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MobilityGraphs: Visual Analysis of Mass Mobility Dynamics
via Spatio-Temporal Graphs and Clustering

Tatiana von Landesberger, Felix Brodkorb, Philipp Roskosch, Natalia Andrienko,
Gennady Andrienko, and Andreas Kerren, Senior Member, IEEE
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Fig. 1. Hourly flows of residential Twitter users in Greater London area over a week are spatially and temporally simplified to gain an
overview of mobility dynamics. A calendar view shows the temporal cluster distribution over a week. Each map displays movements
between spatial aggregates in a temporal cluster. Movement direction is represented by a color gradient from dark to light blue.

Abstract—Learning more about people mobility is an important task for official decision makers and urban planners. Mobility data
sets characterize the variation of the presence of people in different places over time as well as movements (or flows) of people
between the places. The analysis of mobility data is challenging due to the need to analyze and compare spatial situations (i.e.,
presence and flows of people at certain time moments) and to gain an understanding of the spatio-temporal changes (variations of
situations over time). Traditional flow visualizations usually fail due to massive clutter. Modern approaches offer limited support for
investigating the complex variation of the movements over longer time periods.

We propose a visual analytics methodology that solves these issues by combined spatial and temporal simplifications. We have
developed a graph-based method, called MobilityGraphs, which reveals movement patterns that were occluded in flow maps. Our
method enables the visual representation of the spatio-temporal variation of movements for long time series of spatial situations
originally containing a large number of intersecting flows. The interactive system supports data exploration from various perspectives
and at various levels of detail by interactive setting of clustering parameters. The feasibility and utility of our approach was tested
on aggregated mobility data derived from a set of geolocated Twitter posts within the Greater London city area and mobile phone
call data records in Abidjan, Ivory Coast. We could show that MobilityGraphs support the identification of regular daily and weekly

movement patterns of resident population.

Index Terms—Visual analytics, movement data, networks, graphs, temporal aggregation, spatial aggregation, flows, clustering

1 INTRODUCTION

An understanding of the movement behavior of people and its dynam-
ics is crucial for official decision makers and urban planners, among
others. Mobility data sets give information about the presence of
people in different places at certain points in time as well as about
movements (or flows) of people between the places. Movement data
can be obtained from various sources—such as traffic sensors, pub-
lic transportation usage records—or reconstructed from many kinds
of data sources that contain people’s locations at different times de-
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spite not being collected with the purpose of tracking people’s move-
ments. Examples of the latter type of data include records about the
use of mobile phones collected for billing purposes, and geographi-
cally referenced contents appearing in social media: Twitter, Flickr,
YouTube, Foursquare, etc. In particular, Twitter data sets have gained
prominence lately due to their wide availability and large scale. Even
though, geographically referenced tweets only cover a small percent-
age of all tweets, the absolute amount of them is very large and thus
provides a sufficiently representative sample [4]. The individual data is
often pre-processed (e.g., summarized) for gaining time-varying flows
of multiple people (mass movement data). We refer to them as ‘move-
ment data’ or ‘time-varying flow data’.

Movement data consists of records reporting the number of people
in an area in a short time interval, so-called time step (e.g., people in
the City of London between 9am and 10am). The data also contains
the amount of movements (i.e., flow magnitudes) between areas during
specific time periods (e.g., hourly movements between city suburbs).
The data is usually collected over longer time periods, thus it is time-
varying.

The goal of movement analysis is to understand how people move
over the territory throughout a certain time period (e.g., movements
in London during the weekly cycle). The analysis can focus on typ-
ical or extraordinary movements. Typical movements are often ana-
lyzed by urban planners for predicting common flows. Extraordinary



movements occur in specific occasions (e.g., demonstrations or bomb
attacks). They are important for emergency management. We focus
on analyzing typical movements addressing the following questions:

e How do the spatial situations (i.e., the spatial distributions of the
flow magnitudes) at particular time moments within a regularly
week cycle (e.g., working days in the morning) look like? How
big are the flows between urban areas at a certain point in time?
Which areas have many people at a certain time moment? Which
areas have high/low flows at a certain point in time?

e What is the temporal variation of the flows? How do spatial sit-
uations change over time (e.g., over a typical week)? What is the
difference between the spatial situations in two time moments?
Which flows increase/decrease?

Traditional visual analysis methods for assessing this type of data usu-
ally fail due to massive clutter and/or the inability to investigate the
complex variation of the movements over time. A widely employed
flow map visualization gets extremely cluttered when there are flows
between non-neighboring regions (see Fig. 2(a)). Even filtering by
flow magnitude or increasing edge transparency does not solve this
problem (see Fig. 2(b)). Moreover, visualization of temporal data vari-
ation using animation or small multiples do not scale [7, 31, 41]. Clus-
tering and aggregation-based visual analytics approaches mostly focus
on spatial or temporal components of the flows. They have limited
suitability for dense flows with many time moments (see Sect. 2).

(b) Filtered flows

(a) Original flows (c) Aggregated flows

Fig. 2. Afternoon movements of the London residents (see Sect. 5.1).
Original flow maps are cluttered. Filtered flow map (> 200 movements)
is still cluttered. Spatial simplification (c) clearly shows important flows
and their magnitudes (edge width, see also Sect. 4).

We propose a visual analytics methodology that addresses the two
above-mentioned analytical questions. Our approach relies on spa-
tial and temporal simplification that uses a spatio-temporal mobility
graph as a representation of movement data. Here, a discrete set of
places (geographical regions) with flows between them is considered
as a weighted directed graph. Edge weights are determined by flow
magnitudes. Our graph is dynamic, as spatial situations vary over time.

The mobility graph is spatially simplified by a specifically devel-
oped spatial graph clustering algorithm. The temporal simplification
is achieved through clustering of time steps based on the similarity of
the respective spatial situations. The results of the spatial and temporal
simplifications are presented in several coordinated views for compre-
hensive data exploration. Based on our observations, these methods
notably reduce the visualized data size and thus help to mitigate clut-
ter problems as well as to visually represent the temporal variation of
movement for a large number of time steps. Moreover, the proposed
fast clustering algorithm allows for interactive change of parameters
and thus supports interactive exploration of movements at various de-
grees of abstraction and from different perspectives. This assists in
gaining a deep understanding of spatial situations and their changes.

Our approach can be used for analyzing any flow (i.e., collective
movement) data over time, such as population migration, commuting,
or flows of attendees of public events. The feasibility and usefulness of
our approach has been tested on two real-world flow data sets. The first
data set concerns the resident Twitter user mobility in Greater Lon-
don area. The analysis of hourly movements throughout the weekly

time cycle has revealed typical movement patterns such as strong city-
centric movement of London residents in the morning, quiet move-
ment periods during the working hours, and correspondence of move-
ment patterns to the rail network topology. Most of the uncovered
patterns could not be perceived from flow map displays. These re-
sults confirm the analytical power of our methodology even when us-
ing Twitter data approximating the population movement. The sec-
ond real-world data set was produced from call data records over two
weeks in Abidjan, Ivory Coast. The analysis of hourly movements
identified similar but slightly less prominent routine mobility patterns
with differentiation of morning and evening flows. We found that the
city has a polycentric structure, where one center is the location of
businesses and jobs and the other two have a different role.

The remainder of this paper is organized as follows. Section 2
discusses the related works. Then, we present our visual analyt-
ics approach together with design decisions in Section 4. Section 5
demonstrates the feasibility of the proposed methods on two real-
world datasets. Section 6 discusses our approach. We conclude our
paper with an outline of future work in Section 7.

2 RELATED WORK

As our approach covers several research fields. We subdivide the
related work into two groups: (1) visualization approaches for
time-varying flow data and (2) an overview of techniques for the
visual analysis of flows represented as geolocated dynamic graphs.

Visualization of time-varying flow data Much work has been done
in the area of time-oriented data [2]. As for flow data, the existing
visualization methods have been recently surveyed by Boyandin [13]
and Andrienko [4]. There are two main classes of techniques for the
visual representation of flow situations: flow map [36, 43] and origin-
destination matrix (OD matrix) [52, 53].

The common approach to representing time-varying flow data is
to visualize the time series of flow magnitudes associated with the
links on a non-cartographic time series display, e.g., as it is done by
Boyandin et al. [14]. However, such a visualization does not show the
spatial patterns of the flows, i.e., the spatial flow situations. Bremm
et al. [15] propose another kind of non-cartographic visualization of
flows, where locations are represented by distinct colors. The flows
between the places are represented by colored bands connecting seg-
ments of neighboring bars. When the time series are long, several
complementary techniques for selecting representative time moments
can be applied [48]. An obvious limitation of this method is scalability
w.r.t. the number of places.

Time-variant spatial flow situations can be represented by multiple
maps arranged either temporally in a map animation or spatially in a
small multiple maps display [3]. Alternatively, one can use different
operations on the space-time cube to analyze the flows [8]. Flow maps
show the spatial context of flow data in an undistorted way but often
suffer from numerous intersections, occlusions, and visual clutter. The
problems of flow mapping are comprehensively discussed by Guo and
Zhou [28]. Moreover, map animation may be ineffective [31, 44], be-
cause the user cannot memorize and mentally compare multiple spatial
situations. In small multiples, a limited number of spatial situations
can be shown simultaneously. Hence, this approach is not suitable
for long time series. Therefore, simplification of individual maps or
reduction of time moments has been proposed.

Reducing or simplifying the spatial data can be done by filtering
(see Fig. 2(b)), when only flows with magnitudes above a chosen
threshold are shown [27, 39, 43], or by reducing the opacity of minor
flows [53]. Beecham and Wood [11] use an interactive based approach
where a user can visually select spatial and temporal areas for filter-
ing or highlighting to analyse different attributes of (parts of) the data.
Van den Elzen and van Wijk [45] visualize only flows between a few
user-selected locations. Obviously, these approaches may hide pos-
sibly relevant information. Another approach is edge bundling, i.e.,
merging or grouping spatially close flows [16, 22, 33, 54]. The edge
bundling approaches work well only for showing flows from one ori-
gin or to one destination, or in special cases, such as prevalence of



radial movements from and to one central location [22]. Besides, map
users can wrongly interpret the flow lines resulting from edge bundling
as the routes of the movement.

Locations and flows can be aggregated for reducing the size of the
represented data, while still being able to uncover general patterns
of flows. Kisilevich et al. [35] describe state-of-the-art approaches
of clustering for geospatial data. Guo [26, 27] applies spatially con-
strained hierarchic graph partitioning techniques to group places into
larger units and then visualizes aggregated flows between these larger
units. Guo and Zhu [28] point to the modifiable areal unit problem
(MAUP) [38]. They propose kernel-based density estimation, which
also normalizes the flow magnitudes. Filtering still needs to be ap-
plied for reducing the intersections of the resulting aggregated flows,
i.e., only the most important flows are shown on the map. These ap-
proaches are suitable for spatial simplification, however they have a
relatively high computational complexity. Moreover, they do not con-
sider time-dependence of flows. Gao et al. apply the hierarchic clus-
tering of Guo et al. [27] to time-dependent flows [25]. They cluster
each time moment individually. This creates problems with automati-
cally determining cluster correspondence over time and thus makes it
difficult to identify changes between time moments. Correspondence
needs to be found manually. Zhu and Guo [56] use hierarchic clus-
tering of flows (not places) to analyze movement data. As each time
moment needs to be inspected, these two approaches do not scale for
large time periods.

Clustering of spatial situations over time [4, 5] can be used to
reduce the number of distinct situations that need to be shown.
Clustering puts together similar flow situations corresponding to
different time moments. The individual spatial situations grouped into
the clusters are then summarized by computing the mean or median
flows. The summarized situations representing different clusters can
be shown on small multiple flow maps. However, the problem of
visual clutter and over-plotting of flow symbols on the flow maps was
not solved. In the examples occurring in the previous works [4, 5], the
flow maps were not too cluttered owing to either a small number of
distinct locations or the absence of flow intersections (i.e., there were
only flows between neighboring places).

Time-varying flows as geolocated dynamic graphs Movements
between regions can be represented as a graph, where regions are
graph nodes and flows between them are treated as weighted directed
edges. The node position in the graphs is fixed to its geographic lo-
cation. Time-dependence of the flows creates dynamic geolocated
graphs. So, the assessment of movement data is closely related to
the visualization of dynamic networks with geolocation constraints on
node positions. The available methods for visualization of (potentially
multivariate) dynamic graphs are comprehensively overviewed in re-
cent surveys [6, 10, 29, 50, 51]. Here, we concentrate on works related
to time-varying flow visualization, i.e., dynamic graphs.

Animation in dynamic graph visualization is often connected with
the problem of creating a stable graph layout for supporting the users’
mental map [7], such as foresighted layouts [20]. In flow visualization,
however, the node positions are fixed. Nevertheless, animation can still
pose a challenge for the user, due to high cognitive load, when per-
ceiving changes between consecutive time steps [7, 44]. This problem
is especially severe when many time moments or large/dense graphs
need to be analyzed. Approaches mitigating this problem include re-
ducing the number of time steps and highlighting of changes between
consecutive graphs [9], usage of smooth edge bundling [34], drawing
of clustered graphs or filtered graphs [1, 24]. These approaches still
suffer from animation perception problems.

Timeline visualization of dynamic graphs shows all graphs in a se-
quence. For large graphs and/or a large number of time moments,
a scalability challenge emerges. In the network visualization com-
munity, this is often mitigated by suitable node layouts [18]. This is
however not applicable to geolocated graphs, as the understanding of
geographic distribution is diminished. Alternatively, one can cluster
time moments by similarity of corresponding graphs. This is analog-
ical to the clustering of flow maps (see above). In juxtaposed (small

multiples) views, the space for individual graph visualization is very
limited. Even when clustering time moments, large and dense graphs
often get cluttered in small multiples views. This can be further dimin-
ished by graph aggregation (clustering of graph nodes). It aggregates
compact graph structures (e.g., communities) or nodes with similar at-
tributes (e.g., persons of similar age) into one aggregated node and
thus reduce the size of the graph for visualization [42, 47]. These al-
gorithms exploit the graph structure, but often disregard geographic
closeness of the nodes. This may result in clusters which are “scat-
tered” in geographic space.

Superimposed visualization draws graphs on top of each other in
a 2.5D display [21]. This strategy, however, suffers from occlusion,
especially for dense graphs and many time moments.

Integrated approaches use specialized visual designs to show the
time dimension. For example, Reitz [40] shows the time evolution
of edge weights by colored sections within edges. While this enables
the assessment of edge weight evolution directly on edges, it poorly
performs for intersecting edges, as in the case of geolocated flows. It
also does not show how the overall graph structure evolves over time.

Matrix-based approaches show dynamic graphs as adjacency
matrices (i.e., OD matrices), where intra cell timelines such as
sparklines [17, 55] show the dynamics of edge and node weights. Ow-
ing to the limited space, they are limited to short time periods. For
large graphs, graph aggregation is needed [17]. Moreover, only the lo-
cal changes of the edges and/or nodes are visible, but not the evolution
of the overall graph structure.

3 DEFINITIONS

We consider time-varying flow data over a time interval 7 =
{t1,...,tz}. And we have a discrete set of spatial locations, ak.a.
places P = {pi,...,pn}. Then, we define the number of people at
place p, in time step #; as presence count wy(t;) of this place.

There is a set of moving objects (such as people) that can move
from any location to any other location. The routes of their movements
are unknown, only the origins and destinations of the trips. For any
ordered pair of places (pg, pp), all trips originating in p, and ending
in pp in a time step #; are called flow f, ;(#;). A flow f, ,(#;) from p,
to py, in time step ¢; exists only, if there was at least one trip originating
in p, and ending in p, during #;. We say that there is a directed link
eq.(t;). If there exist a link e, ,(#;) or ep 4(t;), then the places p, and
pp are flow-connected. The number of trips aggregated in a flow is
called flow magnitude mg p(t;).

The time-varying flow data set can be formally represented as
<PL,T,W(P,T),M(L,T) >, where P is the set of places, L C P x P
is the set of links, T is the set of time steps, W (P,T') is the function that
assigns presence count to the places p, in time step #;, and M(L,T) is
the function that assigns a certain non-negative value of flow magni-
tude to each pair (e,f7),e € L,andt; € T

For each time step t; € T and the whole set of links L, the function
M gives a set of flow magnitudes M (L,;), which is called spatial flow
situation (or shorter: spatial situation) at time step #; and is denoted
with S(li) or S;.

A simplified situation (i.e., a simplified spatial situation or aggre-
gated situation) AS;, in time step t;, is a situation, where similar places
are grouped into spatial aggregates (i.e., regions) R; = {U,,c; P}
and the flows between them are aggregated accordingly into aggre-
gated flows AF with magnitudes summarized according to the used
clustering algorithm. The creation of spatial aggregates, e.g., by using
a clustering algorithm is called spatial simplification.

A temporal cluster TCy, k € {1,...,K} is a group of possibly simi-
lar (simplified) spatial situations in various time steps
TCi(S) = {Uicx Si} or TCr(AS) = {Uick ASi}. The creation of tem-
poral clusters, e.g., by using a particular clustering algorithm is called
temporal simplification. Temporal simplification can be done on the
original situations 7C(S) or on simplified spatial situations TC(AS).

4 APPROACH

In our approach, we address the following two visualization problems:



(1) Representation of the spatial situations significantly reducing the
visual clutter while conveying important movement patterns.

(2) Representation of the temporal variation without the need to con-
sider and compare a great number of time steps.

We propose a combination of spatial and temporal simplification with
interactive exploration of the resulting data.

e Spatial simplification reduces visual clutter by the aggregation
of regions using a special graph-based spatial clustering suitable
for time-varying flows (see Sect. 4.1.1).

o Temporal simplification replaces the great number of spatial sit-
uations by a much smaller number of spatial situations that need
to be viewed and compared by the analyst. We cluster the time
steps by the similarity of the spatial situations (see Sect. 4.1.2).

o Visual exploration offers a set of interactive graph and
geography-based views for the exploration of spatial situations
and their changes over time. These views were specifically de-
signed for the exploration of time-varying flow data with simpli-
fication (see Sect. 4.2). In particular, we have developed tech-
niques supporting comparisons of spatial situations. Our ap-
proach also supports interactive adjustment of clustering param-
eters for the exploration of temporal flows from various perspec-
tives and at various levels of detail.

4.1 Spatial and Temporal Simplification

Our approach combines spatial aggregation (i.e., aggregating nodes
into regions and aggregating flows between places into flows between
regions) and temporal clustering (i.e., grouping similar spatial situa-
tions from several time steps) for reducing the data size, reducing data
clutter in the visualization, and simultaneously supporting an abstract
grasp of characteristic features of the mobility behavior. The main
challenge in the simplification was to develop appropriate clustering
methods for time-varying flows and to combine the two simplifica-
tions.

While there are various ways of combining spatial and temporal
simplification (see Sect. 6), we considered two main approaches:

(1) Spatial aggregation preceding temporal clustering: Spatial situ-
ations in all time steps are spatially aggregated first. This sub-
stantially reduces the data size for the subsequent temporal clus-
tering, which uses flow magnitudes for calculating situation sim-
ilarity (<< N?).

(2) Temporal clustering preceding spatial aggregation: Temporal
clustering based on original time-varying flows is performed be-
fore spatial aggregation. The temporal clustering reduces the
number of time steps, and the subsequent spatial aggregation re-
duces data clutter in the visualization. The main problem of this
approach is the determination of the similarity of spatial situa-
tions. The common approach using flows between all places [4]
leads to high-dimensional data sets (up to N flow magnitudes —
dimensions). It leads to unstable results and long calculations.
Thus, a dimensionality reduction is needed.

We investigated both types of simplification combinations with vari-
ous ways of determining similarity of spatial situations in the temporal
clustering. We decided to use the first option, because the second op-
tion requires feature reduction, esp. using general dimensionality re-
duction methods, whose results do not relate to the geographic context
and therefore are not easy to interpret. In contrast, in the first option,
spatial simplification is well understandable and easy to represent vi-
sually within the geographic context.

4.1.1 Spatial Simplification

We employ a specially developed method for aggregating places and
aggregating flows between individual places into flows between the
spatial aggregates (i.e., regions, or clusters of places). Our algorithm
groups spatially close places with high flow magnitudes into regions.
This aggregation greatly simplifies the graph structure. Inevitably, it

hides the patterns of local movements between the places within the
regions; however, it captures and prominently represents larger-scale
movement patterns, which could not be seen otherwise (see Fig. 2(c)
as an example).

Our spatial aggregation method extends the “Density-Based Spatial
Clustering of Applications with Noise”” (DBScan) [23] with additional
features: (a) it considers both spatial closeness and strength of flows
between places (i.e., flow strength) as well as (b) applicability to time-
dependent data. Thus, our algorithm has been designed to work on
time-dependent flows. The reasoning behind this approach as well as
the algorithm’s details are described below.

Algorithm rationale We decided to use a density-based cluster-
ing, because (a) it is fast (O(|P|log(|P])) according to [23]), (b) it does
not require pre-setting of the number of clusters, (c) it is able to detect
arbitrary shaped clusters (in our case spatial aggregates, or regions)
as well as outliers, and (d) it uses easily comprehensible parameters
(e.g., spatial closeness, flow magnitudes). We note that DBScan can
in some cases lead to slightly different results depending on the node
order [23]. To mitigate this drawback, we propose to use a pre-defined
node order (e.g., according to presence count).

Spatial closeness and flow magnitudes: Our algorithm computes
spatial aggregates (in this section also referred to as regions for sim-
plicity) using both the density of places and their flow magnitudes. By
aggregating only spatially close places that are connected by a high
flow magnitudes, we prevent cases where locations would become one
aggregate (i.e., region) that are close but have (nearly) no connection
to each other. An example for this case would be an airport that usu-
ally does not have a significant flow with its surrounding areas. Too
small or insufficiently flow-connected spatial aggregates are treated as
outliers, thus they are filtered out.

Suitability for time-variant data: As we deal with time-varying
flows, the algorithm needs to ensure comparability of spatial aggre-
gates across time steps. If we used spatial simplification on each spa-
tial situation individually [25], it would be difficult to automatically
compare the resulting spatial aggregates across time steps, since there
is no inherent region correspondence. Therefore, we propose to apply
the algorithm to a so-called “supergraph” [20], which combines all
time steps. In this way, we derive spatial aggregates in individual time
steps. Although the use of a supergraph may hide some small regions
appearing in few time steps, it offers a general overview of regions
and, most importantly, it provides region correspondence.

Algorithm  The algorithm starts with building the supergraph com-
bining all time steps. It then performs an extended DBScan-like algo-
rithm including filtering out of outliers.

The supergraph (or superflow) < P,.L,T,W(P,T),M(L,T) > is
composed of all places and links of all spatial situations in the data
set. Its flow magnitudes M (L, T) and presence counts W (P, T) are av-
erages of all spatial situations.

The algorithm extends DBScan with specific condition of enclos-
ing a place in a region (i.e., spatial aggregate). A place is added to a
region if two criteria are met: (1) it is spatially close and (2) has suf-
ficiently high flows with the region. We developed and implemented
two variants of the aggregation criteria: using absolute and relative
flow magnitudes. The absolute criterion filters out nodes that are close
to each other but have a non-significant flow between them. The rel-
ative flow criterion can be used to prevent nodes from being excluded
from a cluster, if those nodes are small but have a large relative flow
compared to their size.

(1) A place p, is considered spatially close to a region R, if its ortho-
dromic distance to the nearest point in the region is lower than a
user-defined threshold, i.e., min(d(pa, pr)) < thgiss, pr € R.

(2) A place p, has a sufficiently high flow, if its flow strength ex-
ceeds a user-defined threshold theon,: mc(pa,R) > theonn-

We offer two ways of calculating flow strength:

e Absolute Flow Strength: Absolute flows are calculated by sum-
ming up the magnitudes of all flows M, , and M, , between p,



and all places with flows to or from this place and the cluster,
i.e., its flow-based neighbors in cluster v € (n(ps) NR).

Z Mi Ry + Z Mv, i

ve(n(pi)NR) ve(n(pa)NR)

MCqhs (Pa ) R) =

o Relative Flow Strength: The flow strength of relative flows is
calculated similar to the absolute flow. However for each link,
we relate the magnitude of the link to the presence count in the
source of the flow.

MCre| (Pi>R) = Z == + Z

ve(mnry Wi vem(mnr)

S
S

v,i

W,

During the procedure, we also filter out newly created spatial aggre-
gates which are outliers (i.e., they are either too small or have few
connections). All links leading to/from this outlier are also filtered
out. We provide the user with three filtering options, depending on
size, absolute, and relative flow strength.

e Size Filter: It filters out aggregates with presence count W (R)
smaller than a user-adjustable threshold /g5 .

o Absolute Flow Filter: This filter uses the total sum of all flows
to/from the region. When analyzing movement behavior, one
might think of places irrelevant when only few people leave or
enter this region.

o Relative Flow Filter: Relative flow relates the number of people
entering/leaving a region to its presence count. This can be used
to keep aggregates that are rather small but have a high fluctua-
tion relative to their size.

Pseudo-code for our spatial simplification method is shown in Algo-
rithm 1 with the following notation: RR is the set of all (resulting)
spatial aggregates R, P is the set of all places, pop(P) takes a (ran-
dom or top-ordered) node from P and removes it from the collection,
n(p;) gets all places that have a flow from or to p;, and filter(R) is a
user-chosen cluster filtering method to eliminate outlier clusters.

Algorithm 1 Algorithm for spatial simplification

RR+0
while P # 0 do
p1 < pop(P)
R+ {pi}
N < n(pi)
while N # 0 do
pj < pop(N)
ifd(pjaR) <thy;s; and mC(Pij) 2 theonn then
R+ RUp,
N+ NU {n(pj) \P}
PP\ {p;}
end if
end while
if - filter(R) then
RR < RRURC
end if
end while

The simplified spatial situations AS; in each time step t; € T are
extracted from the original situations S; by aggregating their places
and flows according to the clusters R; € RR,R; = |JP, identified by
the above-mentioned algorithm. These simplified spatial situations are
used as an input to the following temporal simplification (i.e., creation
of temporal clusters) described in the next section.

4.1.2 Temporal Simplification

Temporal simplification groups the time steps by the similarity of the
corresponding (previously simplified) spatial situations. The cluster-
ing can be performed by a clustering algorithm, such as k-means [30].

The main challenge is to determine a suitable similarity function for
comparing situations that results in meaningful clustering outputs.

The similarity of spatial situation is commonly determined based on
so-called feature vectors that uniquely characterize a spatial situation
by a vector of numbers (i.e., features). A similarity of spatial situations
is then calculated as a similarity of their corresponding feature vectors
(e.g., Euclidean vector distance). In this respect, the challenge is to
find a suitable feature vector for the spatial situations.

A way of describing a spatial situation for determining similarities
is to use a set of flow magnitudes as a feature vector, as each spatial
situation is uniquely characterized by its flow magnitudes. However,
movements form very dense relationships, which lead to a high num-
ber of flows (quadratic to the number of places, e.g., 21,727 links
between 606 places). Hence, the dimensionality of this feature vector
is extremely high, leading to two kinds of problems: first, the cluster-
ing takes much time, and second—more importantly—the clustering
results in such cases are known to be unstable and unreliable [12, 37].

For the above-mentioned reason, we perform temporal clustering
on the spatially simplified situations. Spatial simplification groups and
aggregates places and flows, thus decreasing the situation’s size. This
reduces the dimensionality of the feature vectors composed of the cor-
responding flow magnitudes. In our case, the reduction in dimension-
ality is significant: initial 606 places with 21,727 links are aggregated
into 42 clusters with only 394 aggregate links between them. Using
the magnitudes of these links as the features describing the spatial sit-
uations reduces the dimensionality to 1.8% of the original 21,727 di-
mensions (i.e., features). This mitigates the instability and scalability
problem. Moreover, the clustering results show to be meaningful (see
Sect. 5). Note, alternative feature vectors have not proven suitable for
our case (see Sect. 6).

4.2 Visual Data Exploration

The results of this spatio-temporal simplification are shown in several
interlinked views. They enable a deep exploration of the clustering
results as well as investigation of the impact of the results depending
on the choice of clustering parameters. The views combine abstract
graph visualization with map-based views. Interactive features show
details on demand.
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Fig. 3. Cluster result window with several views contained: (a) calen-
dar view of temporal clusters, (b) interactive parameter setting, and (c)
cluster overview.

Overview of Spatio-Temporal Clusters The user starts the data
analysis in the cluster result window (see Fig. 3). It enables interactive
adjustment of clustering parameters (b) and shows the result of the
spatio-temporal clustering: both the time distribution of the clusters
(a) and the overview of clusters (c).



Parameter adjustment: The user can employ the interactive fea-
tures for steering the spatio-temporal simplification. By varying the
parameters, she can examine the impact of the parameters on the re-
sulting simplified situations. Parameter variation also allows the user
to vary the degree of abstraction and schematization in representing
the movement and thereby generalize or refine the knowledge gained.
In addition, the tool supports finding suitable parameters. We calcu-
late several quality values (e.g., within region flows [27] and average
distance [30]) for regularly sampled combinations of connectivity and
distance thresholds. The quality values are shown in a heatmap with
the two thresholds as rows and columns (see Sect. 5 and Fig. 7). The
user chooses suitable parameters and fine tunes them in the main win-
dow.

Teps

Fig. 4. The MDS layout shows similarity of spatio-temporal clusters by
positional closeness.

Calendar view of temporal clusters: This view shows in which time
steps the temporal clusters occur (see Fig. 3(a)). Here, colored cells
represent clusters. In our case, the time steps are wrapped into days
(rows) and hours (columns) similar to the calendar view of van Wijk
et al. [46]. It allows to emphasize the weekly pattern of the temporal
clusters.

Cluster overview: This view shows small multiples of the spatially
simplified temporal clusters, called cluster thumbnails (see Fig. 3(c)).

Cluster Thumbnails A thumbnail is color-coded according to the
temporal clusters and shows the average graph of a spatio-temporal
simplification. Here, the node position is geographically determined.
It is shown in the center of the included geographic regions. The un-
derlying map supports a geographic understanding of the flow graph.
In order to enhance the contrast between the map and the graph, the
map saturation can be optionally reduced (e.g., to light grayscale).
Node size is determined either by the average number of people in the
cluster’s regions or by the number of aggregated regions, as chosen
by the user. The edge width is determined by the average aggregate
flow between the two regions. After experimenting with various edge
direction designs proposed by [32], we decided to use both color gra-
dient (from dark to light) and the edge position to encode direction
(edges to the right of the node-to-node line are outgoing). This de-
sign reduces clutter caused by edge arrows and allows to encode edge
weights, which is difficult to achieve with tapered edges, for instance.

The position of cluster thumbnails on the screen can be twofold.
First, the so-called sequential positioning lays the thumbnails next to
each other in one or several rows (see Fig. 3(c)). The thumbnails are
ordered according to their occurrence in temporal clusters. Second,
the so-called distance-based positioning uses multidimensional scal-
ing (MDS) [19] to position the thumbnails according to their similarity
(see Fig. 4). The similarity function is user-chosen from a set of graph
edit distance functions with varying composition (e.g., edge weights,
edge existence, node existence, node weight). We chose to employ
the two screen layouts as they both have complementary advantages:
sequential positioning is overlap-free but disregards time cluster sim-
ilarity. In contrast, the distance-based positioning also shows how the
time clusters relate to each other.

Visual comparison of cluster thumbnails offers the user the possi-
bility to examine commonalities and differences between spatial sit-
vations. The user can gain a broad understanding of the differences

between those. However, the exact differences need to be examined
in more detail. In this case, the user can click on two thumbnails for
seeing their detailed comparison in a so-called difference view.

Fig. 5. The difference graph view displays differences between two spa-
tial situations. Blue indicates decrease, white no change, and red an
increase. A user-selected spatial aggregate is shown on a map.

Difference View The user can examine differences between user-
selected situations in a detailed view (see Fig. 5). The compared situ-
ations are indicated by coloring of the left and right border. The time
steps of the two situations are highlighted in the calendar view on the
bottom. It enables the user to examine when the two compared situa-
tions occur. For example, whether both are in the same week days and
similar hours, or one is in the morning and the other in the evening.

The graph representation shows the difference of the two spatial sit-
uations: both the spatial distribution of persons and flow magnitudes.
Node size is determined by the number of people in the aggregate
(i.e., region) in the left situation. The change of the relative size of
the region is color-coded (from blue via white to red). We use rel-
ative changes (percentage change with respect to the left aggregate)
as it results in more reasonable difference indication. The alternative
absolute change overemphasizes large aggregates. In contrast, rela-
tive change takes into account the aggregate’s size. If an aggregate
(dis)appears between the two situations, it is colored yellow for ap-
pearing and black for disappearing. Edges are color-coded according
to the relative differences in the flow magnitudes between the two sit-
uations. It uses the same color scheme as the nodes.

The node position is determined by its geographic location (center
of the included geographic regions), and a change can be examined
in detail in the linked map view (see Fig. 5 on the right). The map
highlights the regions included in each of the two compared situation
(by their original color) and in both situations (using color weaving).
The user can thus explore commonalities and differences in spatial
clusters in the context of the original geographic positions.

5 UsE CASES

To test the feasibility of the devised methodology, we apply it to
two real-world data sets: resident Twitter user mobility in Greater
London area (Sect. 5.1) and mobile call user mobility patterns
in Abidjan area (Sect. 5.2). Due to space limitations, we de-
scribe the first use case in more detail and concentrate on the
main results in the second use case. For both cases, descrip-
tion of data source and data pre-processing as well as high resolu-
tion pictures are provided in the annex and as supplementary ma-
terial. All documents are also provided at website www.gris.tu-
darmstadt.de/research/vissearch/projects/MobilityGraphs.

5.1 Mobility in Greater London Area

We wish to investigate the regular weekly mobility patterns of London
residents based on movement data reconstructed from geographically
referenced Twitter messages posted on the territory of Greater Lon-
don during a period of one year. The resident data set consists of
15,246,565 geo-referenced tweets posted by 40,246 distinct Twitter
users during the time period from Nov 5, 2012 till Oct 24, 2013. We
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Fig. 6. Pairwise comparisons of simplified temporal clusters TC(AS); (or simply TC;) of mobility in the Greater London area.

obtain mass movement data from records of individuals by spatially
aggregating the individuals’ movement data into cells by an irregular
grid (see Fig. 5 on the right). The data is also temporally aggregated
into hourly intervals within the weekly time cycle (7 days x 24 hours).
Thus, we receive time series of transitions between pairs of (not nec-
essarily neighbored) cells. As this type of data is event-based—the
location is stored when a posting event occurs—the resulting move-
ment data is episodic [5], and the path between two tweets may not
be determined. We have 21,727 time-varying links between the 606
places in 168 time steps.

Spatial and Temporal Simplification We first perform spatial
simplification of the movement graph and analyze the quality of re-
sults for various parameter settings (see Fig. 7). We analyze a combi-
nation of three criteria as they offer a comprehensive assessment: total
flows within regions (should be high), number of clusters (should be
intermediate) and average distance between regions (should be high).
We see that with the increasing connectivity and distance threshold,
the results first improve and then get worse. This is natural as a too
low thresholds lead to too small regions with low connectivity (red
setting). Vice versa, large values lead to large regions disregarding in-
ternal structures (yellow setting). So, we choose a balanced setting (or-
ange) with the following parameters: max. distance thg;;, = 2.25 km,
min. nr. connections th¢,,, = 3, and relative change in people presence
threshold = 0.3. As aresult, 302 out of the 606 places (about 50%) are
united in 42 clusters, and the remaining 304 places treated as “noise”.

Okm Distance threshold ~ 4km

0 Distance threshold 4 0 Distance threshold 4

. Connectivity threshold o
value

O ‘ max
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Number of regions

Total flows within regions Average distance btw. regions

My,

Fig. 7. Top: quality values for various combinations of connectivity and
distance thresholds. Bottom: results for selected settings (see colored
rectangles). Red: theony = 1, thyie = 0.7, orange: theepn = 3, thyiy = 2.25
and yellow: theoun = 6, thyi, = 3.5. All use relative flow filter of 0.3.

We then perform temporal clustering using k-means applied to the
spatially clustered flows. We tried different values of k and finally
choose k = 7, which gives a well interpretable temporal pattern (see
Fig. 1), where night, morning, midday, and evening of the working
days are well differentiated. This differentiation corresponds to peo-

ple’s everyday mobility, which includes movements to the work or
study places in the morning, followed by business time, and move-
ments back to the home places in the afternoon and evening. The
clustering also differentiates between the week days from Monday to
Friday and the weekend, which could be expected.

Exploration of the Overall Flow Topology We begin our analy-
sis with the investigation of the overall topology of the collective mo-
bility behavior in London, which is reflected in the structures of the
aggregated graphs (see Fig. 1). We see that the city has a prominently
mono-centric structure with a large central region. It is characterized
by the highest people’s activity and highest internal mobility. Spa-
tially, the mobility patterns correspond to the topology of the railway
network in London. The central region plays the key role as the area
of highest mobility and interconnectedness between places, which also
attracts people from the periphery. Many people go to the center for
work in the morning (around 9 o’clock) or move through the center
for reaching their destinations. In the evening of working days (hours
18-19), working people move back from the center to the periphery,
whereas some people move to the center (see Fig. 5). Probable pur-
poses of these movements are social activities or cultural events.

Comparing Spatial Situations at Different Times Figure 1
shows an overview of all spatio-temporal clusters. The yellow clus-
ter TC(AS)-3 stands out as it differs significantly from other clusters.
The presence of moving people and the movement flows are expect-
edly very low. This cluster unites the night hours (see calendar view in
Fig. 1). The data shows that the quiet night time begins and ends later
on the weekend than on the week days. Other clusters differ less, thus
we proceed with detailed difference analysis (see Fig. 6).

Time cluster TC(AS)-7 (abbr. TC7 in the following; light green)
chronologically both precedes and follows the morning time cluster
TC, (dark green). Their comparison shows that the morning cluster
has notably stronger flows from the periphery to the center. However,
the presence of people in the nodes is slightly higher in the morning
hours than before and after that. Observing the high center-directed
flows in the morning and knowing that many people usually go to work
or study at this time, we can conclude that many Twitter users either
work/study in the center or go through the center to other places.

Next, we compare the light green cluster 7C7, which covers the
day time (from 10-11 to 15-16 o’clock), to the afternoon cluster 7Cy
(orange; before 18 o’clock). The presence of people and the center-
directed flows mostly decrease, whereas outward movements slightly
increase. Notably higher increase of the center-outward flows occurs
in the following TCg (pink; weekdays 18-19 o’clock). Based on our
background knowledge about the typical mobility behaviors of peo-
ple, we can relate these outward flows to people returning home from
their work or study places, evidently, located in the central region.
Hours 18-19 are also characterized by more movements between the
peripheral regions. Interestingly, we also see an increase of flows from
the periphery towards the center. Two explanations are possible: some
people may move to the center for leisure and social activities, or some
people may go through the center to reach their home places.

In the following hour (7Cs; dark magenta), the flows to and from
the center decrease, as well as the presence of moving people in the



nodes; however, there is still much movement between peripheral
nodes. Further decrease of flows, including peripheral ones, is ob-
served in the late evening TCy (red).

Finally, the comparison of 7C; with TC| shows that people mostly
stay or move within the regions represented by the nodes rather then
move between the regions. This behavior is characteristic for this time
of the day—early night and midday hours, also on the weekend, as
well as for early morning hours of the week days.

In sum, the changes of the mass mobility behavior over an average
week correspond well to our background knowledge about the general
mobility behavior of people. What we learned specifically for Lon-
don are the typical times of usual movements and their topology. We
observed a division between the mostly residential places on the pe-
riphery and mostly public places in the center (places of work, study,
leisure, etc.). Such a division is not a unique feature of London; there
are many other cities where the geographic center is also the center
of activities. However, this is not a universal pattern. There are other
cities, where the center mostly includes tourist attractions, whereas
home and work places of residents are located on the periphery.

5.2 Mobility in Abidjan Area

The second study analyzes anonymized mobile phone use records of
50,000 users in Abidjan area, Ivory Coast over two weeks from April
9 to April 22, 2012. The positions are determined by antennas of the
mobile phone network. We use the hourly flows between the antenna
areas. The time series has 336 moments (14 days x 24 hours). Unlike
in the London case study, we did not transform the data to the weekly
cycle. The mobility graph consists of the 386 nodes corresponding to
the antenna areas (cells) and 55,832 links.

A detailed view (see Fig. 8(a)) shows that the mobility topology in
Abidjan corresponds to the topology and geography of the city, where
several districts are separated by waters and an intrusion of a national
park (Parc National du Banco). Like the city itself, the mobility graph
has a shape of a butterfly, whose body and four wings correspond to
the central part of the city and four peripheral parts to the north, south,
east, and west of the center.

(d) Simplified situations

Fig. 8. Mobility in Abidjan area. (a) original flows, (b) temporal cluster
TCy, (c) calendar view on temporal clusters, and (d) overview of situa-
tions.

We perform a spatio-temporal simplification with parameters: dis-

tance threshold = 2.0 km, connection threshold = 1.0 and filter of 20
people. The result was clustered by k-means with k = 8. Figure 8(d)
shows the results. They preserve the “butterfly shape”, while present-
ing it in a more schematized way (see Fig. 8(b)). Three large nodes
are prominent, one close to the center and the others to the north and
west of it. These large nodes are connected by flows with surrounding
regions. This allows us to conclude that, unlike London, Abidjan has a
polycentric structure, with three major areas of activity. The northern
and eastern nodes are strongly linked to the central one. The southern
“wing” of the “butterfly” is formed by the shoreline part of the city.
The flows within this part are aligned along the shoreline, i.e., corre-
spond to the underlying geography, and there are also strong links to
the central part. Similar alignments, but along the major roads, can be
seen on the north and on the east of the territory.

Temporal variation During the two weeks, there were 3 days (2,
7, and 11), for which data are missing. The time clustering has put the
intervals from these days together with the night time intervals, when
the flows were low, into time cluster 7Cz—dark green, see Fig. 8(c).
The three days with missing data are clearly seen as fully green rows
in the calendar view. For the remaining days, a repeating (with small
variations) daily pattern can be seen. The first day, April 9, 2012,
Monday, differs from the other week days. We looked for possible
reasons and found that it was the Easter Monday—a public holiday in
Ivory Coast. Its temporal pattern is similar to that of the last day—
Sunday (and data is missing for the Sunday of the first week). The
time patterns of the Saturdays also differ from those of the week days.

Fig. 9. Comparison of temporal clusters in Abidjan area. Left: Morning
hours (T'C; vs. TC). Right: Morning TC; vs. evening TCy.

The temporal clusters show a few outliers (see Fig. 8(c) and 8(d)).
Cluster T'Cq (steel blue), which occurred only in hour 19 on day 4, has
much higher flows on the whole territory, except for the southern part,
than in cluster 7C7, which occurred in the same hours on the other
days. Cluster 7Cs (magenta), also with high flows, occurred twice in
hour 17 (days 3 and 4) and once in hour 13 (day 6, which was Satur-
day). Compared to TCg, the flows to the central region were higher
and the flows from the central regions lower. Besides, there is an in-
trusion of time cluster 7Cy, which is specific to mornings, in hour 14
of day 5 (Friday). Unfortunately, we have no background knowledge
about the life in Abidjan for trying to explain these temporal outliers.

In the week days, people begin to move in hour 7 (T'Cg; light green),
and the movement grows in the next hour or two (7 Cy; orange). This is
obvious from the overview display (see Fig. 8(d)). However, the fur-
ther changes throughout a working day require pairwise comparison
(see Fig. 9).

In late morning hours (7'Cy; red), compared to the earlier hours
(TCy; orange), the calling activity of people in the center increases,
while the flows to and from the center to the other areas, as well as
the flows within the peripheral parts mostly preserve or increase. In
the midday and afternoon cluster (TCy4; yellow), the flows decrease
throughout the whole territory. In the evening (7Cy; violet), the over-
all mobility increases, while the outgoing flows from the three centers
increase more than the incoming flows. In two week days (days 3 and
4), time cluster TCs (magenta) occurs prior to TC7. TCjs is charac-
terized by much higher flows than TC;. In late evening hours (7'Cg;



light green), the mobility decreases and gets especially low in the night
(TC5; dark green). Hence, the observed variation of mobility over a
working day corresponds to what can be expected based on the general
knowledge of the human daily behavior.

The comparison of the morning time cluster (7Cy; orange) with the
evening time cluster (7'C7; violet) in Fig. 9 shows the prevalence of
incoming flows to the central region in the morning and the prevalence
of outgoing flows from the central region in the evening. However, for
the other two centers (on the north and west), there are no direction-
related differences but only quantitative ones: more movements and
within-region activities in the evening than in the morning. Based on
this observation, we see that the central region is where the jobs and
business activities are mostly located, while the other two centers play
a different role, possibly, shopping and/or leisure.

6 DISCUSSION

Our approach uses a combination of spatial and temporal data sim-
plification. In general, there are three variants: spatial simplification
preceding temporal simplification and vice versa as well as simulta-
neous spatio-temporal simplification. The last method is challenging
both from the algorithmic and visualization perspective. It is not clear
how to visualize spatial situations with individual spatial aggregates
appearing in varying time intervals. Therefore, we focus on the two
combined variants in this paper. Both variants rely on a suitable de-
scription of spatial situations by feature vectors for calculating simi-
larity in temporal clustering. A natural choice is to use a vector of flow
magnitudes. For large data sets, this vector is very high dimensional
(about 22,000 dimensions for our data set) and thus leads to unreliable
and unstable results. Therefore, we use an initial spatial simplification
for data reduction.

We analyzed also alternative methods for data reduction. For ex-
ample, the use of feature vectors associated with the places such as
number of people present in an area. This would lead to 606 dimen-
sions in the London case and 386 dimensions in the Abidjan case..
However, these features do not represent the movements. Thus, they
are not suitable for grouping the time steps according to the similarity
of the flow patterns. As the flows form spatio-temporal graphs, we
hoped to use graph-based features for clustering [49], in particular, the
degree, centrality, and clustering measures of the nodes. None of the
graph centralities of nodes reflect movement direction. Respectively,
they cannot differentiate the flows in the morning and evening hours
of the week days. Moreover, the use of edge-related measures does
not decrease the dimensionality of the data in comparison to using the
original flow magnitudes.

The presented spatial and temporal simplification of flow data em-
ploys an extended version of the DBScan algorithm (spatial) combined
with k-means (temporal). Our version includes both spatial similarity
and flow magnitudes of places as well as includes special features for
dealing with time-dependent flows. This leads to consistent clusters
across time. As our clustering extends DBScan, it is quite fast (about
1s for London data set with 168 time steps, each with up to 606 places
and 21,727 links between places and less then 2 min compared to
15 min for the migration data set used in [27]). Our variant has similar
limitations to the original DBScan algorithm, e.g., it cannot find clus-
ters of varying densities and results in “flat clusters” (i.e., no hierarchy
is produced). We mitigate the “flat” cluster structure by interactive
semantic zoom into clusters of interest (see Figure 10) and interac-
tive setting of clustering parameters for analyzing the data on various
scales. The algorithm relies on a set of parameters, which cannot be
optimized automatically. We support finding suitable parameters by
algorithmic analysis of the resulting clusters by a set of cluster qual-
ity criteria (e.g, total flows inside clusters or average distance within
clusters).

Our approach employs temporal simplification for handling data
sets with hundreds of time steps. For larger data sets—e.g., very long
time periods, data with multiple time cycles, or places spread around
the globe—additional extensions to our approach would be needed.

—

Fig. 10. Interactive change of level of detail for spatial aggregates. An
aggregate (red circle) can be semantically zoomed into.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for the visual exploration of
time-varying flow data, especially dynamic mass movements. Our ap-
proach combines spatial and temporal clustering for dealing with a
large number of time steps and a high number of flows between places.
Spatial clustering offers consistent clusters across time-steps, which
enables the analysis of temporal variations in the data. An important
difference to the previous approaches [27, 25] is that the spatial clus-
tering takes time-variation into consideration and thus constructs con-
sistent regions. Our approach supports interactive parameter setting,
so that we can observe different whilst consistent spatial patterns and
thus gain a more comprehensive understanding of the spatial structure
of the mobility. Moreover, our approach enables a general overview of
spatial situations across time steps for interrelated flows at all stages of
the interactive data exploration, while previous approaches [45] focus
on details or on user-selected data parts.

We have tested our approach on dynamic mass movements of res-
idents in the Greater London city area and in Abidjan area. We spe-
cially focused on routine behavior. Interestingly, there are obvious
similarities between the spatial and temporal mobility patterns in Lon-
don and Abidjan: adherence to the daily and weekly cycles, centre-
directed movements in the morning and outward-directed movements
in the evenings, and correspondence of the flow topology to the geog-
raphy of the underlying territory, particularly, to the transportation net-
works and natural barriers. It is also notable that these similar patterns
have been revealed despite the different kinds of data used: georefer-
enced tweets for London and mobile phone use records for Abidjan.
For finding anomalies in the data, or for other types of data sets, spe-
cial preprocessing (such as data cleaning) and special visualizations
(highlighting anomalies) would be of advantage.
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