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Abstract

We consider a seasonal mean-reverting model for energy commodity prices with jumps and

Heston-type stochastic volatility, as well as three nested models for comparison. By exploiting

the affine form of the log-spot models, we develop a general valuation framework for futures

and discrete arithmetic Asian options. We investigate five major petroleum commodities

from the European market (Brent crude oil, gasoil) and US market (light sweet crude oil,

gasoline, heating oil) and analyze the effects of the competing fitted stochastic spot models in

futures pricing, Asian options pricing and hedging. We find evidence that price jumps and

stochastic volatility are important features of the petroleum price dynamics.

Keywords: energy prices, affine models, futures, arithmetic Asian options, control vari-

ate Monte Carlo

JEL classification: G15, G13, C 63, C 13.



1 Introduction

Understanding the stochastic process governing the energy price is essential, owing to the

indispensable role of hydrocarbons in the world economy and the response of macroeconomic

aggregates to oil price shocks. Concerns about the security of energy supply and the influence

of geopolitical events and global economic activity on petroleum prices create the need for

reliable and efficient tools to price energy-related securities and projects.

Energy commodities are predominantly different from conventional financial assets such

as equity and fixed-income securities and, due to intricate price formation mechanisms, tra-

ditional modelling techniques are not directly applicable. For example, seasonal effects arise

naturally from periodic supply and demand patterns1 and have been successfully modelled

by several authors including Routledge et al. (2000) and Borovkova and Geman (2006). In

addition, commodity prices mean-revert to the marginal cost of production; relevant the-

oretical arguments and empirical evidence have been put forward by Bessembinder et al.

(1995), Schwartz and Smith (2000) and Casassus and Collin-Dufresne (2005), among others.

In effect, prices may temporarily be high or low, but will tend toward an equilibrium level.

Furthermore, temporary supply and demand imbalances, changes in market expectations, or

even unanticipated macroeconomic developments may cause sudden jumps in energy prices

(Hilliard and Reis, 1998, Clewlow and Strickland, 2000). Due to construction lags on the

supply side, even a relatively small change in demand can, at times, cause immediate market

movements of large magnitude. Yet, jumps in returns are transient and a more persistent

component may be required. In fact, compared to other markets, energy price volatility is

both relatively higher and more variable over time (see, e.g., Pindyck, 2004). Trolle and

Schwartz (2009) develop a stochastic volatility model for crude oil and highlight its impor-

tance in commodity derivatives pricing. Larsson and Nossman (2011) find that, in addition

1For example, heating oil prices experience an upward pressure during winter when storage capacity
may not be able to smooth out seasonal demand shocks, particularly in the peak demand season. Instead,
lower prices are anticipated during the summer inventory build-up period. On the other hand, gasoline
prices typically trade at a discount during winter, as demand falls from the peak levels of the summer
driving season. Crude oil demand is derived from the demand for its refined products and, as such, seasonal
patterns are less evident.
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to stochastic volatility, jumps are essential to capture the time series properties of oil prices.

Accounting for both jumps and stochastic volatility provides a reasonable characterization

of energy commodity prices in that it explains the skewness and fat-tail feature of commod-

ity return distributions. Furthermore, it gives rise to realistic implied volatility patterns for

short-term options without also affecting long-term smiles.

The previous discussion encourages the empirical testing of different spot model specifica-

tions for further use as inputs in derivatives pricing and risk management, energy investment

evaluation, asset allocation and planning. The aim of this paper is to conduct a compre-

hensive analysis of stochastic dynamic modelling of European and US petroleum commodity

prices and enrich existing literature with some new insights in several applications such as

futures pricing, options pricing and hedging. In terms of scope our work shares similarities

with recent contributions in the finance literature focused on other markets like, for exam-

ple, the equity index (see Kaeck and Alexander, 2013), freight (see Nomikos et al., 2013)

and real estate (see Fabozzi et al., 2012) markets. More specifically, we consider a seasonal

mean-reverting spot price model with compound Poisson jumps and Heston-type stochastic

volatility, as well as three nested models for comparison: a diffusion with stochastic volatil-

ity, a jump diffusion with constant volatility, and the classical Schwartz (1997) model with

constant volatility. The Heston (1993) volatility model is both mean-reverting and positive,

accounts for volatility clustering, dependence in increments and realistic implied volatility

patterns. Furthermore, it allows a simple description of the correlation between the driving

noises in the returns and volatility processes; in particular, positive correlation is interpreted

in terms of the so-called inverse leverage effect, i.e., the observation that in commodity mar-

kets large upward price moves are associated with high volatility due to negative relationship

between inventory and prices (e.g., see Pindyck, 2004, Geman, 2005).

The contribution of our paper is three-fold. Firstly, we derive the bivariate characteristic

function of the suggested jump diffusion model with stochastic volatility by solving a system

of Riccati equations. We then use our results to obtain expressions for the theoretical futures
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prices, tackling previously noted (see Benth, 2011) mathematical challenges originated by

the mean-reverting term in the price dynamics in the Heston stochastic volatility framework

and rendering this useful for calibration purposes. Secondly, we fit the models to spot and

futures prices of Brent crude oil and gasoil from the European market and light sweet crude

oil, gasoline and heating oil from the US market. This is the first study to systematically

apply a selection of stochastic models in the particular markets. We find that ignoring jumps

and/or stochastic volatility leads to a less realistic description of the true data-generating

process (DGP). The flexibility of the proposed general model specification is also confirmed

by its ability to accurately fit the observed futures curves in the different markets. The final

line of research that we contribute to in this paper relates to average (Asian) options, whose

terminal payoff depends on the average level of an energy price during a pre-specified time

window (e.g., see Zhang, 1995). These options are very popular in the energy commodity

markets (for example, NYMEX and ICE offer several average price products linked to energy,

e.g., Brent and WTI average price options) as a means of managing price exposure and

potential impact on transactions, due to the time elapsed until a tanker vessel completes

its route from the production site or refinery to its destination. Using our characteristic

function results we obtain closed-form solutions for geometric average options, which we

then use to implement efficient Monte Carlo simulation with control variates to price the

more prevalent discrete arithmetic average options. This way we present a unified pricing

framework under the four models considered, while extending earlier contributions by Kemna

and Vorst (1990) and Fusai and Meucci (2008) based, respectively, on Gaussian and Lévy

log-spot models to members from the more general affine class. The particular technique

provides fast and accurate simulation outcome, which allows us to study the implications of

the assumed spot price dynamics on the Asian option prices. In addition, we set up delta

hedging strategies for the Asian option and investigate their performance under correct

or misspecified hedges with omitted risk factors. We find that the hedging performance

deteriorates in the presence of random price jumps and/or volatility. Furthermore, we find
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that, under a true DGP encompassing both price jumps and stochastic volatility, which is

corroborated by our analysis, a misspecified hedge that omits the jumps is closest to the true

hedge.

Last but not least, we note that our proposed model framework is of chief relevance to

other markets like, for example, currency and agricultural commodity markets, where the

importance of stochastic volatility and/or jump risk is well-documented (e.g., see Bates,

1996, Ahlip, 2008, Geman and Nguyen, 2005, Brooks and Prokopczuk, 2013). In particular,

Asian options serve as a cheaper alternative to plain vanilla options in hedging, for example,

exposure to a collapse of an exchange rate; or as a means of reducing the exercise of market

power by virtue of the averaging effect, for example, in agricultural commodity markets

where a ‘large player’ can drive the market up or down affecting the payoff of an, otherwise

equivalent, plain vanilla option (see Geman, 2005).

The remainder of this paper is organized as follows. In Section 2 we present our model

assumptions for the dynamics of the spot energy prices. Section 3 provides a description

of the data and the estimation methodology employed. Empirical results are presented in

Section 4. In Section 5 we introduce our valuation framework for discrete arithmetic average

options and apply in pricing and hedging. Section 6 concludes. Mathematical proofs are

deferred to the appendix.

2 Model Specification and Properties

Let (Ω,F , P ) be a probability space equipped with filtration F := (Ft)t>0. Define the

commodity spot price process S as the sum of a predictable component and a stochastic

component

St = ft + exp(Xt), t ≥ 0.
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The predictable component defined by the following sinusoidal function with a linear trend

ft = δ0 + δ1 sin(2π(t+ τ1)) + δ2 sin(4π(t+ τ2)) + δ3t, (1)

with parameters δ0, δ1, τ1, δ2, τ2, δ3, accounts for deterministic regularities in the spot price

evolution, i.e., seasonal fluctuations and time trend capturing the long-run growth in prices.

Geman (2005) suggests a mean-reverting model framework for commodity spot prices with

stochastic volatility. We adopt the particular model specification and extend this to accom-

modate sudden jumps in the prices, so that the log deseasonalized (and detrended) spot

price X dynamics are given by

dXt = k(ε−Xt)dt+
√
VtdBt + dLt, (2)

where k is the speed at which random shocks dissipate and process X reverts toward level

ε. The evolution of the spot price variance V is modelled by the square-root diffusion as in

Heston (1993), i.e.,

dVt = α(β − Vt)dt+ γ
√
VtdWt (3)

with positive parameters α (speed of variance mean-reversion), β (long-run mean variance)

and γ (volatility of variance). B and W are correlated standard Brownian motions (i.e.,

E(BtWt) = ρt) allowing possible inverse leverage effect, i.e., high prices associated with high

volatility translating to ρ > 0. The spot price jump arrival is governed by the independent

time-homogeneous compound Poisson process L with constant arrival rate of λ > 0 jumps

(per unit time) of independent and identically normally distributed sizes J with E(J) =: µJ

and Var(J) =: σ2
J . Henceforth, we will be using the acronym MRJSV when referring to the

model (2)–(3).

In this study we additionally consider three nested cases of the general model (2)–(3)

depending on the assumptions on the spot price jumps and volatility:
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MRSV: diffusion model (dLt = 0 for all t) with Heston stochastic volatility.

MRJ: jump diffusion model with constant volatility
√
Vt = σ for all t.

MR: Schwartz dynamics with dLt = 0 and
√
Vt = σ for all t.

In Sections 3 and 5 we derive futures and option prices based on our proposed model

framework. For this purpose, we require risk neutral dynamics for the spot price. Following

Benth (2011) we employ standard change of measure with respect to the Brownian motion

driving the spot price dynamics

dB̃t := dBt +
h√
Vt
dt,

where h is the (constant) market price of risk. Note that one may also introduce a change of

measure in the volatility dynamics; we do not consider this here but, instead, as we explain

in Section 3, we calibrate the stochastic volatility model to market prices of traded futures

contracts. A measure-change with respect to the jump process L is also not considered.

MRJSV belongs to the class of affine-structure models (see Duffie et al., 2000 and Duffie

et al., 2003), hence the characteristic function φV,X(t, u1, u2) := E (exp {iu1Vt + iu2Xt}) has

exponentially affine dependence on V and X, i.e., there exist functions ψ0, ψ1, ψ2 : R+×R2 →

C so that

φV,X(t, u1, u2) = exp {ψJ(t, u2) + ψ0(t, u1, u2) + ψ1(t, u1, u2)V0 + ψ2(t, u1, u2)X0} , (4)

where

ψJ(t, u2) := λt
(
eiu2µJ−

1
2
σ2
Ju

2
2 − 1

)

8



and ψ0, ψ1, ψ2 satisfy the system of Riccati equations

∂ψ2

∂t
= −kψ2, (5)

∂ψ1

∂t
= −αψ1 +

1

2
γ2ψ2

1 + ργψ1ψ2 +
1

2
ψ2
2, (6)

∂ψ0

∂t
= αβψ1 + k(ε− h/k)ψ2, (7)

subject to the boundary conditions

ψ0(0, u1, u2) = 0, ψ1(0, u1, u2) = iu1, ψ2(0, u1, u2) = iu2.

By straightforward integration of (5) and (7) we get that

ψ2(t, u1, u2) = iu2e
−kt (8)

and

ψ0(t, u1, u2) = αβ

∫ t

0

ψ1(s, u1, u2)ds+ iu2(ε− h/k)(1− e−kt),

respectively. Solving (6) explicitly is not trivial; from Proposition 3 (see Appendix A.1), the

general solution to (6) is given by (A.3)

ψ1(t, u1, u2) = −2iu2k

γ2
e−ktζ(iu2e

−kt) +
M(t, u2)

C(u1, u2)− 1
2
γ2
∫ t
0
M(s, u2)ds

,

where M is defined in (A.6) and

C(u1, u2) :=
exp

(
− iu2ργ

k
+ 2

∫ iu2
0

ζ(y)dy
)

iu1 + 2iu2k
γ2

ζ(iu2)

satisfies ψ1(0, u1, u2) = iu1. Function ζ, which satisfies Eq. (A.1), admits the representation

ζ(y) =
∑∞

j=1
djy

j,
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where the coefficients {dj}∞j=1 satisfy the recursion

(
j + 1− α− k

k

)
dj+1 =

∑j−1

i=1
didj−i1j>1 −

ργ

k
dj1j>0 +

γ2

4k2
1j=0.

(Alternatively, one may consider solving (6) numerically using, e.g., Matlab built-in solvers,

however, at increased computational cost.)

In the case of the one-dimensional MRJ model with constant volatility σ, the character-

istic function φX(t, u) := E
(
eiuXt

)
takes the simplified form

φX(t, u) = exp

{
ψJ(t, u) + iu(ε− h/k)(1− e−kt)− σ2u2

4k
(1− e−2kt) + iue−ktX0

}
(9)

(see Cont and Tankov, 2004), whereas in the cases of the MRSV and MR models the char-

acteristic functions of (V,X) and X, respectively, follow directly from (4) and (9) for λ = 0.

3 Data and Estimation Methodology

In this study we consider five energy commodities: two representatives of the European

petroleum market and three from the US market. European spot prices are the dated Brent

(CB), which serves as a benchmark assessment of the price of physical light crude oil in the

North Sea, and the gasoil (GO) European Economic Community Cost in North West Europe;

corresponding futures contracts are traded on the Intercontinental Exchange (ICE Futures

Europe). US spot prices are the light sweet crude oil WTI (CL) at Cushing, Oklahoma,

RBOB gasoline (HU), and No. 2 heating oil (HO) in New York harbor; corresponding

futures are traded on NYMEX of the CME Group. For the purposes of our study we use

a time series of constant-maturity futures; the futures curve is constructed by cubic spline

interpolation of market prices of traded futures contracts. Volume and open interest data

lead us to consider a block of 12 contracts for each commodity from 1 up to 12 months to

maturity. The choice of constant-maturity contracts ensures that all prices are measured
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at the same point in time avoiding problems related to thin trading, expiration effects and

discontinuities from rolling over futures contracts. We consider a 4-year period from March

12, 2009 to March 11, 2013, that is, a total of 1, 043 daily observations after the necessary

refinements for bank holidays. Data are collected from Datastream.

We use daily historical spot price data to estimate the predictable component (1) for

each commodity. We then employ a two-stage estimation procedure based on Clewlow and

Strickland (2000), Benth (2011) and Broadie et al. (2007). First, using the log deseasonalized

spot price time series, we obtain the spot parameter estimates of the MRJSV and nested

MRSV, MRJ, MR models of Section 2 by recursive filtering. Given these, in the second

stage we use the information embedded in end-of-day futures contract quotes to estimate

the volatility parameters and the market price of risk.

In more details, we define a jump as an observation in the log deseasonalized price changes

series that is greater in absolute value than a market-specific threshold given by a multiple

of the sample standard deviation of the deseasonalized series (see Clewlow and Strickland,

2000). The prices on the identified ‘jump dates’ are substituted by the averages of the

two adjacent prices, the standard deviation of the updated series is recalculated and the

same procedure is repeated until no more jumps are identified2. We then estimate the jump

arrival rate λ by the average number of identified jumps per year; the estimates of the mean

µJ and standard deviation σJ of the jump size distribution are given by the average and

standard deviation of the jump returns, respectively3; parameters k and ε of the spot model

are estimated using OLS regression. In order to calibrate the remaining parameters, i.e., the

2We choose the threshold (multiple m of the sample standard deviation) that leads to the best calibrated
model, i.e., the one that minimizes the Jarque and Bera (1980) statistic of the filtered series (ensures that
daily log-price changes are closest to the normal distribution). To this end, we implement the jump-removal
procedure for different multiples m = 0.5 + k/100, k = 0, . . . , 450, and find that the optimal multiples m∗

are for each market 2.8 (CB), 2.75 (GO), 2.7 (CL), 2.7 (HU) and 2.8 (HO).
3Empirical evidence suggests that the Clewlow–Strickland recursive-filtering approach can be superior

to the common alternative, that is, the maximum likelihood method in estimating jump parameters in the
case of infrequent and highly volatile jumps usually observed in energy markets; in particular, Nomikos
and Andriosopoulos (2012) find that the maximum likelihood method results in understated jump size
volatility and mean magnitude and overstated jump frequency. Variants of the filtering approach have also
been adopted by several authors including, for example, Borovkova and Permana (2006) and Geman and
Roncoroni (2006).
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variance model parameters α, β, γ, the correlation coefficient ρ and the market price of risk

h, we use end-of-day futures contract quotes. This is possible given explicit expressions for

the futures price F under the different model specifications.

Proposition 1 The futures price F (0, T ) at time 0 for a contract expiring at time T > 0 is

given by

F (0, T ) = E(ST ) = f(T ) + E(eXT ),

where

E(eXT ) =

 φV,X(T, 0,−i), under MRJSV (and MRSV with λ = 0)

φX(T,−i), under MRJ (and MR with λ = 0)
.

Proof. Follows from (4) and (9).

Let Fj,l be the observed futures prices at time tj of a contract maturing at Tl. The

theoretical futures price Fθ(tj, Tl) is given in Proposition 1; Fθ(tj, Tl) depends on the observed

log deseasonalized spot price time series {Xj}nj=1, the unobserved variance series {Vj}nj=1

which we approximate by the (conditional) expected variance {V̂j}nj=1 where V̂j := β+(V̂j−1−

β)e−α/264 with unknown V̂1 to be estimated, and the parameter vector θ := (V̂1, α, β, γ, ρ, h).

We obtain θ by minimizing the Euclidean distance between the observed and theoretical

futures prices

θ∗ := arg min
θ

∑n

j=1

∑m

l=1

√
|Fj,l − Fθ(tj, Tl)|2, (10)

where m = 12 is the number of maturities and n = 1, 043 the number of days in the sample.

4 Empirical Results

In this section we discuss the estimation results of the four model specifications MRJSV,

MRSV, MRJ and MR for each of the CB, GO, CL, HU and HO markets. We begin the

analysis with the calibration results. We then test the performance of the different spot
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models in commodity futures pricing. By means of a simulation study, we further examine

if the specified models can accurately represent the true spot price dynamics4.

4.1 Model Calibration

We fit first the predictable component (1) with a trend and two terms capturing annual

and semi-annual seasonal cycles; standard likelihood ratio test leads to acceptance of the

hypothesis of both annual and semi-annual seasonality at the 5% significance level for all

markets. The estimated parameters are reported in Panel A of Table 1 along with their

standard errors. Results suggest that all markets exhibit significant regularities: adjusted

R̄2 are 76% and 82% for the European CB and GO, and 59%, 79% and 83% for the US CL,

HU and HO.

Next, we employ the estimation procedure described in Section 3. Parameter estimates

with standard errors are reported in Panel B of Table 1. Several remarks are in order.

Parameter k estimates imply that the expected time for the log deseasonalized spot prices

to return half way toward level ε is 51 days (half-life k−1 ln 2), on average, for the European

markets (CB and GO) and 35 days for the US markets (CL, HU and HO); inclusion of jumps

in the spot price model results in increased half-lives of 55 and 44 days, respectively, as jump

returns are less persistent. Jumps are infrequent events and tend to be negative. More

specifically, we find that jumps in the European markets are less frequent, i.e., expected

3.2-3.4 jumps per year for GO and CB versus 4.6-5.0 for HO and CL and 7.6 for HU, and

have smaller standard deviation, i.e., 6.4%-6.7% for CB and GO versus 7.7%-7.9% for CL

and HO and 9.2% for HU. The relative importance of the jump component is also evident

by its percentage contribution to the total variance of the fitted spot model, which lies in

4Throughout the paper, we consider the following sample-path generation techniques for the MR, MRSV,
MRJ and MRJSV models: MR trajectories are simulated using standard exact methodology described, for
example, in Glasserman (2004, Section 3.3). MRSV log-spot price trajectories are simulated based on
the central-discretization method of Andersen (2008); for the simulation of the stochastic variance paths we
employ the method described in Glasserman (2004, Section 3.4) (for a faster simulation, one can alternatively
use the low-bias quadratic-exponential method of Andersen, 2008). Finally, for the compound Poisson jumps
in the MRJ and MRJSV models, we use the improved algorithm in Cont and Tankov (2004, Section 6.1).
For more details about the actual implementation of the simulation schemes, see steps 1–3 in Table 3.
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12%-13% for CB and GO, 19%-21% for CL and HO, and 29% for HU.

Turning next to the volatility model parameters, in the case of the MRSV model the

estimated speeds of variance mean-reversion translate to average half-lives (α−1 ln 2) of 5.2

(CB and GO) and 3.6 days (CL, HU and HO). In general, the long-run mean variance,

volatility of variance and the correlation between log-prices and variance innovations are

lower for the European CB and GO than for the US CL, HO and HU. We note that the

correlation is found positive in consistency with the inverse leverage effect in energy prices,

meaning that high prices are associated with high volatility, which can be attributed to the

negative relationship between prices and inventory (e.g., see Pindyck, 2004). Incorporating

price jumps (i.e., case of the MRJSV model) has a downward effect on the speed of variance

mean-reversion, long-run mean variance, volatility of variance and correlation level, as the

need for the variance process to create large sudden movements becomes less important.

In addition, we compute the root mean square error (RMSE) and relative RMSE (RRMSE)

of the model-implied theoretical futures prices given in Proposition 1 for each model with

respect to the observed futures prices: RMSE :=
√

1
nm

∑n
j=1

∑m
l=1 |Fθ∗(tj, Tl)− Fj,l|2 and

RRMSE :=
√

1
nm

∑n
j=1

∑m
l=1 |Fθ∗(tj, Tl)/Fj,l − 1|2, where Fj,l is the observed futures prices

at time tj of a contract maturing at Tl, F (tj, Tl) is the theoretical futures price given in

Proposition 1 for each model under the optimal parameter set θ∗ (see Eq. 10), m = 12

(no. of maturities) and n = 1, 043 (no. of days in the sample period March 12, 2009 to

March 11, 2013). Results presented in Panel C of Table 1 suggest that MRJSV generates

lowest pricing error: across markets, average RRMSE is 13% and maximum RRMSE is

16% (HU). (We reach similar conclusion if we consider the mean absolute percentage er-

ror MAPE := 1
nm

∑n
j=1

∑m
l=1 |Fθ∗(tj, Tl)/Fj,l − 1|; results are currently not presented for

brevity.) To test whether any of the extended versions of the basic MR model with price

jumps and/or stochastic volatility yields significant improvement in the futures pricing per-

formance, we apply the Hansen (2005) test5. We find that accurately modelling jumps in the

5We define loss function (LF) differentials between the MR model and each of the MRSV, MRJ and
MRJSV models based on the RMSE and RRMSE error statistics, e.g., LFtj = RMSEMR,tj −RMSEMRJSV,tj
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spot price dynamics improves satisfactorily the fit of the resulting theoretical futures prices

to the observed futures prices compared to the MR model; admitting additionally stochastic

volatility improves the fit further. More specifically, compared to MR, MRJSV provides

a 4% average, across markets, reduction in the RMSE. Unsurprisingly, highest reduction,

that is, 6.3%, is reported in the HU market having the most frequent price jumps, highest

jump size standard deviation, volatility of variance and correlation between variance and

log-price processes. The improvement in the fit brought by MRJSV compared to MRSV

is still high, that is, 2.1% average reduction in the RMSE, whereas compared to MRJ the

RMSE reduction is up to 1%.

We conclude this analysis by referring to an additional error statistic, that is, the mean

percentage error MPE := 1
nm

∑n
j=1

∑m
l=1(Fθ∗(tj, Tl)/Fj,l−1), which we compute for the entire

term structure of futures prices and use to test for systematic bias. The outcome of the test

suggests rejection of this hypothesis at conventional significance levels. For brevity we do

not detail these results here, but we can make these available upon request.

4.2 Simulation Study: True Data-Generating Process

As a next stage in our analysis, we examine whether the proposed models can accurately

represent the true price dynamics of the commodities of interest. Similarly to Kaeck and

Alexander (2013), we compare the model-implied distributions to the empirical one for each

commodity in terms of a set of statistics. We employ the following test procedure: for

each commodity we approximate the empirical distribution of the log-returns using station-

ary bootstrap and construct 90% bootstrap confidence intervals for the standard deviation,

skewness, kurtosis, 1st and 99th percentiles and expected shortfalls at the 1% and 99% levels.

Then, for each model, we simulate 100, 000 price paths and log-return sample statistics, and

calculate the percentage number of simulated statistics of a given type falling within the

where j = 1, . . . , n = 1, 043. Then, using 5, 000 bootstrap simulations, we test the null hypothesis that MR
is not outperformed by the other models, i.e., H0 : E(LF) ≤ 0. For more details, we refer to White (2000)
and Hansen (2005); a description of the stationary bootstrap algorithm can also be found in Politis and
Romano (1994) and Sullivan et al. (1999, Appendix C).
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corresponding bootstrap confidence interval; a value closer to 1 implies smaller discrepancy

between the observed and assumed price dynamics. The model with the best relative perfor-

mance for given statistic type is indicated by an asterisk in Table 2. If we take a close look

at the table, we see that, although the MR model appears to be fitting well the standard

deviation and the 99th percentile (65% and 89%, respectively, of the time on average across

markets), it naturally does not capture the skewness and kurtosis (33% and 10%, respec-

tively) of the empirical distribution. As a result, the left tail is missed more often in the

case of MR (and MRSV but to a lesser extent). On the other hand, including jumps (i.e.,

case of MRJ and MRJSV models) allows a more balanced and thus accurate fitting of the

tails, adequately accounting for both the skewness and excess kurtosis commonly found in

commodity log-returns. In particular, comparing model-implied standard deviation, skew-

ness and kurtosis across the five markets for each model, we observe that MRJSV produces

more realistic statistics in 10 cases out of 15 (3 statistics × 5 markets). The 1st and 99th

percentiles as well as the expected shortfalls at the 1% and 99% levels of the empirical and

model-implied log-return distributions are also reported suggesting overall superiority of the

MRJSV model in 10 out of 20 cases.

In addition, we employ the two-sample Kolmogorov–Smirnov test with the null hypothesis

stating that the observed and simulated log-return distributions are equal. To this end, for

each of the simulated price paths of the competing models, we test the null hypothesis and

store the p-value. Table 2 reports the percentage number of times the null hypothesis cannot

be rejected at the 10% significance level. In the case of the MR model the null hypothesis

cannot be rejected in 62.1% (CB), 56.5% (GO), 55.1% (CL), 35.7% (HO) and 59.7% (HU) of

the simulation runs. Accounting for price jumps or stochastic volatility (i.e., MRJ or MRSV

model) raises the evidence in favour of the null hypothesis, while the combined effect (i.e.,

case of MRJSV model) is found strongest with non-rejection in 88.4% (CB), 92.8% (GO),

82.1% (CL), 84.4% (HO) and 80.1% (HU) of the time.

Overall, we find that the MRJSV model is sufficiently rich and capable of providing a

16



more realistic description of the true DGP, accounting for the stylized patterns of the spot

prices in the petroleum markets under consideration.

5 Application on Discrete Arithmetic Asian Options

In what follows we investigate the impact of the proposed stochastic models in Section 2 in

terms of the pricing and delta hedging of options on the discrete arithmetic average spot

price, which are particularly popular in commodity markets. The need for realistic spot price

models capturing the unique characteristics of energy commodities raises substantially the

complexity of the option pricing problem. We solve this by means of an efficient Monte Carlo

simulation approach, which we develop based on the model properties presented in Section

2. We then execute pricing and delta hedging simulation exercises based on the calibrated

model parameters in Section 4.

5.1 Option Pricing

Suppose that the spot price S is monitored over the period [0, T ], T > 0, at the following

equidistant dates: 0, δ, . . . , jδ, . . . , nδ = T .

The terminal payoff of the arithmetic Asian option depends on the average of the past

n+ 1 spot prices

1

n+ 1

∑n

j=0
Sjδ = An+1 +

1

n+ 1

∑n

j=0
fjδ,

where f is given by (1) and

An+1 :=
1

n+ 1

∑n

j=0
(Sjδ − fjδ) =

1

n+ 1

∑n

j=0
eXjδ

is the average deseasonalized spot price. The price of the arithmetic Asian call option with

17



fixed strike price K reads

E

[
e−rT

(
1

n+ 1

∑n

j=0
Sjδ −K

)+
]

= E

[
e−rT

(
An+1 − K̃

)+]
, (11)

where x+ := max(x, 0),

K̃ := K −
∑n

j=0
fjδ/(n+ 1)

is the deseasonalized strike price, and r the continuously compounded risk free rate of inter-

est. Note that the price of the put-type option can be obtained via standard put-call parity.

By analogy, the price of the Asian call option on the geometric average spot price is given

by

E

[
e−rT

(
eYn+1 − K̃

)+]
, (12)

where

Yn+1 :=
1

n+ 1

∑n

j=0
ln(Sjδ − fjδ) =

1

n+ 1

∑n

j=0
Xjδ. (13)

For the purposes of our analysis, we estimate the price of the arithmetic option, i.e.,

evaluate (11), by employing an accurate control variate Monte Carlo (CVMC) scheme with

100, 000 simulations and the geometric Asian option price (12) used as control variate (see

Table 3 and Glasserman, 2004 for more details). Given the exact closed-form expression for

the price of the geometric option under Black–Scholes–Merton model assumptions, Kemna

and Vorst (1990) show that the geometric option serves as an efficient control variate in

the simulation of the arithmetic option. Fusai and Meucci (2008) extend to Lévy log-spot

models by adopting a Fourier transform approach, whereas in this paper we generalize to

non-Lévy members of the affine class, including the MRJSV model and the nested models

of Section 2. To this end, we derive first the characteristic function of the log-geometric

average, φYn+1(u) := E (exp{iuYn+1}), under the given model assumptions.

Proposition 2 The characteristic function of the log-geometric average Yn+1 defined in (13)

is given:
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(a) under the MRJSV model dynamics by

φYn+1(u) = exp
{∑n

j=1
(ψJ(δ, ϑj) + ψ0(δ, ηj, ϑj)) + ψ1(δ, η1, ϑ1)V0 + iϑ0X0

}
, (14)

where ηn := 0, ϑn := u/(n+1), ηj := −iψ1(δ, ηj+1, ϑj+1) and ϑj := −iψ2(δ, ηj+1, ϑj+1)+

u/(n+ 1) for 0 ≤ j ≤ n− 1.

(b) under the MRJ model dynamics by

φYn+1(u) =
∏n

j=0
exp

{
iu

n+ 1
X0e

−kjδ
}

×
∏n

j=1
exp

{
ψJ(δ, ηj) + iηj(ε− h/k)(1− e−kδ)−

σ2η2j
4k

(1− e−2kδ)
}
,

where ηj := u
∑n−j

m=0 e
−mkδ/(n+ 1) for 0 < j ≤ n.

Relevant results under the MRSV and MR models follow directly by setting λ = 0.

Proof. See Appendix A.2.

Given the characteristic function of the log-geometric average, the exact price of the

geometric Asian option (12) can be computed by means of the Fourier-inversion formula

with respect to the log-strike price κ̃ := ln K̃

E

[
e−rT

(
eYn+1 − K̃

)+]
=
e−ξκ̃−rT

2π

∫
R
e−iuκ̃

φYn+1(u− ξi− i)
(iu+ ξ)(iu+ ξ + 1)

du, (15)

where constant ξ > 0 ensures integrability in κ̃ (see Carr and Madan, 1999). Formula (15)

can be evaluated using the (fractional) fast Fourier transform algorithm (e.g., fft or czt in

Matlab, see Černý and Kyriakou, 2011 for more details) which outputs the geometric Asian

option prices on a fine, equally spaced grid of log-strike prices.

Based on the estimated model parameters (see Table 1) and using our results for the

geometric Asian option, we implement standard CVMC setup (see Table 3) to estimate the

prices of at-the-money (ATM), in-the-money (ITM) and out-of-the-money (OTM) 1-month

19



to maturity arithmetic Asian call options with daily monitoring (i.e., n = 22). In particular,

the strike price is set equal to 100%, 95% and 105% of the spot price. The current spot

price and variance are set equal to exp(ε) and β, respectively, and the risk free interest rate

is given by the average 3-month US T-bill rate throughout the sample period. Computed

option prices are presented in Table 4 in monetary terms (CB - $/bbl, GO - $/mt, CL -

$/bbl, HU - c$/gal, HO - c$/gal) as well as relative to the spot price and the price of the

corresponding ATM option.

Results suggest that ignoring jumps and stochastic volatility leads to lower option prices.

More specifically, we find that, across all markets, MRSV and MRJSV prices are system-

atically higher than the corresponding MRJ prices, which, further, are higher than the MR

ones. In fact, the discrepancies between MRSV, MRJSV and MRJ prices versus MR prices

are higher for in-the-money options, whereas these reduce the more out-of-the-money the

option. Our observation based on option prices under non-Lévy (i.e., dependent) log-returns

adds to earlier contributions by Fusai and Meucci (2008) and Černý and Kyriakou (2011),

who observe similar pattern across different level of moneyness based on option prices rely-

ing on Lévy (i.e., independent) assumptions for stock log-returns. As noted in Černý and

Kyriakou (2011), such pattern is attributed to the combined kurtosis-skewness effect in a

Lévy and non-Lévy, as opposed to normal, log-return distribution.

5.2 Hedge Performance Comparisons

The MRJ, MRSV and MRJSV models we have considered in this paper generally correspond

to incomplete markets due to the presence of stochastic jumps and/or volatility, thus intro-

ducing a hedging error in a delta hedging strategy even in the theoretical limit of continuous

rebalancing as the two instruments (the underlying and the risk free bond) are not enough to

span the sources of uncertainty. In the case of the one-factor MR diffusion, existence of error

can be attributed to the discreteness of the portfolio rebalancing frequency. In what follows,

we adhere to the common market practice of delta hedging and apply to the case of Asian
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options and inspect the performance of the delta hedge in the various markets. We define

the hedging error as the difference between the value of the daily-rebalanced hedge portfolio

and the value of a 1-month to maturity, daily-averaged ATM arithmetic Asian option for a

1-week hedge period.

We use Monte Carlo simulation to gauge the magnitude and distributional characteristics

of the hedging error. For each commodity we simulate the distribution of the hedging

error when the underlying data-generating process is given by either of the MR, MRJ,

MRSV and MRJSV models and (a) the hedge portfolios are formed accordingly, or (b)

the hedge portfolios are misspecified, i.e., are formed based on alternative models. In fact,

case (b) is more realistic as the hedger never really knows the true DGP, hence develops the

hedging approach based on some assumptions. The particular task allows us to investigate

the sensitivity of the hedging performance to model misspecification, in other words, the

impact of incorrectly specifying the underlying data-generating process and forming the

hedge portfolios. In simulating the hedging error distributions under the dynamic strategy,

the option prices are estimated daily using the CVMC approach in Section 5.1, whereas the

option deltas using a modified version based on straightforward application of the pathwise

technique (see Glasserman, 2004) with the geometric Asian option delta used as control

variate.

We consider first computed hedging errors under each driving process with the hedge

portfolios formed accordingly. Figure 1 plots the simulated price paths of each underlying

commodity across the 5-day hedge period coupled with the hedging error distributions at the

closing of the week-long hedging exercise, under the four data-generating processes. Most

of the hedging errors are negative, irrespective of the direction of the moves in the price

of the underlying. As discussed in Carr and Wu (2014), the reason is that the option price

exhibits convexity with the price of the underlying, resulting in the value of the delta neutral

portfolio being below the value of the option contract under sufficiently large price move-

ments. Similarly to their dynamic hedging exercise, this effect becomes more pronounced
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when jumps are allowed, and therefore larger moves in the price of the underlying, as in our

MRJ and MRJSV models. Our results are consistent with those of Carr and Wu (2014) in

the sense of achieving negative skewness of hedging error and positive excess kurtosis, even

in the case of the underlying price moving purely diffusively; as shown in Figure 1, this effect

becomes more perceptible when discontinuities are allowed in the price dynamics. This also

explains the negative mean hedging error reported in Panel A of Table 5 across all markets

and models (see also Brooks and Prokopczuk, 2013 for the case of European options), al-

though expectedly this is smaller (in absolute value) in the case of the pure diffusion model.

Models with jumps and/or stochastic volatility generate hedging errors with increased stan-

dard deviation compared to the basic one-factor model. Therefore, the performance of the

delta hedge deteriorates when more than one risk factors are allowed.

In the event of model misspecification, the investor’s hedge model deviates from the true

model. Panel B of Table 5 reports the percentage changes in the standard deviation of the

hedging error under different misspecified hedge portfolios, allowing us to explore the effect

of model uncertainty on the hedging error. More specifically, we consider incorrect hedges

containing fewer risk factors than the true model, i.e., the misspecified hedge model either

omits the jump component, the stochastic volatility, or both. Incorrect hedges in this case

always result in increased standard deviation of the hedging error (positive entries in Panel

B). When the MRJSV model represents the true DGP (Panel B.3), as also corroborated

by our analysis in Section 4, we find that the misspecified MRSV hedge performs better

achieving lowest increase of standard deviation in the GO, CL, HU and HO markets, the CB

market being the only exception in which case the MRJ hedge is slightly better. Therefore,

we find that the hedge model with stochastic volatility is closest to the true hedge. Our

observation is consistent with the remarks of Branger et al. (2012) based on the analysis of

different hedging strategies for plain vanilla stock options. It is worth noting that we do

not consider the opposite situation, i.e., hedge models with more risk factors than the true

one, which is not practically relevant as the true data-generating process is usually more
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complicated and involves many risk factors while investors are simpler than ‘real life’ (see

Branger et al., 2012).

Finally, we perform a robustness check of the outcome of the hedging exercise. We per-

turb each of the parameters by ±1% from their original estimates and study the impact

on the variance of the hedging error. Through this sensitivity analysis, we reach that the

signs of the entries in Table 5 remain unchanged. Further research toward this direction

could include, for example, a study of the distribution of the variance (and possibly higher

moments) of the hedging error under parameter resampling; this is a nontrivial and partic-

ularly computationally intensive problem at this stage, due to the extremely large number

of simulations required, whose further investigation is left for future research.

6 Summary and Conclusion

We have considered five major European and US petroleum commodity markets to study

the ability of four different model specifications to realistically portray the dynamics of

the data-generating process using historical spot and futures price data over the period

March 2009 to March 2013. Our selection of models includes a seasonal mean-reverting

spot price model with jumps and Heston-type stochastic volatility (MRJSV) and nested

specifications with/out jumps or stochastic volatility (MR, MRJ, MRSV). In the first stage

of our analysis, we assess relative performance by comparing simulated model-implied and

empirically estimated statistics as well as testing for equality of the observed and simulated

log-return distributions; our exercise indicates superior performance of the MRJSV model

in producing dynamics that are similar to the true price dynamics. Furthermore, using

the theoretical futures prices derived for all competing models, we investigate the fit to the

observed futures curves in the different markets; our error statistics point toward inclusion

of price jumps, while combining with stochastic price volatility improves the fit further.

In addition, given the widespread use of Asian options in commodity markets, we provide

an efficient valuation framework for the prevalent case of the arithmetic average with discrete
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monitoring when the underlying spot is driven by a general exponential affine model. Our

findings suggest that failing to account for price jumps and stochastic volatility leads to

relatively lower option premia, especially for in-the-money call options. Furthermore, we

gauge the distributional characteristics of the hedging error from dynamic delta hedging

strategies applied to an Asian option. In the case of an investor with perfect knowledge of

the stochastic process governing the underlying asset price, the performance of the hedging

strategy deteriorates in the presence of random price jumps and/or volatility. The delta

hedge becomes even more ineffective in the case of incorrectly specified hedges with omitted

risk factors. We find that when the MRJSV model represents the true DGP, as corroborated

by our analysis in Section 4, a misspecified hedge with omitted jumps but allowed stochastic

volatility is closest to the true hedge.

The implications of this research are of chief relevance to market participants, as spec-

ifying correctly the dynamic behaviour of the underlying spot price process is important

for understanding and managing the risks associated with derivative securities, investment

evaluation, asset allocation and planning.

Appendix A: Proofs

A.1 Proof of general solution to Riccati equation (6)

Proposition 3 Suppose ζ(y), y ∈ C\{0}, satisfies the equation

ζ ′(y) = ζ(y)2 +

(
α− k
ky

− ργ

k

)
ζ(y) +

γ2

4k2
. (A.1)

Define

χ(t, u2) = −2iu2k

γ2
e−ktζ(iu2e

−kt). (A.2)

Then,

(a) χ is a solution to (6).
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(b) the general solution to (6) takes the form

ψ1 = χ+
1

w
, (A.3)

where w satisfies the differential equation

∂w

∂t
+
(
−α + iu2ργe

−kt + γ2χ
)
w = −1

2
γ2. (A.4)

Proof.

(a) From (A.2), we obtain

∂χ

∂t
= −kχ− 2u22k

2

γ2
e−2ktζ ′(iu2e

−kt)

= −kχ− 2u22k
2

γ2
e−2kt

[
ζ(iu2e

−kt)2 +

(
α− k
iu2ke−kt

− ργ

k

)
ζ(iu2e

−kt) +
γ2

4k2

]
= −αχ+

1

2
γ2χ2 + ργχψ2 +

1

2
ψ2
2, (A.5)

where the second equality follows from (A.1) and ψ2 in the last equality is given by

(8). It is implied from (A.5) that χ is a solution to (6).

(b) Suppose that χ+ 1/w is an arbitrary solution to (6). Then we have

∂χ

∂t
− 1

w2

∂w

∂t
= −α

(
χ+

1

w

)
+

1

2
γ2
(
χ2 +

2χ

w
+

1

w2

)
+ ργ

(
χ+

1

w

)
ψ2 +

1

2
ψ2
2

and, further, from (A.5) we get

− 1

w2

∂w

∂t
= −α

w
+

1

2
γ2
(

2χ

w
+

1

w2

)
+
ργψ2

w
,

from which (A.4) follows.
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For the differential equation (A.4) with χ given in (A.2), from standard calculus theory

the integrating factor is

M(t) := exp

(
−αt− iu2ργ

k
e−kt − 2iu2k

∫
e−ktζ(iu2e

−kt)dt

)
= exp

(
−αt− iu2ργ

k
e−kt + 2

∫ iu2e−kt

0

ζ(y)dy

)
, (A.6)

from which we get the general solution to (A.4)

w(t) =
C − 1

2
γ2
∫ t
0
M(s)ds

M(t)

where C is the constant of integration.

A.2 Proof of Proposition 2

Proof.

(a) Under the MRJSV model dynamics, we have from (4) that

E
(
exp {iηnVnδ + iϑnXnδ} |F(n−1)δ

)
= exp

{
ψJ(δ, ϑn) + ψ0(δ, ηn, ϑn) + ψ1(δ, ηn, ϑn)V(n−1)δ + ψ2(δ, ηn, ϑn)X(n−1)δ

}
,(A.7)

and for j = n− 1, n− 2, . . . , 1

E

(
exp

{
ψ1(δ, ηj+1, ϑj+1)Vjδ +

(
ψ2(δ, ηj+1, ϑj+1) +

iu

n+ 1

)
Xjδ

}∣∣∣∣F(j−1)δ

)
= exp

{
ψJ(δ, ϑj) + ψ0(δ, ηj, ϑj) + ψ1(δ, ηj, ϑj)V(j−1)δ + ψ2(δ, ηj, ϑj)X(j−1)δ

}
.(A.8)

Evaluating

E
(
eiuYn+1

)
= E

(
exp

{
iu

n+ 1

∑n

j=0
Xjδ

})
using iterated expectations and applying equalities (A.7)–(A.8), we obtain (14).
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(b) Define Zj = Xjδ − X(j−1)δe
−kδ, where j = 1, . . . , n. By recursive substitution in

Xjδ = X(j−1)δe
−kδ + Zj and summation across all j, we get

∑n

j=0
Xjδ = X0 +

∑n

j=1

{
X0e

−kjδ +
∑n−j

m=0
Zje

−mkδ
}
.

Then,

E
(
eiuYn+1

)
= E

(
exp

{
iu

n+ 1

∑n

j=0
Xjδ

})
= exp

{
iu

n+ 1

∑n

j=0
X0e

−kjδ
}
E

(
exp

{
iu

n+ 1

∑n

j=1
Zj
∑n−j

m=0
e−mkδ

})
=

∏n

j=0
exp

{
iu

n+ 1
X0e

−kjδ
}∏n

j=1
E (exp {iηjZj}) ,

where the last equality follows by stochastic independence of the variables {Zj}nj=1 and

the characteristic function of Zj from Eq. (9).
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Table 2: True data-generating process testing

We test whether the proposed models (MR, MRJ, MRSV, MRJSV) can accurately represent the true price

dynamics of each commodity (CB, GO, CL, HU, HO). The table reports the relative performance across

models in terms of percentage number of simulated log-return statistics of a given type lying within the

corresponding 90% bootstrap confidence interval of the empirical statistic. Table entries correspond to

values in the range 0 to 1: e.g., a value of 0.750 indicates that in 75% of 100,000 simulation runs, the

simulated statistic has been within the bootstrap confidence interval. Abbreviations: standard deviation

(std), skewness (skew), kurtosis (kurt), 1st and 99th percentiles (perc1 and perc99) and expected shortfalls

at the 1% and 99% levels (ES1 and ES99). In addition, for each simulation, we employ the two-sample

Kolmogorov–Smirnov (K–S) test for equality of the empirical and model-implied log-return distributions

and report the percentage number of times the null hypothesis cannot be rejected at the 10% significance

level. Asterisks (∗) highlight best relative performance across models.

std skew kurt perc1 perc99 ES1 ES99 K–S test
Brent Crude Oil (CB)

MR 0.731 0.031 0.295 0.280 0.890 0.144 0.803∗ 0.621
MRJ 0.866 0.556∗ 0.513 0.708 0.951∗ 0.779 0.564 0.833

MRSV 0.789 0.223 0.963∗ 0.388 0.766 0.242 0.747 0.646
MRJSV 0.871∗ 0.515 0.787 0.744∗ 0.860 0.857∗ 0.509 0.884∗

Gasoil (GO)
MR 0.575 0.122 0.189 0.263 0.817 0.109 0.881∗ 0.565

MRJ 0.896∗ 0.556 0.530 0.608 0.937∗ 0.777 0.772 0.811
MRSV 0.788 0.577 0.720 0.282 0.862 0.266 0.857 0.724

MRJSV 0.767 0.606∗ 0.772∗ 0.696∗ 0.821 0.800∗ 0.786 0.928∗

WTI Crude Oil (CL)
MR 0.679 0.479 0.000 0.243 0.834 0.003 0.341 0.551

MRJ 0.855 0.474 0.222 0.621 0.868∗ 0.728∗ 0.763 0.770
MRSV 0.836 0.428 0.283 0.442 0.836 0.455 0.970∗ 0.619

MRJSV 0.876∗ 0.636∗ 0.446∗ 0.737∗ 0.829 0.693 0.901 0.821∗

Gasoline (HU)
MR 0.733 0.515 0.000 0.062 0.970∗ 0.009 0.204 0.597

MRJ 0.824 0.559 0.352 0.597 0.932 0.804 0.743 0.760
MRSV 0.788 0.595 0.814∗ 0.242 0.752 0.426 0.656 0.685

MRJSV 0.855∗ 0.755∗ 0.577 0.719∗ 0.908 0.819∗ 0.918∗ 0.801∗

Heating Oil (HO)
MR 0.514 0.487 0.000 0.213 0.937 0.004 0.408 0.357

MRJ 0.872 0.578 0.481∗ 0.568 0.974 0.642 0.846 0.804
MRSV 0.781 0.442 0.364 0.888∗ 0.956 0.548 0.948∗ 0.817

MRJSV 0.892∗ 0.701∗ 0.465 0.872 0.996∗ 0.672∗ 0.941 0.844∗
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Table 3: Control variate Monte Carlo (CVMC) simulation scheme

Summarized CVMC simulation scheme. Inputs: M : number of simulations; n: number of monitoring (av-

eraging) dates; T : option time to maturity; δ: time spacing; K̃: deseasonalized strike price; r: continuously

compounded risk free interest rate; spot price model params.: ε, k, σ, λ, µJ , σJ , h; stoch. variance model

params.: α, β, γ, ρ; E(G) := E(e−rT (exp(
∑n
j=0Xj/(n+ 1))− K̃)+): exact price of geometric Asian option

(pre-computed using formula 15); b∗: optimal CV coefficient (pre-estimated using a pilot run, see Glasser-

man, 2004, Section 4.1.3). Control Variate Monte Carlo: simulation of MR model (step 1.b): exact

method, e.g., see Glasserman (2004, Section 3.3); simulation of square-root diffusion (step 1.c): χ′2df (cVj−1)

noncentral chi-square random variable with df := 4αβγ−2 degrees of freedom and noncentrality parameter

cVj−1, c := 4αe−αδγ−2(1− e−αδ)−1, is simulated using the method described in Glasserman (2004, Section

3.4) (alternatively, for a faster simulation, the low-bias quadratic-exponential method of Andersen, 2008 can

be used); simulation of MRSV model (step 1.d): modified Andersen (2008) method with central discretiza-

tion employed in both integrated log-spot price and variance; simulation of compound Poisson process (step

2): improved algorithm in Cont and Tankov (2004, Section 6.1, Algorithm 6.2).

Inputs: M ; n; T ; δ ← T/n; K̃; r; model params.; E(G); b∗

CVMC simulation:
1. Generate log deseas. spot price (& stochastic variance) sample path:
1a. Generate n indep. normal variates N01,j ∼ N (0, 1) for j = 1, . . . , n

1b. Set Xj ← Xj−1e
−kδ + (ε− h/k)(1− e−kδ) + σ

√
(1− e−2kδ)/(2k)N01,j (MR)

1c. Set Vj ← c−1e−αδχ′2df (cVj−1) for j = 1, . . . , n
1d. Set Xj ← [Xj−1(1− kδ/2) + (kε− h− αβρ/γ)δ + Vj−1(αδ/2− 1)ρ/γ

+Vj(αδ/2 + 1)ρ/γ +
√

(1− ρ2)(Vj−1 + Vj)δ/2N01,j

]
(1 + kδ/2)−1 (MRSV)

2. Generate independent compound Poisson process:
2a. Generate n indep. Poisson variates NJ,j ∼Pois(λδ) for j = 1, . . . , n
2b. Generate NJ,j indep. normal variates Jj,i ∼ N (µJ , σ

2
J) for i = 1, . . . , NJ,j

2c. Generate NJ,j indep. uniform variates Uj,i ∼ Unif[0, δ] for i = 1, . . . , NJ,j

3. Generate log deseas. spot price path with jumps:

3a. Set Xj ← Xj +
∑NJ,j

i=1 1Uj,i<δJj,i (MR to MRJ)

3b. Set Xj ← Xj + (1 + kδ/2)−1
∑NJ,j

i=1 1Uj,i<δJj,i (MRSV to MRJSV)
4. Generate option payoff samples:

4a. Set C ← e−rT
(∑n

j=0 exp(Xj)/(n+ 1)− K̃
)+

(arithmetic average)

4b. Set G← e−rT
(

exp
(∑n

j=0Xj/(n+ 1)
)
− K̃

)+
(geometric average)

4c. Set Cb ← C − b∗(G− E(G)) (control variate)
5. Repeat steps 1–4 for all M simulations
6. Return option price estimate E(Cb)← 1

M

∑
Cb

7. Return standard error 1
M−1

∑
(Cb − E(Cb))

2
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Table 4: Arithmetic Asian option prices

This table reports the price estimates of at-the-money (ATM), in-the-money (ITM) and out-of-the-money

(OTM) 1-month to maturity arithmetic Asian call options with daily averaging, obtained by implementing

the control variate Monte Carlo simulation approach in Section 5.1 (see also Table 3) with 100,000 simula-

tions, for each model (MR, MRJ, MRSV, MRJSV) and market (CB, GO, CL, HU, HO). The strike price is

set equal to 100%, 95% and 105% of the spot price, resp., ATM, ITM and OTM options. The current spot

price and variance are set equal to exp(ε) and β, respectively. Columns 2–4 report option prices, columns

5–7 option prices relative to the spot price (%), columns 8–9 ITM and OTM option prices relative to the

price of the corresponding ATM option (%).

Option prices Relative to spot (%) Relative to ATM (%)
ITM ATM OTM ITM ATM OTM ITM OTM

Brent Crude Oil (CB) - spot price 70.32 $/bbl
MR 2.68 0.84 0.16 3.81 1.20 0.23 318 19

MRJ 3.01 1.02 0.22 4.28 1.46 0.31 294 21
MRSV 3.27 1.48 0.55 4.65 2.11 0.78 220 36

MRJSV 3.51 1.62 0.60 4.99 2.30 0.86 216 37
Gasoil (GO) - spot price 554.80 $/mt

MR 20.87 6.62 1.31 3.76 1.19 0.24 315 19
MRJ 22.26 7.41 1.61 4.01 1.34 0.29 300 21

MRSV 27.75 13.82 6.11 5.00 2.49 1.10 201 44
MRJSV 27.54 13.49 5.58 4.96 2.43 1.01 204 41
WTI Crude Oil (CL) - spot price 72.26 $/bbl

MR 3.65 1.36 0.33 5.05 1.88 0.45 268 23
MRJ 3.70 1.42 0.38 5.12 1.97 0.53 259 26

MRSV 4.21 2.10 0.89 5.83 2.90 1.24 200 42
MRJSV 4.20 2.05 0.85 5.81 2.83 1.17 205 41
Gasoline (HU) - spot price 184 c$/gal

MR 5.6 1.9 0.5 3.02 1.05 0.27 287 25
MRJ 6.7 2.6 0.8 3.64 1.42 0.45 257 31

MRSV 10.1 5.8 3.3 5.47 3.15 1.77 173 56
MRJSV 9.7 5.5 3.0 5.28 3.02 1.61 175 53
Heating Oil (HO) - spot price 175 c$/gal

MR 7.1 2.5 0.6 4.08 1.42 0.33 287 23
MRJ 7.5 2.8 0.8 4.31 1.60 0.43 269 27

MRSV 9.3 4.7 2.1 5.30 2.66 1.19 199 44
MRJSV 9.4 5.0 2.3 5.39 2.85 1.31 189 45
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Table 5: Hedging performance comparisons

Panel A reports for each market the mean and standard deviation (std) of the simulated hedging error at

the closing of a week-long dynamic delta strategy with daily rebalancing without model misspecification in

monetary terms (CB - $/bbl, GO - $/mt, CL - $/bbl, HU - $/gal, HO - $/gal). Panel B reports % increases

(positive signs) in the standard deviation of the hedging error when the hedge portfolios are misspecified,

in particular, the incorrect hedge models contain fewer risk factors than the true model. Hedging error is

defined as the difference between the value of the daily-rebalanced hedge portfolio and the value of a 1-month

to maturity, daily-averaged ATM arithmetic Asian option for the 1-week hedge period.

CB GO CL HU HO
Panel A: hedges without model misspecification
(1) MR hedging error

mean –0.195 –1.711 –0.048 –0.008 –0.003
std 0.294 2.349 0.308 0.011 0.008

(2) MRJ hedging error
mean –0.229 –1.925 –0.052 –0.009 –0.005
std 0.364 3.319 0.518 0.017 0.012

(3) MRSV hedging error
mean –0.212 –1.870 –0.100 –0.009 –0.004
std 0.450 4.280 0.509 0.020 0.013

(4) MRJSV hedging error
mean –0.236 –1.988 –0.102 –0.010 –0.006
std 0.493 4.079 0.547 0.020 0.016

Panel B: % changes in std of hedging error under model misspecification (less risk factors)
(1) true MRJ model

MR 2.24 1.32 0.27 8.53 1.18
(2) true MRSV model

MR 5.67 10.63 1.02 28.72 9.06
(3) true MRJSV model

MR 4.40 4.84 1.15 18.34 5.21
MRJ 2.49 3.65 0.41 5.55 5.66
MRSV 2.69 0.05 0.41 2.61 1.10
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Fig. 1: Simulated commodity price paths and hedging error distributions

Simulated (deseasonalized) price paths of each underlying commodity (panel a: CB - $/bbl, panel b: GO -
$/mt, panel c: CL - $/bbl, panel d: HU - $/gal, panel e: HO - $/gal) across a 5-day hedge period coupled
with the distributions (Matlab’s kernel smoothing function estimates) of the hedging errors at the closing
of a week-long dynamic delta strategy with daily rebalancing without model misspecification, under the
four data-generating processes (i: MR, ii: MRJ, iii: MRSV, iv: MRJSV). Hedging error is defined as the
difference between the value of the daily-rebalanced hedge portfolio and the value of a 1-month to maturity,
daily-averaged ATM arithmetic Asian option for the 1-week hedge period.
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Fig. 1 continued
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Fig. 1 continued
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