. 10a, 11, and 12). In specimen EXT-P1, the first 19 

crack formed at a load of 7.8 kN on the bottom surface of the SHCC panel near mid-span; this 20 

load was slightly lower than the first cracking load in the cast-in-situ specimen SHCC-20. The 21 

existing cracks on the surface of extruded SHCC panel did not seem (macroscopically) to 22 

open noticeably, but multiple micro-cracks remained until the bending moment reached the 23 

value at which yielding of tensile reinforcing bars occurred, at a load of 53.2 kN. As load 24 
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increased further, multiple micro-cracks propagated extensively on the bottom surface of the 1 

SHCC panel as the mid-span deflection reached 29.5 mm, and the specimen showed a stable, 2 

strain-hardening, behaviour, having adequate ductility and reaching a maximum load of 63.1 3 

kN at a mid-span deflection of 65.7 mm. The specimen finally was failure in flexure at a 4 

deflection of 73.0 mm by crushing of concrete at its top. It is notable that prior to failure no 5 

signs of debonding and slippage at the interface between the extruded SHCC panel and the 6 

topping concrete were observed, but they did appear close to the failure load. Hence, it is seen 7 

that the extruded SHCC panel having three ribs on its top surface provided not only sufficient 8 

composite action between the SHCC panel and the topping concrete but also adequate control 9 

of flexural cracks by developing multiple micro-cracks which prevented the opening and 10 

localization of initial cracks that was observed in the reference specimen RC-180. In 11 

comparison with the two cast-in-situ slab specimens, SHCC-20 and SHCC-40, specimen 12 

EXT-P1, despite its lower thickness of the SHCC layer, showed favourable strain-hardening 13 

characteristic in the post-yielding range of its response. The enhanced strain-hardening 14 

characteristics of specimen EXT-P1 should be  attributed not only to the mechanical 15 

compaction of fresh SHCC caused from the lower porosity after extrusion but also to the 16 

aligned orientation of fibres embedded in the cementitious composite binder.  17 

 18 

4.4 Analytical prediction of the response of specimen EXT-P1  19 

  20 

The response of specimen EXT-P1 was also analysed using the nonlinear model described 21 

in section 2. However, in this case due to the need to properly capture the response of the ribs, 22 

a grid, rather than a layer, discretization is needed, as shown in Fig. 20. Otherwise, the 23 

material characteristics of SHCC and those of the topping concrete and reinforcing bars were 24 
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considered to be the same as given in the previous sections. Figs. 21 and 22 show the 1 

predicted moment vs. curvature and load vs. deflection curves of specimen EXT-P1, to be 2 

compared with that of the reinforced concrete slab specimen RC-180. Again, the experimental 3 

finding is confirmed that the extruded SHCC and reinforced concrete composite slab shows 4 

enhanced flexural performance with improved yield and ultimate loads of the slab compared 5 

to the conventional reinforced concrete slab. The predicted yield and ultimate loads for 6 

specimen EXT-P1 are 22.9% and 20.1% higher, respectively, compared to the values 7 

predicted for specimen RC-180.  8 

 9 

5. Conclusions 10 

 11 

In the present study, composite slab systems were introduced that were manufactured by 12 

combining cast-in-situ or extruded SHCC panels with a top reinforced concrete layer. From 13 

experimental testing and nonlinear analysis of the one-way slab specimens subjected to 14 

four-point bending, the following conclusions were obtained. 15 

Compared to the reference specimen consisting of a conventional reinforced concrete slab, 16 

the composite SHCC and reinforced concrete composite slab systems wherein SHCC with a 17 

thickness from 20 to 40 mm was placed at the soffit of the concrete slab gave substantial 18 

enhancement in flexural response, increasing post-cracking stiffness as well as yielding and 19 

ultimate load capacities of the slabs. This improved performance is attributed to the formation 20 

of stable multiple micro-cracks in the SHCC layer as opposed to opening and localization of 21 

cracks in conventional reinforced concrete.  22 

Comparing the two specimens, SHCC-20 and SHCC-40 that were manufactured with 23 

cast-in-situ SHCC, specimen EXT-P1 which was manufactured using an extruded SHCC 24 
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panel, despite its smaller thickness of the SHCC layer, has shown stable strain-hardening 1 

characteristics in the post-yielding range of its response. This performance is attributed not 2 

only to the mechanical compaction of fresh SHCC caused from the lower porosity after 3 

extrusion but also to the aligned orientation of fibres embedded in the cementitious composite 4 

binder. 5 

 6 
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Table 1. Properties of PVA fibres 

 

Fibre 
Density 
(g/mm3) 

Length 
(mm) 

Diameter 

(㎛) 
Surface 

Treatment

Tensile 
Strength 
(MPa) 

Young's 
Modulus 

(GPa) 

Elongation 
(%) 

PVA 1.3 12 40 
Oiling 
Agent 
(0.8%) 

1,600 39.0 6.0 

 
 
 
 
 
Table 2. Design of concrete mix 

 

W/C 
(%) 

S/a 
(%) 

Unit weight(kg/m3) 

cement water 
Fine 

aggregate 
Coarse    

aggregate 

55.4 49.8 327 181 884 918 

W/C: water to cement ratio, S/a: sand as percentage of total aggregate 
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(a) PVA fibre         (b) Fresh SHCC 

Fig.1. PVA fibres and fresh SHCC 
 
 

  

Fig.2. Tensile stress-strain curve of SHCC 
 
 

  

 Fig.3. High flexural deformation of SHCC 
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Fig.4. Layered flexural model for SHCC and reinforced concrete sections 

 
 

 
Fig.5. Linearized curvature distributions at three loading stages 
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Fig.6. Cross-section of cast-in-situ SHCC and reinforced concrete slabs 

 
 

 
Fig.7. Dimensions and reinforcement details for three specimens 
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(a) RC-180 

 

 
(b) SHCC-20 

 

 
(c) SHCC-40 

Fig.8. Dimensions and reinforcement details in cross-section 
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(a) Casting of SHCC    (b) Casting of topping concrete 

Fig.9. Manufacturing process of cast-in-situ SHCC and reinforced concrete slab specimens 
 
 
 

 
(a) RC-180 

 

 
(b) SHCC-20 

 

 
(c) SHCC-40 

Fig.10. Cracks and failure patterns in the three specimens 
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Fig.11. Bending moment vs. curvature curves at mid-span for the three specimens, as found in 

the experiments 
 
 
 

 
Fig.12. Load vs. deflection curves at mid-span of the three specimens, as found in the 

experiments 
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Fig.13. Bending moment vs. curvature curves at mid-span for the three specimens as found 
from analysis 

 
 
 

 

Fig.14 Load vs. deflection curves at mid-span of the three specimens as found from analysis 
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Fig.15. An extruded SHCC panel 
 
 
 

 

Fig.16. Cross-sectional details of an extruded SHCC and reinforced concrete slab 
 

 

 

Fig.17. Multiple micro-cracks and failure pattern of specimen EXT1-P1 
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Fig.18. Bending moment vs. curvature curves at mid-span of two specimens, derived 

experimentally 
 
 
 

 
Fig. 19. Load vs. deflection curves at mid-span of two specimens, derived experimentally 
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Fig. 20. Sectional discretization of extruded SHCC and reinforced concrete slab 

 
 
 

 
Fig.21. Bending moment vs. curvature curves at mid-span of two specimens as derived from 

analysis 
 
 

 

Fig.22. Load vs. deflection curves at mid-span of two specimens, derived from analysis 
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