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Abstract

Dessin d’Enfants on elliptic curves are a powerful way of encoding doubly-periodic

brane tilings, and thus, of four-dimensional supersymmetric gauge theories whose

vacuum moduli space is toric, providing an interesting interplay between physics,

geometry, combinatorics and number theory. We discuss and provide a partial clas-

sification of the situation in genera other than one by computing explicit Belyi pairs

associated to the gauge theories. Important also is the role of the Igusa and Shioda

invariants that generalise the elliptic j-invariant.
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1 Introduction

Over almost a decade, a fruitful programme of investigating certain extraordinary

bipartite structure of supersymmetric gauge theories in four-dimensions has emerged.

What began as a convenient method of encoding the matter content and interac-

tions of world-volume gauge theories of D3-branes probing non-compact Calabi-Yau

manifolds that admit a toric description [1], has blossomed into a vast field ranging

from the field and string theory of configurations of brane tilings [2, 3] to the inte-

grable models of dimers [4, 5], from the geometry of Calabi-Yau algebras and cluster

transformations [6] to the systematic outlook of bipartite field theories (BCFTs) [7–9]

and remarkable relations to scattering amplitudes in N = 4 Super-Yang-Mills the-

ory [10–14].

A particularly enticing direction has been the recasting [15–18] of the above setup

in terms of Grothendieck’s dessin d’enfant [19], a structure which caused the great

master himself to exclaim: “I do not believe that a mathematical fact has ever struck

me quite so strongly as this one, nor had a comparable psychological impact”. Sub-

sequently, it is natural that a rich interplay between field theory and number theory

should emerge [20–22]. The concrete realisation of the dessin is amazingly simple,

consisting of a pair – the so-called Belyi pair – of data: a Riemann surface Σ and
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a surjective map therefrom unto P1. In explicit coordinates, this is no more than a

(hyper)elliptic curve in affine variables (x, y) ∈ C2 and a rational function in (x, y).

What astounded Grothendieck is that this “very familiar, non-technical nature of the

objects considered, of which any child’s drawing scrawled on a bit of paper gives a

perfectly explicit example” should encode the subtleties of a holy grail of number

theory, the absolute Galois group Gal(Q/Q). Indeed, the key to the Belyi pair is that

the parameters therein are (rigidly) algebraic numbers; while the degree of the field

extension over Q has been shown to be a Seiberg duality invariant, how these alge-

braic numbers precisely relate to the R-charges (under isoradial embedding) and to

(normalised) volumes in the dual Sasaki-Einstein geometry remains to be understood.

With the aid of modern computing and algorithmic geometry [23], the combinatorial

nature of our theories is especially amenable to a taxonomical analysis, and series

of classification results in cataloguing these brane tilings as bipartite graphs and/or

as quivers with superpotential has been shedding continual light via experimentation

[22, 24–33]. Along this vein of thought, it is certainly an important question to

write down, and classify where possible, the relevant Belyi pairs. Unfortunately,

this is an extremely difficult task, computationally prohibitive even in seemingly

innocuous cases, because we need to solve for the exact roots of high degree polynomial

systems. There are only a handful of cases known in the gauge theory literature

[16]. Again, with high-power computing and efficient algorithms, there has been

encouraging progress [34–39].

While the archetypal brane tilings and dimer models are bipartite graphs on the

torus, i.e., dessins on the elliptic curve, which give us affine Calabi-Yau threefolds,

in general, the moduli spaces of gauge theories corresponding to dessins on genus g

Riemann surfaces are Calabi-Yau varieties of dimension 2g + 1 [31,33]. We will take

this comprehensive viewpoint, calculate where needed and make use of the available

datasets from the mathematics literature where possible (extensive use will be made

of the excellent interactive website of [39]), to explicitly write down the Belyi pairs,

genus by genus, and degree by degree. This catalogue should prove to be valuable to

the study of the gauge theories of our concern. In due course, we will discuss some

general strategy in computing Belyi pairs for families of related geometries, as well

as the use of invariants beyond the famous Klein j-invariant.

The organisation of the paper is as follows. In Section 2, we briefly review and outline

the construction of dessins d’enfants as explicit Belyi pairs of a hyperelliptic curve of
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arbitrary genus and a rational map therefrom onto P1. This structure should encode

a supersymmetric gauge theory whose moduli space of vacua is a toric variety. Next,

in Sections 3, 4 we address genus 0 and 1 respectively. Genus 1 is the case of the torus,

or doubly-periodic brane tiling of the plane and is the most studied class. We then

discuss extensions to higher genera, focusing on the recently studied double-handled

tilings of genus 2 in Section 5 and thence, to genus 3 in Section 7. We will see how

generalisations of the Klein j-invariant, the so-called Igusa and Shioda invariants, are

useful in the construction. We conclude with an outlook in Section 8.

2 Dessins d’Enfants in Arbitrary Genera

In this section, we briefly introduce the main tool in studying the subject of gauge the-

ories in the context of bipartite field theories; namely the theory of dessins d’enfants.

The reader is referred to the wonderful books [19,40] on dessins and a rapid introduc-

tion and brief review in [21] for its context in physics. Simply put, a dessin is a finite,

connected graph, possessing 2-colouring i.e., it is bipartite, with nodes coloured black

and white alternately. To this idea, we now apply Belyi’s theorem which states that:

Theorem 1 If Σ is an algebraic curve (complex surface) over C, then it has a model

over Q if and only if there exists a holomorphic covering β : Σ −→ P1C, ramified

over only three points. These three points may be taken as {0, 1,∞} by a Möbius

transformation.

We refer to the combination (Σ, β) as a Belyi pair. The Weierstraß ℘ (z) function

allows us to algebraically realise the Riemann surface Σ as a hyperelliptic curve of the

form y2 = f (x), where the degree of the polynomial f (x) is such that it is related to

the genus of Σ as:

g (genus) −→ 2g + 1 or 2g + 2 (degree). (2.1)

The holomorphic map itself is rational, which in its most general form can be written

as:

β (x, y) =
P (x) +R (x) y

Q (x)
, (2.2)
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where P,Q,R are polynomials in x. Note that any expression in y2 will be reduced

to a polynomial in x via the definition of the hyperelliptic curve.

One should know that because two of the preimages can be forced to be at x = 0 and

x = 1 by means of an SL(2,C) transformation, the curve y2 = f(x) can be written

in the factored or so-called Legendre form:

y2 = f(x) = x(x− 1)(x− α)(x− β)(x− γ) . . . , (2.3)

where once again the order of the polynomial in x is determined by the genus of the

surface it describes as in Equation 2.1. The calculation of the ramification indices

follows the methodology set by [16]. It is expedient to introduce the total derivative,

which is the derivative to be used when considering the order of vanishing (i.e., ram-

ification) at the branch points when restricted to Σ. Defining F (x, y) = y2 − f (x),

which must vanish identically on the curve, we have that:

d

dx
=

∂

∂x
− ∂xF

∂yF

∂

∂y
. (2.4)

This expression is valid at the points where x is a good local coordinate i.e., points

where the coordinates (x, y) do not vanish on the curve. This is reflected in the fact

that ∂yF = 2y vanishes at these points and the second term diverges. Therefore,

alternatively, we can use:

d

dy
=

∂

∂y
− ∂yF

∂xF

∂

∂x
, (2.5)

which is valid when ∂xF 6= 0 and this y is a good local coordinate. Finally, near the

point (∞,∞), where a good coordinate is ε with x = 1/ε2 and y = 1/εd, where d is

the degree of the polynomial f (x), the total derivative can be written as:

d

dε
= −2y

∂

∂x
− dx2 ∂

∂y
. (2.6)

If β (∞) =∞, then this derivative is understood to be acting on 1/β. With these in

hand, we need only to follow a straightforward routine. If (xi0, y
i
0) is a preimage of 0,
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Figure 1: Examples of dessins with the corresponding ramification structures alongside. Note that
these examples are purely for illustrative purposes, and not realisable as physical gauge theories, for which
we require a node to have at least 2 edges, as well as the “balanced bipartite conditions” – i.e., that
there are as many white nodes as there are black in the fundamental region of the dessin.

then its ramification r0 (i) is defined where:

dk

dxk

∣∣∣∣
(xi0,yi0)

β (x, y) = 0, (2.7)

for all k = 0, 1, 2, . . . , r0 (i)−1, where k = 0 is just evaluation. We then follow a similar

procedure to calculate r1 (i) and r∞(i). In order to go from here to the drawing of

dessins, we make the following identifications: for the mth preimage of 0, we associate

a black node with valency r0(m) (i.e., r0(m) edges), and to the nth preimage of 1, we

associate a white node with valency r1(n). Given that the dessins are bipartite, we

connect only black nodes to white nodes and vice versa, thereby forming a face, which

is a (2r∞(k))−gon. To compactify the above information for an individual dessin,

represented by the hyperelliptic curve y2 = f(x), we use the following notation for

the ramification structure (also known as passport of the dessin [19, 40]):


r0(1), r0(2), . . . , r0(B)

r1(1), r1(2), . . . , r1(W )

r∞(1), r∞(2), . . . , r∞(I)

 . (2.8)

Examples of this notation are shown in Figure 1. We conclude this section with the

Riemann-Hurwitz formula, that allows us to easily translate between the notation
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above and the genus of the surface Σ that it represents:

2g − 2 = d− (n0 + n1 + n∞), (2.9)

where d is the degree of the map β(x, y), equal to Σir0(i) = Σir1(i) = Σir∞(i), and

n{0,1,∞} are the number of ramification points for {0, 1,∞} respectively.

In general, a dessin on a genus g Riemann surface corresponds to a brane tiling whose

world-volume physics is an N = 1 supersymmetric gauge theory in four dimensions

whose (mesonic) moduli space [31] is an affine toric Calabi-Yau manifold of dimension

2g+1. Indeed, for g = 1, we have the moduli space being a Calabi-Yau threefold: this

is why brane tilings on the torus, i.e., doubly-periodic planar tilings are so important

in string theory and to AdS/CFT. In the following sections, we present a discussion

on Belyi maps in the case of genus 0, 1, 2 and 3, with reference to specific cases that

further illustrate the points made, with focus on the computational aspect of these

Belyi pairs.

3 Genus 0: Dessins on the Riemann Sphere

We will begin by considering the simplest class of toric gauge theories – those that

can be represented as dimer models/brane tilings on a genus 0 Riemann surface. Of

course, this space is nothing but the 2-sphere S2 ' P1. With g = 0, a quick check

against the Riemann-Hurwitz relation in Equation (2.9) tells us that for Belyi pairs

in a genus 0 case, the number of ramification points exceeds the degree of the map

by 2. An example of the ramification structure would be


3, 2, 2

3, 2, 2

3, 2, 2

. Clearly in this

case, the number of ramification points is 9, while the degree of the map is 7. The

fundamental region of this dimer model consists of three black nodes (one with 3

edges, and two with 2), three white nodes (one with 3 edges, and two with 2), and

three types of faces (U (N) gauge groups) – one with 6 sides, and two with 4 sides.

Because of the fact that the target space is simply a 2-sphere it therefore renders

the term “Belyi pair” a bit of a misnomer in the genus 0 case as there is no need
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for a hyperelliptic curve. Moreover, the Belyi map is simply a rational function

f(x) = P (x)/Q(x) in x, the projective coordinate of the source P1 onto the target P1.

Thus, one can imagine a fairly straight-forward algorithm to determine the map and

the reader is referred to [19,40] and also [41] for a nice exposition. For low degree, it

is relatively straightforward to calculate f(x) even using software like MATHEMATICA,

however as the degree goes up and the dessin becomes more complicated, the algebraic

numbers involved quickly grow to formidable complexity, being explicit roots, where

possible, of polynomials of high degree.

We present a catalogue of ramification structures and their corresponding Belyi maps

arising in genus 0 in Appendix A. Some maps do not exist, and were ruled out due

to the Frobenius relation, thanks to insight from [39]. As an explicit illustration,

consider the ensuing map which up to the re-definition of (0, 1,∞) gives the trivalent

dessin in the right of Figure 1; note that this shuffling of the critical points makes

the dessin itself look rather different, as we will see below:
3

3

1, 1, 1

 −→
(
−3i+

√
3
)
x3

9
(
i+
√

3− 2ix
)

(x− 1)
. (3.1)

We now record the pre-images of the critical points, the Taylor series around these

points whence we can see the ramification index by noticing the lowest power, as well

as the corresponding dessin:

image pre-image Series Ram

0 0
(−
√
3+3i)x3

9
√
3+9i

+O (x4) 3

1 a := 1
2

(
3− i

√
3
)

1 + i(x−a)3
3
√
3

+O ((x− a)4) 3

∞ 1
1
6
− i

6
√
3

x−1 +
(

1
2
− i

6
√
3

)
+O ((x− 1)1) 1

b := 1
2

(
1− i

√
3
)

3−i
√
3

18(x−b) + 1
18

(
9 + i

√
3
)

+O ((x− b)1) 1

∞ 1
18

(
3 + i

√
3
)
x+ 1

3
+O

((
1
x

)1)
1

(3.2)

The above example serves as quite a pedagogical illustration of the type of calculations

involved. Note that all coefficients are algebraic numbers; in the above they are
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in quadratic extension of Q. Of course, in the type of brane-tilings used in the

construction of N = 1 world-volume gauge theories of D-branes, we usually do not

consider orphan legs - i.e., valency one nodes or mass terms - i.e., valency two nodes

- which can be integrated out. In other words, traditionally, only valency 3 and

above, corresponding to cubic and higher interaction terms in the superpotential,

are considered. However, due to the study of BFTs in the more general context as

discussed in the introduction, we include all valencies and include the relevant dessins

in the catalogue for completeness. One final point to emphasise in our catalogue is

that all the permutations amongst the three rows of the passport amounts to a linear-

fractional transformation among the 3 branch points (0, 1,∞), which can then be

composed with the Belyi map presented.

4 Genus 1: Doubly-Periodic Brane Tilings

A reference to the Riemann-Hurwitz formula in Equation (2.9) tells us that in the

genus 1 case, the number of ramification points is equal to the degree of the map.

The canonical example used to illustrate this case is that of C3, the dessin for which

is shown below. It should be noted that the map locally looks like w = z3 around

the 3 ramification points. Recall that the permutation triple has σB, σW , and σ∞ all

equal to (123). This means that the ramification structure is


3

3

3

. This notation

means that we require zero, one, and infinity to each have only one preimage on the

torus, and that the ramification indices of these points must be three. So we require

the map to look like w = z3 in local coordinates at these three points. The Belyi Pair

with these properties can be written

β(x, y) =
1

2
(1 + y) , y2 = x3 + 1 . (4.1)

We can briefly exhibit the ramification structure of this pair. The preimage of zero is

found by solving β(x, y) = 0, which gives y = −1 and so x = 0 (from consulting the

torus). We wish to see what the good local coordinates are around the point (0,−1),

and so we substitute x = 0 + δx and y = −1 + δy into the torus. Taking only the
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Figure 2: Dimer for the C3 theory. The red section encloses the so-called “fundamental region” of
the dimer. This fundamental region is then periodically tiled over the surface of the torus on which it is
embedded, and it is this object that we call the dessin d’enfant. We label the edges in terms of fields
to be included in the superpotential for our theory, whereas the hexagonal face represents the relevant
U(N) gauge group. The label “1” refers to the fact that there is only one gauge group in the case of C3.

leading order in the small quantities δx and δy, we find that δy ∼ δx3 and so we

can take δy ∼ ε3 as a good local coordinate. Substituting y = −1 + ε3 into β(x, y)

shows that the ramification index of our (only) preimage of zero is indeed three. The

preimages of one and infinity are similarly structured.

4.1 j−invariants and Coordinate Transformations

Of course, the Belyi pair presented in Equation (4.1) is by no means unique. We can

always find a coordinate transformation in (x, y) that will map our current Belyi pair

to a new one. The concept of j−invariants allows us to identify sets of elliptic curves

that are equivalent in the sense that they represent the same toric surface, and vary

only by some coordinate transformation. For an elliptic curve defined as

y2 = 4x3 − g2x− g3 , (4.2)

the j−invariant [42] is defined as:

j = 1728
g32

g32 − 27g23
. (4.3)
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For example, one alternative representation of C3 [16] is the Belyi pair:

y2 = x (x− 1)

(
x− 1

2

(
1− i

√
3
))

, β (y) =
1

2

(
1 + (−1)

1
4 3

3
4y
)
. (4.4)

Despite the fact that the ramification structure is exactly as it should be for C3, the

Belyi pair itself looks completely different to that in Equation (4.1). A verification

of the j−invariant for each of the elliptic curves yields j = 0 for both of the cases,

indicating that the two curves represent the same toric surface, related by some coor-

dinate transformation. While neither y2 = x3+1 nor y2 = x (x− 1)
(
x− 1

2

(
1− i

√
3
))

are in the form given in Equation (4.2), a theorem due to Nagell allows us to trans-

form any cubic curve to the form y2 = 4x3 − g2x − g3, validating our use of Equa-

tion (4.3) for the j−invariant (see [43] for more details). The transformation in this

case
{
x→ 2(x+1)

3+i
√
3
, y → (−1)

−1
4 3

−3
4 y
}

takes the above Belyi pair to the standard form

shown in Equation (4.1).

4.2 Fertile Elliptic Curves

In this section we present several appealing parameterisations of elliptic curves. The

table following each curve provides details of its noteworthy points. Whilst all elliptic

curves can be brought by coordinate transformation into the Weiestraß form (Equa-

tion 2.3), when thinking through the construction of Belyi Pairs one of these different

parameterisations may be more instructive because the points with nontrivial orders

of vanishing in the good local coordinate ε are exhibited explicitly. Generic points

(i.e. those with no special properties) are represented as (G, g). The columns headed

by δx and δy contain the variation of x and y in terms of the good local coordinate

ε, whilst the multiplicity columns state how many points on the torus are specified

by choosing that particular value of x or y. The cube roots of unity are written as

ωi = (1, ei
2π
3 , ei

4π
3 ).
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4.2.1 y2 = x(x− 1)(x− λ)

x y δx δy x - multiplicity y - multiplicity

G g ε ε 2 3

0, 1, λ 0 ε2 ε 1 3

∞ ∞ ε−2 ε−3 1 1

This form is the Legendre Normal Form set out in [16].

4.2.2 (y − a)2 = (x− γ)3 + η2

x y δx δy x - multiplicity y - multiplicity

G g ε ε 2 3

γ a± η ε ε3 2 1

γ − ωiη
2
3 a ε2 ε 1 3

∞ ∞ ε−2 ε−3 1 1

This parameterisation is particularly appealing due to the appearance of the points

which vanish with a cubic dependence on the good local coordinate, δy ∼ ε3.

4.2.3 (y − a)(y − b)(y − c) = (x− γ)3

x y δx δy x - multiplicity y - multiplicity

G g ε ε 3 3

γ a, b, c ε ε3 3 1

η* 1
3
(a+ b+ c±

√
a2 + b2 + c2 − (ab+ bc+ ca)) ε2 ε 2 3

∞ ∞ ε−1 ε−1 1 1

*Here, η represents six values of x. Each of these provides one of the values of y

shown, with δx ∼ ε2, along an extra trivial value of y which has δx ∼ ε.

The advantage of this elliptic curve is that we have an additional value of y with

13



δy ∼ ε3, but we have obtained it at the cost of losing the useful δy ∼ ε−3; δx ∼ ε−2

vanishing orders at infinity.

4.2.4 (y − a)(y − b) = (x− γ)(x− η)2

x y δx δy x - multiplicity y - multiplicity

G g ε ε 2 3

γ a, b ε ε 2 2

η a, b ε ε2 2 2

∞ ∞ ε−2 ε−3 1 1

The reader should note that in each of these elliptic curves (except the first) we

have tried to maximise the number of free parameters. This is because, when trying

to construct Belyi Pairs it is necessary to adjust parameters in order to obtain the

desired ramification structure (which dictates the gauge theory). Hence, having as

many as possible to play with helps to make the task easier. Whilst in principle many

of these parameters are removable by coordinate transformation, the transformation

would alter the map β(x, y), and may “damage” the ramification structure exhibited

by the pair. This ramification structure encodes the gauge theory, and so allowing

our elliptic curve to have free parameters enables us to fine tune the torus and map

to fit the gauge theory.

4.3 Combinations and Reformations of Belyi Maps

Given the computational complexity in constructing explicit Belyi airs, it is expedient

to see whether we can obtain new pairs given simpler ones. In [15, 16], the situation

of geometric orbifolds by Abelian groups was addressed. There, one simply applies an

unbranched cover of the torus. In the ensuing, we will consider how some algebraic

manipulations on the underlying curve and on the Belyi map generates new theories.
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4.3.1 Combinations

In this subsection we will set out the rules for combining two maps β1 and β2 defined

on the same elliptic curve. We will describe the ramification structure of the new

map β(β1, β2) in terms of the ramification structures of β1 and β2. The combination

we will consider is the product of two maps, β = β1β2.

We will deal first with the preimages of zero and infinity before discussing the more

troublesome preimages of one. The reader is reminded that it is the ramification

indices of these points which encode the gauge theory.

Provided β−11 (0) and β−12 (0) do not coincide then the new ramification structure

at zero possesses the points of both constituent ramification structures, with the

same indices as they previously held. If they do coincide then we must add the

corresponding ramification indices. The ramification structure of infinity works the

same way. If a preimage of zero coincides with a preimages of infinity then the two

may cancel out to some order. We find the resulting ramification index of zero by

subtracting the infinity index from the zero index. This is more easily seen if we

abandon generality and try out an example. For our example we will take the C3

Belyi Pair, and a somewhat arbitrary map for β2:

β1 =
1

2
(1 + y) , β2 =

ei
π
6

√
3

(1 + x) . (4.5)

The maps β1 and β2 will both be defined upon the same curve y2 = x3 + 1. The

ramification structures of these maps are


3

3

3

 and


2

2

2

 respectively. It should be

noted that β2 on the curve y2 = x3 + 1 is not a satisfactory Belyi Pair, because the

number of ramification points, three, is not equal to the degree of the map, two. By

the Riemann-Hurwitz formula, this does not correspond to a map from a curve of

genus one, and hence is not a map from a torus. Nevertheless it is worth considering

non-Belyi Pairs if they are intermediate steps in constructing Belyi Pairs. We now

wish to establish the ramification structure of the new map β = β1β2. Let us consider
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first the preimages of zero:

β−11 (0) = (0,−1) , β−12 (0) = (−1, 0) .

These clearly do not coincide, so we conclude (by adding together the previous ram-

ification structures) that the new ramification structure of zero, for the map β, is†

0 : {23}. Next we should consider the preimages of infinity. For both curves these are

at (∞, ∞). Here we have a case in which the preimages clearly do coincide, and so we

combine the “two” ramification points into one, and add together their ramification

indices. This tells us that the new ramification structure of infinity is ∞ : {5}.

The ramification structure of one is considerably more awkward to deal with. In

general, the previous two ramification structures are destroyed, and we are left with

a string of “trivial” ramification points, giving ramification structure 1 : {111...}.
Forcing the preimages of one to provide an interesting ramification structure is what

makes the construction of Belyi Pairs difficult.

To locate the preimages of one, we must solve simultaneously

β1(x, y)β2(x, y) = 1 , y2 = x3 + 1 .

For the example under consideration we obtain five solutions, each of trivial ramifi-

cation. This tells us that the new ramification structure of one is 1 : {11111}, and

then we can say that the overall ramification structure of β = β1β2 is


23

11111

5

. This

is not a Belyi Pair, since the degree of the map, five, is not equal to the number of

ramification points, eight, which is required by the Riemann-Hurwitz relation for a

map from a curve of genus one [15].

The two maps we started with in this example contained no free parameters, and so

there was no room for adjusting the new preimages of one. Without careful adjusting

of parameters, the only way in which the ramification structures of one can combine

†This notation simply isolates one row of the ramification structure, with the first digit dictating
the isolated row.
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nontrivially is if the preimage of a complex number α via β1 coincides with the preim-

age of α−1 via β2. Then we obtain a combined ramification point, with ramification

index equal to the smaller index out of the two.

An example of this (for α = 1) can be seen when combining β1 = 1
2
(1 + y) and

β2 = (1 + x2) on the same curve as previously. These maps both have a preimages of

one at the point (0, 1). These combine into a single ramification point, of ramification

index 2, which is the smaller index, originating from β2.

4.3.2 Reformations

In this subsection we present several possible reformations of Belyi Maps, i.e. simple

functions of a Belyi Map τ(x, y) which shuffle the preimages to give a new map

β(x, y). This may be useful if, for example, we wish to adjust parameters to fix the

preimages of infinity rather than of one. In that case we would use the reformation
1

1−τ . The tables give β as a function of the old map τ , and indicate how the preimages

have been reshuffled.

β(τ) τ(β = 0) τ(β = 1) τ(β =∞)

1
τ ∞ 1 0

1− τ 1 0 ∞
1

1−τ ∞ 0 1

1
2
(τ + 1

τ
) ±i 1 0 , ∞

β(τ) τ(β = 0) τ(β = 1) τ(β =∞)

τ+1
τ−1 −1 ∞ 1

1+τ
1−τ −1 0 1

1
2
(1 + τ) −1 1 ∞
τ−1
τ

1 ∞ 0

4.4 Philobelyiical Investigations

In this section we present some short investigations regarding the ramification struc-

tures which can be obtained from specific anstze. The elliptic curves referred to are

those exhibited in Section 4.2, and we will make use of the results from Section 4.3.

17



4.4.1 β(x, y) = αx

We will consider the map β = αx acting on the elliptic curve from section 4.2.2,

(y−a)2 = (x−γ)3+η2, and deduce its possible ramification structures. The parameter

α is a non-zero complex number. Starting with zero, we see that x = 0 is required.

This is a generic point with x-multiplicity two, and so without tuning the parameters

the ramification structure of zero is 0 : {11}. However, we can alter this by tuning

the parameters. If we set η2 = γ3 then x = 0 is no longer generic and instead we

have a nontrivial y = a point, with δx ∼ ε2. With this tuning the new ramification

structure of zero is 0 : {2}. In a Belyi Pair the reader is reminded that this structure

would correspond to a black node in the dimer with two connecting edges, i.e. two

superfields in the gauge theory.

The ramification structure of infinity is easy to deduce - the only preimage of infinity

is the point (∞, ∞) on the elliptic curve. Around this point we have δx ∼ ε−2, and

so the ramification structure of infinity is∞ : {2}. In this case there can be no tuning

of parameters to alter this structure.

The preimages of one are easily seen to be at x = α−1. Again, without tuning, this

is a generic point and the ramification structure is 1 : {11}, but as with zero we can

make the ramification structure more interesting by setting α−1 = γ(1− ei 2π3 ). This

tuning forces the preimage of one to be a y = a point and so we obtain δx ∼ ε2 and

hence a white node in the dimer with two connecting superfields, 1 : {2}.

With the tuning described then, the ansatz β = αx on the curve (4.2.2) has the

ramification structure


2

2

2

. This is not a Belyi Pair, but this example has shown

how a nontrivial ramification structure can be obtained from a very simple ansatz by

the action of tuning the parameters of a fertile elliptic curve.

4.4.2 β(x, y) = α(y−µ
y−ν )

This simple ansatz is steeped in possibilities. Let us consider it upon the curve (4.2.2).

Without tuning, the preimages of zero, y = µ, are three generic points, giving us a
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ramification structure of 0 : {111}. The preimages of infinity and one are similarly

generic, at y = ν and y = αµ−ν
α−1 respectively. Without tuning then, the ramification

structure is


111

111

111

. There are several paths we can now consider. The first case is

to choose


α

µ

ν

 =


1

a− η

a+ η

. By consulting the table for curve (4.2.2) we see that

this makes the preimages of zero, one, and infinity all have δy ∼ ε3. The ramification

structure is then


3

3

3

. We have then, with remarkable ease, derived a Belyi Pair

for the C3 theory. Note that the parameters a, η, and γ are still free. Provided the

choice does not disrupt the ramification structure (e.g. η = 0 would set β(x, y) = 1)

then any choice of these parameters is a Belyi Pair for C3. It is important to note

though, that this is not a different Belyi Pair to the one given in section 2 (from [16])

because the two can be related to each other by coordinate transformation. It follows

that there are many ways of writing the Belyi Pair for a given theory. Simplicity

must be traded off between the map and the elliptic curve. For example, we can

express C3 with a simple map β = y, provided the elliptic curve is the somewhat less

elegant y(y − 1) = x3. As in the case discussed earlier in Eq. 4.5, this is another

coordinate-transformed way of writing the Belyi pair for C3.

A second path will lead us to the creation of a further Belyi Pair. If instead of the

previous tuning for µ and ν we leave these as generic (though retain α = 1) then

we will, before further action, have the ramification structure


111

3

111

. In accordance

with the procedure laid out in Section 4.3 we can combine this map with two more

copies of itself, and hence consider its cube. The map is now

β̃ =

(
y − µ
y − ν

)3

.
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The results of section 4.3.1 tell us that the new ramification structure is


333

3 ?

333

,

where we have indicated with a question mark that the remainder of the ramification

structure of one is to be deduced. We find that the finite preimages of one are

comprised of two value of y:

y(β̃ = 1) =
µ− νω
1− ω

,
µ− νω2

1− ω2
; ω = ei

2π
3 .

Without further tuning this would give us


333

3 111 111

333

, but if these two points can

be tuned to y = a − η and y = a + η then we will obtain the nontrivial order of

vanishing δy ∼ ε3. This is found to occur when we set

µ
ν

 =

 a− η(1 + 2ω)

a− η(1 + 2ω2)

.

With this tuning the ramification structure becomes


333

333

333

. The map and curve

now constitute a Belyi Pair for the so-called dP0 theory. Unfortunately this pair is

found to be related by coordinate transformation to the one given in [15] for this

theory, and so is not new. Nevertheless it is encouraging that a Belyi Pair with a

complicated ramification structure can be generated in such a straightforward manner

by considering simple anstze and the rules for combining them.

4.5 A New Belyi Pair - PdP4

The ansatz from the previous subsection has even more to give us. Let us consider

it with


α

µ

ν

 =


1

a− η

a+ η

 again, so that the ramification structure is


3

3

3

. Using

the procedure laid out in Section 4.3.1 we now wish to combine this map with a new
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copy of the ansatz (with new arbitrary parameters µ′ and ν ′), which has been raised

to the fourth power:

β(x, y) =

(
y − (a− η)

y − (a+ η)

)(
y − µ′

y − ν ′

)4

, (y − a)2 = (x− γ)3 + η2 .

Without making any adjustment of parameters the ramification structure is now
3 444

3 111 111 111 111

3 444

, as described in Section 4.3.1. If this is to become a Belyi Pair

then the ramification structure of one is clearly in need of some work. The preimages

of one are found to be solutions to the equation

(y − (a− η))(y − µ′)4 − (y − (a+ η))(y − ν ′)4 = 0 . (4.6)

In general this has four solutions in y, and since the y-multiplicity of generic points on

this curve is three, we get twelve trivial points. However this would not be the case if

the left hand side of equation (4.13) were to factorise nontrivially. In particular, we

would find it useful if, for some choice of the free parameters, we could force for all y

the equality

(y − (a− η))(y − µ′)4 − (y − (a+ η))(y − ν ′)4 = σ(y − φ)2(y − ξ)2 . (4.7)

After a combination of pen-and-paper algebra and MATHEMATICA computation we find

that this equality is indeed possible. The expressions are cumbersome and so we will

not reproduce them here, but it is worth noting that if we are careful we are left

with the parameters µ′, ν ′, and γ free. A convenient choice for these parameters is
µ′

ν ′

γ

 =


1

−1

0

. The j-invariant of the elliptic curve is zero (see appendix C) and

the pair are now expressed as

β(x, y) =

(
y(1 + i) + 1

y(1 + i)− 1

)(
y − 1

y + 1

)4

, y2 = x3 − i

2
.
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The preimages of one are now (∞, ∞) and the six generic points described by y = φ

and y = ξ. The ramification structure is


3 444

3 222 222

3 444

. We are tantalisingly close to a

new Belyi Pair. The number of ramification points is equal to the degree of the map,

fifteen. The only remaining problem is that all the gauge theories which we wish to

describe have dimers with equal numbers of black and white nodes. Clearly our ram-

ification structure has three more white nodes than it has black nodes. Fortunately

we can use a result from section 4.3.2 and act with the reformation β = 1
1−τ on our

map to shuffle the preimages. Our final Belyi Pair is now expressed as

β(x, y) =
(y + 1)4(y(1 + i)− 1)

2(y2(2 + i) + i)2
, y2 = x3 − i

2
. (4.8)

The ramification structure is now


3 444

3 444

3 222 222

, and (4.15) constitutes an original

Belyi Pair. This corresponds to the so-called PdP4 theory, or pseudo del Pezzo 4, a

toric Calabi-Yau cone over a special del Pezzo surface of degree 5, first introduced

in [44].

5 Genus 2: Doubly-Handled Tilings

We are now in a position to study Belyi pairs (and by extension, gauge theories) that

can arise in the case of a dimer model embedded on a genus 2 Riemann surface, which

have recently been studied in [31, 33]. In this section, we will construct and present

a new Belyi pair, the simplest one arising in a genus 2 case – that of


5

5

5

. This is

similar to the C3 case analysed in the genus 1 scenario, in that the fundamental region

for this dimer contains only one white node and one black node. The difference now

is that each node has 5 associated edges (fields), and the solitary face (gauge group)
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is now a 2× 5 = 10−sided polygon.

5.1 Explicit Construction

Our starting point is to first verify that this is indeed a valid ramification structure

in a a genus 2 case, and for this, we turn as before to the Riemann-Hurwitz formula

(Equation (2.9)). Using now that g = 2, and the number of points as 3, we see that

the degree of the map should be 5, as we have above. Once more with C3 as our

motivation, let us use as an ansatz the following pair:

(y − α)2 = x5 + 1, β = β (y) . (5.1)

In the above, we have maintained a simple, but more general form for the (hy-

per)elliptic curve (with α as some complex parameter), adapted to genus 2 by chang-

ing the order of the polynomial in x to 5, the order of the map. We have also started

off with assuming that the Belyi map β is a function of y only. We will see that this,

while a simplistic assumption, is enough to carry us through to the end.

The ramification structure requires that there is only one black node – that is, only

one preimage for 0 when mapped onto the Riemann Sphere. As such, we know that

solutions to the equation β (y) = 0 must vanish on the curve (x = 0). This gives us

(y − α)2 = 0 + 1⇒ y = ±1 + α . (5.2)

We are free to choose either solution, so taking the negative one reveals a more explicit

form for the map β (y) = A (y + 1− α), where A is some overall complex factor.

At this stage, a quick verification of the ramification structure yields


5

1, 1, 1, 1, 1

5

,

which is not a Belyi pair, since it violates our preset balanced bipartite graph condition

(that we want the same number of black and white nodes – hence the same number

of preimages for 0 and 1). In order to tweak the preimages of 1 down to only a single

ramification point, we can make use of the undermined factor A. We want to solve

the case of β (y) = A (y + 1− α) = 1 for the case where the preimage once again
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Figure 3: Dimer for the C5 theory. The “1” indicates the fact that there is only one U(N) gauge
group in this theory, represented by the 5× 2 = 10−sided polygon. The fundamental region encloses 5
black nodes and 5 white nodes, as expected. Figure taken from [31]

vanishes on the curve, so we have

β (y) = A (y + 1− α) = 1⇒ y =
1

A
− 1 + α , (5.3)

which when plugged back into the curve, with the vanishing condition imposed, gives

(
1

A
− 1 + α− α

)2

= 1⇒ A =
1

2
. (5.4)

The fact that α has not contributed to this calculation tells us that we are free to set

it to any value, so choosing α = 0 for simplicity, we reveal the final form for the Belyi

pair as

y2 = x5 + 1, β (y) =
y + 1

2
. (5.5)

On verification of the ramification structure, we see that indeed it corresponds to
5

5

5

. This has now been identified as the so-called C5 theory [31], for which the dessin

is shown above. What the above has shown us is that with some extremely simplified

assumptions, and a single-variable ansatz, it was possible to construct the simplest

Belyi pair arising in the case of a genus 2 surface. On comparing Equations (4.1)
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and (5.5), we see that there is a remarkable similarity between the two. The Belyi

map itself is identical, whereas the curve has only been extended from a degree 3

elliptic to a degree 5 hyperelliptic curve. This is no coincidence, as we shall see in

Section 6.

5.2 Number Field Parameterisations

Looking back at the initial form of an elliptic curve indicated in Equation (4.2), we

have thus far only considered algebraic descriptions of tori defined over the complex

plane C. This is no doubt the most natural field of numbers we could define the curve

over, yet relaxing this constraint can actually lead to a rich world of alternative pa-

rameterisations of the same. Indeed, rather than limiting ourselves to curves defined

over C, we will now look at how the same Belyi pair can be defined over a specific

number field [39]. To illustrate this point, we will once again consider the example of
5

5

5

 above. We denote the number field as F, defined such that

ξ ∈ F : ξ2 + 2 = 0

y2 = 2x5 − 2, β (x, y) =
(2− ξy)

x5
.

(5.6)

ξ here is a complex variable that satisfies the field F. Of course, the solution to this

equation is simply ξ = ±i
√

2. By definition, the Belyi pair (the hyperelliptic curve

and the map) are both defined strictly over the number field F. Let us verify that

the ramification index of 1 is indeed 5. The cases for 0 and ∞ can be calculated

analogously. We first begin by substituting the form of the hyperelliptic curve into

the map, and rewrite it as

β (y) =
2 (2− ξy)

y2 + 2
. (5.7)

This has allowed us to reduce the map to a function of y only. To locate the preimage

of 1, as before, we need to simultaneously solve β (y) = 1 and y2 = 2x5 − 2. This

is easily verified to correspond to the point (0,−ξ) (where we have imposed the

condition of the number field, ξ2 + 2 = 0). Our next step is to verify the order of the

map at deviations around good local coordinates. As before, we substitute x = 0+δx,
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y = −ξ + δy into the hyperelliptic curve to give us

(−ξ + δy)2 = 2 (0 + δx)5 − 2

⇒ (δy)2 − 2ξ (δy)− 2 (δx)5 + ξ2 + 2 = 0 .
(5.8)

This is now a quadratic equation in δy. This time unfortunately, we are not at

liberty to choose either the positive or negative solution. We will consider each case

separately. Using the negative solution first, we have δy = −
√

2
(
−1 + (δx)5

)
+ ξ.

To avoid some clutter, let δx = ε, some small parameter. Now, Taylor expanding to

a tenth order in ε, we get

δy = ξ − i
√

2 +
iε5√

2
+
iε10

4
√

2
+O

(
ε15
)
. (5.9)

Now, substituting x = 0 + ε, y = −ξ + ξ − i
√

2 + iε5√
2

+ iε10

4
√
2

into the form of the map

in Equation (5.6), we get

β =
2−

(
−i
√

2 + iε5√
2

+ iε10

4
√
2

)
ξ

ε5
. (5.10)

Finally, to simplify the above, we use the positive solution from the number field F
that ξ = +i

√
2, and get that

β = 1 +
ε5

4
. (5.11)

So indeed we see that the map around the ramified point 1 is of order 5. If we

had instead used the positive solution for δy in Equation (5.8), then we would have

to use the negative solution from F that ξ = −i
√

2. This may seem alarming at

first, but in fact, is a general pattern in this subject – that conjugate values can

lead to different dessins (i.e., different ramification structures). Calculations for the

ramification indices for 0 and ∞ follow in an analogous manner. The calculation

illustrated above has been slightly more involved than that for C3, or indeed than

what was done in Section 4.1. In the case of


5

5

5

, which we have been considering,

the standard definition of the Belyi pair over C is far simpler and a more natural

consideration. However, what the number field approach does is that it opens up a

huge new set of parameterisations for a Belyi pair. It should theoretically be possible

to reformulate any Belyi pair in this manner, and the hope is that this formalism can
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be used to construct Belyi pairs where the canonical computational rules are difficult

when defined over C.

5.3 Igusa Invariants

In Section 4.1, we briefly spoke about j−invariants, and how they can help distin-

guish sets of elliptic curves. While Equation (4.3) does not carry through to genus

2 elliptic curves, there is an analogue of the same, known as Igusa invariants [45],

which are further studied algorithmically in [46–49]. Note that, however, the choice

of these invariants, unlike the j-invariant, is not canonical. Briefly, given the genus 2

hyperelleiptic curve, with the right hand side being a sextic:

y2 = u0

6∏
i=1

(x− xi) , (5.12)

where u0 is a complex coefficient are xi are the 6 roots of the sextic, Igusa defined

define the four invariants

A′ = u20
∑

15perms
(12)2(34)2(56)2 ;

B′ = u40
∑

10perms
(12)2(23)2(31)2(45)2(56)2(64)2 ;

C ′ = u60
∑

60perms
(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2 ;

D′ = u100
∏
i<j

(ij)2 .

Here, (ij) is shorthand for (xi − xj) and the sums are over the various permutation

possible of combining the 6 six roots in pairs as indicated. Indeed, A′ are summed

over the 15 cross-channels on 6 elements and D′ is the discriminant of the sextic.

We note that these 4 invariants are of degree m = 2, 4, 6, 8 respectively and can be

compactly written as fm := um0
∑

(xi − xj)(xk − x`) . . . in which every xi appears

exactly m times and that fm is symmetric in all six xi.

Computationally, it is often expedient to define the following vector of invariants, the
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notation of which is suggestive of the generalisation of the j-invariant,

igusa = [J2, J4, J6, J8, J10] , (5.13)

where the Ji’s are defined [46] (sometimes called the Igusa-Clebsch invariants) as

J2 = 2−3A′ ;

J4 = 2−53−1(4J2
2 −B′) ;

J6 = 2−63−2(8J3
2 − 160J2J4 − C ′) ;

J8 = 2−2(J2J6 − J2
4 ) ;

J10 = 2−12D′ .

Crucially, a vector of Igusa invariants completely specifies a hyperelliptic curve, up to

isomorphism. We make use of the computational algebra system MAGMA to generate

the vector of Igusa invariants for the two hyperelliptic curves generating


5

5

5

. We

get for y2 = x5 + 1,

igusa = [0, 0, 0, 0, 800000] , (5.14)

whereas for the number field version y2 = 2x5 − 2,

igusa = [0, 0, 0, 0, 819200000] . (5.15)

The fact that the vector of Igusa invariants is different for the two tells us that despite

the visual similarity of the two curves, they are distinct, and represent two distinct

genus 2 tori. In other words, there is no coordinate transformation that links the

two curves. This is a comforting and exciting result; via two different approaches

(over the complex plane first, and then over a number field) and using two distinct

hyperelliptic curves, we have been able to find two separate Belyi pairs representing

the same ramification structure.
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6 Higher Genera Extensions

We commented at the end of Section 4.1 on the remarkable similarity between the

Belyi pair constructed in the case of


5

5

5

 (Equation (5.5)) and that of C3 (Equa-

tion (4.1)). The map was exactly the same in both cases, and the only difference was

that the order of the polynomial in x defining the curve had been changed to match

the degree of the map in each case. Let us now see what happens when we consider

the functions

y2 = x7 + 1, β =
y + 1

2
. (6.1)

If we now go forth and calculate the ramification structure for this (we do not know

yet if it is a Belyi pair or not), then it turns out to be


7

7

7

. If the pattern above is

to follow, given that that we have three ramification points, and that the degree of

the map is now 7, then using the Riemann-Hurwitz relation from Equation (2.9), we

see that this indeed is a Belyi pair, corresponding to genus 3. Without any work at

all, we have been able to generate the simplest Belyi pair for the next highest genus.

Indeed, it turns out that if we change the degree of the map now to 9, 11 or 13 (and

the order of the curve accordingly), then we generate the simplest Belyi pairs for

genus 4, 5 and 6 respectively. Note that the reason for using only odd orders for the

map is because we limit ourselves to cases with only three ramification points. If we

consider even orders (ramification indices) then there is no integer solution for g (the

genus of the surface) in the Riemann-Hurwitz relation:

2g − 2 = (even degree)− 3

⇒ g /∈ Z .
(6.2)
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Hence, we can summarise our extension algorithm as follows: for a Riemann surface

of arbitrary genus g, the Belyi pair for


2g + 1

2g + 1

2g + 1

 is given by

y2 = x2g+1 + 1, β =
y + 1

2
. (6.3)

The reason why this generalisation is so simple is that in every case, the preimages

of 0, 1 and ∞ are given by (0,−1), (0, 1) and (∞,∞) respectively, exactly as they

were in the case of C3. As a result, the verification of the ramification indices, as set

out in Equation 9 follows in exactly the same manner, except that the orders of the

variations around the good local coordinates vary according to the genus g as 2g+ 1.

This therefore, is a very simple “genus generalisation” algorithm. While it is only

applicable to Belyi pairs involving only three ramification points, it will hopefully

serve as a building block to the discovery of even more such rules.

7 Genus 3

The discussion in Section 5 tells us therefore that the simplest genus 3 Belyi pair

comes in the form of


7

7

7

, for which the pair itself is given by

y2 = x7 + 1, β =
y + 1

2
. (7.1)

as demonstrated earlier. Given the trend in identification of C3 and C5 in genus 1

and 2 respectively, we may name this theory “C7”.

7.1 Shioda Invariants

Hyperelliptic curves of genus g = 3 (i.e., those in which the curve y2 = f (x) has a

polynomial f (x) of degree 7 or 8) are classified by a space of 9 Shioda invariants. As
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in the case of the j−invariants for g = 1 or Igusa invariants in g = 2, it is possible to

reconstruct a genus 3 hyperelliptic curve given just the set of Shioda invariants [50]:

Theorem 2 The graded ring S of invariants of binary octavics is generated by 9

elements J2, J3, . . . , J10.

Within this set, the first 6 invariants remain algebraically independent, whereas the

last 3 are related to the others by 5 algebraic relations. In a manner akin to the Igusa

invariants, we denote the set as

Shioda = [J2, J3, . . . , J9, J10] .

The subscript i in each Ji represents the weight of that invariant.

As with the Igusa invariant, one can explicitly write these out. Unfortunately, the

expressions are quite overwhelming. To give an idea, for the genus 3 hyperelliptic

curve given as the general octic:

y2 = a8x
8 + a7x

7 + . . .+ a0 , (7.2)

we have that

J2 =
1

140
(280a0a8 − 35a1a7 + 10a2a6 − 5a3a5 + 2a24),

J3 =
1

137200
(11760a0a4a8 − 7350a0a5a7 + 3150a0a

2
6 − 7350a1a3a8 + 2205a1a4a7 − 525a1a5a6+

+ 3150a22a8 − 525a2a3a7 − 330a2a4a6 + 225a2a
2
5 + 225a23a6 − 135a3a4a5 + 36a34)

(7.3)

for the first two invariants. The reader is referred to a fuller treatment of the subject,

and a description of the generators of the Ji in [50, 51]. If one considers the set of

Shioda invariants as representing a point in the projective space of the given hyper-

elliptic curve (a 7 or 8-dimensional weighted projective space), then it is possible to

normalise this point. To this end, we alternatively identify a set of normalised Shioda

invariants, which we denote as

ShiodaN = [j2, j3, . . . , j9, j10] .
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Given this, the isomorphism condition in genus 3 becomes as follows: two hyperelliptic

curves are unique up to isomorphism if they share the same set of normalised Shioda

invariants. Employing the use of MAGMA, a standard example would be of the curve

y2 = x7 + 1, for which the set of normalised invariants is:

ShiodaN = [0, 0, 0, 0, 0, 1, 0, 0, 0] .

8 Conclusions and Outlook

A vast class of supersymmetric, four-dimensional gauge theories, by far the largest

known to AdS/CFT, is toric in nature by having their moduli space of vacua being

non-compact toric Calabi-Yau manifolds. It is well-established by now that they can

be completely encoded by a bipartite graph on a torus known as a dimer model, or

equivalently a brane tiling on the doubly-periodic plane. It is further known that such

combinatorial objects can, number theoretically, be recast in the form of a Belyi pair

– the combination of a rational map and an elliptic curve, an algebraic description of

the torus to which the former maps.

In this work, we have initiated the study of these Belyi pairs for Riemann surfaces

of arbitrary genera. The case of genus 1 Belyi pairs has, as mentioned, been exten-

sively studied in literature, with the canonical example of the C3 theory denoting

the well-known case of N = 4 Super-Yang-Mills Theory. Through the definition of

the j-invariants of an elliptic curve, it is also possible to find alternative algebraic

descriptions of the same geometric surface (on which the theory is embedded) sim-

ply by means of a coordinate transformation. In addition, we have also seen how

the combination of different maps can help to generate new Belyi pairs, such as the

geometrically-rich PdP4 theory.

Extending beyond the genus 1 case, we also consider the construction of arbitrary

Belyi pairs and their associated gauge theories, giving explicit examples for genus 0,

2 and 3 Riemann surfaces. Using a combination of available databases and further

algorithmic studies, especially with the help of working over finite number fields, we

give a catalogue, graded by degree, of these Belyi pairs. Those theories in which

the identification of the Belyi pair currently evades computation can hopefully be

described more readily through this alternative approach of working over more intri-
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cate fields. We also establish a set of rules allowing for the generation of the simplest

Belyi pairs in arbitrary genera and thus give a family of Belyi pairs persisting through

genera.

The genus 0 case is perhaps most studied in the mathematics literature and has

recently been found to have implications to an interplay between gauge theories and

the modular group. The genus 2 and 3 cases have their own analogues of the j-

invariants, the so-called Shioda and Igusa invariants, and we have exploited their

properties in identifying the gauge theories.

Physically, dimers on Riemann surfaces of general genera arise in several contexts,

ranging from the untwisting procedure in zig-zag paths for toric gauge theories to

the recent flurry of activity on encoding scattering amplitudes in N = 4 using the

combinatorics of amplituhedra. We hope our catalogue of explicit Belyi pairs for

these bipartite graphs can be of use to these diverse communities.
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A Catalogue of Genus 0 Belyi Maps

In this Appendix, we make a classification of Belyi pairs arising in genus 0, up to de-

gree = 7, as described in Section 3. Note that since some of the ramification structures

have indices equal to 1, not all of them necessarily translate to physically relevant

gauge theories. Nonetheless, such a catalogue can prove useful to the mathematical

community.

A.1 Degree 3

Structure Map
3

3

1, 1, 1

 (−3i+
√
3)x3

9(i+
√
3−2ix)(x−1)


2, 1

2, 1

3

 −27
4

(x− 1)x2
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A.2 Degree 4

Structure Map
4

4

1, 1, 1, 1

 x4

4−(8−8i)x−12ix2+(4+4i)x3


3, 1

3, 1

3, 1

 −4(x−1)x3
x− 1

4


2, 2

2, 2

2, 2

 −(x−1)2x2

(x− 1
2)

2


2, 2

2, 2

3, 1

 No map due to Frobenius formula


3, 1

3, 1

2, 2


−64(3+2

√
3)(−1+x)x3

9(−2+
√
3+4x)

2
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A.3 Degree 5

Structure Map
4, 1

4, 1

3, 1, 1

 −3125(−1+x)x4
8(6+25x(−2+5x))


4, 1

4, 1

2, 2, 1


−(19− 41i

2 )(−1+x)x4

((−4+4i)+(2−14i)x+(2+11i)x2)2


3, 2

3, 2

3, 1, 1

 −3125(−1+x)2x3
−64+100x(−4+5x)


3, 2

3, 2

2, 2, 1

 3125(−1+x)2x3
(108+25x(−9+5x))2


3, 1, 1

3, 1, 1

5


−25(−75i+61

√
15)+(7i+

√
15−8ix)(−1+x)x3

2304


2, 2, 1

2, 2, 1

5

 25
8

√
5 (−1 + x)2 x2

(
−1 +

√
5 + 2x

)
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A.4 Degree 6

Structure Map
6

6

1, 1, 1, 1, 1, 1

 x6

(1+(−1+x)x)(1+3(−1+x)x)(−1+2x)


5, 1

5, 1

3, 1, 1, 1

 −729(−1+x)x5
(−1+6x)(2+15x(−1+3x))


2, 4

2, 4

3, 1, 1, 1

 (−1+x)4(2+x)2
8x(−3+x2)


3, 3

3, 3

3, 1, 1, 1

 No map exists due to Frobenius formula


5, 1

5, 1

2, 2, 1, 1

 ix5(−2+(2+i)x)

(−1+2x)(i+(1+2i)(−1+x)x)2
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Structure Map
2, 4

2, 4

2, 2, 1, 1


−(2+

√
3)
√
−3+2

√
3x4(

1+
√
−3+2

√
3−2x

)2 ×

(
−3+
√
−9+6

√
3+2x

)2

(√
3+
√

3+2
√
3−2x

(
−3+
√

3+2
√
3+3x

))


3, 3

3, 3

2, 2, 1, 1

 (−2+(−1)1/3)(−1+x2)
3

9x2(−1+(−1)1/3+x2)


4, 1, 1

4, 1, 1

5, 1

 x4(5+2(−3+x)x)
−1+2x


4, 1, 1

4, 1, 1

2, 4


10x3

(
20(3+2

√
6)
(
3−i
√
−9+4

√
6

)
−15

(
27+12

√
6−i
√

1791+744
√
6

)
x+2i

√
15(921+376

√
6)x3+6x2

(
27+12

√
6+−i

√
15(921+376

√
6)
))

3
(
−15i+

√
5(3+8

√
6)+30ix

)2


4, 1, 1

4, 1, 1

3, 3

 (−1+x)4(1+x(4+x))
32x3


3, 2, 1

3, 2, 1

5, 1

 3125(x−1)2x3(4+5x)
432(−1+5x)
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Structure Map
3, 2, 1

3, 2, 1

2, 4

 Not found due to computational limitations


3, 2, 1

3, 2, 1

3, 3

 Not found due to computational limitations


2, 2, 2

2, 2, 2

5, 1

 No map exists due to Frobenius formula


2, 2, 2

2, 2, 2

2, 4

 No map exists due to Frobenius formula


2, 2, 2

2, 2, 2

3, 3

 x2(3+(−3+x)x)2

4(−1+x)3
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A.5 Degree 7

Structure Map
7

7

1, 1, 1, 1, 1, 1, 1

 x7

1+7(−1+x)x(1+(−1+x)x)2


6, 1

6, 1

3, 1, 1, 1, 1

 (7−2x)x6
5+7(−1+x)x(4+5(−1+x)x)


5, 2

5, 2

3, 1, 1, 1, 1

 − (7−4x)2x5
−9+7(−1+x)x(−3+5(−1+x)x)


4, 3

4, 3

3, 1, 1, 1, 1

 − x4(−7+6x)3

1+14(−1+x)x(−1+4(−1+x)x)


6, 1

6, 1

2, 2, 1, 1, 1

 Not found due to computational limitations


5, 2

5, 2

2, 2, 1, 1, 1

 No map exists due to Frobenius formula

44



Structure Map
2, 4, 1

2, 4, 1

5, 1, 1

 [(
−55

6
+

5
(
−9 +

√
105
)2/3

331/3
+

20(
3
(
−9 +

√
105
))2/3

)
x4 +

(
23− 1631/3(

−9 +
√

105
)2/3 − 4

(
−9 +

√
105
)2/3

31/3

)
x5 +

2

9

(
−87 +

6031/3(
−9 +

√
105
)2/3 + 5

(
3
(
−9 +

√
105
))2/3)

x6 +

4

63

(
87− 6031/3(

−9 +
√

105
)2/3 − 5

(
3
(
−9 +

√
105
))2/3)

x7
]

× 1(
1

126

(
3 + 2431/3

(−9+
√
105)

2/3 + 2
(
3
(
−9 +

√
105
))2/3)− x+ x2

)


2, 4, 1

2, 4, 1

2, 4, 1

 [
x4
(
−98 + 7

(
21−

√
−1 + 2

√
2 + 5

√
−2 + 4

√
2

)
x −

7

(
7−

√
−1 + 2

√
2 + 5

√
−2 + 4

√
2

)
x2 + 2

√
−1 + 2

√
2
(
−1 + 5

√
2
)
x3
)]

/(
2

√
−1 + 2

√
2
(
−1 + 5

√
2
)

+ 7

(
7 +

√
−1 + 2

√
2− 5

√
−2 + 4

√
2

)
x +

7

(
−21−

√
−1 + 2

√
2 + 5

√
−2 + 4

√
2

)
x2 + 98x3

)
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Structure Map
5, 1, 1

5, 1, 1

5, 1, 1


343(7i+11

√
7)(−1+x)x5(−3+i

√
7+4x)

64(3i+
√
7−14ix)(−2+7x)


5, 1, 1

5, 1, 1

2, 4, 1

 [
x5

(
7

(
−21 +

√
21
(

69− 8i
√

6
))

+

x

(
49− 7

√
21
(

69− 8i
√

6
)

+ 2

√
21
(

69− 8i
√

6
)
x

))
/(

2

(
49 +

√
21
(

69− 8i
√

6
))
− 7x

(
63 +

√
21
(

69− 8i
√

6
)
−(

105 +

√
21
(

69− 8i
√

6
))

x+ 70x2

))


5, 1, 1

5, 1, 1

3, 2, 2


x5(6(2+

√
3)+x(−7−2

√
3+2x))

(2−
√
3+x(−5+2

√
3+5x))

2


5, 1, 1

5, 1, 1

3, 3, 1

 Not found due to computational limitations
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Structure Map
3, 2, 2

3, 2, 2

3, 2, 2


x3(7−7x+4x2)

2

(4−7x+7x2)2


3, 2, 2

3, 2, 2

3, 3, 1

 49

(
35 + 10

√
21− 7i

√
5
(

31− 4
√

21
)
− 40x

)2

×

(
125i

(
−7 + 2

√
21
)
− 7

√
5
(

31− 4
√

21
)(

31 + 4
√

21
)

+ .1000ix

)2

x3

×
1(

50000
(
−35− i

√
35 + 70x

) (
−35 + 17i

√
35 + 70x

)3)


3, 2, 2

3, 2, 2

5, 1, 1

 x3(35+12x(−7+4x))2

−1+21(−1+x)x


3, 2, 2

3, 2, 2

2, 4, 1


42
√
105x3(−35(−5+

√
105)+28(−15+

√
105)x+240x2)

2

(105+13
√
105−210x)(−105+19

√
105+210x)

2


3, 3, 1

3, 3, 1

5, 1, 1

 −(−1347+145
√
105)(35+

√
105−32x)

3
x3(−7+3

√
105+32x)

1179648(5+
√
105−56(−1+x)x)
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Structure Map
4, 1, 1, 1

4, 1, 1, 1

7

 20x4 (−7/4 + 21x/5− 7x2/2 + x3)


3, 2, 1, 1

3, 2, 1, 1

7


− 1

45927

(
7693 + 252722/371/3 + 168821/372/3

)
x3(

−7 + 22/371/3 + 6x
)2 (

14− 1422/371/3+(
49 + 7 · 22/371/3 − 4 · 21/372/3

)
x+ 6

(
−7 + 22/371/3

)
x2
)
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Structure Map
2, 2, 2, 1

2, 2, 1, 1

7


−
[(

289i
(
−71 + 39i

√
3
)2/3

+ 7 · 141/3

((
7
(
−71 + 39i

√
3
))1/3 (

11i+ 23
√

3
)

+

2 · 21/3
(
−124i+ 43

√
3
)))

x2 ×(
141/3

((
7
(
−71 + 39i

√
3
))1/3 (

−6i+ 4
√

3
)

+ 21/3
(
−3i+ 37

√
3
))
−

6i
(
−71 + 39i

√
3
)2/3

x

)
×(

7
(
−71 + 39i

√
3
)2/3

+ 141/3
(

21/3
(

37− i
√

3
)

+

2i
(

7
(
−71 + 39i

√
3
))1/3 (

2i+
√

3
))

+ 3
(
−71 + 39i

√
3
)2/3

x

)2

×(
141/3

(
2 · 21/3

(
27− 10i

√
3
)

+ i
(

7
(
−71 + 39i

√
3
))1/3 (

9i+
√

3
))

+

6
(
−71 + 39i

√
3
)2/3

x

)2
]
/

(
23328

(
71i+ 39

√
3
)4)
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B Catalogue of Genus 1 Belyi Maps

Structure Elliptic Curve Map
3

3

3

 y2 = x3 + 1 β (x, y) = 1
2

(1 + y)


4

4

3, 1


ξ ∈ F : ξ4 − 2 = 0 ,

y2 = x3 +
47

1944
x+

2359

314928
ξ2

β (x, y) =
1

467
972

+ ξ2

9
x− 6x2 − 4ξy


4

4

2, 2

 y2 = x3 − x β (x, y) = (x+1)2

4x


5

5

3, 1, 1


ξ ∈ F : ξ4 − 2ξ3 − 6ξ2 −
8ξ + 16 = 0 ,

y2 = x3 +
25

324
x+

1

839808

(
−1975ξ36+

3950ξ2 + 19750ξ + 7900
)

β (x, y) = −24300/
(
25
(
−424 + 3888x2+

9x (2 + ξ) (−2 + (−4 + ξ) ξ)) +

108y (50 (−8 + ξ (−2 + (−2 + ξ) ξ)) +

9x (−32 + ξ (−18 + ξ (6 + ξ)))))
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Structure Elliptic Curve Map
5

5

2, 2, 1

 ξ ∈ F : ξ4 + 10 = 0 , y2 = x3 +
5275
6144

x+ 77675
1769472

ξ2
β (x, y) = 1

17969
18432

− ξ2
96
x−x2−

(
− ξ

24
− 4ξ3

25
x
)
y


4, 1

4, 1

5

 ξ ∈ F : ξ4 − 45 = 0 , y2 = x3 +
9x+ 18

5
ξ2

β (x, y) =
16
3
ξ3x3 + 1680ξx2 + 9216

25
ξ3x− 29376

5
ξ(

x5 − 9ξ2x4 + 1458x3 − 13122
5
ξ2x2 + 531441

5
x− 4782969

125
ξ2
)
y

+

4x5 + 132ξ2x4 + 10620x3 − 2484ξ2x2 + 603936
5

x− 3158352
125

ξ2(
x5 − 9ξ2x4 + 1458x3 − 13122

5
ξ2x2 + 531441

5
x− 4782969

125
ξ2
)


3, 2

3, 2

5

 ξ ∈ F : ξ4 + 40 = 0 , y2 = x3 +
3x+ 37

80
ξ2

β (x, y) =
(3/2ξ3x3 + 45/2ξx2 + 153/50ξ3x− 69/5ξ)

(x5 + 2ξ2x4 − 64x3 − 128/5ξ2x2 + 1024/5x+ 2048/125ξ2) y
+

(4x5 − 17/2ξ2x4 − 10x3 − 173/8ξ2x2 + 679/5x+ 461/500ξ2)

(x5 + 2ξ2x4 − 64x3 − 128/5ξ2x2 + 1024/5x+ 2048/125ξ2)


6

6

3, 1, 1, 1

 y2 = x3 + 1 β (x, y) = 1

1− 8+8x3+x6

x6
− (−8−4x3)

x6
y
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Structure Elliptic Curve Map
6

6

2, 2, 1, 1

 y2 = x3 + 2
3
x− 7

27
β (x, y) = 1

1+ 1
27

(1−9x+27x2−27x3)


3, 3

3, 3

3, 3

 y2 = x3 − 15
16
x+ 11

32
β (x, y) = 1

2

(
1 +

x2−x+ 7
16

(x− 1
2)

2 y

)


3, 3

3, 3

4, 2

 N/A No Belyi pair exists due to Frobenius formula
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C Catalogue of Genus 2 Belyi Maps

Structure Elliptic Curve Map
5

5

5

 y2 = x5 + 1 β (x, y) = y+1
2


6

6

3, 3

 y2 = x6 + 3x3 + 1
4

β (x, y) = 1
1+ 1

2
(−1−8x3−4x6)−(1+2x3)y
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