IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Bittner, R., Linden, D., Roebroeck, A., Haertling, F., Rotarska-Jagiela, A., Maurer,
K., Goebel, R., Singer, W. & Haenschel, C. (2015). The When and Where of Working
Memory Dysfunction in Early-Onset Schizophrenia-A Functional Magnetic Resonance
Imaging Study. Cerebral Cortex, 25(9), pp. 2494-2506. doi: 10.1093/cercor/bhu050

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12852/

Link to published version: https://doi.org/10.1093/cercor/bhu050

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Bittner et al. - The When and Where of working memory dysfunction in early-onset schizophrenia 1

The When and Where of working memory dysfunction in early-onset

schizophrenia - A functional magnetic resonance imaging study

Robert A. Bittner>*", David E.J. Linden*®, Alard Roebroeck®, Fabian Hartling’, Anna

Rotarska-Jagiela'?, Konrad Maurer®, Rainer Goebel®, Wolf Singer®?, Corinna
Haenschel™®

1Laboratory for Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic
Medicine and Psychotherapy and Brain Imaging Center, University Hospital Frankfurt, Goethe
University, Frankfurt am Main, Germany

2Depan‘ment of Neurophysiology, Max-Planck-Institute for Brain Research, Frankfurt am Main,
Germany

3Ernst Striingmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt
am Main, Germany

*MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and
Clinical Neurosciences, School of Medicine, Cardiff University, UK

®School of Psychology, Cardiff University, UK

6Depan‘ment of Neurocognition, Faculty of Psychology and Neuroscience, Maastricht University,
Maastricht, The Netherlands

7Department of Child and Adolescent Psychiatry, University Hospital Frankfurt, Goethe University,
Frankfurt am Main, Germany

%School of Psychology, City University, London, UK

*Corresponding author. Laboratory for Neurophysiology and Neuroimaging,
Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University
Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt

am Main, Germany.

Phone: +49 69 6301 84713. Fax: +49 69 6301 87001.
Email: bittner@bic.uni-frankfurt.de

Total number of words in abstract: 200

Total number of words in text: 5638



Bittner et al. - The When and Where of working memory dysfunction in early-onset schizophrenia 2

ABSTRACT

Behavioral evidence indicates that working memory (WM) in schizophrenia is already
impaired at the encoding stage. However, the neurophysiological basis of this
primary deficit remains poorly understood. Using event-related fMRI we assessed
differences in brain activation and functional connectivity during the encoding,
maintenance and retrieval stages of a visual WM task with three levels of memory
load in 17 adolescents with early-onset schizophrenia and 17 matched controls. The
amount of information patients could store in WM was reduced at all memory load
levels. During encoding, activation in left ventrolateral prefrontal cortex (VLPFC) and
extrastriate visual cortex, which in controls positively correlated with the amount of
stored information, was reduced in patients. Additionally, patients showed disturbed
functional connectivity between prefrontal and visual areas. During retrieval, right
inferior VLPFC hyperactivation was correlated with hypoactivation of left VLPFC in
patients during encoding. Visual WM encoding is disturbed by a failure to adequately
engage a visual-prefrontal network critical for the transfer of perceptual information
into WM. Prefrontal hyperactivation appears to be a secondary consequence of this
primary deficit. Isolating the component processes of WM can lead to more specific
neurophysiological markers for translational efforts seeking to improve the treatment

of cognitive dysfunction in schizophrenia.
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INTRODUCTION

Working memory (WM) impairments are widely regarded as a central cognitive deficit
of schizophrenia (Goldman-Rakic 1999; Silver et al. 2003). WM dysfunction has
therefore gained particular interest as a target of psychological and pharmacological
interventions (Green et al. 2004; Greenwood et al. 2005; Barch and Smith 2008;
Barch et al. 2009) and as an intermediate phenotype in the study of the genetic
architecture of schizophrenia (Meyer-Lindenberg and Weinberger 2006; Gur et al.
2007). These translational strategies critically depend upon a clear understanding of

the underlying cognitive and neurophysiological disturbances.

Behavioral studies indicate that WM is primarily compromised during the initial
encoding of information (Tek et al. 2002; Hartman et al. 2003; Lencz et al. 2003; Kim
et al. 2006; Lee and Park 2006; Javitt et al. 2007; Fuller et al. 2009; Gold et al. 2010;
Hahn et al. 2010; Mayer and Park 2012), although additional impairments during
maintenance have also been observed (Reilly et al. 2006; Stephane and Pellizzer
2007; Badcock et al. 2008). Therefore, elucidating the neurophysiological basis of
impaired encoding is crucial for our understanding of WM deficits. Functional
magnetic resonance imaging (fMRI) studies have consistently implicated a
dysfunction of the prefrontal cortex (PFC) as a central cause for WM deficits (Glahn
et al. 2005; Tan et al. 2007). However, the origins of impaired encoding and the
contribution of prefrontal cortical dysfunction to this impairment remain poorly

understood.

In healthy participants, fMRI has provided detailed insights into the differential
engagement of prefrontal areas during encoding and subsequent WM component
processes. Encoding of visuospatial information appears to rely primarily on the

superior part of the ventrolateral prefrontal cortex (VLPFC) (Bor et al. 2003; Mayer et
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al. 2007). In contrast, for maintenance the dorsolateral prefrontal cortex (DLFPC) was
shown to be crucial (Sakai et al. 2002; Curtis and D'Esposito 2003; Edin et al. 2009).
Finally, the inferior portion of the VLPFC seems to be particularly important for
retrieval (Bledowski et al. 2006; Nee and Jonides 2008). In line with their differential
engagement, these prefrontal areas also show a corresponding preferential response
to increasing memory load during the relevant component process (Linden et al.

2003; Bledowski et al. 2006; Edin et al. 2009).

These findings support a relative specialization of the PFC with regard to WM
component processes. This implies that impaired encoding should be associated with
disturbances in the corresponding specialized prefrontal cortical area, namely the
superior part of the VLPFC. The same principle should also apply to maintenance

and retrieval.

In addition to the precise localization of prefrontal cortical dysfunction, the nature of
the abnormal prefrontal cortical response profile is another crucial aspect. Earlier
fMRI studies reported both decreased (Barch et al. 2001; Perlstein et al. 2001;
Perlstein et al. 2003) and increased prefrontal cortical activation in patients (Manoach
et al. 1999; Callicott et al. 2000; Manoach et al. 2000). The latter finding has been
interpreted as an indication of inefficiency (Callicott et al. 2000; Potkin et al. 2009).
However, it has also been suggested that PFC dysfunction is sensitive to the level of
memory load: while low memory load should elicit inefficient prefrontal
hyperactivation, high memory load should lead to hypoactivation caused by a failure

to sustain activation in prefrontal circuits (Callicott et al. 2003; Manoach 2003).

Yet, the use of blocked experimental designs — often in conjunction with the n-back
task, has prevented the isolation of the component processes of WM in many of

these studies.
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So far, event-related studies were also unable to clarify the neurophysiological basis
of impaired encoding. This might in part be attributable to a lack of memory load
variation (Schlosser et al. 2008; Anticevic et al. 2011; Choi et al. 2011) and an
incomplete separation of component processes (Johnson et al. 2006). Other event-
related studies focused on predefined prefrontal regions of interest (ROIs) (Driesen et
al. 2008; Potkin et al. 2009), which might obscure the precise localization of
prefrontal cortical dysfunction. This approach also ignores the fact that WM — and
encoding in particular — relies on a widely distributed cortical network. In addition to
the PFC, WM prominently involves parietal and sensory areas (Munk et al. 2002;
Linden et al. 2003), which have also been implicated in WM impairment (Barch and

Csernansky 2007; Haenschel et al. 2007; Dias et al. 2011).

Such widespread cortical dysfunctions could be a reflection of disturbed interactions
between brain areas as proposed by the disconnection hypothesis (Friston 1998;
Andreasen 1999). This interpretation is supported by reports of altered functional
connectivity during WM (Meyer-Lindenberg et al. 2005; Tan et al. 2006; Kim et al.
2009; Meda et al. 2009; Deserno et al. 2012). However, so far the role of altered

functional connectivity for impaired encoding has not been investigated.

We previously reported reduced P100 event-related potential (ERP) amplitude during
WM encoding in schizophrenia (Haenschel et al. 2007). In an accompanying fMRI
ROI analysis (Haenschel et al. 2007) we also demonstrated a corresponding
reduction of activation in those visual cortical areas most closely associated with the
generation of the P100 (Noesselt et al. 2002). However, this fMRI analysis was
focused on one small bilateral ROl in early visual cortex during maintenance and
retrieval. While the ERP results and EEG time frequency results provided detailed

insights into the temporal dynamics underlying WM dysfunction, only the high spatial
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resolution of fMRI allows for a detailed the study of the different parts of the cortical
WM network. This aspect is particularly relevant with regard to the contribution of the
distinct subregions of the PFC. To this end, in the current paper we present a full

analysis of the fMRI data set.

We investigated adolescents with early-onset schizophrenia (EOS), i.e. an onset of
the disorder before the age of 18, and matched controls. The study of patients with
EOS is particularly attractive, because they apparently constitute a more
homogeneous group characterized by a relatively severe illness course and outcome
(Hollis 2000) and a higher genetic loading (Asarnow et al. 2001) compared to
patients with adult onset schizophrenia. WM dysfunction in EOS has been repeatedly
demonstrated. However, only a small number of functional neuroimaging studies of
this patient population have been reported (Thormodsen et al. 2011; White et al.

2011a; White et al. 2011b; Kyriakopoulos et al. 2012).

Using event-related fMRI, we investigated aberrant cortical activation and
connectivity during encoding and subsequent WM component processes.
Participants performed a visual delayed-discrimination task with varying levels of
memory load (Figure 1). Our main hypothesis was that during encoding patients
would show a dysfunction of cortical areas closely involved in this component
process, particularly in the PFC. If these dysfunctional areas were crucial for
encoding, we would expect them to exhibit a correlation between BOLD activity and
the number of objects actually encoded and stored in WM. We also hypothesized that
a primary encoding deficit should in turn lead to compensatory changes in later task
phases. Finally, we expected to find abnormal functional connectivity within circuits
critical for the encoding of information into WM, in line with the disconnection

hypothesis of schizophrenia.
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METHODS AND MATERIALS

Subjects

Seventeen patients with EOS according to DSM-IV criteria and seventeen control
participants with no family history of psychotic disorder matched for age, gender,
handedness and premorbid 1Q (Table 1) participated in the study. ERP data
(Haenschel et al. 2007), fMRI results on extrastriate visual cortex (Haenschel et al.
2007) and EEG time frequency results (Haenschel et al. 2009; Haenschel et al. 2010)
obtained from the same group of patients have been reported previously. Patients
were assessed with the German version of the Structured Clinical Interview for DSM-
IV (SCID) (Sass and Wittchen 2003) and the Positive and Negative Syndrome Scale
(PANSS) (Kay et al. 1987). Handedness was determined with the Edinburgh
Handedness Inventory (Oldfield 1971). Premorbid IQ was assessed with MWT (Lehrl
1995), the German equivalent of the Spot-the-Word Test (Baddeley et al. 1993). All
patients received second generation antipsychotic medication at the time of this
study, with one patient additionally receiving first generation antipsychotic medication

(see Table 1 for further details).

Exclusion criteria for patients were a history of other neuropsychiatric conditions or
substance abuse in the six months preceding the study. Control participants were
recruited through local advertisements. Exclusion criteria for controls were a history
of mental iliness or substance abuse. All participants and, for participants under 18
years, also their parents provided informed consent prior to the study. Ethical
approval was obtained from the institutional review board of Frankfurt Medical

School.
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Stimuli and task

A delayed visual discrimination task was implemented on a personal computer using
the Experimental-Run-Time-System software (www.erts.de) (Figure 1). Non-natural
objects, presented at the center of the computer screen, were used as visual stimuli.
One to three sample objects were presented for 600 ms each with an interstimulus
interval of 400 ms (encoding phase). After a delay of 12 s (maintenance phase), a
test stimulus was presented for 3 s at the center of the screen (retrieval phase).
Subjects had to indicate whether it was part of the initial sample set by button press.
The inter-trial interval lasted 12 s.

----- Figure 1 ---

The three memory load conditions were randomly intermixed within each run. Prior to
the scanning session all participants were given instruction and practice with the task.
During scanning, the computer display was projected onto a mirror mounted on the
head coil. Stimuli subtended 1.34° of visual angle. Responses were registered by a
custom-made fiber-optic response box. Subjects were asked to fixate upon the cross
at the center of the screen throughout the experiment. Each subject completed a total

of 48 trials of the task (16 trials per memory load condition).

Analysis of behavioral data

For each subject and memory load condition, the number of objects stored in WM
was estimated by calculating K. We used Cowan’s revised formula (Cowan 2001) K =
N *(H+ CR - 1), where N is the number of objects to be stored, H is the observed hit
rate (correctly identified matches) and CR is the correct rejection rate (correctly
identified non-matches). Although originally developed to estimate overall WM

storage capacity, K also allows quantifying the amount of information actually stored
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in WM. K values and reaction times were entered in separate repeated-measures
analyses of variance (ANOVA) to test for main effects of group (controls and patients)
and memory load condition (load 1, load 2 and load 3). Significant main effects and

interactions were decomposed using t-tests.

Acquisition of fMRI data

Functional MRI data were acquired with a Siemens 1.5 T Magnetom Vision MRI
scanner using a gradient echo EPI sequence (16 axial slices; TR = 2000ms; TE = 60;
FA = 90°, FOV = 220 x 220 mm?, voxel size: 3.43 x 3.43 x 5 mm?>, gap 1 mm). Slices
were positioned parallel to the anterior-commissure posterior-commissure plane.
Functional images were acquired in two runs in a single session, each comprising the
acquisition of 350 volumes. Stimulus presentation was constantly synchronized with
the fMRI sequence. Head motion was minimized with pillows. A high-resolution T1-
weighted three-dimensional volume using a fast low-angle shot (T1-FLASH)

sequence (voxel size: 1x1x1 mm?®) was acquired for co-registration of functional data.

Functional image preprocessing

Functional data were analyzed using BrainVoyager QX 1.10.4 and the BrainVoyager
QX Matlab Toolbox (www.brainvoyager.com). The first four volumes of each run were
discarded to allow for T1 equilibration. Functional data preprocessing included slice
scan time correction, motion correction, linear trend removal and temporal high pass
filtering (high pass: 0.00867 Hz), manual alignment to the anatomical scans and

transformation into Talairach coordinate space.
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To minimize the impact of increased anatomical variability found in schizophrenia
(Park et al. 2004 ), we applied a high-resolution, multiscale cortex alignment
procedure, which reliably aligns corresponding gyri and sulci across subjects (Goebel
et al. 2006). Anatomical scans were segmented along the white—gray matter
boundary. Cortical hemispheres were reconstructed and morphed into spherical
representations. Each cortical folding pattern was aligned to a dynamically updated
group average through iterative morphing following a coarse-to-fine matching
strategy. Based on the vertex-to-vertex referencing from the folded, topologically
correct meshes to the aligned spherical representations, the functional data was
mapped into a common spherical coordinate system (Fischl et al. 1999) and spatially

smoothed using a nearest neighbor interpolation (FWHM 5 mm).

Analysis of intrascan motion

To assess group differences in intra-scan motion, the standard deviations for the six
estimates of motion obtained during motion correction (translation in x, y, z direction
and rotation around x, y, z axis) of each subject were entered into a repeated-
measures ANOVA with group as the between-factor and standard deviation for the
six motion estimates as the within-factor. This yielded no significant group differences

(F132=0.47, p=.50) and no significant group by motion interaction (Fs 160=1.93, p=.15).

Cortex-based group fMRI analysis

Multi-subject statistical analysis was performed by multiple linear regression of the
BOLD signal. Only correctly answered trials were entered into our analyses. To
ensure a balanced analysis, for controls a subset of correct trials equal to the number

of correct trials of the patients on the respective memory load level were randomly
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selected. For both groups, this resulted in a total number of 234 trials for memory
load 1, 231 trials for memory load 2 and 215 trials for memory load 3 per group.

For each memory load condition four task phases of interest were modeled by ideal
box-car functions, which covered the first, third, fifth and eighth volume of each trial,
respectively, convolved with a synthetic double-gamma hemodynamic response
function. Encoding-related activity was captured by the first and retrieval-related
activity by the fourth regressor. The second and third regressor reflected activity
during the early and late maintenance phase. These predictors were used to build
the design matrix of the experiment. We computed a voxel-wise general linear model
(GLM) with a standard two-level (hierarchical) ordinary least squares fit procedure.
For each task phase of interest, the obtained beta weights were entered into a
random-effects level repeated-measures ANOVA with memory load condition (load 1,
load 2 and load 3) as within-factor and group (controls and patients) as between-
factor.

To correct for multiple comparisons, maps for the main effect of memory load, for the
main effect of group and for the group by memory load interaction were first
thresholded at a voxel-wise threshold of p<.01 (uncorrected). They were then
submitted to a whole-brain correction criterion based on the estimate of the map’s
spatial smoothness and on an iterative procedure (Monte Carlo simulation) for
estimating cluster-level false-positive rates (Forman et al. 1995; Goebel et al. 2006).
During this procedure, for each simulated image (2000 iterations) all “active” clusters
in the imaged volume are considered. These clusters are used to update a table
reporting the counts of all clusters above this threshold for each specific size.
Subsequently an alpha value is assigned to each cluster size based on its observed

relative frequency during the simulations. Based on this estimation, which was
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carried out separately for each map, the appropriate minimum cluster size threshold

was specified in order to yield a cluster-level false-positive rate of 5%.

Task related activation

Our main goal was to detect the abnormal activation patterns underlying impaired
WM in patients.

As a secondary objective, we were interested in revealing the cortical networks
engaged by our WM paradigm. In this context, the main effect of memory load
provides information about areas, whose activation patterns are mainly modulated by
the task. However, the ANOVA approach is inherently blind to the direction of
changes in the BOLD response. Therefore, the main effect of memory load cannot
distinguish between areas showing task related activation and areas showing task
related deactivation.

To complement our primary analysis, we computed t-tests for each memory load
condition during each task phase for both groups separately utilizing the same GLM
approach employed for the ANOVA. The resulting maps for each memory load
condition were thresholded at an uncorrected voxel-wise threshold of p<.01,
corrected for multiple comparisons using a cluster threshold procedure (Monte Carlo
simulation, 2000 iterations) in order to yield a cluster-level false-positive rate of 5%.
The results of this analysis can be found in the supplementary material (Figures S1 —

s4).

Group differences
To investigate both general activation abnormalities arising independent of memory
load as well as abnormal activation patterns, which are memory load dependent, we

examined the results main effect of group and the group by memory load interaction
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in more detail. To this end, region of interests (ROls) were derived from each cluster
showing either a significant main effect of group or a significant group by memory
load interaction. For each ROI, post-hoc t-tests were performed on the extracted
beta-values to test for the direction of group differences in individual memory load

conditions.

Correlation between BOLD activity and the number of stored objects

To investigate the relationship between BOLD activation and the number of objects
stored in WM a planned ROI based post-hoc Spearman's rank correlation between
beta values and K across all three memory load conditions was computed (a =
0.00129 (Bonferroni corrected for the total number of 39 ROls derived from the

ANOVA)).

Cortex-based functional connectivity analysis

Finally, we investigated whether impaired WM encoding is associated with a
disturbance of connectivity of the PFC with other parts of the WM network. Functional
connectivity was computed using the instantaneous influence term of Granger
causality mapping (Roebroeck et al. 2005). As seed regions we used the only two
prefrontal ROls, which emerged from the ANOVA for encoding. Correct trials from all
memory load conditions were pooled. For each subject, functional connectivity maps
for both seed region were generated. Differences in functional connectivity were
analyzed using t-tests (random effects level). The resulting maps were thresholded at
an uncorrected voxel-wise threshold of p<.01, corrected for multiple comparisons
using a cluster threshold procedure (Monte Carlo simulation, 2000 iterations) in order

to yield a cluster-level false-positive rate of 5%.
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RESULTS:

Behavioral Performance

Figure 2 depicts the estimated number of objects stored in WM (K) and average
response times for patients and controls. K was lower for patients (F1,32=14.31,
p<0.001), with no interaction between group and memory load (F2,64=2.46, p=0.093).
Two-tailed t-tests showed that the number of stored objects was lower in patients in
each memory load condition (memory load 1: t=2.65, p<0.05; memory load 2: t=3.76,
p<0.001; memory load 3: t=2.39, p<0.05). Reaction times increased with memory
load in both groups (F2,64=23.26, p<0.001). There was no difference in reaction
times between groups (F(1,32=2.49, p=0.12) and no memory load by group interaction

(F2,64=0.26, p=0.95).

ANOVA

Task related activity

The main effect of WM load demonstrated a differential effect of WM load on cortical
activation during the different task phases. The effect of increasing levels of WM load
was most pronounced during encoding and the initial part of the maintenance phase.
Conversely, the degree to which WM load was driving activation markedly decreased
during the later stages of the delay period and particularly during retrieval. This
finding is in keeping with previous studies utilizing the same task (Linden et al. 2003;
Bledowski et al. 2006). These studies revealed widespread cortical activation during
the maintenance and retrieval stages. However, compared to encoding this activation
was far less modulated by WM load. Thus, relying only on the main effect of memory

load would underestimate the full extent of task related activation.
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The additional t-statistics (Figure S1-S4) revealed considerable task related
activation in a distributed network comprising frontal, parietal and visual areas
commonly observed in studies of visual WM (Munk et al. 2002). During the
maintenance phase, a core fronto-parietal network showed persistent activity.
Furthermore, we observed task related deactivation in the default mode network

(DMN) well in line with previous WM studies (Mayer et al. 2010).

Group differences

For our main goal, the identification of abnormal activation in patients, we focused on
areas showing a main effect of group or a group by memory load interaction. Beta-
values of these ROls for each task phase are depicted in the supplementary material

(Figures S5-S8).

For encoding, the ANOVA yielded a main effect of group in the left VLPFC and left
inferior parietal lobule (IPL) (cluster level threshold (CLT) 37 mm?) (Figure 3a, Table
2). Post-hoc t-tests indicated reduced activation for patients in both regions for all

three memory load conditions.

A group by memory load interaction was observed in the left VLPFC caudally of the
region showing a main effect of group, the left insula, left middle temporal gyrus
(MTG), left precuneus, the right IPL and right lingual gyrus (CLT 52 mm?). Post-hoc t-
tests indicated reduced activation for patients in the left VLPFC and the left MTG at
memory load 2 and 3. In the left precuneus patients showed reduced activation only
at memory load 3. In the left insula, the right IPL and the right lingual gyrus a pattern
compatible with a memory load dependent dysfunction was found. Here, patients

showed increased activation at memory load 1 but reduced activation at memory load
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3. Finally, in the right lingual gyrus patients showed reduced activation at memory

load 2.

For early maintenance, the ANOVA yielded a main effect of group in the following
areas: the posterior cingulate cortex (PCC), precuneus and middle occipital gyrus
(MOG) bilaterally, the left insula and left MTG, the right central sulcus, right
supramarginal gyrus (SMG), right superior temporal gyrus (STG) and right lingual
gyrus (CLT 61 mm?) (Figure 4, Table 3). Post-hoc t-tests indicated reduced activation

for patients in each of these regions for all three memory load conditions.

A group by memory load interaction was observed in the superior parietal lobule
(SPL) bilaterally, the left DLPFC, the left frontal eye field (FEF), and two clusters in
the left intraparietal sulcus (IPS) (CLT 33 mm?). Post-hoc t-tests indicated reduced
activation for patients in the left DLPFC, the right SPL and both clusters in the left IPS
at memory load 3. In the more lateral left IPS cluster, patients showed increased
activation at memory load 2. Similarly, in the left DLPFC patients showed a trend

towards increased activation (p=0.056) at memory load 1.

----- Figure4 -

————— Table3  --—--

For late maintenance, the ANOVA yielded a main effect of group in three regions
(CLT 37 mm?2) (Figure 5a, Table 4). In the left STG and the left PCC activation

patients showed decreased activation at memory load 2 and 3. This was due to a
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deactivation in patients, which increased with increasing memory load and was
absent in controls. Conversely, in the left FEF patients showed increased activation

in all memory load conditions. No area showed a group by memory load interaction.

----- Figure 5  -----

————— Table4  -----

For retrieval, the ANOVA yielded a main effect of group in the anterior cingulate
cortex (ACC), inferior VLPFC and IPL bilaterally as well as in the left anterior PFC
(CLT 15 mm?) (Figure 6, Table 5). Post-hoc t-tests indicated higher activation for
patients in each of these regions at memory load 2 and 3. This effect extended to

memory load 1 in the IPL bilaterally.

A memory load by group interaction was observed in the left fusiform gyrus (FFG)
and the right ACC (CLT 37 mm?). Post-hoc t-tests indicated higher activation in
controls in the left FFG at memory load 1. In the right ACC controls showed higher
activation at memory load 1, while patients showed higher activation at memory load

2.

----- Figure6  -----

————— Table5  --—--

Correlation between BOLD activity and the number of stored objects

During encoding controls but not patients showed a significant positive correlation
between BOLD activity and the number of objects stored in WM for the left posterior
VLPFC (p =0.445, p<.05, corr.), the left insula (p=0.549, p<.01, corr.) and the right
lingual gyrus (p=0.44725, p<.05, corr.) (Figure 3b). In contrast, during late

maintenance patients but not controls showed a significant negative correlation
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between BOLD activity and the number of objects stored in WM in the left STG (p=-
0.603, p<.001, corr.) and the left PCC (p=-0.543, p<.01, corr.) (Figure 5b). During

early maintenance and retrieval no significant correlation was observed in either

group.

For the two ROls for which patients showed a significant negative correlation
between BOLD activity and K, we aimed to specify whether these disparate results
could be explained by a general difference in BOLD activity or by differences in K. To
this end, we carried out an additional post-hoc ANCOVA with BOLD activity as within-
factor, group (controls and patients) as between-factor and K as a covariate. A
significant effect of group was observed in both the left STG (F(1,99)=17.16,
p<0.001) and the left PCC (F(1,99)=15.84, p<0.001). This indicates that these
findings may primarily be the result of differences in BOLD activity between patients

and controls.

Correlation of activation across task phase

We also examined whether prefrontal hypoactivation in patients during encoding
might be correlated with prefrontal hyperactivation during retrieval. Such a correlation
would strengthen our hypothesis of a primary encoding deficit. In the previous
analysis, we found a correlation between BOLD activity and the number of objects
stored in WM (K) in parts of the left prefrontal cortex during encoding. However this
correlation was only observed in controls. To minimize any bias resulting from a
potential differential relationship between BOLD activity and K in patients and
controls, we conducted post-hoc partial correlations, which controlled for K. These

partial correlations were computed between the two left hemispheric VLPFC clusters,
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for which patients showed hypoactivation during encoding, and the bilateral clusters
in inferior VLPFC, for which patients showed hyperactivation during retrieval. A
correlation across component processes was observed in both groups between the
left posterior VLPFC cluster from the encoding map and the right inferior VLPFC
cluster from the retrieval map. However, while patients showed a negative correlation

(p=-0.361, p=.01) controls showed a positive correlation (p=0.326, p<.05).

Functional connectivity analysis

Significant differences in functional connectivity between groups were found in one of
the two tested prefrontal seed regions, namely the more rostral left VLPFC cluster.
For this region, patients showed reduced functional coupling with the left precentral
gyrus (PCG) (Talairach coordinates x: -45, y: -6, z: 43) corresponding to the premotor
cortex and an area in the left MOG (Talairach coordinates x: -44, y: -60, z: -4)
corresponding to the lateral occipital complex (LOC) (Malach et al. 1995) (CLT 45
mm?) (Figure 7). For the second seed region, the more dorsal left VLPFC cluster no

significant group differences in functional connectivity emerged.



Bittner et al. - The When and Where of working memory dysfunction in early-onset schizophrenia 20

DISCUSSION

We investigated the neurophysiological basis of impaired WM encoding in
adolescents with schizophrenia compared to healthy controls performing a visual WM
task with three levels of memory load. At all memory load levels, the amount of
information patients were able to memorize was reduced compared to controls.
Patients exhibited abnormal activity patterns in key regions of the fronto-parietal
network and in extrastriate visual areas, which were specific for the different WM
component processes. Impaired encoding in patients was also accompanied by

disturbed functional connectivity between prefrontal and visual areas.

Patterns of cortical dysfunction during encoding in patients were largely indicative of
a general impairment of this component process. Patients showed hypoactivation,
particularly at higher memory load, in two overlapping clusters within a part of the left
VLPFC closely linked to WM encoding (Bor et al. 2003; Mayer et al. 2007). This
confirms our initial hypothesis, that impaired encoding is associated with a
dysfunction in those prefrontal areas most specialized for this component process.
Patients also failed to recruit the left IPL, which is closely involved in encoding as well

(Linden et al. 2003; Mayer et al. 2007).

During encoding, only controls showed a significant positive correlation between the
amount of information stored in WM and BOLD activity in the left VLPFC, insula and
extrastriate visual cortex. These areas also showed generally lower activation levels
in patients. Thus, impaired encoding in patients appears to result from a dysfunction

of both prefrontal and visual areas critical for this component process.

Further support for this interpretation comes from our functional connectivity analysis.

During encoding, patients showed significantly reduced functional connectivity
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between the left VLPFC and the left premotor cortex as well as the left LOC. The
latter areas is essential for the detailed processing of object information (Grill-Spector

et al. 1998).

These findings extend our previous reports of abnormal ERP (Haenschel et al. 2007)
and evoked oscillatory responses (Haenschel et al. 2009) during encoding in the
same group of patients. They indicate that in addition to disturbances at early stages
of visual processing impaired encoding is associated with a disruption of
communication between the ventral visual pathway and the VLPFC (Ungerleider et
al. 1998). Thus, mechanisms critical for object recognition (Sehatpour et al. 2008)
and object WM (Goldman-Rakic 1995) seem to be affected. Our results are
compatible with the view that perceptual processing deficits contribute to WM
impairment (Haenschel et al. 2007; Koychev et al. 2010; Dias et al. 2011). They also
indicate a link between perturbed perceptual processing and prefrontal cortical
dysfunction. However, due to the lack of directional information the analysis of
functional connectivity cannot resolve the question, whether either one of them or

both represent a primary deficit.

Moreover, WM encoding can be further subdivided into a number of cognitive
processes including WM consolidation (Jolicoeur and Dell'Acqua 1998) and
attentional selection (Awh et al. 2006). Behavioral studies indicate that patients with
schizophrenia are impaired in these processes (Luck and Gold 2008; Fuller et al.
2009; Hahn et al. 2010). The neurophysiological underpinnings of these impairments
and their exact contribution to disturbed WM encoding need to be elucidated in future

studies.

While our primary goal was to clarify the neurophysiological substrate of impaired

encoding, two findings during the subsequent component processes are also
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particularly relevant to neuropsychological and neurophysiological models of
schizophrenia. During early maintenance, patients showed an abnormally strong
deactivation in parts of the default mode network (DMN) (Raichle et al. 2001)
including bilateral PCC and precuneus. During late maintenance, the left STG and
the left PCC exhibited a similar pattern. Here, only patients showed a negative
correlation between BOLD activity and the number of objects stored in WM. Thus,
deactivation in parts of the DMN was stronger in patients with a relatively preserved
ability to store information in WM. Whether this indicates a compensatory mechanism
in patients which supports WM maintenance or whether a failure to adequately
disengage the DMN actually impairs WM cannot be determined on the basis of the
present results. However, the observed correlation between BOLD activity and
performance in patients point to a particular relevance of this network for WM
dysfunction. Furthermore, our results are in line with increasing evidence for
alterations within the DMN in schizophrenia (Whitfield-Gabrieli et al. 2009; Metzak et

al. 2011).

During retrieval, patients showed a marked hyperactivation at all memory load levels
in a bilateral network encompassing the inferior VLPFC, ACC, and IPL. These areas
are essential for WM retrieval (Druzgal and D'Esposito 2001; Bledowski et al. 2006;
Nee and Jonides 2008). Their increased recruitment could reflect an inefficient
engagement of WM read out mechanisms in patients, which might result from their
relatively imprecise memory representations. Such an interpretation is also supported
by the negative correlation between BOLD activity in the left VLPFC during encoding
with that in the right inferior VLPFC during retrieval in patients. Thus, prefrontal
inefficiency during retrieval was more prominent in those patients who showed more

PFC hypoactivation during the initial encoding of information.
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Our findings have implications for our understanding of WM related prefrontal cortical
dysfunction in schizophrenia. Prefrontal inefficiency, indexed by hyperactivation, is
regarded as an important marker of this dysfunction (Winterer and Weinberger 2004).
However, in the present study it was only observed during retrieval. Consequently,
prefrontal inefficiency could constitute a secondary phenomenon, while prefrontal
hypoactivation associated with abnormal encoding might be the primary
manifestation of prefrontal cortical dysfunction. Notably, the prefrontal hyperactivation
observed in a large, multisite patient cohort was also associated with retrieval (Potkin
et al. 2009). We found no indication of a memory load dependent prefrontal cortical
dysfunction (Callicott et al. 2003; Manoach 2003) during encoding. Such a switch
from hyperactivation at low memory load to hypoactivation at high memory load was
only observed in the left DLPFC during early maintenance. However, the fact that this
prefrontal response profile occurred after the initial prefrontal hypoactivation during
encoding indicates, that it might not represent a primary deficit. Overall, our findings
imply that prefrontal cortical dysfunction is more sensitive to the demands of a
particular WM component process than to the level of memory load. The fact, that we
observed abnormal prefrontal activation in those parts of the PFC shown to be
particularly relevant for each WM component process, also supports such an

interpretation.

Interestingly, a recent fMRI study using a visuospatial WM paradigm did not find
abnormal prefrontal cortical activation in patients with EOS (White et al. 2011a).
Notably, on average their patient group was about 3 years younger than ours while
having a similar duration of iliness. Based on their negative finding White and
colleagues hypothesized, that prefrontal cortical dysfunction might be the result of a

downstream developmental process, which had not yet manifested itself in their
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patient group. In contrast, our finding of a robust prefrontal cortical dysfunction is well

in line with findings in patients with adult-onset schizophrenia.

In summary, the primary impairment of WM encoding seems to arise from
disturbances in both early visual and prefrontal areas and a disruption of neuronal
communication between these areas in line with the disconnection hypothesis of
schizophrenia. Isolating the component processes of WM allowed us to better
differentiate between primary and secondary markers of cortical dysfunction. This
might be crucial for the development of reliable biological markers (Oertel-Knoechel
et al. 2011; Barch et al. 2012; Linden 2012) and pharmacological compounds
targeting WM dysfunction (Barch 2004). Therefore, our approach should aid
translational studies, which probe the pathways from the molecular mechanisms to

the phenotypes of schizophrenia (Meyer-Lindenberg 2010).
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Table 1. Demographic and clinical characteristics

Variable

Patients (n=17)  Controls (n=17) P Value

Age (range)

Sex (male/female)
Handedness (right/left)
Mean Premorbid IQ

Years of lliness
Age at Onset
Mean PANSS Score

Antipsychotic medication

Quetiapine

Risperidone

Clozapine

Olanzapine

Aripiprazole

Perphenazine

Mean (SD) Chlorpromazine Equivalents, mg/d

17.9 (15.2-20.4) 17.5(15.1-19.9) t5,=0.87, p=.48

1116 11/6 X2 (1)=0, p<.99

13/4 13/4 %% (1)=0, p<.99

96 (SD 16) 97 (9) t32=-0.21, p=.83
1.4 (SD 0.9)
16.5 (SD 1.2)

44.92 (SD 18.38)
10
2
1
1
2

1
188.7 (166.0)
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Table 2. ANOVA results encoding

Map No of Talairach coordinates WM Load1 WMLoad2 WM Load 3
Index Name BA Vertices X y z ts2) ts2) ts2)

1 left VLPFC 45 56 -48 25 12 2.91° 2.88° 3.79°

2 left IPL 40 126 -54 -43 26 2.55° 3.61° 4.52°

3 left VLFPC 44 97 -48 11 12 0.32 2.75° 3.71°

4 left insula 13 79 -34 4 6 -2.15° 0.51 2.99°

5 left middle temporal gyrus 37 197 -50 -55 7 -1.21 2.06° 3.12°

6 left precuneus 31 195 -6 -68 27 -1.63 1.90° 2.85°

7  right lingual gyrus 18 181 18 -56 4 -2.41° 2.06° 1.92°

8  right IPL 40 101 57 -41 26 2.12° 1.79° 2.05°

p<.1 (trend) ’p<.05 ©“p<.01
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Table 3. ANOVA results early maintenance

Map No of Talairach coordinates WM Load1 WMLoad2 WM Load 3
Index Name BA \Vertices X y z ts2) ts2) ts2)

1 left insula 13 418 -40 -26 17 2.94° 3.14° 3.86°

left middle temporal gyrus 19 83 -45 -63 13 1.11 2.31° 3.49°
3 left middle occipital gyrus 19 79 -24 -81 14 3.15° 3.80° 3.63°
4 left precuneus 31 240 -5 -68 23 3.39° 4.45° 3.75°
5 left posterior cingulate cortex 31 230 -10 -33 38 2.64° 4.28° 3.20°
6  right central sulcus 1,2 125 19 -32 58 2.68° 3.64° 2.55
7  right supramarginal gyrus 40 286 51 -25 24 2.46° 3.63° 3.95°
8  right superior temporal gyrus 41 152 51 -29 16 2.92° 2.61° 3.56°
9 right middle occipital gyrus 19 116 24 -80 16 3.88° 3.84° 4.83°
10  right posterior cingulate cortex 31 134 12 -30 41 2.07° 3.95° 2.28°
11 right precuneus 31 187 7 -65 25 2.42° 4.58° 3.41°
12 right lingual gyrus 18 78 8 76 11 2.12° 4.60° 4.11°
13 left DLFPC 9 47 -37 10 38 -1.98% 1.58 3.47°
14 left FEF % 48 -26 -12 51 -1.842 -1.53 1.86°
15 left SPL 7 126 -31 -50 44 -1.47 -1.702 1.59
16 left posterior IPS 19 131 -30 -62 37 -0.29 -2.56° 2.05°
17 left posterior IPS 7 96 -23 -67 35 -0.05 -0.37 2.68°
18 right SPL 7 107 31 -49 42 -0.14 -0.79 2.75°

p<.1 (trend) °p<.05 ©°p<.01
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Table 4. ANOVA results late maintenance

34

Map No of Talairach coordinates WM Load1 WMLoad2 WM Load 3
Index Name BA \Vertices X y z t2) ts2) ts2)

1 left superior frontal gyrus 6 83 -16 -14 62 -3.01° -2.18° -3.25°

2 left superior temporal gyrus 39 185 -45 -54 20 1.61 3.58° 2.22°

3 left posterior cingulate cortex 31 63 -5 -41 29 1.18 4.14° 1.91°

p<.1 (trend) ®p<.05 ©“p<.01
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Table 5. ANOVA results retrieval

Map No of Talairach coordinates WM Load1 WMLoad2 WM Load 3

Index Name BA Vertices X y z t(s2) t2) ts2)
1 left anterior PFC 10 31 -33 48 18 -1.72° -3.74° -2.70°
2 left inferior VLPFC 47 37 -27 20 -3 -1.65 -2.80° -3.19°
3 left IPL 2,40 94 -49 -25 35 -4.12° 2.72° -3.17°
4 left IPL 40 36 -37 -48 37 -2.73° -2.80° -2.40°
5 left anterior cingulate gyrus 32 19 -8 27 26 -1.18 -3.61° -2.56°
6 right inferior VLPFC 47 36 28 19 2 -1.92° -3.02° -2.29°
7 right IPL 2,40 50 38 -30 41 -2.62° -3.39° -2.92°
8 right lingual gyrus 18 16 11 -86 -7 -1.35 -3.85° -2.48°
9 left fusiform gyrus 37 88 -30 -38 -11 2.62° -1.40 0.77
10 right anterior cingulate gyrus 32 47 5 22 28 2.04° -2.79° -1.73?

ap<.1 (trend) p<.05 °p<.01
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Figure Legends

400ms 600ms 400ms ©600ms 400ms 600 ms

Encoding Delay Retrieval
1-3s 12 s 3s

Figure 1. Working memroy paradigm.

The delayed discrimination task with random shapes. Memory load was varied by
presenting one to three objects for encoding for 600 msec each with an
interstimulus interval of 400 msec. After a 12 second delay interval a probe stimulus
was presented for 3 seconds. Subjects had to judge whether or not it was part of

the initial sample set by pressing a button. The intertrial interval was 12 seconds.
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Figure 2. Behavioral parameters.

Mean reaction time (left) and mean K (the number of objects stored in WM) (right)
for each memory load condition are shown for controls (blue) and patients (red).

Error bars represent SEM. *p<.05, **p<.01.
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Figure 3. ANOVA results encoding.

a ) F-maps of the ANOVA for encoding (p<.05, corrected using cluster
thresholding). Areas, which showed a main effect of memory load (CLT 142 mm?),
are depicted in white. Areas, which showed a main effect of group (CLT 37 mm?),
are depicted in yellow. Areas, which showed a group by memory load interaction

(CLT 52 mm?2), are depicted in green.
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The numbers next to each area showing either a main effect of group or a group by
memory load interaction correspond to the respective indices in Table 2.
Additionally, next to each index number the results of the two-tailed t-tests for group
differences for each memory load condition are represented by three colored
vertical bars. The lower bar corresponds to the memory load 1, the middle bar
corresponds to the memory load 2 and the upper bar corresponds to the memory
load 3 condition. For these bars, blue indicates significantly higher activation
(p<0.05) in controls compared to patients, while light blue indicates a trend (p<0.1).
Red indicates significantly higher activation (p<0.05) in patients compared to
controls, while orange indicates a trend (p<0.1). b) Correlation between BOLD
activity and the number of objects stored in WM across all memory load conditions
for controls (blue) and patients (red). *p<.05, **p<.01. VLPFC: ventrolateral

prefrontal cortex.
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Figure 4. ANOVA results early maintenance.

F-maps of the ANOVA for early maintenance (p<.05, corrected using cluster
thresholding). Areas, which showed a main effect of memory load (CLT 64 mm?),
are depicted in white. Areas, which showed a main effect of group (CLT 61 mm?),
are depicted in yellow. Areas, which showed a group by memory load interaction
(CLT 33 mm?2), are depicted in green. The numbers next to each area with a main
effect of group or a group by memory load interaction correspond to the respective
indices in Table 3.. Additionally, next to each index number the results of the two-
tailed t-tests for group differences for each memory load condition are represented
by three colored vertical bars. The lower bar corresponds to the memory load 1, the
middle bar corresponds to the memory load 2 and the upper bar corresponds to the

memory load 3 condition. For these bars, blue indicates significantly higher
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activation (p<0.05) in controls compared to patients, while light blue indicates a
trend (p<0.1). Red indicates significantly higher activation (p<0.05) in patients

compared to controls, while orange indicates a trend (p<0.1).

41
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Figure 5. ANOVA results late maintenance.

a) F-maps of the ANOVA for late maintenance (p<.05, corrected using cluster
thresholding). Areas, which showed a main effect of memory load (CLT 72 mm?),
are depicted in white. Areas, which showed a main effect of group (CLT 37 mm?),
are depicted in yellow. No area showed a significant group by memory load

interaction The numbers next to each area showing a main effect of group
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correspond to the respective indices in Table 4. Additionally, next to each index
number the results of the two-tailed t-tests for group differences for each memory
load condition are represented by three colored vertical bars. The lower bar
corresponds to the memory load 1, the middle bar corresponds to the memory load
2 and the upper bar corresponds to the memory load 3 condition. For these bars,
blue indicates significantly higher activation (p<0.05) in controls compared to
patients, while light blue indicates a trend (p<0.1). Red indicates significantly higher
activation (p<0.05) in patients compared to controls, while orange indicates a trend
(p<0.1). b) Correlation between BOLD activity and the number of objects stored in
WM across all memory load conditions for controls (blue) and patients (red). *p<.05,

**p<.01. STG: superior temporal gyrus, PCC: posterior cingulate cortex.
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Figure 6. ANOVA results retrieval.

F-maps of the ANOVA for retrieval (p<.05, corrected using cluster thresholding).
Areas, which showed a main effect of memory load (CLT 47 mm?), are depicted in
white. Areas, which showed a main effect of group (CLT 15 mm?), are depicted in
yellow. Areas, which showed a group by memory load interaction (CLT 37 mm?),
are depicted in green. The numbers next to each area showing either a main effect
of group or a group by memory load interaction correspond to the respective indices
in Table 5. Additionally, next to each index number the results of the two-tailed t-
tests for group differences for each memory load condition are represented by three
colored vertical bars. The lower bar corresponds to the memory load 1, the middle
bar corresponds to the memory load 2 and the upper bar corresponds to the

memory load 3 condition. For these bars, blue indicates significantly higher
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activation (p<0.05) in controls compared to patients, while light blue indicates a
trend (p<0.1). Red indicates significantly higher activation (p<0.05) in patients

compared to controls, while orange indicates a trend (p<0.1).
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Seed Region Controls > Patients Patients > Controls

Figure 7. Functional connectivity results encoding.

t-map depicting significant group differences in the strength of functional
connectivity during encoding for the left VLPFC (two-tailed t-tests, random effects
level, p<.05, corrected using cluster thresholding; CLT 45 mm?). Blue areas
indicate stronger connectivity with the seed region for controls, red areas indicate
stronger connectivity with the seed region for patients (two-tailed t-tests, random

effects level).
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Figure S1. Task-related activation and deactivation maps encoding.

Superimposition maps showing the cortical networks engaged in both patients and
controls during encoding for each WM load condition (t-test, p<.05, corrected using
cluster thresholding). Areas showing task related activation are depicted in red,
areas showing task related deactivation are depicted in blue. Each WM load
condition is associated with an increasingly darker shade of red and blue, reflecting
increasing WM load. Colors are superimposed and areas of overlap (cortical
regions showing activation or deactivation during more than one WM load condition)

receive the appropriate mixed color.
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Figure S2. Task-related activation and deactivation maps early maintenance.

Superimposition maps showing the cortical networks engaged in both patients and
controls during early maintenance for each WM load condition (t-test, p<.05,
corrected using cluster thresholding). Areas showing task related activation are
depicted in red, areas showing task related deactivation are depicted in blue. Each
WM load condition is associated with an increasingly darker shade of red and blue,
reflecting increasing WM load. Colors are superimposed and areas of overlap
(cortical regions showing activation or deactivation during more than one WM load

condition) receive the appropriate mixed color.
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Figure S3. Task-related activation and deactivation maps late maintenance.

Superimposition maps showing the cortical networks engaged in both patients and
controls during late maintenance for each WM load condition (t-test, p<.05,
corrected using cluster thresholding). Areas showing task related activation are
depicted in red, areas showing task related deactivation are depicted in blue. Each
WM load condition is associated with an increasingly darker shade of red and blue,
reflecting increasing WM load. Colors are superimposed and areas of overlap
(cortical regions showing activation or deactivation during more than one WM load

condition) receive the appropriate mixed color.
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Figure S4. Task-related activation and deactivation maps retrieval.

Superimposition maps showing the cortical networks engaged in both patients and
controls during retrieval for each WM load condition (t-test, p<.05, corrected using
cluster thresholding). Areas showing task related activation are depicted in red,
areas showing task related deactivation are depicted in blue. Each WM load
condition is associated with an increasingly darker shade of red and blue, reflecting
increasing WM load. Colors are superimposed and areas of overlap (cortical
regions showing activation or deactivation during more than one WM load condition)

receive the appropriate mixed color.
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Load 1 Load 2 Load 3

left ventrolateral left inferior left ventrolateral left insula (4)
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left middle left precuneus (6 r|ght lingual gyrus (7 right inferior
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B Controls M Patients Xp=.1 *p=.05 *%p=.01

Figure S5. Beta values encoding.

Beta values for the regions of interest derived from the ANOVA for encoding for
controls (blue) and patients (red). The number for each region corresponds to its

index in Figure 3 and Table 2. Error bars represent SEM.

Xp<.1, *p<.05, **p<.01.
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Load 1 Load 2 Load 3
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Figure S6. Beta values early maintenance.

Beta values for the regions of interest derived from the ANOVA for early
maintenance for controls (blue) and patients (red). The number for each region

corresponds to its index in Figure 4 and Table 3. Error bars represent SEM.

*p<.1, *p<.05, **p<.01.
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Load 1 Load 2 Load 3
as *% * **k 08 *% * 08 *% X
left superior frontal left superior left posterior
gyrus (1) temporal gyrus (2) cingulate cortex (3)

B Controls [l Patients X p=.1 *p=.05 *% p=.01

Figure S7. Beta values late maintenance.

Beta values for the regions of interest derived from the ANOVA for late maintenance
for controls (blue) and patients (red). The number for each region corresponds to its

index in Figure 5 and Table 4. Error bars represent SEM.

Xp<.1, *p<.05, **p<.01.
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Load 1 Load 2 Load 3
left anterior prefrontal left ventrolateral left inferior left inferior
cortex (1) prefrontal cortex (2) parietal lobule (3) parietal lobule (4)
left anterior r|ght ventrolateral right inferior right
cingulate gyrus (5) prefrontal cortex (6) parietal lobule (7) lingual gyrus (8)
left right anterior
fusiform gyrus (9) cingulate gyrus (10)

H Controls [l Patients Xp=.1 *p=.05 %% p=.01

Figure S8. Beta values retrieval. Beta values for the regions of interest derived
from the ANOVA for retrieval for controls (blue) and patients (red). The number for
each region corresponds to its index in Figure 6 and Table 5. Error bars represent

SEM.

*p<.1, *p<.05, **p<.01.



