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Abstract. Most real networks are characterized by connectivity patterns that evolve in time following
complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying
the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on
activity driven networks with and without memory (i.e., Markovian and non-Markovian). We find that
memory inhibits the spreading process in SIR models by shifting the epidemic threshold to larger values
and reducing the final fraction of recovered nodes. On the contrary, in SIS processes memory reduces the
epidemic threshold and, for a wide range of disease parameters, increases the fraction of nodes affected by
the disease in the endemic state. The heterogeneity in tie strengths, and the frequent repetition of strong
ties it entails, allows in fact less virulent SIS-like diseases to survive in tightly connected local clusters that
serve as reservoir for the virus. We validate this picture by studying both processes on two real temporal
networks.

1 Introduction

Virtually any system can be represented as a network
whose basic units are described as nodes and its interac-
tions as links between them [1–4]. In general, connections
are not static, but evolve in time subject to nontrivial
dynamics [5,6]. Consider for example face to face or on-
line interaction networks where individuals talk and ex-
change information through evolving contacts [7–11]. Re-
cent advances in technology have allowed researchers to
collect, monitor and probe such interactions generating
an unprecedented amount of time-resolved high resolu-
tion data [12,13]. The analysis of such real systems has
exposed the limits of canonical static and annealed net-
work representations [5,6] calling for the development of
a new theory to understand network’s temporal proper-
ties. In particular, the recent data deluge has allowed re-
searchers to start identifying the effects that time varying
topologies have on dynamical processes taking place on
them [8,9,14–37]. Prototypical examples are the spread-
ing of memes, ideas, and infectious diseases. All of these
phenomena can be described as diffusion processes on con-
tact networks and are affected by the ordering, concur-
rence, duration, and heterogeneity in nodes’ activities and
connectivity patterns [8,9,14–36,38–40].

� Contribution to the Topical Issue “Temporal Network
Theory and Applications”, edited by Petter Holme.

a e-mail: nicolaperra@gmail.com

One of most distinctive properties of social net-
works is the heterogeneity of interaction strength [41–43].
Individuals remember their inner circle of friends and most
important connections, activating some links more often
than others, thus building up strong and weak ties with
their peers. In other words, the creation of links is not
a Markov process [28,29,41–44]. While this property has
been studied in detail in static networks [41,42,45–50], its
understanding in the context of time-varying graphs is
still far from complete. When time is explicitly considered,
non-Markovianity might have two different, but coexis-
tent, origins [51,52]. One is due to temporal correlations
between contacts. The other is due to non-exponential
waiting time distributions or bursty behavior. Only a few
studies have tackled this subject [29,39,44,51–53]. While
the large majority of them focus just on one of the two
sources of non-Markovianity, both have been shown to be
responsible for changing the spreading rate of diffusion
processes, either slowing them down or, perhaps surpris-
ingly, speeding them up [29,39,44,48,51,54,55].

Here we study the effects of memory, introduced by
correlations between contacts, on two different classes
of epidemic spreading models, namely the Susceptible
Infected Recovered (SIR) and the Susceptible Infected
Susceptible (SIS) models [56]. In doing so, we neglect
the bursty nature of interactions. For this reason, un-
less otherwise specified, when we will speak about non-
Markovian dynamics we will be referring to those in-
duced by correlations of contacts. We consider a recently
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proposed class of time-varying networks called activity
driven models [29,32], based on the observation that the
propensity of nodes to initiate a connection (the activity)
is heterogeneously distributed. In its basic formulation
node activities are modeled with accuracy but the link cre-
ation is assumed to be Markovian. While such an approx-
imation allows analytical treatments [32–36,38], it does
not capture many real properties of time-varying net-
works such as the memory of individuals. Recently, this
limitation has been overcome with the introduction of a
non-Markovian generalization of the modeling framework
that introduces correlations between contacts allowing
to reproduce with accuracy the evolution of individual’s
contacts [29].

We study the dynamical properties of SIR and SIS
models on activity driven networks with and without
memory. We consider one of the most important dynam-
ical properties of epidemic diffusion process, namely the
epidemic threshold, defining the conditions necessary for
the spreading of the disease to a macroscopic fraction of
the population [56]. We also consider the effect of the dis-
ease on the population evaluating the final fraction of re-
covered nodes, in SIR processes, and the fraction of in-
fected nodes in the endemic state, reached above threshold
in SIS dynamics.

We find that memory acts in different ways on SIR
and SIS models. In SIR processes the epidemic threshold
is shifted to larger values, making the spreading of the
disease more difficult. Also, the final fraction of recovered
nodes is significantly reduced. In SIS dynamics memory
moves the epidemic threshold to smaller values and shifts
the endemic state, for a wide range of disease’s parame-
ters, to larger values. Thus, such non-Markovian dynam-
ics might facilitate the spreading of SIS-like diseases, like
sexual transmitted illnesses, that can survive reaching an
endemic state, in tightly connected clusters. The differ-
ence between the two models is due to the fundamentally
different natures of the two processes that induce distinct
behaviors also in the case of static networks [57–59].

Finally, we consider two real-world networks built us-
ing messages exchanged between users on Twitter and co-
authorships of papers in a scientific journal. In these sys-
tems the two origins of non-Markovianity are coexistent.
To isolate the role of those induced by the correlation be-
tween contacts, we compare the spreading of SIR and SIS
processes unfolding on real networks with the same dy-
namics unfolding on a randomized version of them that
preserve the interevent time distribution for each node.

Interestingly, in the case of SIS processes the results are
qualitatively similar to what is observed in synthetic net-
works. In the case of SIR dynamics we do not observe a sig-
nificant change in the epidemic threshold. However, con-
sistently to what observed in synthetic networks, the real
non-Markovian dynamics hampers the disease spreading
reducing significantly the final fraction of recovered nodes.

2 Activity driven models

In this section we describe the modeling framework used to
produce the considered synthetic time-varying networks.

T=1 T =2 T =3

A) B) C)

D) E) F)
Fig. 1. Schematic representation of ML and WM activity
driven models. In order to better contrast the two different
models we fixed the same activity distribution in both cases,
and we show a simulation scenario in which for both models the
active nodes at each time step are the same. In grey (dashed
lines) we show links previously initiated, while in black (solid
lines) links activated in the current time step. Active nodes are
shown in light blue for the ML model while in red for the WM,
and marked with a tick border. The size of each node is propor-
tional to the activity, and the thickness of each link describes
its weight. Panels (A−C) show ML networks at three different
time steps T = 1, 2, 3. Panels (D−F) show WM networks at
three different time steps T = 1, 2, 3.

2.1 Memoryless activity driven models (ML)

In their basic formulation activity driven models are mem-
oryless. Each node is characterized by an activity rate a,
extracted from a distribution F (a), describing its prob-
ability per unit time to establish links. To account for
the observation that human behaviors are characterized
by broad activity distributions we will consider power-law
distributions of activity F (a) = Ba−γ (ε ≤ a ≤ 1), unless
specified differently. In this setting, the generative process
of the network is defined according to the following rules
(see Fig. 1):

1. At each discrete time step t the network Gt starts with
N disconnected vertices.

2. With probability aiΔt each vertex i becomes active
and generates m links that are connected to m other
randomly selected vertices. Non-active nodes can still
receive connections from other active vertices.

3. At the next time step t + Δt, all the edges in the
network Gt are deleted.

Thus, all interactions have a constant duration Δt, that
without loss of generality we fix to one, i.e. Δt = 1.

At each time step the network Gt is a simple random
graph with low average connectivity. Indeed, on average
the number of active nodes per time step is N〈a〉, corre-
sponding to an average number of edges equal to mN〈a〉,
and an average degree 〈k〉 = 2m〈a〉. However, integrating
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the links over T time steps, so that T/N � 1, induces
static networks whose degree distribution follows the ac-
tivity functional form [32,36] so that, for example, broad
distributions of activity will generate broad degree distri-
butions. The creation of hubs (highly connected nodes)
results from the presence of nodes with high activity rate,
which are more prone to repeatedly engage in interactions.

2.2 Activity driven models with memory (WM)

It has long been acknowledged that links in real-world
networks can be grouped in (at least) two classes, namely
strong and weak ties [41,42]. The first represent connec-
tions that are activated often and describe, for example,
the inner social circle of each node. The latter describe oc-
casional contacts that are activated sporadically. From a
modeling standpoint these different classes of links can
be described considering individuals as non-Markovian.
Indeed, the evolution of their ego-centered networks is
deeply influenced by their social memory. Interestingly,
empirical observations indicate that the probability for an
individual that had interacted with n people to initiate a
connection towards a n+1th individual is a function of n.
More precisely, the analysis of a large-scale mobile phone
dataset [29] identified the relation

Pk(n + 1) =
ck

n + ck
, (1)

where k is the total number of other nodes contacted mea-
sured at the end of the datasets, and ck is a constant
mildly dependent on the degree. Thus, setting for sim-
plicity ck = 1 ∀ k, it is possible to generalize the activity
driven framework accounting for individuals’ memory [29].
Given, as for the ML case, N nodes each characterized by
an activity rate a extracted from a distribution F (a), the
generative process of the WM network is defined according
to the following rules (see Fig. 1):

1. At each discrete time step t the network Gt starts with
N disconnected vertices.

2. With probability aiΔt each vertex i becomes active
and generates m links.

3. Each link is established with probability 1/(ni + 1) at
random, and with probability ni/(ni + 1) towards one
of the ni previously connected nodes. Non-active nodes
can still receive connections from other active vertices.

4. At the next time step t+Δt, the memory of each node
is updated and all the edges in the network Gt are
deleted.

Also in this case we consider Δt = 1.
The structural properties of time-aggregated ML and

WM activity driven networks are fundamentally different.
As is clear from Figure 2, ML networks show a heavy-
tailed cumulative degree and a homogeneous weight dis-
tribution, where the weights measuring the number of
times each link is activated reflect the Markovian links’
creation dynamics (see Fig. 2B). On the other hand, WM
networks show a broad degree distribution, steeper than
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Fig. 2. The ML and WM activity driven networks.
(A) Cumulative degree distribution for both ML (blue circles)
and RP (red squares) activity driven networks integrated for T
time steps. (B) Cumulative weight distribution for the same
networks. (C) Emergence of the largest connected component
(LCC) in ML and WM activity-driven networks as a function
of time. In particular, we plot the normalized size of the LCC,
LCC/N , as a function of the integrating time T . For all the
panels we fix N = 105, m = 1, and ε = 10−3, T = 103, and
consider 102 independent realizations.

the one observed in ML systems (see Fig. 2A) and a heavy-
tailed weight distribution indicating the heterogeneity of
tie strengths (see Fig. 2B). In Figure 2C we also compare
the behavior of the largest connected component (LCC)
integrating the links as a function of time. Interestingly,
in ML networks the LCC appears earlier. Memory slows
down the growth of the connected component as individ-
uals are more likely to activate previous connections.

3 SIR and SIS models in activity
driven networks

We consider two classic epidemic models, namely the SIR
and SIS model [56]. In both cases the population is divided
in compartments indicating the health status of individu-
als. In the SIR model nodes can be in the susceptible (S),
infected (I) or recovered (R) compartments. Susceptible
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nodes are healthy individuals that never experienced the
illness. Infected nodes have contracted the illness and can
spread it. Recovered nodes have been cured of the disease
and are immune. The model is described by the following
reaction scheme:

S + I
β−→ 2I, I

μ−→ R. (2)

The first transition indicates the contagion process. Sus-
ceptible nodes in contact with infected individuals become
infected with rate β. In particular, β takes into account
the average contacts per node, 〈k〉, and the per contact
probability of transmission λ, i.e. β = λ〈k〉. The second
transition describes the recovery process. Infected individ-
uals recover permanently with rate μ.

In the following, we consider the time-step regulating
the disease dynamics to be equal to the time-step regu-
lating the network dynamics. In other words, the disease
will be spreading on top of the Gt networks. Whether the
disease is able to spread affecting a macroscopic fraction
of the network or not depends on the value of the infec-
tion rate, the recovery rate and the networks dynamics.
In particular, in ML networks the SIR contagion process
is able to spread if

β

μ
≥ ξSIR =

2〈a〉
〈a〉 +

√〈a2〉 , (3)

see references [32,60] for the derivation details.
The quantity ξSIR defines the epidemic threshold of

the process. For value of β/μ < ξSIR the disease will
die out. Interestingly, the threshold as a function of
the first and second moments of the activity distribu-
tion, and completely neglects any time-integrated network
representation.

In the SIS model nodes can be either in the susceptible
(S) or infected (I) compartment. The model is described
by the following reaction scheme:

S + I
β−→ 2I, I

μ−→ S. (4)

The first transition is the same as SIR models. In the
second transition infected individuals heal spontaneously
but instead of becoming immune to the disease move
back to the susceptible compartment with rate μ. In
ML networks the epidemic threshold of an SIS contagion
process, ξSIS , is:

β

μ
≥ ξSIS =

2〈a〉
〈a〉 +

√〈a2〉 , (5)

see references [32,60]. Interestingly, the threshold is the
same as for the SIR model, i.e. ξSIS = ξSIR. This is a
characteristic of ML activity driven networks and is due
to the Markovian link creation dynamics [32,35,60].

In this paper we investigate numerically the epidemic
dynamics occurring on WM networks.

3.1 The SIR process on ML and WM networks

We consider a SIR model and start the epidemic at t = 0
with a fraction I0 = 10−2 randomly selected nodes as

0.1 0.2 0.3 0.4 0.5 0.6 0.7

β
μ

0.5
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∞
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
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Fig. 3. SIR spreading in ML (blue circles) and WM (red
squares) activity driven networks. We show R∞ as a function
of β/μ. We fix N = 105, m = 1, and ε = 10−3. Each point
is evaluated considering 102 independent simulations starting
with a fraction of 10−2 randomly selected nodes. The main plot
is done considering μ = 1.5× 10−2 and the inset μ = 5× 10−3.
The last point corresponds to λ = 1: the largest value of β/μ
for a given network and μ.

seeds. SIR models reach the so-called disease-free equilib-
rium in which the population is divided in:

S∞ + R∞ = 1, I∞ = 0. (6)

All the variables refer to the density of individuals in the
population. The infected individuals will always disappear
from the population, as each one of them will eventually
recover becoming immune. Below the threshold, in the
thermodynamic limit, R∞ → 0. Above the threshold in-
stead R∞ reaches a macroscopic value, i.e. R∞ = O(1).
The transition between the two regimes is continuous and
the behavior of R∞ can be studied as a second order phase
transition with control parameter β/μ [2,3].

In Figure 3 we show the results obtained by measuring
R∞ in ML and WM networks for different values of β/μ.
Without loss of generality we fix μ = 1.5 × 10−2 and
μ = 5×10−3 (inset) and use β as free parameter. The epi-
demic threshold in WM networks is clearly larger than in
ML systems. The memory of individuals shifts the thresh-
old to larger values, making the systems less vulnerable
to disease spreading. The repetition of interactions within
strong ties inhibits the spreading potential of the disease.
Indeed, infected individuals will be more likely to contact
their inner circle of ties infecting possibly some of them.
However, the newly infected nodes will be prone to keep
contacting back the initial seeds and eventually recover.
On the contrary, in ML networks these nodes initiate ran-
dom connections at each time step increasing their proba-
bility of interacting with susceptible individuals. Further-
more, for all the values of β sampled, the final fraction of
infected nodes in WM networks is significantly reduced. In
summary, memory roughly doubles the epidemic thresh-
old of a SIR process and reduces R∞ making the system
more resilient to the spreading.

3.2 The SIS process on ML and WM networks

We now turn our attention to SIS processes. Also in this
case we start the epidemic at t = 0 with a fraction
I0 = 10−2 of randomly selected nodes as seeds. The nature
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Fig. 4. SIS spreading in ML (blue circles) and WM (red
squares) activity driven networks. In panel (A) we show I∞
as a function of β/μ. In panel (B) instead we plot the life
time L as a function of β/μ. We fix N = 105, m = 1, and
ε = 10−3. Each point is evaluated considering 102 independent
simulations starting with a fraction of 10−2 randomly selected
nodes. The main plot is done considering μ = 1.5 × 10−2 and
the inset μ = 5×10−3. The last point in each plot corresponds
to λ = 1: the largest value of β/μ for a given network and μ.

of this epidemic model is fundamentally different than the
SIR. Indeed, above threshold SIS processes show an en-
demic state characterized by a constant fraction of nodes,
I∞ > 0, in the infected compartment. Below the threshold
instead, the process reaches a disease-free equilibrium, i.e.
I∞ = 0. In general, in SIS processes the numerical estima-
tion of the threshold is more prone to size and noise effects,
due to the subtleties related to the identification of the en-
demic state and the fact that I∞ is not a monotonically
increasing quantity as R∞. Therefore, we also consider the
life time L and the coverage C of the process as a function
of β/μ [61], defining the duration of the process and the
fraction of nodes that acquire the infection, respectively.
In SIS processes for values of β/μ above threshold the life
time is infinite (endemic state) and the coverage reaches 1.
Below threshold both L and C vanish in the thermody-
namic limit. Interestingly, the life time obtained by av-
eraging over many realizations is equivalent to the sus-
ceptibility χ in standard percolation theory. This method
allows us to detect the threshold precisely [61]. Indeed,
following reference [61] we can consider as above thresh-
old any realization that reaches a macroscopic coverage C.
For small values of the contagion rate the disease dies out
quickly and the coverage remains below the threshold C,
while for very large values of β the disease will be able
to spread quickly reaching a fraction C. For intermediate
values of β, L will increase showing a peak close to the
actual epidemic threshold. Figure 4 shows that the esti-
mation of the threshold performed considering both I∞
(Fig. 4A) and the life time of the process (Fig. 4B) using
C = 0.5. We fix μ = 1.5×10−2 (μ = 5×10−3 in the inset)
and evaluate I∞ and L as a function of β.

From the two plots we can conclude that the thresh-
old of an SIS process unfolding in WM networks is smaller
than in ML systems. This behavior is quite surprising and
opposite to what is observed in the case of SIR mod-
els. The repeated connections in the ego-centered net-
works of each node allow the disease to survive in local
and small clusters of strong ties making the system more
fragile to the disease spreading. Such a behavior is not
observed in SIR processes due to the presence of recov-
ered individuals that become immune to the disease and
are unable to sustain the spreading with multiple reinfec-
tions. Furthermore, in WM networks, for a wide range of
β values above threshold, I∞ is shifted to larger values.
In this region the disease, due to the repetition of con-
tacts, is able to reach an endemic state that involves a
larger fraction of the population. As β increases the dif-
ference between WM and ML networks reduces and even-
tually reverses. Indeed, for very large values of the infec-
tion rate the disease spreading is favorited by Markovian
link dynamics: at each time step active infectious nodes
interact with new vertices that, in this regime, can
be easily infected.

From this observation we can better understand the
effects of memory on the spreading dynamics of SIS pro-
cesses. The repetition of contacts it entails might counter-
balance the effects of small β values helping the diffusion.
However, for large values of infection rate, memory might
hamper the spreading reducing the impact of the disease.
In this regime random connections are more efficient. In
summary, memory shifts the threshold of SIS processes
to smaller values, and for a wide range of infection rates,
induces a larger values of I∞.

4 SIS and SIR models in real time
varying networks

In order to validate the results obtained on synthetic
time-varying networks we study the dynamical proper-
ties of SIR and SIS processes on two real temporal
datasets. We consider the interactions between 117 436
Twitter users via 917 697 messages and coarse-grain the
data adopting a time resolution of a day. Each user is
represented as a node, and at each time step an undi-
rected link is drawn between two nodes if they exchanged
at least one message in that time window. The second
real dataset is a co-authorship network built considering
268 405 papers published by 55 311 researches in Phys-
ical Review Letters (PRL). We adopted the time reso-
lution of one year. Each author is described as a node,
and at each time step an undirected link is drawn be-
tween two nodes if they co-authored at least one paper
in that time window.

Arguably such networks are subject to non-Markovian
dynamics originated by the correlation between contacts
and non-exponential interevent time distributions. In or-
der to single out the effects of memory induced by the
first source of non-Markovianity we consider also two ran-
domized versions of the real networks. The randomization
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Fig. 5. SIR and SIS spreading on a real Twitter network (red
squares) and on a randomize version of it (blue circles). In
panel (A) we show the SIR dynamics: R∞ as function of β/μ.
In panel (B) we show the SIS dynamics plotting the life time
L as a function of β/μ. Each point is evaluated considering
102 independent simulations starting with a fraction of 10−2

randomly selected seeds. We set μ = 0.3 in main plots and
μ = 0.5 in the insets.

is performed by reshuffling the interactions at each time
stamp, so that the correlation between contacts are re-
moved while the interevent time distribution for each
node and the degree distribution at each time step are
preserved [27].

In Figure 5A we plot the behavior of R∞ as a function
of β/μ for the original Twitter dataset and for the reshuf-
fled version of it considering two values of μ. We do not
observe a clear difference between the two epidemiological
thresholds. The effects of memory are visible just on the
growth of the number of recovered nodes. Indeed, R∞ in-
creases faster in the randomized network. Thus the repeti-
tion of contacts that memory entails hampers SIR spread-
ing processes also on this real network.

In Figure 5B we plot the behavior of the life time, L,
of an SIS process in the original Twitter network and in
its randomized version considering two values of μ. In this
case the threshold in the original network is smaller than
in the randomized one, analogously to what is observed
in synthetic time-varying networks. Interestingly, also in
real networks memory moves the threshold of SIS pro-
cesses to smaller values facilitating the survival of the
disease. In Figure 6 we show the results of the same
simulations considering the PRL collaboration network.
Also in this real dataset memory does not change the
epidemic threshold of SIR dynamics acting just reduc-
ing the final epidemic size R∞. Furthermore, in the case
of SIS spreading, memory shifts the epidemic thresholds
to smaller values.

Overall, these observations on two real temporal net-
works confirm qualitatively the picture emerging from
synthetic time-varying graphs.
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Fig. 6. SIR and SIS spreading on a real co-authorship network
(red squares) and on a randomize version of it (blue circles).
In panel (A) we show the SIR dynamics: R∞ as function of
β/μ. In panel (B) we show the SIS dynamics plotting the life
time L as a function of β/μ. Each point is evaluated considering
102 independent simulations starting with a fraction of 10−2

randomly selected seeds. We set μ = 7 × 10−3 in main plots
and μ = 5 × 10−2 in the insets.

5 Conclusions

In general, real networks are characterized by temporal
and non-Markovian dynamics. The latter feature has two
different but coexistent origins, namely the correlations
between contacts and bursty dynamics. While both these
phenomena introduce interesting memory effects, here we
focused only on the effect of correlations. We studied the
dynamical properties of SIR and SIS models in activity
driven networks with and without correlations between
contacts (memory). In order to single out the effects of
such non-Markovian dynamics we studied the epidemic
threshold in basic activity driven models that by con-
struction are Markovian and memoryless, and in a re-
cent generalization of this modeling framework that ex-
plicitly consider non-Markovian link dynamics. We found
that memory acts on SIR processes making the system
more resilient to the disease spreading. On the contrary,
memory acts on SIS processes by lowering the epidemic
threshold to smaller values and increasing the fraction of
infected nodes in the endemic state (for a wide range of
disease’s parameters) thus possibly making the systems
more prone to the disease invasion. In fact, the heterogene-
ity in ties’ strength induces frequent repetition of contacts
that allow the survival of SIS-like diseases in local groups
of tightly connected individuals. The illness reaches its
endemic state in small clusters that act as reservoir for
the virus.

Although activity driven models with memory capture
fundamental aspects of real time varying networks, they
do not account for other important features as appearance
of new nodes, disappearance of old ones, and bursty be-
haviors just to name a few. While the introduction of these
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ingredients in the modeling framework is left for future
work, here we validated the picture obtained from syn-
thetic networks by considering two real time-varying sys-
tems, namely the network of communications in Twitter,
and a co-authorship network. Interestingly, the results ob-
tained in this case confirm qualitatively the findings ob-
served in activity driven networks for SIS dynamics. In the
case of SIR spreading memory does not change the thresh-
old. However, it reduces significantly the final fraction of
nodes affected by the disease thus hampering its spread.

In conclusion, the results here presented show that
memory, induced by the correlation between contacts,
can have opposite effects on different classes of spreading
processes, and corroborate the important role played by
such non-Markovian dynamics on the dynamical processes
unfolding on temporal networks [29,39,44,51].

The authors are grateful to Alessandro Vespignani for helpful
discussions, insights, and comments.
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Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)

21. G. Miritello, E. Moro, R. Lara, Phys. Rev. E 83, 045102
(2011)

22. M. Kivela, R. Kumar Pan, K. Kaski, J. Kertesz, J.
Saramaki, M. Karsai, J. Stat. Mech. 2012, 03005 (2012)

23. N. Fujiwara, J. Kurths, A. Dı́az-Guilera, Phys. Rev. E 83,
025101 (2011)

24. R. Parshani, M. Dickison, R. Cohen, H.E. Stanley, S.
Havlin, Europhys. Lett. 90, 38004 (2010)

25. P. Bajardi, A. Barrat, F. Natale, L. Savini, V. Colizza,
PLoS One 6, e19869 (2011)

26. A. Baronchelli, A. Dı́az-Guilera, Phys. Rev. E 85, 016113
(2012)

27. M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras,
Phys. Rev. E 85, 056115 (2012)

28. R. Pfitzner, I. Scholtes, A. Garas, C. Tessone, F.
Schweitzer, Phys. Rev. Lett. 110, 19 (2013)

29. M. Karsai, N. Perra, A. Vespignani, Sci. Rep. 4, 4001
(2014)

30. T. Hoffmann, M. Porter, R. Lambiotte, Phys. Rev. E 86,
046102 (2012)

31. Z. Toroczkai, H. Guclu, Physica A 378, 68 (2007)
32. N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani,

Sci. Rep. 2, 469 (2012)
33. B. Ribeiro, N. Perra, A. Baronchelli, Sci. Rep. 3, 3006

(2013)
34. N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R.
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