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Abstract: Classical conditioning is a fundamental paradigm in the study of learning and thus in understanding 
cognitive processes and behaviour, for which we need comprehensive and accurate models. This paper aims 
at evaluating and comparing a collection of influential computational models of classical conditioning by 
analysing the models themselves and against one another qualitatively. The results will clarify the state of 
the art in the area and help develop a standard model of classical conditioning. 

1 INTRODUCTION 

In natural environments, there is a constant need for 
organisms to accommodate their behaviour to 
dynamic surroundings. Learning to predict the 
regularities in such sensory rich conditions is the key 
for adaptive behaviour and decision-making. 
Predictive learning studies have mostly been 
conducted within the context of classical 
conditioning –which is based on the principle that 
repeated pairings of two events will allow an 
individual to predict the occurrence of one of them 
upon presentation of the other, as consequence of the 
formation of a link between them (see Mackintosh, 
1994; Pearce and Bouton, 2001; Hall, 2002). This 
simple idea is at the basis of many associative 
learning phenomena and has proved to be relevant to 
human learning both theoretically (judgment of 
causality and categorization, e.g., (Shanks, 1995)) 
and practically, as the core of a good number of 
clinical models  (Haselgrove and Hogarth, 2011; 
Schachtman and Reilly, 2011).  

The last 50 years has seen the progressive 
refinement of our understanding of the mechanisms 
of classical conditioning and this has resulted in the 
development of several influential theories that are 
able to explain with considerable precision a wide 
variety of experimental findings, and to make non-
intuitive predictions that have been confirmed. This 
success has spurred the development of increasingly 
sophisticated models that encompass more complex 

phenomena. In such context, it is widely 
acknowledged that computational modelling plays a 
fundamental part (e.g., Dayan and Abbot, 2001; 
Schmajuk, 1997; 2010a). 

There are two main motivations for using 
computational models: on the one hand, be it in the 
form of a specific programming language or as a 
formal model, implementations require 
unambiguous definitions that make the underlying 
psychological models more precise. On the other 
hand, algorithms allow us to execute calculations 
rapidly and, most importantly, accurately. The 
outputs of a simulation feedback the psychological 
models –thus becoming an essential part of the cycle 
of theory formation and refinement. Automation is 
critical, particularly when models are described in 
non-linear equations that can only be solved 
numerically as it is the case of recent models of 
conditioning (Vogel et al., 2004; Schmajuk, 2010b; 
Alonso and Mondragón, 2011). In particular, 
(Schmajuk and Alonso, 2012) brought together as a 
special issue on computational models of classical 
conditoining a collection of papers that represent the 
leading edge of the field. Henceforth we are 
referring to the papers in the issue by acronysms of 
the models  themselves or the by the initials of the 
authors if none was given, that is, we are coining 
them GP, LCT, SLGK, PHK+, TD, MKM/APECS, 
AMAN and SOCR, respectively. Notwithstanding 
the relative merits of each model, as a theoretical 
corpus (Schmajuk and Alonso, 2012) showed that 
there is no unanimity on what the basic principles 
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and mechanisms of classical conditioning are or on 
standard procedures to investigate them. Although 
there is agreement, or at least some convergence, 
that learning is driven by the minimization of 
prediction error (but see Witnauer et al. above for a 
different view), the models considered differ 
substantially on the nature of stimulus representation 
(configural vs. elemental), the role of attention in the 
formation of associations, and about how temporal 
properties affect conditioning.  

In order to build more comprehensive theories of 
classical conditioning it is thus critical that we carry 
out an exhaustive analysis of such models, that is, 
that we evaluate them and compare them against one 
another. Crucially, three requirements for 
contributors to the special issue were set (Alonso 
and Schmajuk, 2012): (1) models should be tested 
against a list of phenomena for which there was a 
consensus about their reliability; (2) model 
parameters should be fixed across simulations; and 
(3) authors should make available the simulations 
they used to test their models. In short, the models 
and their simulations should be replicable. 

The list of phenomena was compiled by 
domains, as follows: acquisition phenomena (6 
phenomena), extinction (3), generalization (3), 
discriminations (17), inhibitory conditioning (6), 
combination of separately trained CSs (3), stimulus 
competition/potentiation in training (11), CS/US 
preexposure effects (11), transfer (4), recovery (8), 
higher-order conditioning (5), and temporal 
properties (9). Phenomena were characterised as 
“General”, meaning that results had been 
demonstrated in a wide variety of 
procedures/organisms, or “Some Data” otherwise.  

Regardless of the advances reported, (Schmajuk 
and Alonso, 2012) demontrated that models in the 
area are still partial (no model covers all the 
phenomena under investigation), incomplete (there 
are phenomena unaccounted for) and to some extent 
inconsistent (different models make contradictory 
predictions). (Schmajuk and Alonso, 2012) 
represents the vanguard in computational models of 
classical conditioning and, at the same time, 
provides us with the appropriate tools to evaluate 
and compare them. 

2 EVALUATION 

The over-reaching goal of this position paper is to 
diagnose the state of the art in computational 
modelling of classical conditioning, explain 
divergences and convergences, and identify those 

models that seem more promising in the search for a 
standard model of classical conditioning. 

The evalution consists of two phases: a 
preliminary analysis of the software used in each 
case. Additionally, we are also considering how 
intuitive the underlying psychological assumptions 
of each model are, and other factors such as how 
many domains of phenomena each model crosses, 
that is, their generality, and whether they account for 
critical phenomena (for instance, latent inhibition or 
spontaneous recovery). Before proceeding, it should 
be noted that by a “computational model” we mean 
an implementation of a (pre-existing) psychological 
model, that is, we don’t consider computational 
models as formal models that act as psychological 
models by proxy. Also, we do not enter into the 
philosophical debate about the different levels at 
which psychological phenomena can be interpreted 
and about the relationship between the so-called 
computational level and other levels, algorithmic or 
physical (see, (Alonso and Mondragón, 2012) for a 
review on the uses, abuses and misuses of the 
concept “computational” in psychology). 

2.1 Software  

It is beyond the purpose of this paper to carry out 
validation and verification tests on the simulators in 
wich the computational models in (Schmajuk and 
Alonso, 2012) were run. We are not checking the 
replicability of the results reported either. Instead, 
we are summarizing, Table 1, which programming 
language was used in each case, whether it was 
documented (including a user’s guide), and whether 
the code was made available.  

Table 1: Software. 

Model Language Document Code Guide
SLGK C Y Y Y 
AMAN MATLAB Y Y Y 

GP MATLAB Y Y Y 
PKH+ Visual 

Basic 
Y Y Y 

TD MATLAB N Y N 
LCT MATLAB N Y N 

MKM/AMEC MATLAB N N N 
SOCR MATLAB N N N 

It is up to the reader to decide whether, given the 
resources made available to them by the authors, the 
results reported are trustworthy. We are only 
commenting on the programming language used and 
on the software development characteristics that 
underlies all simulators. Regarding the former, 
MATLAB was the preferred choice. From the point 
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of view of a programmer, MATLAB is relatively 
easy to learn and to use (at least, for simple 
applications). Speed-wise MATLAB is rather 
similar to alternatives like C, no matter whether they 
compile or interpret. One of MATLAB’s 
disadvantages is that it is not a fully bodied 
programming language, and the user is not able to 
create modular programs and reusable code with it.  

In addition, MATLAB is proprietary software 
and a proprietary language. MATLAB works only 
with MathWork’s MATLAB software – meaning 
that if you have created programs in MATLAB, you 
will generally only be able to use those programs in 
MATLAB, and would need to do extensive porting 
to move to a different platform.  MATLAB is not a 
platform-independent language.  

More generally, most simulators are not 
professionally developed, failing to address the 
following issues: 

 Inputting data is cumbersome. 
 The system must be run afresh each time the 

input parameters are changed. 
 Outputs cannot be directly exported and 

manipulated in widespread data processors such 
as, for example, excel. 

 Interfaces and visualization of data are poor. 
 Simulators are not portable across platforms. 
 Simulators cannot be scaled up to accommodate 

new parameters and/or models. 

Although classical conditioning software has been 
recently described in the literature (Schultheis et al., 
2008a; 2008b; Thorwart et al., 2009; Alonso et al., 
2012; Mondragón et al., 2013a; 2013b), it is still the 
case that most psychologists in the area view 
simulations as mere tools rather than as an integral 
part of experimental methodology. Software is 
developed, implemented and documented in an ad 
hoc manner, raising serious concerns about its 
reliability, usability and scalability.  

2.2 Qualitative Analysis 

The very essence of a model refers to the choices 
scientists make –choices that reflect what they 
consider relevant– and thus evaluating a model 
requires careful consideration of many factors, both 
technical and formal (Baum, 1983). However, in 
assessing and selecting models (and in identifying 
which features a good model should show) it is 
critical that we use measurable criteria (see (Shiffrin 
et al., 2008) for a recent survey). Typically, the 
behaviour of a model is considered locally, that is, at 
its best fitting parameter values. This approach is 

problematic, since best fits leave us with snapshots 
of the model’s performance that are difficult to piece 
together into a comprehensive, global understanding 
of the model. In addition, quantitative analysis based 
on goodness-to-fit criteria can result in selecting 
overly complex models that generalize poorly. 
Finally, comparing models is even more difficult 
with local quantitative methods. On these grounds 
we will prioritize global qualitative analysis over 
local quantitative analysis.  

(Wills and Pothos, 2012a; 2012b) have 
convincingly argued that relative adequacy, defined 
in terms of the number and proportion of 
irreversible, ordinal successes, might be a useful 
metrics for model evaluation and comparison. 
Central to their approach is the concept of 
irreversible success, that is, success in the absence 
of arbitrarily variable free parameters. In addition, 
parameters should be determined at the level of the 
domain of phenomena that the model is intended to 
address, not at the level of individual experiments. 

This seemingly uncontroversial proposal, that a 
model that accommodates more successes is, other 
things being equal, a better model, contrasts sharply 
with current practice in classical conditioning 
research, which is to examine in depth the results of 
a single or a handful of experiments, rather than to 
seek breadth. Moreover, some researchers insist that 
model parameters should be derived independently 
on each occasion. These practices make the 
evaluation and comparison of computational models 
of classiscal conditioning harder. To circumvent the 
difficulties posed by using arbitrary free parameters, 
(Schmajuk and Alonso, 2012) required the authors 
to use fixed parameters across all simulations 
(notice, however, that we didn’t penalize the number 
of parameters à la BIC). However, the fact that most 
models were tested against small datasets remains an 
issue. The results in terms of numer of parameters 
and number of phenomena replicated are shown in 
Table 2. We are not disputing that the models in 
(Schmajuk and Alonso, 2012) may account for more 
results than those explictely reported. However we 
can only evaluate the models in the light of the 
evidence provided.  

Of course, the meaning of these results is 
debatable. Nevertheless, it gives researchers in the 
area a guide of the predictive power of the models. 
In terms of the number of phenomena replicated, it 
seems that SLGK is the most comprehensible model. 
On the other hand, LCT uses only one parameter –
which makes us wonder about its real value. It is 
preferable to endorse models whose verbal 
description    allows    some    understanding  of   the 
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Table 2: Qualitative analysis results. 

Model Number of 
parameters 

Number of 
phenomena 
replicated 

SLGK 11 82 
GP 7 39 

AMAN 16 38 
SOCR 5 38 

TD 11 10 
LCT 1 16 

PHK+ 5 5 
MKM/APECS Unclear Not fixed 

model’s processes in psychological terms. This 
property, that Willis and Pothos call penetrability is 
important, particularly in cases where computational 
models are taken as psychological models by proxy 
rather than as formal expressions of psychological 
models (see, Alonso and Mondragón, 2012). 
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