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Abstract. This paper presents a model of diverse prograatsassumes there
are a common set of potential software faults #h@atmore or less likely to exist
in a specific program version. Testing is modelsdhapecific ordering of the
removal of faults from each program version. Defer models of testing are
examined where common and diverse test strategeesised for the diverse
program versions. Under certain assumptions, theoggests that a common
test strategy could leave the proportion of comrfaarts unchanged, while di-
verse test strategies are likely to reduce thegotigm of common faults. A re-

view of the available empirical evidence gives s@upport to the assumptions
made in the fault-based model. We also consider th@aproportion of com-

mon faults can be related to the expected reltghitiprovement.

Keywords: Software diversity, multi-version programs, divetsst strategies.

1 Introduction

When diverse programs are developed, differentvsoé versions are developed and
debugged by independent teams. Diversity seekimisidas (DSDs) can be used
both in the development approach (languages, sadtdesign, etc.) and in the verifi-
cation and testing used to debug the software. pafer focuses primarily on the
impact of using similar or diverse test strategies.

The impact that testing has on single and diveregrams has been examined be-
fore [5, 7] but those models were based on thedstan“difficulty function” ap-
proach, and evaluated testing strategies in tefntiseir impact on the probability of
failure on demandpfd). This paper takes a related but different apgrda@ssessing
the impact of different test strategies where tloel@his expressed in terms of a set of
“characteristic faults” that might be introducedoithe software. The diversity of the
program versions is modeled by the proportion oftéathat are common between the
versions. Test strategies are modeled by diffesesérings of bug removal in the two
versions and the impact of different test strategie program diversity are examined.
The effectiveness of alternative test strategie®dtucing the common faults propor-
tion is modeled, and we discuss how the commort faalportion can be related to
the expected improvement in reliability.



2  TheDiverse Debug Model

Versions are developed and debugged by indepetetams, and different approaches
can be taken by both teams (whether by accidedésign). So in general we need to
consider the:

 Likelihood of inclusion of faults in development;
 Likelihood of removal by testing.

In this model we assume that:

1. There are “characteristic program faults”, i.efafiént developers can make identi-
cal mistakes. There is a finite poolMfossible faults available for selection;

2. Faults from this pool are independently selectethieytwo development teams, i.e.
a given faultj, is selected with probabilits(i) by both development teams;

3. The test strategies examined are equally effe@tvemoving faults, i.e. remove
the same proportiohof the faults present in the diverse programs.

2.1  Fault Inclusion Model

The fault selection probability(i) is assumed to be the same for both teams, so the
probability that fauli is common to versions A and B is:

Paa (1) =s(i)°

This is similar to the Eckhardt and Lee difficuftynction model [3] for modeling
common mode failure where there is a probabiligt th giveninput pointis faulty.
The fault selection model could perhaps be germadlio have different selection
probabilities for A and B (similar to the Littlewdaand Miller difficulty model [4]),
i.e.

Pas (i) = Sa(1)S5 (1)

However an assumption of comms(i) values for both versions is the worst case,
and will be taken to hold in the remainder of {éper.

If we now consider the whole set Bf characteristic faults wheiie= 1...N, the
mean number of single version faults is:

N, =Ng =>s(i)
The mean number of common faults is:
N2
Ny = (i)

The mean proportion of common faults is:



So substituting for Nand Nyg:

_2.s()’
ﬁ_ ZS(I) (1)

2.2 Modeling Fault Removal

Testing changes the existence probability of theratteristic faults. We can model
the impact of diverse testing by two test reductiwababilities,ta(i) andtg(i). The
test reduction probabilitix(i) is the probability that fault will be removed after ap-
plying the test strategy used for version A. SodRpected number of faults remain-
ing in a program version is:

Ni =2 s()ta() . Ng = s(i)ts (i) (2)

The number of faults remaining can differ for vers A and B, as different test
strategies may be deployed by the two teams, butave made an assumption (see
assumption 3) that the teams will choose equaflscéfe test strategies, where there
is similar reductiorf in the proportion of faults in both versions,:i.e.

N, = Ng = fN, = fN, 3)
So after testing, the expected proportion of comfanits, 5, is:

B = Njs _ N _ 280’ ta (15 () _ > s()’ta ()t (1) @
Ny Ng IEOING! 2. s()ts (i)

We can use this equation to model the impact dédifit test strategies by assign-
ing different probability distributions t(i), ts(i).

3 Modeling Different Test Strategies

We can use the model to examine combinations ofesextreme test strategies for
the two versions, namely:

* Random removal, where faults are randomly remoxeth ach version;
 Strictly ordered removal, with the same removalusege in both versions;
« Strictly ordered removal with a sequence that ddpem selection probability.



These test strategies may not necessarily betieahisit they can help identify the
best and worst cases achievable by different tesegies.
3.1 Random Removal Test Strategy
In the random removal strategy we assume thaglféaults 1..N:
ta() =t ()= f
From equation (2), it follows that:
1o H o H 2
Na=2.s()f,  Nig=>(s(i)f)
So it follows the fault reduction factor is alsd-rom equation (4):
s f? D s(i)’
B = = f : ®)
D os(i) f > s(i)
From the original definition off in equation (1):
B'=1B

As a result, the proportion of common faults desesaas the number of residual
faults decreases, i.e.:

g -0 f-0

3.2 Ordered Removal Strategy (with Independence)

In an ordered removal test strategy all faults wél removed in a specific order in
both versions. This would, for example, occur ittbprogram versions were tested
with a common test set. Without loss of generaliy can assume that the removal
order runs fronN down tol. With some fractiofl of theN potential faults remaining:

tha()=tz(j) =%  j<Nf
tA(k) =tB(k) =0, k > Nf

If we consider the case where the test effectivepesbability of defect(i) is in-
dependent of the defect inclusion probabiity, then:

5N XSG _ 130 _
Ny s fs()

(6)



Hence with exactly the same order of removal of wam faults in the diverse pro-
grams, we expect the proportion of common defext®iain constant (on average)
as testing proceeds, i.e.:

B=p f-0

3.3  Ordered Plus Random Removal Strategies (with Independence)

In this scenario, one team follows a random remstrategy and the other team uses
an ordered removal strategy and we assume the edrooder is independent of the
selection probability. Both tests reduce the nundfdaults by the same fractidrso
only faultsj=1... fNremain in one version and all faults in the othersion have a
survival probabilityf. It follows that the proportion of common faulfses testing is:

Nj _ Ny _ 2 s()BBG) T _ £ s(i)®

PINTN TS a0 "
For this combination of test strategies, it follothat:
B =1
And in the limit:
B -0 f -0

34 Ordering Dependent on Inclusion Probability

If the defects are removed in sequence fijgi to j=1 and the removal order is
strictly dependent on the inclusion probabilityrthe

maxs(i) =s(j =D =s(j=2)=...2s(j =N) =mins(i)

So rare faults will be detected and removed firgt faults that occur frequently in
software will be removed last. With this ordering:

> s

maxs(i), f="y—— (8)
I C)
WhereAN is the number of potential faults remaining. la timit asAN - O:
LB - maxs(i), f -0

' _ Z?i'ls(j)z AN maxs(i)? -
Z?:s( i) ~ ANmaxs(i) ~

Conversely, the reverse removal order where comynooturring faults are re-
moved first will leave the rarely occurring faultstil last. So in the best case:



£ - mins(i), f -0

3.5 Dependent Order Plus Random Removal Strategies

If one removal strategy is random with detectionbability f and the other strategy is
ordered with dependency betwei) and the removal order, it follows that the pro-
portion of common faults is bounded by:

f mins(i) < ' < f maxs(i)
Even in the worst case wheies f maxs(i), it follows that:

< mears(i)
maxs(i)

pg<p f
So the proportion of common faults will still redueshenf - 0.

4  Summary of the Model Results

The fault-based model results are summarizéelblile 1 below, where:
f is the fraction of faults remaining after testing
£ is the expected proportion of common faults befesting starts;
B’ is the expected proportion after testing.

Table 1. Common fault proportion after testing (differe@st assumptions)

Test strategy A Test strategy B Correlation vglih Expecteds’
ordered same order none =0
random random none f8
ordered random none =f
ordered same order smallemoved first - maxs(i)
ordered random smadlremoved first - f maxg(i)
ordered same order largeemoved first - min (i)
ordered random largeremoved first - fming(i)

It can be seen that the overall proportion of comffaults depends on the correla-

tion between:

« The two test strategies;
» Each test strategy and the fault selection protbgbil

In practice, the test strategies are unlikely toregpond exactly with any of the
specific cases shown in Table 1, but we can sdedlian with thesametest set, it is
possible for3' to remain the same, and with differing test sgigt®, it is likely that
the proportion of common faults will decrease.



This observation is however only valid if the modsksumptions are valid. This
will be considered in more detail in the next satti

5  Validity of Model Assumptions

5.1 Set of Characteristic Faults

There is some experimental evidence that prograsimeake similar mistakes that
result in a set of characteristic faults. The “peEogming contest” programs [10] pro-
vide a useful research resource as there are nmugdnds of implementations of
particular contest problems. Research studies I],have shown that many pro-
grammers can produce exactly the same charaateasiis.

On a smaller scale, but with more realistic proggaam analysis of faults found in
the Knight and Leveson diversity experiment showleat similar faults existed in
multiple versions [2] where (possibly) 7 out of @atsions contained a similar fault.

There is therefore considerable support for therapsion that characteristic faults
exist in programs (typically related to specifimftions that are implemented by the
program).

5.2  Independent Selection of Faultsfrom the Pool

An analysis of the Knight and Leveson diversity esiment [2] found 45 faults in 27
versions. If we take these to be the charactesstiofN faults, we can use the data to
test the independent selection assumption. Witepgaddent selection, the probability
of a perfect versiomy, is:

pp = [ @-s(0)

i=LN

It should be noted that dependence in fault seleoivould actuallyincreasethe
value ofp,. For example, i5(1)=s(2)=0.5, thenp,=0.25 but if the two faults were
always selected together, thgs0.5.

In the Knight and Leveson example, the number olt§dfound wadN=45, and the
average faults per version is 1.67. Wih assumed to be identical for all faults at
s=1.67/45=0.037. Assuming independent selectiqn=(1-0.037)°=0.183, so
(27x0.183)=4.95 versions are expected to be perfeds. iFttlose to the actual figure
of 6 perfect versions out of 27. Given the samplimgertainties involved, the two
numbers are in good agreement, which suggestaidepéndent selection assumption
is a reasonable approximation in this example.

5.3 SameFault Selection Probabilities by Diverse Teams

The fault selection probabilities could differ metdiverse teams (e.g. due to different
development techniques). It might even be the tasesome faults, like array bound
violations, are impossible in some technologiessi(i)=0. In the most extreme case,



the selection probabilities could be completelyaiig (i.e. complete negative corre-
lation betweers, and s5). So the assumption of similar detection probtédi (i.e.
complete positive correlation betwegyandss) is the most pessimistic assumption as
it maximizesp.

5.4 Independence of Fault Removal Order and Fault Selection Probability

The credibility of independence between fault ggdecprobability and fault removal
is difficult to determine empirically, but we dovesome experimental evidence for
cases where the removal is ordered by the faut"gwhere fault size is defined as
the proportion of input space occupied by the jaillypically we would expect faults
detected by dynamic testing to fail more ofterhé faults are larger, so the removal
order would be related to fault size. With indepamzk, we would expect similar
inclusion probabilities regardless of fault sizenpublished data from research under-
taken for [11] is shown ifrig. 1 below. This shows the distribution of failure regi
sizes as a proportion of the whole input spacghduld be noted that an “equivalence
class” can be a “basic fault” (where programmergearthe same mistakes in different
versions) or a combination of two or more “basiglts!’.

100%
* *
L 4
10%
Prob. o
Equiv Clas
1% " .
*
* * *
* * * e o o0 * O O 00
0.1% T ‘
0.001 0.010 0.100 1.000
Equivalence class size

Fig. 1. Selection probability versus fault size

It can be seen that, apart from the very largevedgmce class sizes, the inclusion
probability varies between 0.1% and 1% for mosss#s. So with ordered removal
we would expecB’ to be 1 or less during fault removal.

A preliminary review of the distribution of failumates in Knight and Leveson data
(used as a surrogate for fault size) indicatesttieze is one case where 4 versions in
27 had faults with identical failure rates that eveelated to the same basic function.
If this is due to the same characteristic faulteing present in 4 versions, then
§(i)~15%. There are also 3 cases where faults in &ores out of 27 have similar



rates (i.es(i)~7.5%). The remaining 35 faults only appear in veksion §(i)~3.7%).
These fault selection probabilities appeared teHétie correlation with their associ-
ated failure rates.

These limited results suggest, at least in somes¢as presumption of independ-
ence between fault inclusion and removal may bdilsle However more empirical
studies are needed to determine whether such indepee is likely for test strategies
in general.

6 Discussion

6.1 Relationship to Prior Research

Littlewood et al. [5] showed that diverse test tgigées can be more effective at im-
proving reliability than a single test strategyt buly in the context of a single pro-
gram version. Popov and Strigini [8] proposed dtfaased model for diverse pro-
grams for modeling the improvement achievable wemdiity, but did not explicitly
consider the impact of testing or diverse testtatyias. Popov and Littlewood [7]
considered the impact of a range of test strategiediverse program versions during
development, but the model is constructed at thel lef specific points in the input
space (rather than the failure regions covered fauh) so it is difficult to represent
fault inclusion and fault removal explicitly.

Unlike these earlier models, the model presentetliimmpaper has a more limited
scope as there is no attempt to estimate the ohaiviand jointpfds of the diverse
versions. The analysis in this paper only soughtgiimate theroportion of faults
that are likely to be commofy) and how this proportion is affected by testig)(
The relationship of3’ to individual and joinpfds is indirect. We would expect that a
smaller’ would result in a smaller joirdfd, but this might not be true for all usage
profiles.

For the model to be applicable, we need to be denfithat the underlying as-
sumptions are valid and that tffenodel is a useful measure of the potential rekabil
ity improvement. The evidence presented in Sed@ipnovides some justification that
the fault inclusion assumptions are credible armvshhow an analysis of the number
of common faults observed during the testing ofedie versions could provide an
empirical estimate fop.

In the remainder of this discussion we consider rédationship ofGto the ex-
pected reliability improvement and how this mighbtjbstified. We also consider how
the reduction inB predicted for diverse strategies could be valid&eperimentally.

6.2 Relationship of Bto pfd

While our model indicates that the choice of testitrategies could either keep the
proportion of common fault§ constant or even decrease the proportion, it fecdif
to relate the results directly to the expected owpment in reliability of a diverse



pair of programs under a given choice of test sgjias. To make a link witpfd, fur-
ther modeling assumptions need to be made.
If there aren faults in version#\ andB, andng are common faults then:

pfdy = D P+ D Pa(i).  Pfdg = D pasl)+ D ps(k)

i=Lng j=nB+Ln i=1,ng k=ng+1n

Where pag(1..,5n) are the probabilities of failure of the commonulfs,
pa(fh+1.n) are the probabilities of failure of the uniquaulfa in version A, and
ps(Sh+1.n) are the probabilities of failure of the uniquelfa in version B.

If we further assume that the failure probabilite® similar for common and
unique faults, i.e. Bug(i) = Epa(j) = Epg(K), then thepfds of A and B are similar, i.e.:

pfd, = pfd; = pfd

Wherepfd is the average probability of failure on demandaddingle versionit
also follows that the probability of simultaneoasdure due to the common faults is:

pfdcommon: ﬂ Epfd

If we further assume that the unique faults faddpendently between versions,
then the probability of coincident failure betwaarsions due to the unique faults is:

pfdunique = Z pA(J) O Z pB(k) =(@-5) Epfd)z

j=nB+1n k=ng+1,n

Combining these two contributions, the overall @oility of coincident failure be-
tween the versiongfd,a, is:

pfd,,, = Bpfd +(1-B)* pfd’ 9)

If we define a reliability improvement ratiB as pfd/ pfd,, then from equa-
tion (9):

R= 1
B+ (1-p)? [pfd

(10)

Whenpfdis small:

1
B

While for a largepfd, the second term in equation (10) is dominant, i.e



1
R ——M | fd -1
a-pypa P

So we would expect the improvement rafdo be close to the independence as-
sumption for largepfd values, wher&=1/pfd, and be asymptotic to a plateau value of
R=1/gfor smallpfd values.

There is some empirical support for these predistipom experiments undertaken
in [12] and [9] using a large number of programsi@ns produced in a programming
contest [10]. The experimental analysis progresgikemoved the versions with the
highestpfds and, for the remaining versions, calculated tleampfd of all single
programs and program pairpf@,.i). An example of the resultant reliability im-
provementR ratio is shown inFig. 2 below (similar graphs were obtained for the
other program examples).

3n+1; Homogeneous Diversity

1000
|

100
|

Reliability improvement

0.00001 0.0001 0.001 0.01 0.1

Average pfd

Fig. 2. Reliability improvement ratio vs. megifd of versions (van der Meulen et al. 2008)

It can be seen that for large meg#d values,R is close to the reliability improve-
ment expected when all failures are independentgtraight line). For smafifd val-
ues, the improvement reaches a plateau at arouhdatlich corresponds tofavalue
of around 0.01. Both these features are predicyeelgoiation (9). The plateau at low
pfd is expected for smalpfd \alues where we expe& to remain constant at 4/
With strict removal ordering which is independeffitimclusion probabilitys(i), we
would expeciB’ to be invariant, and we do see some evidence tpitt@au has been
reached. This would be consistent with inclusioobabilitiess(i) with a mean value
of 0.01. The “ideal” behavior predicted by the miadeshown inFig. 3 below (where
£=0.01 is assumed).

The similarity of theory and experiment lends s@upport to the model proposed
in equation (9). Note that this represents the awpment expectedn average—not
the actual improvement achieved for a specific pgogpair and usage profile.



100 > °
Beta model Independence
Improvemen 104
ratio R
1 T T
0.00001 0.0001 0.001 0.01 0.1 1
pfd

Fig. 3. Reliability improvement ratiof model)

6.3  Validating the Perfor mance of Diverse Test Strategies

One encouraging result from the model is that, miirdependence between fault
inclusion probability and fault removal, a commesttstrategy does not necessarily
increase the proportion of common faults, .= 8. However the model suggests
that ' < SBis feasible if diverse test strategies are employe

The impact of alternative strategies ghcould be evaluated empirically by simu-
lating different fault removal strategies on thegkset of program versions produced
in programming contests such as [10].

7 Conclusions and Further Work

This paper has presented a model of diverse pragthat assumes there are a com-
mon set of potential software faults that are nmréess likely to exist in a specific
program version.

Testing is modeled as a specific ordering of thraaeal of faults from each pro-
gram version. Different models of testing were exeatd to derive the proportion of
common faults as testing progresses.

Given the assumptions made, the theory suggestsattmmmon test strategy
(where common faults are removed in the same andaoth program versions) could
leave the proportion of common faults unchangedaS®mmmon test strategy need
not reduce the efficacy of diverse programs. We alow that diverse test strategies
are likely to reduce the proportion of common faulh the best case, where the test
strategies are entirely uncorrelated, the commopaation after testing tends to zero.

We have also discussed how this proportion of comfaalts could be related to
the expected reliability improvement.

Further work should be undertaken to:



Validate the assumptions used in the model;

Investigate the link between the proportion of camnnfaults and the expected
reliability improvement;

Validate the testing strategy predictions in expenital research studies;

Expand the theory to cover diverse development ousth
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