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Abstract

Many animals acquire food by stealing it from others. There are species
of specialist thieves, but more commonly animals will search for both food
items and items already found by others, often conspecifics, that can be
stolen. This type of behaviour has previously been modelled using a range
of approaches. One of these is the Finder-Joiner model, where one animal,
the “Finder”, discovers a food patch that takes some time to be consumed.
Before consumption of the patch can be completed, another individual, the
“Joiner”, discovers the Finder and its food patch, and has the opportunity
to attempt to steal it. Depending upon how large the patch was, and how
long the Finder has been alone on the patch, there may be much or little
food remaining. In this paper, building on previous work, we consider a
version of this game where the Finder knows the value of the remaining
food patch, but the Joiner does not. We see that depending upon the model
parameters, the extra information possessed by the Finder can be beneficial
or detrimental in comparison to the case where both individuals have full
information.

Keywords: stealing, resource holding potential, incomplete information,
game theory

1. Introduction

To survive and reproduce animals need a variety of resources, including
food. Often these resources have acquired in competition with other animals,
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often conspecifics, but sometimes also those of other species. The nature of
the competition will depend upon the animals and resources involved. For
example territories may be of value for a long period of time, whereas food
resources might be available for a relatively short period of time (Kruuk,
1972; Hamilton and Dill, 2003; Iyengar, 2008; Kokko, 2013).

In this paper it is competition over food in particular that we are in-
terested in. Many animals acquire food by stealing it from others (see iyen-
gar2008 for a good review). Whilst there are species of specialist thieves,
a more common situation is where animals search for both food items and
items already found by (usually) conspecifics, that can be stolen. If a food
item can be consumed immediately by the individual that discovered it,
then there is no chance for another to steal it. Often, however, food items
need some preparation time prior to consumption, “handling time”, which
allows a potential thief a chance. This can be because the food item needs
to be transported to a nest for offspring, or it might take a while to con-
sume because it has an tough exterior that needs to be penetrated, like a
shell, or needs to be consumed in pieces which requires a bird to land to eat
it (Spear et al., 1999; Steele and Hockey, 1995; Triplet et al., 1999). This
type of scenario has been modelled by Broom and Ruxton (2003); Broom
et al. (2004b); Broom and Rychtai (2007); Broom et al. (2008); Broom and
Rychtar (2011).

Alternatively the resource might be a food patch containing a large
number of small items which takes time to consume, which is the focus of
producer-scrounger/ finder-joiner models (Barnard and Sibly, 1981; Barnard,
1984; Caraco and Giraldeau, 1991; Vickery et al., 1991), see Giraldeau and
Livoreil (1998); Kokko (2013); Broom and Rychtar (2013) for more general
reviews. In this type of model one animal, the “Finder”, discovers a food
patch that takes some time to be consumed. Whilst the animal is still feed-
ing on the patch, a second individual, the “Joiner”, discovers the Finder at
the patch, and has the opportunity to attempt to steal the patch, or at least
to steal some of the food within it. In most such models, in particular that
of Dubois et al. (2003), the competitors play a classical hawk dove game
(Maynard Smith and Price, 1973; Maynard Smith, 1982), where they have
the choice of a passive strategy (dove) or an aggressive strategy (hawk).

Depending upon how large the patch was initially, and how long the
Finder has been feeding on the patch prior to the arrival of the Joiner,
the amount of food remaining can take a variety of values, from very small
to very large. In previous models, and in particular Dubois et al. (2003),
it was assumed that both animals knew the value of the resource. In this
paper, building on previous work of Broom and Rychtai (2013), see also



Broom et al. (2013a,b), we consider a version of this game where the Finder
knows the value of the food patch at the start of the contest, but the Joiner
does not. This is reasonable in any case where the value of the patch is not
immediately apparent from a distance, but can be ascertained (or at least
estimated) by close observation, for example a nest of eggs. In the following
sections, we detail the mathematical assumptions of the model, perform a
general analysis for our model, and then investigate the results. In particular
we compare our results to the alternative case where both individuals know
the value of the food patch. Finally we discuss the implications of our results
both biologically, and for future models.

2. The model

In this paper we will follow the work of Dubois et al. (2003) and model an
interaction of two individuals by a sequential Hawk-Dove game. A Finder
discovers a food patch and a Joiner arrives subsequently and try to take
some of the food. We assume that the Finder utilizes the resource before
Joiner arrives and that the Joiner does not know true value of the resource
at the time of its arrival.

We let the total value of the patch be F' (either a number of distinct
items, or a single easily divisible item), of which value a, the Finder’s share,
has already been consumed by the Finder before the Joiner arrives. The
sequential Hawk-Dove contest is modelled as a game in extensive form as in
Figure 1. In this game the Finder makes an initial choice of strategy Hawk
or Dove. This is observed by the Joiner which then responds with a choice
of Hawk or Dove itself. Given this sequence of chocies the payoffs are then
given as shown in Figure 1.

When two Doves meet, they share the remaining resource, each trying
to eat as much as they can (scramble competition), but it is assumed that
it is eventually divided equally. When a Hawk meets a Dove, the Dove
retreats and the Hawk consumes the entire remaining resource. When two
Hawks meet, they fight and both pay an energetic cost of value C. The
loser retreats and the winner keeps the entire resource, the probability of
the Finder winning the contest being denoted by .

Unlike as in Dubois et al. (2003) where the authors investigated the full
information case (both the Finder and Joiner know the value of a and of
F,C,a), here we will consider a asymmetric information case when only
the Finder has the information about the amount of food already eaten
a € (0,F). The Finder’s strategy will thus depend on F,C, «,a, while the
Joiner’s strategy will depend only on F,C,a and the choice of the Finder.



Payoff to Payoff to
the Finder the Joiner

a+a(F —a)—C (1-a)(F—-a)-C
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a F—a
F+a F—a
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Figure 1: The sequential Finder-Joiner game in extensive form.

For a fixed F,C,« we are interested for which values of a the Finder will
play Hawk, and for the corresponding response of the Joiner.

In full generality, the strategy for the Finder will be a function 7(a) =
m(a, F,C, o) where 7(a) € [0,1] for a € (0, F) represents the probability of
the Finder playing Hawk given the amount of food already eaten is a. The
strategy for the Joiner will be a pair (pg,pp) where py (pp) is Joiner’s
probability to play Hawk given the Finder played Hawk (Dove).

We will look for evolutionarily stable strategies (ESSs) of the game.
For an asymmetric game with two players, an ESS is a strategy pair, i.e.
a strategy for each player, where either individual would obtain a strictly
worse payoff if it unilaterally changed its strategy.

To help us distinguish the ESSs, we will assume that Finders make rare
mistakes. This is the principle of the “trembling hand” (Selten, 1975; van
Damme, 1991; Broom and Rychtaf, 2013), which suggests that individuals
should make optimal choices even in situations which, formally, do not occur
when all others also play optimally. This discriminates among a large set
of apparently equivalent strategies, which differ only in their responses to
situations which do not occur in the ESS. We specify the nature of these
mistakes in Section 3.

We assume that a has either uniform continuous distribution with the
density function d(a) = 1/F on (0, F') or that a takes values in {iF'/n;i =
1,2,...,n—1} each with a probability 1/(n—1). In both cases, the expected
value of a is F//2 and a probability of having a =0 or a = F is 0.



3. Analysis

It follows from Figure 1 that regardless of the value of a, the optimal
value of pp is 1. Indeed, for any given a, the Joiner should play Hawk when
F—a>E 5+, which is always satisfied since a < F. Consequently, if the
Finder plays Dove, it receives a payoff of a and the Joiner receives a payoff
F —a.

Next, consider the population where Joiners play (pg,1) and assume
the Finder has already eaten a by the time that the Joiner has arrived.
We will evaluate R(a,pp), the difference if payoff for the Finder between
playing Hawk and Dove. The Joiner will not fight with probability (1 —pg).
If the Joiner does not fight and a Finder plays Hawk, the Finder receives
an additional payoff of F' — a (on top of the already secured payoff of a
which is also the payoff the Finder would receive if playing Dove). The
Joiner will fight with a probability py resulting in an additional payoff of
PH (a(F —a)— C) for the Finder if it plays Hawk. Hence, we get

R(a,pn) = pu(a(F —a) = C) + (1 — pu)(F — a) (1)

Although the function R(a,pp) is formally defined only for a € (0, F'), we
will use the formula (1) to extend the function on a € [0, F]. Note that,
by (1), the function R(a,pp) is decreasing in a for any fixed value of pg.
Consequently, there is at most one critical value aq.i(pg) € [0, F] such that

> 0, 0 <a< Qerit
R(ava) =0, a = Qerit € (07 F)a (2)
<0, F>a>ac.

It follows that for any given strategy (pg,1) of the Joiner, the optimal
strategy of the Finder must be of the form

1, a < Qerit
Tracrit (a) = { (3)

0, a 2 Qerit-

Thus it plays Hawk if and only if a < a¢pt-

We will consider two types of mistakes that a Finder can make. When
a Finder mistakenly follows a wrong strategy m; (for a # ag and typically
a ~ ap), we will call it a mistake of the first kind. When the Finder tries
to follow the correct strategy m,, but still plays a Hawk by mistake (with
a very small frequency) for a > ag and a Dove by mistake when a < aq,



we will call it a mistake of the second kind. The mistake of the second kind
thus amounts to playing a strategy

1—cegy a < ag
Tage(a) = { ’ ’ (4)
€D, a = ag

instead of strategy m,,. When Finders make a mistake of the first kind, we
get that E[F —a] = F — % When Finders make a mistake of the second
kind, we will still have that E[F — a] is different from F' — . Note that for
ap = 0, a mistake of a second kind is equivalent to a (big) mistake of the
first kind with @ = F.

Let us now assume that all Finders follow a strategy m,, for some ag.
We have to find the optimal value of py for the Joiner. When the Finder
plays Hawk, the expected payoff to a Joiner playing pg is

pr((1—a)E[F —a] - C) ()

where E[F — a] denotes the expected value of the remaining resources given
the Finder played Hawk. When Finders follow the strategy m,, exactly and
without mistakes, we get that

E[F—a]:F—E[a]:F—%. (6)
The payoff to a Joiner playing Dove would be 0, and thus the optimal
value of py is given by
1, when (1 —a)E[F —a] —C >0,
PH,opt = (7)
0, when (1 — a)E[F —a] —C <0.

The case when
(1—a)E[F —a]l—C=0 (8)

could potentially lead to a Joiner’s mixed strategy py € (0,1). However, the
exact equality in (8) cannot hold when Finders do make mistakes and thus
the stable value of py will always be either 0 or 1.

We will now investigate all possible candidates for ESSs and we will
look for them as pairs (acrit, prr). Here acrir represents the strategy m,,,.,,
of the Finder given in (3) (to play Hawk if and only if a € (0, acr)) and
pm represents the strategy of the Joiner (to play Hawk with probability py
given the Finder has already played Hawk).



8.1. Case acgrit =0
If acrit = 0, we have

R(0,pr) = pu(aF — C) + (1 —py)F <0. 9)

Since py < 1, and R(0,py) = F — pH((l —a)F + C) is decreasing in pg,
we must have

R(0,1)=aF — C <0. (10)
Let po = min{pg; (9) holds}. Clearly py > 0. Also, when (10) holds, all pairs
(0,p) for any p > pg > 0 are possible candidates for an ESS.

Given a¢r¢ = 0, no Finder should ever play Hawk and thus the value
of py does not really matter if there are no mistakes in the population. If
there are mistakes, there will be an occasional Finder playing Hawk and the
exact value of pg will thus matter. Since our candidate value must satisfy
pr > po > 0, we have that the only possible ESS is (0,1) and that will
happen when (1 —a)E[F —a] — C > 0. When there are mistakes of the first
kind and occasionally a Finder plays a strategy m; instead of mg, the pair
(0,1) is an ESS if and only if (10) holds and

1-a) (F - ;) > C. (11)
Here we have @ = a.i+ = 0, and so inequality (11) becomes
(1—-a)F >C. (12)
When there are mistakes of the second kind, ac-;+ = 0 implies that Hawk
is equally likely to be played by the Finder for any value of «, so that
E[F — a] = F/2. This gives the equivalent condition to (11) as

a—@§>0. (13)

8.2. Case Gepip = F
If aeriy = F, we must have

R(F,pH) = —CpH > 0. (14)

which is possible only if pf = 0. It thus remains to investigate when the pair
(F,0) is stable. Clearly, the Finder’s strategy is optimal against the Joiner’s
strategy pg = 0 (regardless of any parameter values).
By (7) and (6), pg = 0 is an optimal response to the Finder’s strategy
7w (and the pair (F,0) is stable) if and only if
(1—-a)F

(1-@E[F —a] - C = ——~—-C<0. (15)



ESS Condition

(0,1) (1 —a)F > C > «oF (for mistakes of the first kind) or
(1—a)f > C > aF (for mistakes of the second kind),

(F—%,l) C<aFand CBa—-1)<a(l—a)F

(F,0) C> Lo

Table 1: Summary of the ESSs. An ESS pair (acrit, prr) means that the Finder will follow
a strategy ma.,;, as in (3) and the Joiner will play Hawk with probability pg if the Finder
played Hawk or with probability 1 if the Finder played Dove.

3.8. Case acrit € (0, F)

Since R(acrit, prr) = 0, we must have py > 0. It follows from above that
Finder’s strategy is optimal when the Joiner plays py and we only have to
check when py = 1 is optimal for the Joiner.

If pg =1, we get that R(a,1) = a(F — a) — C and thus

C
aCTit - F - E (16)
Hence, a¢¢+ > 0 only if
C <aF (17)

which complements the condition (10) for (0,1) being an ESS. By (7), the
value pg = 1 is optimal for the Joiner only if

0<(1-a)E[F —a]— (F %m>
:(1—01)7“220 C = ( ot e (18)

which is equivalent to
CBa—1)<a(l —a)F. (19)

The inequality (19) always holds for o < 1/2 since we already must have
C < aF and for a < 1/2 we also have (3a — 1) < (1 — «).

Hence, (F' — %,1) is an ESS if C < aF and a < 1/2 or when C < oF,
a>1/2and CBa—1) < a(l —a)F.

Table 1 shows the summary of the conditions on various ESSs and the
situation is also shown on Figure 2.
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Figure 2: ESSs of the game for the asymmetric information case, where all terms are as
defined in Table 1. The label “(0,1)” denotes a region where there is an ESS of (0, 1) for
the case of mistakes of the first kind (Finder plays Hawk for small values of a). The label
(0,1) denotes a region where there is an ESS of (0, 1) for either kind of mistakes.

a<1/2
ESS 0<a<F-¢ [F-S<a<F-{£| F-{£<a
Finder Joiner | Finder Joiner Finder Joiner
Symmetric | Hawk Hawk Dove Hawk Hawk  Dove
(0,1) Dove  Hawk | Dove Hawk Dove  Hawk
(F — %, 1) | Hawk  Hawk | Dove Hawk Dove  Hawk
(F,0) Hawk  Dove | Hawk Dove Hawk  Dove
a>1/2
ESS O<a<F-Z |F-;% <a<F-%| F-t<a
Finder Joiner | Finder Joiner Finder Joiner
Symmetric | Hawk  Hawk | Hawk Dove Hawk  Dove
(F — %, 1) | Hawk  Hawk | Hawk Hawk Dove  Hawk
(F,0) Hawk  Dove | Hawk Dove Hawk  Dove

Table 2: Comparison of actions taken during the game in the symmetric and asymmetric
information cases and various ESSs.



4. Comparisons between symmetric and asymmetric information
cases

In Dubois et al. (2003), see also (Broom and Rychtar, 2013, p. 364), the
authors investigated the Finder-Joiner game for the symmetric information
case (when a Joiner also knows the exact value of a) and determined condi-
tions on a, F, C, « for when the Finder (and the Joiner) should play Hawk.
Table 2 shows an overview of the ESS actions for all possible values and
available information.

Comparing the symmetric information case with the asymmetric infor-
mation case when the ESS is (F,0), it follows that the asymmetric informa-
tion case is never worse for the Finder and never better for the Joiner (with
the cases being same only when C' > (1 — a)F'). Indeed, in the symmetric
information case there may be fights (when a < min{aF, (1 — «)F}) with
positive expected reward for both parties yet with a cost C associated with
it, and the Finder may give up for some values of a (when o < 1/2), whereas
in the asymmetric information case and (F,0) ESS, the Finder always gets
F while the Joiner gets 0, i.e. the best outcome for the Finder and the worst
possible ESS outcome for the Joiner.

On the other hand, the asymmetric information case is better for the
Joiner (and worse for the Finder) when the ESS is (0,1) or similarly when
it is (F — %, 1) and a < 1/2. This is because for large a, in the symmetric
information case the Finder plays Hawk while the Joiner gives up, i.e. the
Finder gets F' and Joiner 0, whereas in the asymmetric information case,
the Finder has to play Dove for large a, thus getting only a and the Joiner
getting F' — a. Moreover, in the case of @ < 1/2 and a < F — % and the
symmetric information case, the Finder and the Joiner both play Hawk to
get a positive expected reward while in the asymmetric information case
and (0,1) ESS, the Finder gives up, gets only a and the Joiner gets F — a
(without paying the cost of the fight).

Also, when o > 1/2 and F — & <a< F - %, then in the symmetric
information case the Finder gets F' while Joiner 0, yet in the asymmetric
information case and (F'— %, 1) ESS, the Finder and Joiner fight, resulting in
negative payoff for the Joiner and a worse outcome for the Finder. Overall,
if @« > 1/2 and for the (F' — %, 1) ESS, then the Finder does worse in the
asymmetric information case than in the full information case and the Joiner
may do better or worse depending on the exact parameter values.

10



5. Discussion

Food stealing behaviour has been modelled in a number of ways, de-
pending upon the exact scenario being modelled, and the specific features
of interest from that scenario. A common factor of many of these models is
that animals are faced with a choice between a small range of options, often
two. This could be to steal or not to steal/ to resist a stealing attempt or
not to resist (Broom and Ruxton, 2003; Broom et al., 2004b; Broom and
Rychtar, 2007; Broom et al., 2008; Broom and Rychtar, 2011) or to play ag-
gressively or passively within a contest (Barnard and Sibly, 1981; Barnard,
1984; Caraco and Giraldeau, 1991; Vickery et al., 1991; Broom et al., 2009;
Grundman et al., 2009; Dubois et al., 2003). This kind of choice is of course
common to a variety of ecological scenarios, such as patch foraging, where
the choice may be to forage on a particular patch or to leave and go to
another (Fretwell and Lucas, 1970; Kiivan et al., 2008).

It is generally assumed that the value of the resources competed for in
these contests are known to both players, namely that they have perfect
information (van Damme, 1991). In fact it seems reasonable that an animal
that has possessed a food item for longer may have more information than
a challenging individual, so that the first individual knows its value but
the second does not; this is a game of imperfect information, and that is
the scenario that we have considered. The key parameters in our model are
three general ones known to both animals, C' the cost of a violent contest,
« the probability that the Finder will win the contest, F' the value of a
complete food patch, and a single value known only to the Finder, a, how
much food has been consumed by the Finder before the Joiner arrives. Thus
the Finder’s strategy takes a into account, but the Joiner’s cannot.

The Joiner either always plays the aggressive Hawk strategy or always
concedes if and only if the Finder plays Hawk (if the Finder is not aggressive
it clearly benefits the Joiner to be, as this secures the resource). The Finder’s
optimal strategy is to play Hawk for a small enough i.e. when there is a
sufficiently large amount of food left to be worth fighting for (yet this may
be to play Hawk always, or never). There are three qualitatively different
types of ESSs: 1) (0,1) when the Finder always plays Dove and the Joiner
always plays Hawk, 2) (F'— C/«, 1) when the Finder plays Hawk only when
enough resources is still left and the Joiner always plays Hawk, 3) (F,0) when
Finder always plays Hawk and Joiner always plays Dove. There is always an
ESS, and in some circumstances there are two simultaneous ESSs.

When C > F(1 — «), corresponding to the situation where it is not
beneficial for the Joiner to fight even for a maximal reward F' (this type

11



of condition is common to such models, for example Broom et al. (2004a)),
there is no difference between the symmetric or asymmetric information
case. In both situations the Finder always plays Hawk and the Joiner always
plays Dove, so that aggressive defence of the resource is sufficient to deter
the Joiner, and the Finder keeps the resource without any contest. Such a
situation will occur where costs are high, for example if the animals have
powerful weapons like horns or tusks, or if the Joiner has only a small chance
of winning the contest, for example if the food patch is easy to defend.

When F(1 —a) > C > F(1 — a)/2, corresponding to the situation
that it is not beneficial for a Joiner to fight for a reward of average value
F/2, then (F,0) is an ESS. There may, however, be other ESSs. One such
ESS is (0,1) for o < 1/2, when the Finder gives up the resource without
a fight. This corresponds to the paradoxical strategy X (Maynard Smith,
1982). We note, however, that in our scenario, this ESS is possible only if
the Finder makes mistakes of the first kind, i.e. if it plays Hawk for very
small a. Another possible ESS is (F'— C/a, 1) which can happen for o > 1/3
(and C/F < 1/2). Here, the Finder fights when the value of the remaining
resource is large enough. Thus, the fact that the Finder is prepared to fight
is a good enough indication for the Joiner to fight as well.

When C' < F 1_Ta, it is beneficial for a Joiner to fight for an average
reward of F'/2. This will happen if the potential cost is small compared
to the value of the food, or if the Joiner’s chance of winning are high; this
means that the Joiner will always fight. Thus in the asymmetric information
case that we consider here, the Finder never challenges for large a as this
fight would be for a small amount of food left. Also, in this case, the Finder
does worse in the asymmetric information case then it would do in the
symmetric information case. If, moreover a@ < 1/2, then the Joiner does
better in the asymmetric information case than in the symmetric information
case (although it knows less in the asymmetric information case). This is
caused by the fact that in the symmetric information case, the Finder can
play Hawk when a is large enough, knowing that the Joiner knows F' — a
is small and thus it is not worth fighting for. However, in the asymmetric
information case, the Joiner has no information about the exact value of a
and since the Joiner knows that it is not beneficial for the Finder to play
Hawk for small enough items, the Joiner plays Hawk whenever the Finder
plays Hawk. Such a strategy may or may not be harmful to the Joiner
(compared to the symmetric information case) when o > 1/2, as then the
Joiner fights even for items that are not worth fighting for.

The Finder’s strategy is rather complex and can be prone to mistakes.
Consideration of possible mistakes was needed to resolve which strategies

12



are ESSs out of a potentially large number of apparently identical strategies
(these are only identical under always perfect decision-making, which is of
course not realistic). We saw an interesting phenomenon, than the regions of
ESSs obtained in our solution differed depending upon the type of mistakes
the Finder can make. If the Finders are prone to making only small mistakes
in assessing acrit, then the ESS region of (0,1) is larger than in the case
when Finders are prone to a mistake in the execution of the strategy (such
as playing Hawk when they should play Dove).

Thus we have seen that depending upon the values of the parameters,
the extra information possessed by the Finder can be beneficial, but it can
also be harmful, when compared to the case where both individuals have
full information. It is thus reasonable to ask under what circumstances will
the asymmetric information situation that we have described actually occur
in real populations? This is more likely to happen when resources are either
not immediately visible to the animals, as in a large nest concealed within
a hedgerow or if the contest between the animals progresses quickly so that
the Joiner does not have chance to assess the value of the reward. In contrast
in situations where contests progress more slowly and are of a clearly visible
resource, for example a dead animal on an open plain, we might expect the
full information case to hold.

An assumption made in our model is that the Finder chooses its strategy
before the Joiner. This might be reasonable for instance if the Finder sees the
Joiner approaching from a distance and has to choose a defensive position
which is associated with its strategy choice. However there will be circum-
stances, for example if the Joiner discovers the Finder and can challenge
before the Finder is aware of its presence, where it would be reasonable to
assume that the Joiner chose its strategy first. As we have seen here, but is
generally well known, the order of players in a sequential game is important.
We have modelled the contest as a sequence of single choices, but contests
may be more protracted, with a number of choices for each animal. This
would also perhaps give the Joiner the opportunity to gain more informa-
tion about the resource, so that it may potentially adjust its strategy as it
learns more about the food patch, for instance deciding to concede if the
patch is shown to be of low value. In general we see that the assumptions
made in such models, relating to different real scenarios, have a crucial effect
on the outcome both of the idealised model, but also, we would contend, of
real contests.

In our model we have also assumed that the value of the Finder’s share
”a” is uniformly distributed. This is reasonable for circumstances where the
food is consumed at a uniform rate, so for example a carcass approached by
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a scavenger. In other circumstances this would not be the case, for example
when the food patch comprises a number of small prey items, e.g. ants, that
need to be captured. As the number diminishes, the rate of consumption
likewise goes down. In this case, it would be more likely that the Finder’s
share would be a large value rather than a low one. What are the conse-
quences of the distribution not being uniform? Clearly, a large patch is still
worth more than a smaller patch, so that following the same working there
will still be a critical threshold a..;; for when the Finder should play Hawk,
leading to the same results qualitatively, so that a similar figure to Figure 2
would be obtained. The calculation could be much more complex however,
and the nice clean solution for a..;; displayed in the figure would no longer
hold.

A further assumption of our model is that F' is a known and fixed value,
in particular by the Finder. This may not be true, particularly in the multiple
prey scenario discussed in the paragraph above. In such circumstances the
Finder can use the level of the food that it has consumed a as an indication
of the richness of the patch, i.e. to estimate F. Here we would have a more
complex version of the game but still within our basic premise that the
Finder knows more than the Joiner. In this scenario a large a acquired in a
short time may indicate that there is a lot of food remaining. To consider
such a situation would need a more complex model which takes into account
the time that the Finder has been at the food patch as well as the distribution
of F' values in the environment. This would be a valuable development of
the model, and is a topic for future research.
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