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ABSTRACT 

Hydrodynamic models and coefficients are important parameters for predicting the maneuverability of the 

ROV (Remotely Operated Vehicle). This paper will present an experimental study on the hydrodynamic 

behaviors of a new ROV that has an asymmetrical shape but has a large capacity holding more instruments 

on board than other ROVs.  A series towing tests has been carried out on this ROV moving in a vertical 

plane.  This paper will give the fitting formulae of forces and moments, and corresponding hydrodynamic 

coefficients, which can be used for simulating the motions and so for predicting the maneuverability of the 

ROV, and will also discuss the effects of asymmetry in its shapes on its hydrodynamic coefficients. 

Keywords: ROV (Remotely Operated Vehicle); effects of asymmetrical shapes; scaled model test; 

hydrodynamics coefficients 

 

1. Introduction 

Underwater vehicles can be applied to ocean resource exploration and exploitation, pipeline inspection 

and offshore structure maintenance, seafloor geography mapping, and so on.  There are two kinds of 

underwater vehicles for such applications: Remotely Operated Vehicles (ROVs) and Autonomous 

Underwater Vehicles (AUVs) [1]. Generally speaking, AUVs have simple and watertight hulls, similar in 

many cases to conventional submarines, operating at relatively high speeds; in contrast, ROVs have 

relatively complex and open-frame hulls, operating at relatively low speed. This paper is mainly concerned 

about ROVs. 

Hydrodynamics of ROVs are important for controlling their motions and predicting their performances in 

sea.  At present, their hydrodynamic properties are mainly studied by carrying out experiments.  That is 

perhaps because their hull geometries are generally very complex and it is difficult and very time consuming 

to perform numerical computations.  In addition, unlike conventional submarines having roughly similar 

hulls, each ROV has its unique hull geometry that is generally different from others.  Due to this, there are 

no common hydrodynamic properties that can apply to all ROVs.  One needs to carry out study on 

hydrodynamics for each ROV.  Due also to this, there is lack of common dynamics mathematical models 

that can be applied to all ROVs [2]. 

   The most commonly accepted dynamics model for conventional submarines can be traced to a series of 

studies performed at DTNSRDC (David Taylor Naval Ship Research and Development Centre) [3] [4].  

This dynamical model (known as the DTNSRDC standard submarine equations of motion) has been used for 

predicting the motions of not only conventional submarines, but also some underwater vehicles such as [5] 

for AUV and [6], [7] and [8] for the ROVs.  However, the DTNSRDC dynamical model is originally 

proposed for conventional submarines, where the hydrodynamic forces are assumed to be related to the 

square of velocities. For ROVs, it may move at a low speed and the linear part (proportional to the one order 

of speed) of hydrodynamic force and moment may play a role and may not be ignored.  
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In many publications, the dynamic model for ROV was simplified as one without off-diagonal drag entries 

and ignores influence of motion in one direction on the hydrodynamics in other directions by assuming that 

vehicles have three symmetrical planes, e.g., [9][10] and [11].  Associated hydrodynamic coefficients were 

obtained by model tests (e.g.[12][13][14][15][16]) and computational fluid dynamics (e.g. [17]). Besides, the 

reference [18] discussed the hydrodynamic properties of a submersible with an aerofoil for forward and 

backward motions, and the work in [6] and [19] conducted towing tests for ROV models moving in forward 

and backward, starboard and portside, upward and downward directions.  In these papers and others in 

literature, the effects of asymmetrical ROV shape on its hydrodynamic properties are rarely studied as far as 

we know.  

This paper will present an experimental study on the hydrodynamic behaviors of a new ROV similar to 

the Quantum designed by SMD [20].  This ROV has more capacity than others and allows additional 

sensors and equipments to be mounted on board. The vehicle has a complex open-framed hull and is 

front-rear and top-bottom asymmetrical.  In this paper, we will present the study on the hydrodynamics 

associated with surge and heave motions with particular attention on the effects of the front-rear and 

top-bottom asymmetry of its hull, and suggest a dynamic model which takes into account of the front-rear 

and top-bottom asymmetry.  

The remainder of this paper is organized as follows. In Section 2, the model and test facilities and 

procedure will be described.  Section 3 presents the data processing method.  Then the experimental 

results is given and discussed in Section 4.  Finally, the conclusions are summarized in Section 5.  

  

2. Test model, experimental facilities and procedures 

  The test model of the ROV is illustrated in Fig. 1.  The frame structure is made of steel, while the other 

components within the frame, such as thruster and equipment blocks are made of buoyancy material.  Its 

main parameters are summarized in Table 1.  The test model is front-rear and top-bottom asymmetrical 

(more details may be found in Fig. 4). 

 

 

Fig. 1. Test model 

 

Table 1  

Parameters of test model 

Physical property Value 

Scale ratio 1:4 

length, m 0.875  

width, m 0.5  

height, m 0.5  

mass in air, kg 78  
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In many situations, the ROV will be operated to move up and down (referred as to the heave direction), 

such as during the launch stage, and forward and backward (referred as to the surge direction), such as during 

the search stage on the sea bed.  This paper will mainly study the properties of forces and moments acting 

on the ROV in such situations.  For this purpose, a series of model tests in surge and heave directions with 

constant towing speeds have been carried out. The experiments are carried out in two facilities of Harbin 

Engineering University.  The surge tests are undertaken in circulating water channel (the model placed in it 

as shown in Fig. 2), which has a cross-section of 1.7m wide and 1.5m deep with the velocity of flow.  

During the surge tests, the test model is stationary and water flows forward or backward relative to the model.  

The heave towing tests are carried out in a large water tank of 50m long, 30m wide and 10m deep (the model 

placed in it as shown in Fig. 3). During the tests, water was stationary, while the test model is towed with 

constant speeds.  In both kinds of the tests, the relative speeds between water and the model are changed in 

a range (specific values are given below), and the tests are repeated several times at each value of speeds.  

The forces and moments acting on the test model are measured using a six-component force transducer.   

  

Fig. 2. Model test in circulating water channel    Fig. 3. Model test in a tank 

3. Data processing 

3.1 Expressions of forces and moments on the model 

  For convenience of describing the forces and motions, the coordinate system is set up as shown in Fig. 4. 

In the figure, u, v and w denotes the linear velocities in the surge, sway and heave directions with their 

corresponding forces represented by X, Y and Z, respectively.  In addition, p, q and r denote the angular 

velocities in roll, pitch and yaw directions with K, M and N to be corresponding moments, respectively. 

 

(a) Coordinate system  
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(b) Section at y=0 

 

(c) Section as x=0 

Fig. 4.  Coordinate system and illustration of two mid-plane sections 

For an underwater vehicle moving in the deep water at a constant speed, without taking the surface water 

effect into consideration, the hydrodynamic forces and moments are caused by the fluid viscosity, depending 

on its geometry and its motion velocities.  Generally, they may be expressed as: 

                                                       . 

Using the similar method to that in [21], the components of the forces and moments can be expressed by the 

multivariate Taylor series of the velocities.  If we may just take the series to the second order, the forces and 

moments due to the motion in the surge and heave motions may be expressed as  

 

                       (1a) 

                        (1b) 

                       (1c) 

 

As indicated above, the vehicle is front-rear and top-bottom asymmetrical, which is further illustrated in  

Fig. 4 by using two mid-plan, the motion in the surge direction may induce the force in the vertical (heave) 

direction and the moment in the pitch direction. Similarly, the motion in the heave direction can also induce 

the force in the surge direction and the moment in the pitch direction.  These effects have been reflected in 

Eq. (1).  The comments of the forces and moments due to asymmetry are often ignored in literature.  Their 

properties are particularly interested in this paper.  

For the motion only in one direction, the forces and moments acting on the vehicle can be reduced to  
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                 (2a) 

where,   generally denotes one of X, Z and M in Eq. (1) and U represents either u or w in Eq. (1). 

Considering the direction of the velocity, the force may also be written as 

 

      
     

          
                     

     
          

                     
    (2b) 

 

Because of its front-rear and top-bottom asymmetry of the vehicle,   
      

   ,    
       

   .  This 

is not convenient for practical engineering applications. Therefore, Eq.(2) is better to be written in the other 

form. We know that any function can be written uniquely as a sum of an even function and an odd function, 

hence      in Eq. (2) can be rewritten as: 

 

                                      (3) 

where      ,     ,        and      do not depend on the direction of the velocity and so                  

is even while                 is odd.  In order to examine the relationship between the coefficients in 

Eqs. (2) and (3), one may re-write Eq. (3) as   
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Compared with Eq. (2b), we should have 
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In the following sections, Eq. (3) will be employed to process the experimental data but the bar over the 

force and moment coefficient will be dropped from now without confusion.  Correspondingly, the force and 

moment in Eq. (1) can be rewritten as: 

  

                                                           (5a) 

                                                            (5b) 

                                                           (5c) 

 

It is indicated that the force coefficients should be understood as these with a bar as those in Eq. (3), meaning 

that they do not depend on the direction of the velocity. 

In order to be able to apply the force/moment coefficients to prototype vehicles, it may be better to 

convert the coefficients into dimensionless form.  For this purpose, the coefficients of the forces 
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proportional to the velocity will be nondimensionalized by 
 

 
       , these proportional to the square of the 

velocity by 
 

 
   , the coefficients of moments proportional to the velocity by 

 

 
        and these moment 

coefficients proportional to the square of the velocity by 
 

 
   , where l is the model length,   is the water 

density and   is the gravitational acceleration.  For examples,        
 

 
       ,           

 

 
   , 

       
 

 
       ,           

 

 
   .  These with a dash as superscript represent the 

non-dimensional coefficients. 

3.2. Least squares method  

The least square method is employed to find the hydrodynamic coefficients in Eq. (3) or (5) from 

corresponding tests.  For any test case with a velocity in one direction, one expects that the following 

expression has a minimum error. 

 

                                           
   

  
     (6) 

 

where     is the measured force or moment corresponding to the velocity    and y denotes any of X, Z 

and M in Eq.5).  In other words, the following equations need to be satisfied.  
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The force or moment coefficients are found by solving the following equations.  

 

 
 
 
 
 

   
  

          
 
      

  
      

  
       

       
 
      

  
      

  
           

  
   

   
  

      
     

 
      

  
      

  
       

   
     

 
      

  
      

  
           

  
    

 
 
 
 

 

    

  

     

   

  

 
 
 
 
 

        
 
   

      
 
   

    
 
         

    
 
     

  
 
 
 
 

  (7) 

4. Results and discussions 

In this section, the experimental results are presented, analyzed and discussed for towing tests in surge and 

heave directions, respectively. 

4.1. Constant velocity towing tests in the surge direction  

Fig. 5 shows the forces and moments measured for the constant velocities in a range of 0.3m/s to 0.85 m/s 

when the model is towed in the surge direction (i.e., forward and backward). The figures on the left give the 

non-dimensional force or moment against the Reynolds number while these on the right plot corresponding 

dimensional forces or moments.  The absolute value of the force in the surge direction is depicted in Fig. 

5(a), where the Reynolds number is defined as         with the water kinematic viscosity taken 

                    based on the water temperature of 14℃ in the test.  It is first pointed out that 

the variation of the non-dimensional force and moment (  ,    and   ) is not significant in the range of 

Reynolds number tested; in other words they do not strongly depend on the Reynolds number in the range. It 

is secondly pointed out that no matter which direction the vehicle moves (forward or backward), the force in 

surge direction (Fig. 5(a)) has very close magnitude, meaning that the asymmetry of the ROV viewed from 

the front or rear does not cause difference in the surge forces. Thirdly, as one can see in Fig. 5(b), the vertical 

force (Z) magnitudes in the heave direction are considerable different, though they always point upward (i.e., 

in the negative direction of z-axis), indicating that the front-rear and top-bottom asymmetry of the ROV does 

affect the vertical forces. Similarly, the curves for the moments M in the pitching direction (Fig. 5(c)) are 

apart from each other, in particular for the larger towing velocity, though their direction is the same (rotating 

about positive direction of y-axis).  

 

 (a) Force in surge direction (left: non-dimensional force; right: dimensional) 
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 (b) Force in heave direction (left: non-dimensional; right: dimensional)  

 

 (c) Moment in pitch direction (left: non-dimensional; right: dimensional) 

Fig. 5. Measured forces and moments for constant speed towing in the surge direction  

The forces and moments in Fig. 5 can be fitted into formulae such as Eq. (3) using the least square method 

in Eq. (7).  In order to obtain more reliable fitting results, the tests for each towing velocity are repeated 

several times.  As a result, there are several values of forces available corresponding to each value of the 

velocity.  Due to this, when carrying out the fitting, one may have two options.  One is to apply the least 

square method to all the measured forces or moments at the same time while the other one is to calculate the 

average values for each towing velocity firstly before applying the least square method. Table 2 shows the 

force or moment coefficients.  The values in brackets are obtained by using the second option.  As 

observed from Table 2, the coefficients obtained by two methods agree very well.  Hence, in the following 

analysis, we only apply the second option for fitting curves. In addition, the force coefficients corresponding 

to the square of the velocity are generally much larger than these corresponding to the linear terms.  

However, this does not means that one can ignore the linear terms.  That is because the ROV may operate 

with a very slow motion.  In such cases, the linear terms may be significant.  To check how well the force 

or moment formulae expressed by Eq. 3 with the coefficients in Table 2, the comparison between measured 

values and fitting curves is made in Fig. 6.  The agreement between them is almost perfect. 
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Hydrodynamic coefficients obtained by fitting the test results for towing in the surge direction 
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Fig. 6a Force in surge direction 

 

Fig. 6b Force in heave direction 

 

Fig. 6c Moment in pitch direction 

Fig. 6.  Comparison between fitting results and measured data for the surge tests 
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Furthermore, to quantitatively assess the error between the fitted curves of forces and moment and the 

measured values, two parameters are introduced and examined.  One of them is relative error, E, reflecting 

the differences between the fitted curves and the measured values at each velocity, defined by Eq.(8).  

   
     

  
         (8) 

where    represents the measured forces or moments while    is the values by Eq. (3) using the 

coefficients in Table 2.  As mentioned before, there are several values of force or moments at each value of 

the velocity due to repeating testes, and so the range of errors at each velocity would be obtained.  In 

addition, one can also obtain the error based on the average measured value of force and moments. To do so, 

   in Eq. (8) should be replaced by an average value (    ) corresponding to the speed concerned.  The 

other parameter is the standard deviation,  , defined in Eq. (9).  

   
 

 
           

  
     (9) 

where      is the mean values of measured forces or moments at each velocity and     is the value 

calculated by using the fitted formulae at the same velocity.   

For the towing tests with constant velocity in the surge direction, Fig.7 presents the variation of relative 

error, E. In the figure, the solid dots represent the error using the mean value of measured force or moment 

while the solid vertical lines represent the error using the values of forces at each velocity. Fig. 8 shows the 

variation of the standard deviation.  It can be seen that the maximum relative error is less than 10% while 

the mean error is less than 5% in the cases.  The standard deviation has the similar trends and values for the 

backward and forward motion.   

   

 (a) Forward 

   

(b) Backward 

Fig. 7. Relative error (E) for the surge tests (the dots is calculated by mean velocity) 
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Fig. 8.  Standard deviation for the surge tests 

4.2. Constant velocity towing tests in the heave direction 

Fig. 9 shows the forces and moments for constant velocity towing in the heave direction. Similar to Fig. 5, 

the figures on the left are the non-dimensional force or moment against the Reynolds number while these on 

the right plot the absolute value of corresponding dimensional forces or moments.  Again one can see that 

the variation of the non-dimensional force and moment (  ,    and   ) with the Reynolds number is not 

significant in the range of Reynolds number tested.  As shown in Fig. 9(a), the surge forces for the upward 

and downward motions are considerable different not only in their magnitudes but also in their direction.  

Specifically, the upward motion generates a force in the positive surge direction while the downward motion 

causes a force in the negative surge direction.  In addition, the moments in the pitch direction caused by the 

upward and downward motions are also very different as depicted in Fig. 9(c).  When the ROV is towed 

upward, the moment significantly increases with the velocity but the moment is almost zero when it is towed 

downward.  Figs. 9(a) and 9(c) demonstrates that the front-rear asymmetry viewed from the top or bottom 

strongly affect the surge forces and pitch moment.  Fig. 9 (b) shows the forces in the heave direction when 

the vehicle moves upward or downward.  The vertical forces (Z) for the motion in different directions with 

the same speed have very close magnitude, meaning that the top-bottom asymmetry of the ROV does not 

cause much difference in the vertical force.   

 

 (a) Force in surge direction (left: non-dimensional force; right: dimensional) 

 

 (b) Force in heave direction (left: non-dimensional force; right: dimensional) 
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 (c) Moment in pitch direction (left: non-dimensional; right: dimensional) 

Fig. 9. Forces and moments for constant velocity towing in the heave direction 

The forces and moments in Fig. 9 can also be fitted into a formula using the Eq. (3) as what was done for 

Fig. 5. After doing so, the force or moment coefficients are listed in Table 3.  The comparison between 

measured values and fitting curves (Eq. 3 with coefficient in Table 3) is given in Fig. 10.  The agreement 

between them is again very good.  

Table 3 

Hydrodynamic coefficients tested by towing in the vertical direction 

                     ×10
4
      ×10

4
     ×10

2
       ×10

2
 

0.181 -0.584 -5.03 19.8 1.61 -5.21 -1.31 5.17 

                     ×10
3
      ×10

4
     ×10

4
        

10.4 -0.459 -0.297 -237 9.30 -4.09 -7.77 -0.618 

                     ×10
4
      ×10

4
     ×10

2
       ×10

2
 

-0.276 -0.430 4.33 4.52 -2.81 -4.38 1.29 1.35 

 

 

Fig. (10) Force in the surge direction 

 

Fig. (10) Force in the heave direction 
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Fig. (10) Moment in the pitch direction 

Fig. 10. Comparison between fitting results and measured data for the heave tests 

4.3. Comparing coefficients in different directions 

As has been demonstrated, the force X, Z and moment M can be induced by the motions in both surge 

and heave directions.  It may be interesting to show the relative importance of different components due to 

the motions in different directions.  For this purpose, the ratios of force coefficients corresponding to 

different components are shown in Table 4.  As can be seen, the liner force coefficients in surge direction 

caused by the heave motion are only about 4 to 8% of these by the surge motion, but the 2nd order force 

coefficients can be about 54%.  In contrast, the value of               (the ratio of the linear vertical 

coefficient due to the surge motion to that due to the vertical motion) can be more than 2.  This means that 

asymmetrical effects are particular important when the ROV moves slowly.  More interesting point is that 

the linear coefficient ratio (             ) of the pitch moment can be more than 52 but the second order 

force coefficient ratio                 is only about 1.59.  The data given here clearly shows that the 

forces induced by the motion in other directions and the pitch moment induced by the surge or heave motions 

are generally not negligible.    

 

Table 4 

Comparison of Coefficients 

                                                    

                                

                                                    

          2.38 108           

                                                    

0.271  52.3  0.435  1.59  

 

5. Conclusion 

This paper deals with the hydrodynamic behaviors of a new ROV moving in a vertical plane.  The ROV 

is complex and asymmetrical in its shape.  A series of model tests are carried out.  Based on the test results, 

the corresponding fitting formulae of the hydrodynamic forces and moments are obtained, which can be used 

for predicting the motions of the ROV and for validating numerical results.  Also based on the test results, 

the effects of the asymmetry on the vehicle’s hydrodynamic forces and moments are discussed and quantified. 

Some conclusions are summarized as below. 

1. For the surge towing tests, the vertical force (Z) magnitudes in the vertical direction are considerably 

different for different towing direction, though they always point upward (i.e., in the negative direction 
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of z-axis).  Dimensionless vertical force due to forward motion can be twice of that due to backward 

motion.  Similarly, the moments (M) in the pitching direction caused by the forward and backward 

motion are different, particularly for the relatively large towing velocity, though their direction is the 

same (rotating about positive direction of y-axis).  These differences are the results of the front-rear 

and top-bottom asymmetry of the ROV. 

 

2. For the heave towing tests, the surge forces for the upward and downward motions are considerable 

different not only in their magnitudes but also in their direction.  Specially, the upward motion 

generates a force in positive surge direction while the downward motion causes a force in negative 

surge direction.  In addition, the moments in the pitch direction caused by the upward and downward 

motions are also very different.  When the ROV is towed upward, the moment significantly increases 

with the velocity but the moment is almost zero when it is towed downward. 

  

3. For each value of velocity, the tests are repeated several times.  Based on the error analysis on the 

repeated results, the value of forces and moments calculated by the fitted formulae may have accuracy 

with the maximum error less than 10% and the mean error less than 5%. 

 

4. Nondimensional hydrodynamic coefficients do not vary significantly with the change of Reynolds 

number.  Based on this fact, the nondimensional coefficients may be extrapolated to high Reynolds 

numbers or speeds. 
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ABSTRACT 

Hydrodynamic models and coefficients are important parameters for predicting the maneuverability of the 

ROV (Remotely Operated Vehicle). This paper will present an experimental study on the hydrodynamic 

behaviors of a new ROV that has an asymmetrical shape but has a large capacity holding more instruments 

on board than other ROVs.  A series towing tests has been carried out on this ROV moving in a vertical 

plane.  This paper will give the fitting formulae of forces and moments, and corresponding hydrodynamic 

coefficients, which can be used for simulating the motions and so for predicting the maneuverability of the 

ROV, and will also discuss the effects of asymmetry in its shapes on its hydrodynamic coefficients. 

Keywords: ROV (Remotely Operated Vehicle); effects of asymmetrical shapes; scaled model test; 

hydrodynamics coefficients 

 

1. Introduction 

Underwater vehicles can be applied to ocean resource exploration and exploitation, pipeline inspection 

and offshore structure maintenance, seafloor geography mapping, and so on.  There are two kinds of 

underwater vehicles for such applications: Remotely Operated Vehicles (ROVs) and Autonomous 

Underwater Vehicles (AUVs) [1]. Generally speaking, AUVs have simple and watertight hulls, similar in 

many cases to conventional submarines, operating at relatively high speeds; in contrast, ROVs have 

relatively complex and open-frame hulls, operating at relatively low speed. This paper is mainly concerned 

about ROVs. 

Hydrodynamics of ROVs are important for controlling their motions and predicting their performances in 

sea.  At present, their hydrodynamic properties are mainly studied by carrying out experiments.  That is 

perhaps because their hull geometries are generally very complex and it is difficult and very time consuming 

to perform numerical computations.  In addition, unlike conventional submarines having roughly similar 

hulls, each ROV has its unique hull geometry that is generally different from others.  Due to this, there are 

no common hydrodynamic properties that can apply to all ROVs.  One needs to carry out study on 

hydrodynamics for each ROV.  Due also to this, there is lack of common dynamics mathematical models 

that can be applied to all ROVs [2]. 

   The most commonly accepted dynamics model for conventional submarines can be traced to a series of 

studies performed at DTNSRDC (David Taylor Naval Ship Research and Development Centre) [3] [4].  

This dynamical model (known as the DTNSRDC standard submarine equations of motion) has been used for 

predicting the motions of not only conventional submarines, but also some underwater vehicles such as [5] 

for AUV and [6], [7] and [8] for the ROVs.  However, the DTNSRDC dynamical model is originally 

proposed for conventional submarines, where the hydrodynamic forces are assumed to be related to the 

square of velocities. For ROVs, it may move at a low speed and the linear part (proportional to the one order 

of speed) of hydrodynamic force and moment may play a role and may not be ignored.  
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In many publications, the dynamic model for ROV was simplified as one without off-diagonal drag entries 

and ignores influence of motion in one direction on the hydrodynamics in other directions by assuming that 

vehicles have three symmetrical planes, e.g., [9][10] and [11].  Associated hydrodynamic coefficients were 

obtained by model tests (e.g.[12][13][14][15][16]) and computational fluid dynamics (e.g. [17]). Besides, the 

reference [18] discussed the hydrodynamic properties of a submersible with an aerofoil for forward and 

backward motions, and the work in [6] and [19] conducted towing tests for ROV models moving in forward 

and backward, starboard and portside, upward and downward directions.  In these papers and others in 

literature, the effects of asymmetrical ROV shape on its hydrodynamic properties are rarely studied as far as 

we know.  

This paper will present an experimental study on the hydrodynamic behaviors of a new ROV similar to 

the Quantum designed by SMD [20].  This ROV has more capacity than others and allows additional 

sensors and equipments to be mounted on board. The vehicle has a complex open-framed hull and is 

front-rear and top-bottom asymmetrical.  In this paper, we will present the study on the hydrodynamics 

associated with surge and heave motions with particular attention on the effects of the front-rear and 

top-bottom asymmetry of its hull, and suggest a dynamic model which takes into account of the front-rear 

and top-bottom asymmetry.  

The remainder of this paper is organized as follows. In Section 2, the model and test facilities and 

procedure will be described.  Section 3 presents the data processing method.  Then the experimental 

results is given and discussed in Section 4.  Finally, the conclusions are summarized in Section 5.  

  

2. Test model, experimental facilities and procedures 

  The test model of the ROV is illustrated in Fig. 1.  The frame structure is made of steel, while the other 

components within the frame, such as thruster and equipment blocks are made of buoyancy material.  Its 

main parameters are summarized in Table 1.  The test model is front-rear and top-bottom asymmetrical 

(more details may be found in Fig. 4). 

 

 

Fig. 1. Test model 

 

Table 1  

Parameters of test model 

Physical property Value 

Scale ratio 1:4 

length, m 0.875  

width, m 0.5  

height, m 0.5  

mass in air, kg 78  
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In many situations, the ROV will be operated to move up and down (referred as to the heave direction), 

such as during the launch stage, and forward and backward (referred as to the surge direction), such as during 

the search stage on the sea bed.  This paper will mainly study the properties of forces and moments acting 

on the ROV in such situations.  For this purpose, a series of model tests in surge and heave directions with 

constant towing speeds have been carried out. The experiments are carried out in two facilities of Harbin 

Engineering University.  The surge tests are undertaken in circulating water channel (the model placed in it 

as shown in Fig. 2), which has a cross-section of 1.7m wide and 1.5m deep with the velocity of flow.  

During the surge tests, the test model is stationary and water flows forward or backward relative to the model.  

The heave towing tests are carried out in a large water tank of 50m long, 30m wide and 10m deep (the model 

placed in it as shown in Fig. 3). During the tests, water was stationary, while the test model is towed with 

constant speeds.  In both kinds of the tests, the relative speeds between water and the model are changed in 

a range (specific values are given below), and the tests are repeated several times at each value of speeds.  

The forces and moments acting on the test model are measured using a six-component force transducer.   

  

Fig. 2. Model test in circulating water channel    Fig. 3. Model test in a tank 

3. Data processing 

3.1 Expressions of forces and moments on the model 

  For convenience of describing the forces and motions, the coordinate system is set up as shown in Fig. 4. 

In the figure, u, v and w denotes the linear velocities in the surge, sway and heave directions with their 

corresponding forces represented by X, Y and Z, respectively.  In addition, p, q and r denote the angular 

velocities in roll, pitch and yaw directions with K, M and N to be corresponding moments, respectively. 

 

(a) Coordinate system  
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(b) Section at y=0 

 

(c) Section as x=0 

Fig. 4.  Coordinate system and illustration of two mid-plane sections 

For an underwater vehicle moving in the deep water at a constant speed, without taking the surface water 

effect into consideration, the hydrodynamic forces and moments are caused by the fluid viscosity, depending 

on its geometry and its motion velocities.  Generally, they may be expressed as: 

�⃑�𝐷 = �⃑�𝐷(�⃗⃗� )  (�⃑�𝐷 = {𝑋, 𝑌, 𝑍, 𝐾,𝑀,𝑁};  �⃗⃗� = {𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟}). 

Using the similar method to that in [21], the components of the forces and moments can be expressed by the 

multivariate Taylor series of the velocities.  If we may just take the series to the second order, the forces and 

moments due to the motion in the surge and heave motions may be expressed as  

 

𝑋 = 𝑋𝑢𝑢 + 𝑋𝑢𝑢𝑢2 + 𝑋𝑤𝑤 + 𝑋𝑤𝑤𝑤2  (1a) 

𝑍 = 𝑍𝑢𝑢 + 𝑍𝑢𝑢𝑢2 + 𝑍𝑤𝑤 + 𝑍𝑤𝑤𝑤2   (1b) 

𝑀 = 𝑀𝑢𝑢 + 𝑀𝑢𝑢𝑢2 + 𝑀𝑤𝑤 + 𝑀𝑤𝑤𝑤2  (1c) 

 

As indicated above, the vehicle is front-rear and top-bottom asymmetrical, which is further illustrated in  

Fig. 4 by using two mid-plan, the motion in the surge direction may induce the force in the vertical (heave) 

direction and the moment in the pitch direction. Similarly, the motion in the heave direction can also induce 

the force in the surge direction and the moment in the pitch direction.  These effects have been reflected in 

Eq. (1).  The comments of the forces and moments due to asymmetry are often ignored in literature.  Their 

properties are particularly interested in this paper.  

For the motion only in one direction, the forces and moments acting on the vehicle can be reduced to  
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y(𝑈) = 𝑦𝑈𝑈 + 𝑦𝑈𝑈𝑈2   (2a) 

where, y generally denotes one of X, Z and M in Eq. (1) and U represents either u or w in Eq. (1). 

Considering the direction of the velocity, the force may also be written as 

 

y(𝑈) = {
   𝑦𝑈

(+)|𝑈| + 𝑦𝑈𝑈
(+)𝑈2,          (𝑈 ≥ 0)

  −𝑦𝑈
(−)|𝑈| + 𝑦𝑈𝑈

(−)𝑈2,          (𝑈 < 0)
   (2b) 

 

Because of its front-rear and top-bottom asymmetry of the vehicle, 𝑦𝑈
(+) ≠ 𝑦𝑈

(−), 𝑦𝑈𝑈
(+) ≠ 𝑦𝑈𝑈

(−).  This 

is not convenient for practical engineering applications. Therefore, Eq.(2) is better to be written in the other 

form. We know that any function can be written uniquely as a sum of an even function and an odd function, 

hence y(𝑈) in Eq. (2) can be rewritten as: 

 

y(𝑈) = �̅�|𝑈||𝑈| + �̅�𝑈𝑈 + �̅�𝑈|𝑈|𝑈|𝑈| + �̅�𝑈𝑈𝑈2  (3) 

where �̅�|𝑈|,  �̅�𝑈, �̅�𝑈|𝑈| and �̅�𝑈𝑈 do not depend on the direction of the velocity and so �̅�|𝑈||𝑈| + �̅�𝑈𝑈𝑈2  

is even while �̅�𝑈𝑈 + �̅�𝑈|𝑈|𝑈|𝑈| is odd.  In order to examine the relationship between the coefficients in 

Eqs. (2) and (3), one may re-write Eq. (3) as   

y(𝑈) = {
(�̅�|𝑈| + �̅�𝑈)|𝑈| + (�̅�𝑈|𝑈| + �̅�𝑈𝑈)𝑈2, (𝑈 ≥ 0)

−(�̅�𝑈 − �̅�|𝑈|)|𝑈| + (�̅�𝑈𝑈 − �̅�𝑈|𝑈|)𝑈
2, (𝑈 < 0)

 (4) 

Compared with Eq. (2b), we should have 

𝑦𝑈
(+)

= �̅�|𝑈| + �̅�𝑈, 𝑦𝑈
(−)

= �̅�𝑈 − �̅�|𝑈|, 𝑦𝑈𝑈
(+)

= �̅�𝑈|𝑈| + �̅�𝑈𝑈, 𝑦𝑈𝑈
(−)

= �̅�𝑈𝑈 − �̅�𝑈|𝑈|,  

such that 

�̅�|𝑈| =
1

2
(𝑦𝑈

(+)
− 𝑦𝑈

(−)
),  �̅�𝑈 =

1

2
(𝑦𝑈

(+)
+ 𝑦𝑈

(−)
) 

�̅�𝑈|𝑈| =
1

2
( 𝑦𝑈𝑈

(+)
− 𝑦𝑈𝑈

(−)
), �̅�𝑈𝑈 =

1

2
( 𝑦𝑈𝑈

(+)
+ 𝑦𝑈𝑈

(−)
) 

In the following sections, Eq. (3) will be employed to process the experimental data but the bar over the 

force and moment coefficient will be dropped from now without confusion.  Correspondingly, the force and 

moment in Eq. (1) can be rewritten as: 

  

𝑋 = 𝑋|𝑢||𝑢| + 𝑋𝑢𝑢 + 𝑋𝑢|𝑢|𝑢|𝑢| + 𝑋𝑢𝑢𝑢2 + 𝑋|𝑤||𝑤| + 𝑋𝑤𝑤 + 𝑋𝑤|𝑤|𝑤|𝑤| + 𝑋𝑤𝑤𝑤2  (5a) 

𝑍 = 𝑍|𝑢||𝑢| + 𝑍𝑢𝑢 + 𝑍𝑢|𝑢|𝑢|𝑢| + 𝑍𝑢𝑢𝑢2 + 𝑍|𝑤||𝑤| + 𝑍𝑤𝑤 + 𝑍𝑤|𝑤|𝑤|𝑤| + 𝑍𝑤𝑤𝑤2   (5b) 

𝑀 = 𝑀|𝑢||𝑢| + 𝑀𝑢𝑢 + 𝑀𝑢|𝑢|𝑢|𝑢| + 𝑀𝑢𝑢𝑢2 + 𝑀|𝑤||𝑤| + 𝑀𝑤𝑤 + 𝑀𝑤|𝑤|𝑤|𝑤| + 𝑀𝑤𝑤𝑤2  (5c) 

 

It is indicated that the force coefficients should be understood as these with a bar as those in Eq. (3), meaning 

that they do not depend on the direction of the velocity. 

In order to be able to apply the force/moment coefficients to prototype vehicles, it may be better to 

convert the coefficients into dimensionless form.  For this purpose, the coefficients of the forces 
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proportional to the velocity will be nondimensionalized by 
1

2
𝜌𝑙2√𝑔𝑙 , these proportional to the square of the 

velocity by 
1

2
𝜌𝑙2, the coefficients of moments proportional to the velocity by 

1

2
𝜌𝑙3√𝑔𝑙  and these moment 

coefficients proportional to the square of the velocity by 
1

2
𝜌𝑙3, where l is the model length, 𝜌 is the water 

density and 𝑔 is the gravitational acceleration.  For examples, 𝑋′𝑈 = 𝑋𝑈/
1

2
𝜌𝑙2√𝑔𝑙 ,  𝑋′𝑈𝑈 = 𝑋𝑈𝑈/

1

2
𝜌𝑙2, 

𝑀′𝑈 = 𝑀𝑈/
1

2
𝜌𝑙3√𝑔𝑙  ,  𝑀′𝑈𝑈 = 𝑀𝑈𝑈/

1

2
𝜌𝑙3 .  These with a dash as superscript represent the 

non-dimensional coefficients. 

3.2. Least squares method  

The least square method is employed to find the hydrodynamic coefficients in Eq. (3) or (5) from 

corresponding tests.  For any test case with a velocity in one direction, one expects that the following 

expression has a minimum error. 

 

𝑆 = ∑ [𝑦𝑚𝑖 − (𝑦|𝑈||𝑈𝑖| + 𝑦𝑈  𝑈𝑖 + 𝑦𝑈|𝑈| 𝑈𝑖|𝑈𝑖| + 𝑦𝑈𝑈 𝑈𝑖
2)]

2𝑁
𝑖=1   (6) 

 

where 𝑦𝑚𝑖 is the measured force or moment corresponding to the velocity 𝑈𝑖 and y denotes any of X, Z 

and M in Eq.5).  In other words, the following equations need to be satisfied.  

𝜕𝑆

𝜕𝑦|𝑈|
= −2∑[𝑦𝑚𝑖 − (𝑦|𝑈||𝑈𝑖| + 𝑦𝑈 𝑈𝑖 + 𝑦𝑈|𝑈| 𝑈𝑖|𝑈𝑖| + 𝑦𝑈𝑈  𝑈𝑖

2)]|𝑈𝑖| = 0

𝑁

𝑖=1

 

𝜕𝑆

𝜕𝑦𝑈
= −2∑[𝑦𝑚𝑖 − (𝑦|𝑈||𝑈𝑖| + 𝑦𝑈 𝑈𝑖 + 𝑦𝑈|𝑈| 𝑈𝑖|𝑈𝑖| + 𝑦𝑈𝑈  𝑈𝑖

2)]𝑈𝑖 = 0

𝑁

𝑖=1

 

𝜕𝑆

𝜕𝑦𝑈|𝑈|
= −2∑[𝑦𝑚𝑖 − (𝑦|𝑈||𝑈𝑖| + 𝑦𝑈 𝑈𝑖 + 𝑦𝑈|𝑈| 𝑈𝑖|𝑈𝑖| + 𝑦𝑈𝑈 𝑈𝑖

2)]𝑈𝑖|𝑈𝑖| = 0

𝑁

𝑖=1

 

𝜕𝑆

𝜕𝑦𝑈𝑈
= −2∑[𝑦𝑚𝑖 − (𝑦|𝑈||𝑈𝑖| + 𝑦𝑈 𝑈𝑖 + 𝑦𝑈|𝑈| 𝑈𝑖|𝑈𝑖| + 𝑦𝑈𝑈 𝑈𝑖

2)]𝑈𝑖
2 = 0

𝑁

𝑖=1

 

Then 

𝑦|𝑈| ∑𝑈𝑖
2

𝑁

𝑖=1

+ 𝑦𝑈 ∑𝑈𝑖|𝑈𝑖|

𝑁

𝑖=1

+ 𝑦𝑈|𝑈| ∑𝑈𝑖
3

𝑁

𝑖=1

+ 𝑦𝑈𝑈 ∑𝑈𝑖
2

𝑁

𝑖=1

|𝑈𝑖| = ∑𝑦𝑚𝑖|𝑈𝑖|

𝑁

𝑖=1

𝑦|𝑈| ∑𝑈𝑖|𝑈𝑖|

𝑁

𝑖=1

+ 𝑦𝑈 ∑𝑈𝑖
2

𝑁

𝑖=1

+ 𝑦𝑈|𝑈| ∑𝑈𝑖
2

𝑁

𝑖=1

|𝑈𝑖| + 𝑦𝑈𝑈 ∑𝑈𝑖
3

𝑁

𝑖=1

= ∑𝑦𝑚𝑖𝑈𝑖

𝑁

𝑖=1

𝑦|𝑈| ∑𝑈𝑖
3

𝑁

𝑖=1

+ 𝑦𝑈 ∑𝑈𝑖
2|𝑈𝑖|

𝑁

𝑖=1

+ 𝑦𝑈|𝑈| ∑𝑈𝑖
4

𝑁

𝑖=1

+ 𝑦𝑈𝑈 ∑𝑈𝑖
3

𝑁

𝑖=1

|𝑈𝑖| = ∑𝑦𝑚𝑖

𝑁

𝑖=1

𝑈𝑖|𝑈𝑖|

𝑦|𝑈| ∑𝑈𝑖
2|𝑈𝑖|

𝑁

𝑖=1

+ 𝑦𝑈 ∑𝑈𝑖
3

𝑁

𝑖=1

+ 𝑦𝑈|𝑈| ∑𝑈𝑖
3

𝑁

𝑖=1

|𝑈𝑖| + 𝑦𝑈𝑈 ∑𝑈𝑖
4

𝑁

𝑖=1

= ∑𝑦𝑚𝑖

𝑁

𝑖=1

𝑈𝑖
2

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The force or moment coefficients are found by solving the following equations.  

 

[
 
 
 
 

∑ 𝑈𝑖
2𝑁

𝑖=1 ∑ 𝑈𝑖|𝑈𝑖|
𝑁
𝑖=1 ∑ 𝑈𝑖

3𝑁
𝑖=1 ∑ 𝑈𝑖

2𝑁
𝑖=1 |𝑈𝑖|

∑ 𝑈𝑖|𝑈𝑖|
𝑁
𝑖=1 ∑ 𝑈𝑖

2𝑁
𝑖=1 ∑ 𝑈𝑖

2𝑁
𝑖=1 |𝑈𝑖|  ∑ 𝑈𝑖

3𝑁
𝑖=1

∑ 𝑈𝑖
3𝑁

𝑖=1 ∑ 𝑈𝑖
2|𝑈𝑖|

𝑁
𝑖=1 ∑ 𝑈𝑖

4𝑁
𝑖=1 ∑ 𝑈𝑖

3𝑁
𝑖=1 |𝑈𝑖|

∑ 𝑈𝑖
2|𝑈𝑖|

𝑁
𝑖=1 ∑ 𝑈𝑖

3𝑁
𝑖=1 ∑ 𝑈𝑖

3𝑁
𝑖=1 |𝑈𝑖|  ∑ 𝑈𝑖

4𝑁
𝑖=1 ]

 
 
 
 

[

𝑦|𝑈|

𝑦𝑈

𝑦𝑈|𝑈|

𝑦𝑈𝑈

] =

[
 
 
 
 

∑ 𝑦𝑚𝑖|𝑈𝑖|
𝑁
𝑖=1

∑ 𝑦𝑚𝑖𝑈𝑖
𝑁
𝑖=1

∑ 𝑦𝑚𝑖
𝑁
𝑖=1 𝑈𝑖|𝑈𝑖|

∑ 𝑦𝑚𝑖
𝑁
𝑖=1 𝑈𝑖

2 ]
 
 
 
 

  (7) 

4. Results and discussions 

In this section, the experimental results are presented, analyzed and discussed for towing tests in surge and 

heave directions, respectively. 

4.1. Constant velocity towing tests in the surge direction  

Fig. 5 shows the forces and moments measured for the constant velocities in a range of 0.3m/s to 0.85 m/s 

when the model is towed in the surge direction (i.e., forward and backward). The figures on the left give the 

non-dimensional force or moment against the Reynolds number while these on the right plot corresponding 

dimensional forces or moments.  The absolute value of the force in the surge direction is depicted in Fig. 

5(a), where the Reynolds number is defined as 𝑅𝑒 = 𝑈𝑙/𝜈 with the water kinematic viscosity taken 

𝜈 = 1.1696 × 10−6𝑚2 ∙ 𝑠−1 based on the water temperature of 14℃ in the test.  It is first pointed out that 

the variation of the non-dimensional force and moment (𝑋′, 𝑍′ and 𝑀′) is not significant in the range of 

Reynolds number tested; in other words they do not strongly depend on the Reynolds number in the range. It 

is secondly pointed out that no matter which direction the vehicle moves (forward or backward), the force in 

surge direction (Fig. 5(a)) has very close magnitude, meaning that the asymmetry of the ROV viewed from 

the front or rear does not cause difference in the surge forces. Thirdly, as one can see in Fig. 5(b), the vertical 

force (Z) magnitudes in the heave direction are considerable different, though they always point upward (i.e., 

in the negative direction of z-axis), indicating that the front-rear and top-bottom asymmetry of the ROV does 

affect the vertical forces. Similarly, the curves for the moments M in the pitching direction (Fig. 5(c)) are 

apart from each other, in particular for the larger towing velocity, though their direction is the same (rotating 

about positive direction of y-axis).  

 

 (a) Force in surge direction (left: non-dimensional force; right: dimensional) 
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 (b) Force in heave direction (left: non-dimensional; right: dimensional)  

 

 (c) Moment in pitch direction (left: non-dimensional; right: dimensional) 

Fig. 5. Measured forces and moments for constant speed towing in the surge direction  

The forces and moments in Fig. 5 can be fitted into formulae such as Eq. (3) using the least square method 

in Eq. (7).  In order to obtain more reliable fitting results, the tests for each towing velocity are repeated 

several times.  As a result, there are several values of forces available corresponding to each value of the 

velocity.  Due to this, when carrying out the fitting, one may have two options.  One is to apply the least 

square method to all the measured forces or moments at the same time while the other one is to calculate the 

average values for each towing velocity firstly before applying the least square method. Table 2 shows the 

force or moment coefficients.  The values in brackets are obtained by using the second option.  As 

observed from Table 2, the coefficients obtained by two methods agree very well.  Hence, in the following 

analysis, we only apply the second option for fitting curves. In addition, the force coefficients corresponding 

to the square of the velocity are generally much larger than these corresponding to the linear terms.  

However, this does not means that one can ignore the linear terms.  That is because the ROV may operate 

with a very slow motion.  In such cases, the linear terms may be significant.  To check how well the force 

or moment formulae expressed by Eq. 3 with the coefficients in Table 2, the comparison between measured 

values and fitting curves is made in Fig. 6.  The agreement between them is almost perfect. 

 

Table 2  

Hydrodynamic coefficients obtained by fitting the test results for towing in the surge direction 

𝑋𝑢 𝑋|𝑢| 𝑋𝑢𝑢 𝑋𝑢|𝑢| 𝑋′𝑢×10
3
 𝑋′|𝑢|×10

3
 𝑋′𝑢𝑢×10

2
 𝑋′𝑢|𝑢| 

-4.46 

(-4.24) 

-7.00 

(-6.77) 

9.40 

(9.00) 

-122 

(-122) 

-3.98 

(-3.78) 

-6.24
 

(-6.04) 

2.455
 

(2.351) 

-0.317 

(-0.319) 

 𝑍𝑢 𝑍|𝑢| 𝑍𝑢𝑢 𝑍𝑢|𝑢| 𝑍′𝑢×10
4
 𝑍′|𝑢|×10
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Fig. 6a Force in surge direction 

 

Fig. 6b Force in heave direction 

 

Fig. 6c Moment in pitch direction 

Fig. 6.  Comparison between fitting results and measured data for the surge tests 
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Furthermore, to quantitatively assess the error between the fitted curves of forces and moment and the 

measured values, two parameters are introduced and examined.  One of them is relative error, E, reflecting 

the differences between the fitted curves and the measured values at each velocity, defined by Eq.(8).  

𝐸 = |
𝑦𝑚−𝑦𝑐

𝑦𝑚
| × 100%   (8) 

where 𝑦𝑚  represents the measured forces or moments while 𝑦𝑐  is the values by Eq. (3) using the 

coefficients in Table 2.  As mentioned before, there are several values of force or moments at each value of 

the velocity due to repeating testes, and so the range of errors at each velocity would be obtained.  In 

addition, one can also obtain the error based on the average measured value of force and moments. To do so, 

𝑦𝑚 in Eq. (8) should be replaced by an average value (�̆�𝑚𝑖) corresponding to the speed concerned.  The 

other parameter is the standard deviation, 𝜎, defined in Eq. (9).  

σ = √
1

𝑁
∑ (�̆�𝑚𝑖 − 𝑦𝑐𝑖)

2𝑁
𝑖=1   (9) 

where �̆�𝑚𝑖 is the mean values of measured forces or moments at each velocity and 𝑦𝑐𝑖  is the value 

calculated by using the fitted formulae at the same velocity.   

For the towing tests with constant velocity in the surge direction, Fig.7 presents the variation of relative 

error, E. In the figure, the solid dots represent the error using the mean value of measured force or moment 

while the solid vertical lines represent the error using the values of forces at each velocity. Fig. 8 shows the 

variation of the standard deviation.  It can be seen that the maximum relative error is less than 10% while 

the mean error is less than 5% in the cases.  The standard deviation has the similar trends and values for the 

backward and forward motion.   

   

 (a) Forward 

   

(b) Backward 

Fig. 7. Relative error (E) for the surge tests (the dots is calculated by mean velocity) 
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Fig. 8.  Standard deviation for the surge tests 

4.2. Constant velocity towing tests in the heave direction 

Fig. 9 shows the forces and moments for constant velocity towing in the heave direction. Similar to Fig. 5, 

the figures on the left are the non-dimensional force or moment against the Reynolds number while these on 

the right plot the absolute value of corresponding dimensional forces or moments.  Again one can see that 

the variation of the non-dimensional force and moment (𝑋′, 𝑍′ and 𝑀′) with the Reynolds number is not 

significant in the range of Reynolds number tested.  As shown in Fig. 9(a), the surge forces for the upward 

and downward motions are considerable different not only in their magnitudes but also in their direction.  

Specifically, the upward motion generates a force in the positive surge direction while the downward motion 

causes a force in the negative surge direction.  In addition, the moments in the pitch direction caused by the 

upward and downward motions are also very different as depicted in Fig. 9(c).  When the ROV is towed 

upward, the moment significantly increases with the velocity but the moment is almost zero when it is towed 

downward.  Figs. 9(a) and 9(c) demonstrates that the front-rear asymmetry viewed from the top or bottom 

strongly affect the surge forces and pitch moment.  Fig. 9 (b) shows the forces in the heave direction when 

the vehicle moves upward or downward.  The vertical forces (Z) for the motion in different directions with 

the same speed have very close magnitude, meaning that the top-bottom asymmetry of the ROV does not 

cause much difference in the vertical force.   

 

 (a) Force in surge direction (left: non-dimensional force; right: dimensional) 

 

 (b) Force in heave direction (left: non-dimensional force; right: dimensional) 
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 (c) Moment in pitch direction (left: non-dimensional; right: dimensional) 

Fig. 9. Forces and moments for constant velocity towing in the heave direction 

The forces and moments in Fig. 9 can also be fitted into a formula using the Eq. (3) as what was done for 

Fig. 5. After doing so, the force or moment coefficients are listed in Table 3.  The comparison between 

measured values and fitting curves (Eq. 3 with coefficient in Table 3) is given in Fig. 10.  The agreement 

between them is again very good.  

Table 3 

Hydrodynamic coefficients tested by towing in the vertical direction 

𝑋𝑤 𝑋|𝑤| 𝑋𝑤𝑤 𝑋𝑤|𝑤| 𝑋′𝑤×10
4
 𝑋′|𝑤|×10

4
 𝑋′𝑤𝑤×10

2
 𝑋′𝑤|𝑤|×10

2
 

0.181 -0.584 -5.03 19.8 1.61 -5.21 -1.31 5.17 

𝑍𝑤 𝑍|𝑤| 𝑍𝑤𝑤 𝑍𝑤|𝑤| 𝑍′𝑤×10
3
 𝑍′|𝑤|×10

4
 𝑍′𝑤𝑤×10

4
 𝑍′𝑤|𝑤| 

10.4 -0.459 -0.297 -237 9.30 -4.09 -7.77 -0.618 

𝑀𝑤 𝑀|𝑤| 𝑀𝑤𝑤 𝑀𝑤|𝑤| 𝑀′𝑤×10
4
 𝑀′|𝑤|×10

4
 𝑀′𝑤𝑤×10

2
 𝑀′𝑤|𝑤|×10

2
 

-0.276 -0.430 4.33 4.52 -2.81 -4.38 1.29 1.35 

 

 

Fig. (10) Force in the surge direction 

 

Fig. (10) Force in the heave direction 

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

M' 

Re×105 

Upward

Downward

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.2 0.4 0.6 0.8

|M| (Nm) 

towing velocity w (m/s) 

Upward

Downward

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|X| (N) 

towing velocity w (m/s) 

Upward, exp

Downward, exp

Upward, fit

Downward, fit

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|Z| (N) 

towing velocity w (m/s) 

Upward, exp

Downward, exp

Upward, fit

Downward, fit



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

Fig. (10) Moment in the pitch direction 

Fig. 10. Comparison between fitting results and measured data for the heave tests 

4.3. Comparing coefficients in different directions 

As has been demonstrated, the force X, Z and moment M can be induced by the motions in both surge 

and heave directions.  It may be interesting to show the relative importance of different components due to 

the motions in different directions.  For this purpose, the ratios of force coefficients corresponding to 

different components are shown in Table 4.  As can be seen, the liner force coefficients in surge direction 

caused by the heave motion are only about 4 to 8% of these by the surge motion, but the 2nd order force 

coefficients can be about 54%.  In contrast, the value of |𝑍′|𝑢|/𝑍′|𝑤|| (the ratio of the linear vertical 

coefficient due to the surge motion to that due to the vertical motion) can be more than 2.  This means that 

asymmetrical effects are particular important when the ROV moves slowly.  More interesting point is that 

the linear coefficient ratio (|𝑀′|𝑤|/𝑀′|𝑢||) of the pitch moment can be more than 52 but the second order 

force coefficient ratio |𝑀′𝑤|𝑤|/𝑀′𝑢|𝑢|| is only about 1.59.  The data given here clearly shows that the 

forces induced by the motion in other directions and the pitch moment induced by the surge or heave motions 

are generally not negligible.    

 

Table 4 

Comparison of Coefficients 

|𝑋′𝑤/𝑋′𝑢| |𝑋′|𝑤|/𝑋′|𝑢|| |𝑋′𝑤𝑤/𝑋′𝑢𝑢| |𝑋′𝑤|𝑤|/𝑋′𝑢|𝑢|| 

4.06 × 10−2 8.34 × 10−2 0.535 0.163 

|𝑍′𝑢/𝑍′𝑤| |𝑍′|𝑢|/𝑍′|𝑤|| |𝑍′𝑢𝑢/𝑍′𝑤𝑤| |𝑍′𝑢|𝑢|/𝑍′𝑤|𝑤|| 

6.37 × 10−2 2.38 108 5.35 × 10−2 

|𝑀′𝑤/𝑀′𝑢| |𝑀′|𝑤|/𝑀′|𝑢|| |𝑀′𝑤𝑤/𝑀′𝑢𝑢| |𝑀′𝑤|𝑤|/𝑀′𝑢|𝑢|| 

0.271  52.3  0.435  1.59  

 

5. Conclusion 

This paper deals with the hydrodynamic behaviors of a new ROV moving in a vertical plane.  The ROV 

is complex and asymmetrical in its shape.  A series of model tests are carried out.  Based on the test results, 

the corresponding fitting formulae of the hydrodynamic forces and moments are obtained, which can be used 

for predicting the motions of the ROV and for validating numerical results.  Also based on the test results, 

the effects of the asymmetry on the vehicle’s hydrodynamic forces and moments are discussed and quantified. 

Some conclusions are summarized as below. 

1. For the surge towing tests, the vertical force (Z) magnitudes in the vertical direction are considerably 

different for different towing direction, though they always point upward (i.e., in the negative direction 
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of z-axis).  Dimensionless vertical force due to forward motion can be twice of that due to backward 

motion.  Similarly, the moments (M) in the pitching direction caused by the forward and backward 

motion are different, particularly for the relatively large towing velocity, though their direction is the 

same (rotating about positive direction of y-axis).  These differences are the results of the front-rear 

and top-bottom asymmetry of the ROV. 

 

2. For the heave towing tests, the surge forces for the upward and downward motions are considerable 

different not only in their magnitudes but also in their direction.  Specially, the upward motion 

generates a force in positive surge direction while the downward motion causes a force in negative 

surge direction.  In addition, the moments in the pitch direction caused by the upward and downward 

motions are also very different.  When the ROV is towed upward, the moment significantly increases 

with the velocity but the moment is almost zero when it is towed downward. 

  

3. For each value of velocity, the tests are repeated several times.  Based on the error analysis on the 

repeated results, the value of forces and moments calculated by the fitted formulae may have accuracy 

with the maximum error less than 10% and the mean error less than 5%. 

 

4. Nondimensional hydrodynamic coefficients do not vary significantly with the change of Reynolds 

number.  Based on this fact, the nondimensional coefficients may be extrapolated to high Reynolds 

numbers or speeds. 
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