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Abstract

We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as

hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more

than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental

group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10)

GUTs, which lead to consistent supersymmetric string vacua and have three chiral families.

A total of about 29000 models is found, most of them corresponding to SO(10) GUTs.

These models constitute a starting point for detailed heterotic model building on Calabi-

Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded

here.
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1 Introduction

Over the past few years, a programme of algorithmic string compactification has been established

where a combination of the latest developments in computer algebra and algebraic geometry have
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been utilized to study the compactification of the heterotic string on smooth Calabi-Yau three-

folds with holomorphic vector bundles satsifying the Hermitian Yang-Mills equations [1,2]. This

is very much in the spirit of the recent advances in applications of algorithmic geometry to string

and particle phenomenology [3–6]. Earlier model building programmes which have paved the

way for the current systematic approach have led to a relatively small number of models [7–10]

which have the particle content of the minimally supersymmetric standard model (MSSM). In

contrast, in the latest scan [2] over 1040 candidate models on complete intersection Calabi-Yau

manifolds (CICYs), around 105 heterotic standard models were produced.

Of the databases of Calabi-Yau three-folds created over the last three decades in attempting

to answer the original question of [11] whether superstring theory can indeed give the real world

of particle physics, the increasingly numerous - and also chronological - sets are the complete

intersections (CICY) in products of projective spaces [11], the elliptically fibred [12] and the

hypersurfaces in toric four-folds [13] (cf. [14] for a recent review). Such Calabi-Yau datasets

provide a vast number of candidate internal three-folds for a realistic model, although many of

them may be ruled out even on the grounds of basic phenomenology.

The most impressive list, of course, is the last, due to Kreuzer-Skarke (KS). These total

473,800,776 ambient toric four-folds, each coming from a reflexive polytope in 4-dimensions.

Thus there are at least this many Calabi-Yau three-folds. However, since the majority of the

toric ambient spaces are singular and need to be resolved the expected number of Calabi-Yau

three-folds from this set is even higher. The Hodge numbers are invariant under this resolution

and thus have been extracted to produce the famous plot (which we will exhibit later in the

text) of a total of 30,108 distinct Hodge number pairs. To establish stable vector bundles over

this largest known set of Calabi-Yau three-folds is of obvious importance. To truly probe the

“heterotic landscape” of compactifications which give rise to universes with particle physics akin

to ours, one must systematically go beyond the set thus far probed, which had been focused on

the CICYs [1,2, 10,15–20] and the elliptic [21,22] sets.

The study of bundles for model building on the KS dataset was initiated in [23] where the

Calabi-Yau manifolds with smooth ambient toric four-folds were isolated and studied in detail.

Interestingly, of the some half-billion manifolds, only 124 have smooth ambient spaces. Bundles

which give 3 net generations upon quotienting some potential discrete symmetry and which

satisfy all constraints including, notably, Green-Schwarz anomaly cancellation, were classified.

Subsequently, a bench-mark study was performed by going up in h1,1 of the KS list [24]. Now,

the largest Hodge pairs of any smooth Calabi-Yau three-fold is (h1,1, h2,1) = (491, 11) (with the

mirror having (h1,1, h2,1) = (11, 491)), giving the experimental bound of 960 on the absolute

value of the Euler number. In [24], we studied the manifolds up to h1,1 = 3, which already has

some 300 manifolds. The space of positive bundles of monad type were constructed on these

spaces.

In any event, the procedure of heterotic compactification is well understood. Given a generi-

cally simply connected Calabi-Yau three-fold X̃, we need to find a freely-acting discrete symmetry
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group Γ, so that X̃/Γ is a smooth quotient. We then need to construct stable Γ-equivariant bun-

dles Ṽ on the cover X̃ so that on the quotient X = X̃/Γ, Ṽ descends to a bona fide bundle V . It

is the cohomology of V , coupled with Wilson lines valued in the group Γ, that gives us the par-

ticle content which we need to compute. In other words, we need to find Calabi-Yau manifolds

X with non-trivial fundamental group π1(X) ' Γ. Often, the manifolds X̃ and X are referred

to as “upstairs” and the “downstairs” manifolds, to emphasize their quotienting relation.

The simplest set of vector bundles to construct and analyze is that of line bundle sums [2,19].

Hence, an important step is to classify heterotic line bundle models on Calabi-Yau manifolds in

the KS list and extract the ones capable of leading to realistic particle physics. Of course, the

existence of freely acting groups Γ on the Calabi-Yau manifolds is crucial in order to complete

this programme. Unfortunately, these freely-acting symmetries are not systematically known

for the KS manifolds. Indeed, even for the CICY dataset, which had been in existence since

the early 1990s, the symmetry groups were only recently classified using the latest computer

algebra [25]. Are there any manifolds in the KS list with known discrete symmetries? A related

but simpler question is the following: Are there any manifolds in the KS list already possessing

a non-trivial fundamental group? This latter question was already addressed in Ref. [26] and

the answer is remarkable:

Of the some 500 million manifolds in the KS list, only 16 have non-trivial fundamen-

tal group.

In fact, the 16 covering spaces for these are also in the KS list, and the discrete symmetries

Γ thereof are known; in particular, their order |Γ| is simply the ratio of the Euler numbers of

the “upstairs” and the “downstairs” manifolds. On these 16 special “downstairs” manifolds one

can then directly build stable bundles or, equivalently, stable equivariant bundles can be built

on the corresponding 16 “upstairs” manifolds. This is the undertaking of our present paper and

constitutes an important scan over a distinguished subset of the KS database.

We emphasize that we expect many more than the aforementioned 16 manifolds in the KS

list to have freely acting symmetries. However, the quotients of those manifolds do not have a

description as a hypersurface in a toric four-fold and can, therefore, not be found by searching

for non-trivial first fundamental groups in the KS list. Systematic heterotic model building on

this full set of KS manifolds with freely-acting symmetries is the challenging task ahead but this

will have to await a full classification of freely-acting symmetries.

The paper is organized as follows. We start in Section 2 by describing the 16 special base

three-folds in detail. In Section 3, we consider heterotic line bundle models subject to some

phenomenological constraints on these manifolds and the algorithm for a systematic scan over

all such models is laid out. The result of this scan follows in Section 4 and we conclude with

discussion and prospects in Section 5.
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Nomenclature Unless stated otherwise, we adhere to the following notations in this paper:

N The 4-dimensional lattice space of ∆

M The dual lattice space of ∆◦

∆ Polytope in an auxiliary four-dimensional lattice

∆◦ Dual polytope of ∆

A∆ “Downstairs” ambient toric variety constructed from the polytope ∆

X∆ Calabi-Yau hypersurface three-fold naturally embedded in A∆

Pic(M) Picard group of holomorphic line bundles on a manifold M

n Number of vertices in the polytope ∆

xρ=1,··· ,n Homogeneous coordinates of an ambient toric variety A
Dρ=1,··· ,n Divisors defined as the vanishing loci of xρ

k Dimension of Picard group

Jr=1,··· ,k Harmonic (1,1)-form basis elements of H1,1(X,Z)

Ã∆ “Upstairs” ambient toric variety associated with A∆

X̃∆ Calabi-Yau hypersurface three-fold naturally embedded in Ã∆

ch(V ) Chern character of bundle V

c(V ) Chern class of bundle V

µ(V ) Mu-slope of bundle V

ind(V ) Index of the Dirac operator twisted by bundle V

K Kähler cone matrix of a projective variety

2 The base manifolds: sixteen Calabi-Yau three-folds

As mentioned above, the largest known class to date of smooth, compact Calabi-Yau three-

folds is constructed as hypersurfaces in a toric ambient four-fold and is often called Kreuzer-

Skarke (KS) data set [13, 28]. The huge database consists of the toric ambient varieties A∆ as

well as the Calabi-Yau hypersurfaces X∆ therein, both of which are combinatorially described

by a “reflexive” polytope ∆ living in an auxiliary four-dimensional lattice. The classification

of reflexive four-polytopes had been undertaken and resulted in the data set of 473, 800, 766

polytopes, each of which gives rise to one or more Calabi-Yau three-fold geometries.

Only 16 spaces in KS data set carry non-trivial first fundamental groups, which are all of the

cyclic form, π1
∼= Z/pZ, for p = 2, 3, 5 [26]. For the heterotic model-building purposes, one is in
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need of Wilson lines, so these 16 Calabi-Yau three-folds form a natural starting point.

More common in heterotic model building is to start from a simply-connected Calabi-Yau

three-fold X̃ with freely-acting discrete symmetry group Γ and then form the quotient X = X̃/Γ

which represents a Calabi-Yau manifold with first fundamental group equal to Γ. Indeed, for the

CICY data set [11], all the 7890 Calabi-Yau three-folds turn out to be simply-connected and a

heavy computer search had to be performed to classify the freely-acting discrete symmetries [25].

Typical heterotic models have thus been built firstly on the upstairs CICY X̃ and have then been

descended to the downstairs Calabi-Yau X. A similar approach has also been taken for the model

building based on the KS list carried out in Ref. [24].

In this paper, we attempt to construct heterotic models outright from the downstairs ge-

ometry. We shall start in this section by describing some basic geometry of the sixteen toric

Calabi-Yau three-folds X with π1(X) 6= ∅. This includes Hodge numbers, Chern classes, intersec-

tion rings and Kähler cones. The precise quotient relationship with the corresponding upstairs

three-folds X̃, as well as the full list of relevant geometries, can be found in Appendix B.

2.1 The construction

Let us label the sixteen Calabi-Yau three-folds and their ambient toric four-folds by Xi=1,··· ,16

and Ai=1,··· ,16, respectively. They come from the corresponding (reflexive) polytopes ∆i in an

auxiliary rank-four lattice N , whose vertex information [26] is summarised in Appendix A.

Before describing their geometry in section 2.2, partly to set the scene up, we illustrate the

general procedure for the toric construction of Calabi-Yau three-fold, by the explicit example,

X3 ⊂ A3 and ∆3. For a more detailed introduction, interested readers are kindly referred, e.g.,

to Ref. [23] and references therein.

Let us first extract the lattice polytope ∆3 from Appendix A:
x1 x2 x3 x4 x5 x6 x7 x8

2 0 0 0 0 0 0 −2

0 −1 0 1 −1 0 1 0

0 0 −1 1 −1 1 0 0

1 0 0 1 −1 0 0 −1

 .

It has n = 8 vertices in N ' Z4 leading to 8 homogeneous coordinates xρ=1,··· ,8 for the ambient

toric four-fold A3; the 4 rows of the above matrix describe the 4 projectivisations that reduce

the complex dimension from 8 down to 4. Next, the dual polytope ∆◦3 in the dual lattice M is

constructed as

∆◦3 := {m ∈M | 〈m, v〉 > −1 , ∀v ∈ ∆3} ,

and one can easily check that ∆◦3 is also a lattice polytope. Then it so turns out that each of the
lattice points in ∆◦3 is mapped to a global section of the normal bundle for the the embedding,
X3 ⊂ A3, of the Calabi-Yau three-fold (see Eq. (45) of Ref. [23] for the explicit map). Here, ∆◦3
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has 41 lattice points and the corresponding 41 sections are obtained as:

x2
2x

2
3x

2
4x

2
8 , x2

2x
2
3x

2
5x

2
8 , x1x

2
2x

2
3x4x5x8 , x2

1x
2
2x

2
3x

2
4 , x2

2x3x4x5x6x
2
8 , x1x

2
2x3x

2
4x6x8 ,

x2
2x

2
4x

2
6x

2
8 , x2x

2
3x4x5x7x

2
8 , x1x2x

2
3x

2
4x7x8 , x2x3x

2
4x6x7x

2
8 , x2

3x
2
4x

2
7x

2
8 , x2

1x
2
2x

2
3x

2
5 ,

x1x
2
2x3x

2
5x6x8 , x2

1x
2
2x3x4x5x6 , x2

2x
2
5x

2
6x

2
8 , x1x

2
2x4x5x

2
6x8 , x2

1x
2
2x

2
4x

2
6 , x1x2x

2
3x

2
5x7x8 ,

x2
1x2x

2
3x4x5x7 , x2x3x

2
5x6x7x

2
8 , x1x2x3x4x5x6x7x8 , x2

1x2x3x
2
4x6x7 , x2x4x5x

2
6x7x

2
8 ,

x1x2x
2
4x

2
6x7x8 , x2

3x
2
5x

2
7x

2
8 , x1x

2
3x4x5x

2
7x8 , x2

1x
2
3x

2
4x

2
7 , x3x4x5x6x

2
7x

2
8 , x1x3x

2
4x6x

2
7x8 ,

x2
4x

2
6x

2
7x

2
8 , x2

1x
2
2x

2
5x

2
6 , x2

1x2x3x
2
5x6x7 , x1x2x

2
5x

2
6x7x8 , x2

1x2x4x5x
2
6x7 , x2

1x
2
3x

2
5x

2
7 ,

x1x3x
2
5x6x

2
7x8 , x2

1x3x4x5x6x
2
7 , x2

5x
2
6x

2
7x

2
8 , x1x4x5x

2
6x

2
7x8 , x2

1x
2
4x

2
6x

2
7 , x2

1x
2
5x

2
6x

2
7 .

(1)

which, when linearly combined, give the defining equation for X3.

Note that as the non-trivial fundamental group is torically realised, it is natural to expect

that the KS list also contains the sixteen upstairs geometries, which we denote by X̃i ⊂ Ãi.
By construction, the upstairs three-folds X̃i should admit a freely-acting discrete symmetry

Γi so that Xi = X̃i/Γi with π1(Xi) = Γi. We have indeed found the corresponding upstairs

polytopes ∆̃i associated with the sixteen downstairs (see Appendix A for their vertex lists). It

turns out that three of the sixteen upstairs Calabi-Yau three-folds X̃i ⊂ Ãi belong to the CICY

list [11]: X̃1 is the quintic three-fold in P4, X̃2 the bi-cubic in P2 × P2 and X̃3 the tetra-quadric

in P1×4
. Although the models in this paper are constructed over the downstairs manifolds, one

can compare, as a cross-check, the models over X1, X2 and X3 with the known results over the

CICYs [17,18].

We finally remark that the ambient toric varieties A∆ constructed by the standard toric pro-

cedure might in general involve singularities. In order to obtain smooth Calabi-Yau hypersurfaces

X, one must resolve the singularities of the ambient space to a point-like level via “triangulation”

of the polytope ∆ in a certain manner [29]. The triangulation splits ∆ maximally and leads to

a partial desingularisation of the toric variety A∆. In principle, there may arise several different

desingularisations for a single toric variety A∆, in which case the number of geometries increases.

Indeed, X6 and X14 turn out to have two and three desingularisations, respectively, while the

other fourteen Calabi-Yau manifolds only have one each.

2.2 Some geometrical properties

Having constructed the Calabi-Yau three-folds in the previous subsection, we now move on to

study their geometrical properties relevant to the heterotic model-building. Instead of describing

all the details in an abstract manner, we continue with the example X3; the Z2-quotient of the

tetra-quadric X̃3 in P1×4
. The detailed prescription for computing the geometric properties can

be found from Appendix B of [23]. Alternatively, one could also make use of the computer

package PALP [30] to extract all the information. The resulting geometry can be summarised

as follows.

Firstly, we have k ≡ rk(Pic(A3)) = 4 and hence, the Picard group is generated by four
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elements Jr=1,··· ,4. One can then choose the basis elements appropriately so that the toric divisors

Dρ=1,··· ,8 defined as the vanishing locus of the homogeneous coordinate xρ have the following

expressions:

D1 = J4, D2 = J3, D3 = J2, D4 = J1, D5 = J1, D6 = J2, D7 = J3, D8 = J4 , (2)

where, by abuse of notation, the harmonic (1, 1)-forms Jr are also used to denote the basis of

Picard group. Furthermore, unless ambiguities arise, we shall not attempt to carefully distinguish

the harmonic forms of the ambient space from their pullbacks to the hypersurface. Next, the

intersection polynomial of X3 is:

J1 J2 J3 + J1 J2 J4 + J1 J3 J4 + J2 J3 J4 ,

which means that the only non-vanishing triple intersections are

d123(X3) = d124(X3) = d134(X3) = d234(X3) = 1

and those obtained by the permutations of the indices above. The Hodge numbers can also be

easily computed:

h1,1(X3) = 4, h1,2(X3) = 36 ,

leading to the Euler character χ(X3) = −64. The second Chern character for the tangent bundle,

which is crucial for the anomaly check, is given by

ch2(TX) = {12, 12, 12, 12} =
4∑
r=1

12 νr , (3)

in the dual 4-form basis νr=1,··· ,4 defined such that
∫
X3
Jr ∧ νs = δsr . Finally, the Kähler cone

matrix K = [Krs], describing the Kähler cone as the set of all Kähler parameters tr satysfying

Krst
s ≥ 0 for all r = 1, . . . , h1,1(X), takes the form

K =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (4)

thus representing the part of t space with tr=1,··· ,4 > 0.

The reader might have notice that h1,1(X3) = 4 = h1,1(A3) in this example. In general,

however, h1,1(X) can be larger than h1,1(A) and a hypersurface of this type is called “non-

favourable,” as we do not have a complete control over all the Kähler forms of X through the

simple toric description of the ambient space A. The notion of favourability means that the

Kähler structure of the Calabi-Yau hypersurface is entirely descended down from that of the

ambient space; namely, the integral cohomology group of the hypersurface can be realised by a

toric morphism from the ambient space. Amongst the sixteen downstairs geometries Xi, only
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the two, X15 and X16, turn out to be non-favourable. As we do not completely understand their

Kähler structure, we will not attempt to build models on either of these two manifolds.

In Appendix B.2, the geometrical properties summarised so far for X3 ⊂ A3 are tabulated

for all the downstairs manifolds Xi ⊂ Ai, as well as their upstairs covers X̃i ⊂ Ãi, i = 1, . . . , 16.

Another illustration for how to read off the geometry from the table is given in Appendix B.1

for X1 ⊂ A1 and X̃1 ⊂ Ã1.

Let us close this subsection by touching upon an issue with multiple triangulations. As

mentioned in section 2.1, the Calabi-Yau three-folds X6 and X14 turn out to admit two and

three triangulations, respectively. Here we take the former as an example. Its toric data is

encoded in the polytope ∆6:
x1 x2 x3 x4 x5 x6 x7

−4 0 0 0 2 0 −2

−3 1 0 −1 0 −2 −2

1 0 1 −1 0 −1 0

−1 0 0 −1 1 0 −1

 ;

this polytope turns out to admit the following two different star triangulations ∗,

T1 =
{{1, 2, 5, 6}, {2, 3, 4, 5}, {1, 2, 3, 5}, {2, 4, 5, 6}, {2, 4, 6, 7}, {1, 2, 6, 7},
{2, 3, 4, 7}, {1, 2, 3, 7}, {3, 4, 6, 7}, {1, 3, 6, 7}, {3, 4, 5, 6}, {1, 3, 5, 6}}

T2 =
{{1, 2, 5, 6}, {2, 3, 4, 5}, {1, 2, 3, 5}, {2, 4, 5, 6}, {2, 4, 6, 7}, {1, 2, 6, 7},
{2, 3, 4, 7}, {1, 2, 3, 7}, {4, 5, 6, 7}, {1, 5, 6, 7}, {3, 4, 5, 7}, {1, 3, 5, 7}}

where triangulations of the polytope ∆6 are described as a list of four-dimensional cones. For

instance, the first element {1, 2, 5, 6} ∈ T1 represents the four-dimensional cone spanned by the

corresponding four vertices:

(−4,−3, 1,−1), (0, 1, 0, 0), (2, 0, 0, 1), (0,−2,−1, 0).

It also turns out that the two smooth hypersurfaces, associated with the two triangulations T1

and T2, have the same intersection structure and the same second Chern class. It is expected in

such a case that the two Calabi-Yau hypersurfaces are connected in the Kähler moduli space. In

other words, the two Kähler cones adjoin along a common facet. Thus, the pair can be thought

of as leading to a single Calabi-Yau three-fold X6, whose Kähler cone is the union of the two

sub-cones,

K(X6) =
2⋃
j=1

Kj ,

∗A triangulation is star if all maximal simplices contain a common point, in this case reduced to be cones

expanded by four vertices and the origin point. In our notation the origin point is omitted, leaving only the four

indices labeling the vertices.
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where K1 and K2 are the Kähler cones of the two hypersurfaces associated with T1 and T2,

respectively (see Ref. [24] for the details). The Kähler cone matrices for the two sub-cones turn

out to be

K1 =

 0 1 0

1 0 −2

0 −1 1

 and K2 =

 0 0 1

1 0 −2

0 1 −1

 ,

and therefore, the Kähler cone matrix for the union can be computed as:

K(X6) =

 1 0 0

0 1 0

0 0 1

 .

One can similarly play with ∆14. For this geometry as well it turns out that the three

triangulations lead to a single Calabi-Yau three-fold, X14. As for the Kähler cone, the three

sub-cones are

K1 =

 0 1 0

1 −1 0

0 −1 1

 K2 =

 0 0 1

0 1 −1

1 0 −1

 K3 =

 1 0 0

−1 0 −1

−1 1 0

 , (5)

and via the simple joining one obtains the Kähler cone of X14:

K(X14) =

 1 0 0

0 1 0

0 0 1

 . (6)

In summary, although there are different triangulations for ∆6 and ∆14, one ends up obtaining

a single geometry each, X6 and X14, respectively.

2.3 Location in the Calabi-Yau landscape

Since a very special corner in the landscape of Calabi-Yau three-folds has been chosen, it might

be interesting to see the location of these sixteen, say, in the famous Hodge number plot [31].

Figure 1 shows the Hodge number plot of all the Calabi-Yau three-folds known to date, together

with that of the sixteen manifolds Xi and of their mirrors. Some basic topological data for both

downstairs Xi and upstairs X̃i is also summarized in Table 1 for reference.
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Figure 1: The Hodge number plot: {2(h1,1−h2,1), h1,1 +h2,1}. The left figure is for all the Calabi-

Yau three-folds known to date and the right is for the sixteen non-simply-connected Calabi-Yau

three-folds Xi as well as their mirrors; the blue round dots are for the original sixteen and the

purple squares are for the mirrors.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

h1,1(X̃i) 1 2 4 4nf 3 3 4nf 4nf 4 4 4 5nf 5nf 3 7nf 7nf

h1,1(Xi) 1 2 4 2 3 3 3 3 4 4 4 4 4 3 5nf 5nf

−χ(X̃i) 200 162 128 216 160 224 288 288 96 128 128 160 160 224 96 96

−χ(Xi) 40 54 64 72 80 112 144 144 48 64 64 80 80 112 48 48

π1(Xi) Z5 Z3 Z2 Z3 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

Table 1: Picard numbers and Euler characters of the downstairs Calabi-Yau three-folds Xi and

their upstairs covers X̃i, for i = 1, . . . , 16. In the last row is also shown the π1 of the down-

stairs manifolds Xi. The subscript “nf” for Picard number indicates that the geometry is non-

favourable.

3 Physical constraints and search algorithm

As indicated in Table 1, of the sixteen downstairs three-folds, the first fourteen, Xi=1,··· ,14, turn

out to be favourable and, in this paper, we shall take the initial step towards the construction of

heterotic line bundle standard models on them. The main difficulty with the two non-favourable

geometries arises from the Kähler forms which do not descend from the ambient space; the

corresponding components of the Kähler matrix and the triple intersection numbers are difficult

to obtain from the ambient toric data, since the line bundles could be safely descended down to

CY manifolds are coming only from toric divisors, with a smaller number than the dimension
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of CY manifold. While for the extra line bundles of CY manifolds, it is not straight forward to

write them out and not possible to compute the triple intersection numbers since the calculation

is essentially done over the toric variety. Therefore, the missing info makes it impossible to fully

check certain consistency conditions of the bundle, notably the poly-stability condition discussed

below.

3.1 Choice of bundles and gauge group

Let us begin by discussing the choice of gauge bundle and the resulting four-dimensional gauge

group. First of all, we need to choose a bundle V with structure group G which embeds into

the visible E8 gauge group. The resulting low-energy gauge group, H, is the commutant of G

within E8. As discussed earlier, for V we would like to consider Whitney sums of line bundles

of the form

V =
n⊕
a=1

La , La = OX(ka) , (7)

where the line bundles are labeled by integer vectors ka with h1,1(X) components kra such that

their first Chern classes can be written as c1(La) = kraJr. The structure group of this line bundle

sum should have an embedding into E8. For this reason, we will demand that c1(V ) = 0 or,

equivalently,
n∑
a=1

ka = 0 , (8)

which leads, generically, to the structure group G = S(U(1)n). For n = 4, 5 this structure group

embeds into E8 via the subgroup chains S(U(1)4) ⊂ SU(4) ⊂ E8 and S(U(1)5) ⊂ SU(5) ⊂ E8,

respectively. This results in the commutants H = SO(10)× U(1)3 for n = 4 and H = SU(5)×
U(1)4 for n = 5. Both, SU(5) and SO(10), are attractive grand unification groups and they

can be further broken to the standard model group after the inclusion of Wilson lines. Hence,

constructing such SU(5) and SO(10) models, subject to further constraints discussed below,

is the first step in the standard heterotic model building programme. The additional U(1)

symmetries turn out to be typically Green-Schwarz anomalous. Hence, the associated gauge

bosons are super massive and of no phenomenological concern.

3.2 Anomaly cancelation

In general, anomaly cancelation can be expressed as the topological condition

ch2(V ) + ch2(V̂ )− ch2(TX) = [C] , (9)

where V is the bundle in the observable E8 sector, as discussed, Ṽ is its hidden counterpart and

[C] is the homology class of a holomorphic curve, C, wrapped by a five-brane. A simple way to

12



guarantee that this condition can be satisfied is to require that

c2(TX)− c2(V ) ∈ Mori(X) , (10)

where Mori(X) is the cone of effective classes of X. Here, we have used that ch2(TX) = −c2(TX)

and that ch2(V ) = −c2(V ) for bundles V with c1(V ) = 0. Provided condition (10) holds the

model can indeed always be completed in an anomaly-free way so that Eq. (9) is satisfied.

Concretely, Eq. (10) guarantees that there exists a complex curve C with [C] = c2(TX)− c2(V ),

so that wrapping a five brane on this curve and choosing the hidden bundle to be trivial will

do the job (although other choices involving a non-trivial hidden bundle are usually possible as

well).

To compute the the second Chern class c2(V ) = c2r(V )νr of line bundle sums (7) we can use

the result

c2r(V ) = −1

2
drst

n∑
a=1

ksak
t
a , (11)

where drst are the triple intersection numbers. For the 16 manifolds under consideration these

numbers, as well as the second Chern classes, c2(TX), of the tangent bundle are provided in

Appendix B.

3.3 Poly-stability

The Donaldson-Uhlenbeck-Yau theorem states that for a “poly-stable” holomorphic vector bun-

dle V over a Kähler manifold X, there exists a unique connection satisfying the Hermitian

Yang-Mills equations. Thus, in order to make the models consistent with supersymmetry, we

need to verify that the sum of holomorphic line bundles is poly-stable.

Poly-stability of a bundle (coherent sheaf) F is defined by means of the slope

µ(F) ≡ 1

rk(F)

∫
X

c1(F) ∧ J ∧ J , (12)

where J is the Kähler form of the Calabi-Yau three-fold X. The bundle F is called poly-stable

if it decomposes as a direct sum of stable pieces,

F =
m⊕
a=1

Fa , (13)

of equal slope µ(Fa) = µ(F), for a = 1, · · · ,m. In our case, the bundle V splits into the line

bundles La as in Eq. (7). Line bundles, however, are trivially stable as they do not have a proper

subsheaf. This feature is one of the reasons why heterotic line bundle models are technically

much easier to deal with than models with non-Abelian structure groups. All that remains from

poly-stability is the conditions on the slopes. Since c1(V ) = 0, we have µ(V ) = 0 and, hence,

the slopes of all constituent line bundles La must vanish. This translates into the conditions

µ(La) = kraκr = 0 where κr = drstt
stt , (14)
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for a = 1, . . . , n which must be satisfied simultaneously for Kähler parameters tr in the interior

of the Kähler cone. The intersection numbers and the data describing the Kähler cone for our

16 manifolds is provided in Appendix B.

3.4 SU(5) GUT theory

A model with a (rank four or five) line bundle sum (7) in the observable sector that satisfies the

constraints (8), (10) and (14) can be completed to a consistent supersymmetric heterotic string

compactification leading to a four-dimensional N = 1 supergravity with gauge group SU(5) or

SO(10) (times anomalous U(1) factors). Subsequent conditions, which we will impose shortly,

are physical in nature and are intended to single out models with a phenomenologically attractive

particle spectrum. The details of how this is done somewhat depend on the grand unified group

under consideration and we will discuss the two cases in turn, starting with SU(5).

In this case we start with a line bundle sum (7) of rank five (n = 5) and associated structure

group G = S(U(1)5). This leads to a four-dimensional gauge group H = SU(5)×S(U(1)5). The

four-dimensional spectrum consists of the following SU(5)× S(U(1)5) multiplets:

10a , 10a , 5a,b , 5a,b , 1a,b . (15)

Here, the subscripts a, b, · · · = 1, . . . , 5 indicate which of the additional U(1) factors in S(U(1)5)

the multiplet is charged under. A 10a (10a) multiplet carries charge 1 (−1) under the ath U(1)

and is uncharged under the others. A 5a,b (5a,b), where a < b, carries charge 1 (−1) only under

the ath and bth U(1) while the only charges of a singlet 1a,b, where a 6= b, are 1 under the ath

U(1) and −1 under the bth U(1).

The multiplicity of these various multiplets is computed by the dimension of associated

cohomology groups as given in Table 2. The most basic phenomenological constraint to impose

SU(5)× S(U(1)5) repr. associated cohomology contained in

10a H1(X,La) H1(X, V )

10a H1(X,L∗a) H1(X, V ∗)

5a,b H1(X,La ⊗ Lb) H1(X,∧2V )

5a,b H1(X,L∗a ⊗ L∗b) H1(X,∧2V ∗)

1a,b H1(X,La ⊗ L∗b) H1(X, V ⊗ V ∗)

Table 2: The spectrum of SU(5) models and associated cohomology groups.

on this spectrum is chiral asymmetry of three in the 10–10 sector. This translates into the

condition

ind(V ) = −3 ,
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on the index of V which can be explicitly computed from

ind(V ) =
1

6
drst

n∑
a=1

krak
s
ak

t
a . (16)

Of course, a similar constraint on the chiral asymmetry should hold in the 5–5 sector. In general,

for a rank m bundle V , we have the relation

ind(∧2V ) = (m− 4)ind(V ) (17)

So for the rank five bundles presently considered it follows that ind(∧2V ) = ind(V ). Hence the

requirement (16) on the chiral asymmetry in the 10–10 sector already implies the correct chiral

asymmetry for the 5–5 multiplets, ind(∧2V ) = −3, and no additional constraint is required.

The index constraints imposed so far are necessary but of course not sufficient for a realistic

spectrum. For example, one obvious additional phenomenological requirement would be the

absence of 10 multiplets which amounts to the vanishing of the associated cohomology group,

that is, h1(X, V ∗) = 0. However, cohomology calculations are much more involved than index

calculations and currently there is no complete algorithm for calculating line bundle cohomology

on Calabi-Yau hypersurfaces in toric four-folds. For this reason, we will not impose cohomology

constraints on our models in the present paper, although this will have to be done at a later

stage.

However, working with line bundle sums allows us to impose slightly stronger constraints

which are based on the indices of the individual line bundles. Of course we can express the

indices of V and ∧2V in terms of the indices of their constituent line bundles as

ind(V ) =
n∑
a=1

ind(La) , ind(∧2V ) =
∑
a<b

ind(La ⊗ Lb) , (18)

where, by the index theorem, the index of an individual line bundle L = OX(k) is given by

ind(L) = drst

(
1

6
krkskt +

1

12
krcst2 (TX)

)
. (19)

Suppose that ind(La) > 0 for one of the line bundles La. Then, in this sector, there is a chiral net-

surplus of 10 multiplets which is protected by the index and will survive the inclusion of a Wilson

line. Since such 10 multiplets and their standard-model descendants are phenomenologically

unwanted we should impose † that ind(La) ≤ 0 for all a. Combining this with the overall

†The caveat is that line bundle models frequently represent special loci in a larger moduli space of non-Abelian

bundles. Line bundle models with exotic states – vector-like under the GUT group/standard model group but

chiral under the U(1) symmetries – may become realistic when continued into the non-Abelian part of the moduli

space where some or all of the U(1) symmetries are broken. In this case, the exotic states may become fully

vector-like, acquire a mass and are removed from the low-energy spectrum. While this is an entirely plausible

model building route, here we prefer a “cleaner” approach where the spectrum at the Abelian locus can already

lead to a realistic spectrum.
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constraint (16) on the chiral asymmetry and Eq. (18) this implies that

−3 6 ind(La) 6 0 (20)

for all a = 1, . . . , 5. A similar argument can be made for the 5–5 multiplets. A positive index,

ind(La⊗Lb) > 0, would imply chiral 5 multiplets in this sector. They would survive the Wilson

line breaking and lead to unwanted Higgs triplets. Hence, we should require that ind(La⊗Lb) ≤ 0

for all a < b which implies that

−3 6 ind(La ⊗ Lb) 6 0 , (21)

for all a < b.

Table 3 summarizes both the consistency constraints explained earlier and the phenomeno-

logical constraints discussed in this subsection. This set of constraints will be used to classify

rank five line bundle models on our 16 Calabi-Yau manifolds.

Physics Background geometry

Gauge group c1(V ) = 0

Anomaly c2(TX)− c2(V ) ∈ Mori(X)

Supersymmetry µ(La) = 0, for 1 ≤ a ≤ 5

Three generations ind(V ) = −3

No exotics
−3 ≤ ind(La) ≤ 0, for 1 ≤ a ≤ 5 ;

−3 ≤ ind(La ⊗ Lb) ≤ 0, for 1 ≤ a < b ≤ 5

Table 3: Consistency and phenomenological constraints imposed on rank five line bundle sums

of the form (7).

3.5 SO(10) GUT theory

In this case, we start with a line bundle sum (7) of rank four (n = 4) with a structure group

G = S(U(1)4). The resulting four-dimensional gauge group is H = SO(10)× S(U(1)4) and the

multiplets under this gauge group which arise are

16a , 16a , 10a,b , 1a,b . (22)

In analogy to the SU(5) case, the subscripts a, b, · · · = 1, . . . , 4 indicate which of the four U(1)

symmetries the multiplet is charged under. A 16a (16a) multiplet carries charge 1 (−1) under
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the ath U(1) symmetry and is uncharged under the others. A 10a,b multiplet, where a < b,

carries charge 1 under the ath and bth U(1) symmetry and is otherwise uncharged while a singlet

1a,b, where a 6= b, has charge 1 under the ath U(1) and charge −1 under the bth U(1).

The multiplicity of each of the above multiplets is computed from associate cohomology

groups as indicated in Table 4. The three generation condition on the 16–16 multiplets remains

SO(10)× S(U(1)4) repr. associated cohomology contained in

16a H1(X,La) H1(X, V )

16a H1(X,L∗a) H1(X, V ∗)

10a,b H1(X,La ⊗ Lb) H1(X,∧2V )

1a,b H1(X,La ⊗ L∗b) H1(X, V ⊗ V ∗)

Table 4: The spectrum of SO(10) models and associated cohomology groups.

the same:

ind(V ) = −3 . (23)

For rank four bundles Eq. (17) implies that ind(∧2V ) = 0 so no further constraint needs to be

imposed. In analogy with the SU(5) case, in order to avoid 16 exotics, we should impose that

−3 ≤ ind(La) ≤ 0 (24)

for all a = 1, . . . , 4. The line bundle indices can be explicitly computed from Eq. (19). The 10

sector is automatically vector-like so no further constraint analogous to Eq. (21) is required.

Table 5 summarizes the consistency constraints explained earlier and the phenomenological

constraints discussed above. These constraints will be used to classify rank four line bundle sums

on our 16 manifolds.

3.6 Search algorithm

In principle, the scanning procedure is straight-forward now. We firstly generate all the single

line bundles, L = OX(k) with entries kr in a certain range and with their index between −3

and 0. Then we compose these line bundles into rank four or five sums imposing the constraints

detailed in Table 3 and 5, respectively, as we go along and at the earliest possible stage.

Which range of line bundle entries kra should we consider in this process? Unfortunately, we

are not aware of a finiteness proof for line bundle sums which satisfy the constraints in Table 3

and 5, nor do we know how to derive a concrete theoretical bound on the maximal size of the

entries kra from those constraints. Lacking such a bound we proceed computationally. For a given

positive integer kmax we can find all line bundle models with kra ∈ [−kmax, kmax]. We do this for

17



Physics Background geometry

Gauge group c1(V ) = 0

Anomaly ch2(TX)− ch2(V ) ∈ Mori(X)

Supersymmetry µ(La) = 0, for 1 ≤ a ≤ 4

Three generations ind(V ) = −3

No exotics −3 ≤ ind(La) ≤ 0, for 1 ≤ a ≤ 4

Table 5: Consistency and phenomenological constraints on rank four line bundles of the form (7).

increasing values kmax = 1, 2, 3, . . . and find the viable models for each value. If the number

of these models does not increase for three consecutive kmax values, the search is considered

complete. In this way, we are able to verify finiteness and find the complete set of viable models

for rank five bundles. For rank four, we find the complete set for some of the manifolds but are

limited by computational power for the others.

Finally, there is a practical step for simplifying the bundle search. If the Kähler cone, in

the form given by the original toric data, does not coincide with the positive region where all

tr > 0 it is useful to arrange this by a suitable basis transformation. This makes checking certain

properties, such as the effectiveness of a given curve class, easier. We refer to Ref. [23] for details.

4 Results

In this section, we describe the results of our scans for phenomenologically attractive SU(5)

and SO(10) line bundle GUT models on the 14 favourable Calabi-Yau three-folds out of our 16

special ones.

4.1 SU(5) GUT theory

For the rank five line bundle sums we are able to verify finiteness computationally for each

manifold, using the method based on scanning over entries kra with −kmax ≤ kra ≤ kmax for

increasing kmax, as explained above. As an illustration, we have plotted the number of viable

models on X9 as a function of kmax in Fig. 2. As is evident from the figure, the number saturates

at kmax = 4 and stays constant thereafter. A similar behaviour is observed for all other spaces.
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Figure 2: The number of viable line-bundle models on X9 as a function of kmax.

Recall from Table 1 that amongst the favourable base manifolds Xi=1,··· ,14, only X1 has Picard

number 1, X2 and X4 have Picard number 2, X5, X6, X7, X8, X14 have Picard number 3, and

X3, X9, X10, X11, X12, X13 have Picard number 4. It turns out that viable models arise on

all the six manifolds with Picard number 4 and on two out of the five manifolds with Picard

number 3, namely X6 and X14, in total 122 models. The number of models for each manifold is

summarized in Table 6 and the explicit line bundle sums are given in Appendix C. A line bundle

data set can be downloaded from Ref. [32].

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 total

# SU(5) 0 0 10 0 0 2 0 0 12 25 54 1 17 1 122

max. |kra| - - 4 - - 4 - - 4 5 5 4 5 4

# SO(10) 0 0 7017 ∗ 0 5 13 0 9 2207 4416 ∗ 8783 ∗ 1109 ∗ 5283 ∗ 28 28870

max. |kra| - - 17 - 6 7 - 4 15 20 19 21 21 7

Table 6: Numbers of viable rank five (SU(5)) and rank four (SO(10)) line bundle models and

maximal value of |kra| for each base manifold. For the SO(10) cases marked with a star numbers

are converging but have not quite saturated despite the large entries.

4.2 SO(10) GUT theory

As in the SU(5) cases, viable models only arise on base manifolds with Picard number greater

than 2. It turns out that amongst the five Picard number 3 manifolds, X7 does not admit any

viable models, and the other four, X5, X6, X8, X14 admit 5, 13, 9, 28 bundles, respectively. For

all those cases, the scan has saturated according to our criterion and the complete set of viable

models has been found. In total this is 55 models which are listed in Appendix C. For the other
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six manifolds X3, X9, X10, X11, X12, X13, all with Picard number four, only X9 is complete

and admits 2207 bundles. For the others, the number of viable bundles is converging but still

growing slowly despite the large range of integer entries. The number of models found in each

case is summarized in Table 6 and the complete data sets can be downloaded from Ref. [32].

4.3 An SU(5) example

To illustrate our results we would like to present explicitly one example from our data set, a

three generation SU(5) GUT theory on the Calabi-Yau manifold X9. We recall that X9 is a

Picard number four manifold, constructed from eight homogeneous coordinates (see Appendix A

for details). From Table 6 we can see that there are 12 viable SU(5) models on this manifold,

with line bundle entries in the range −4 ≤ kra ≤ 4.

Let us consider the first of these models from the table in Appendix C which is specified by

a line bundle sum V of the five line bundles

L1 = OX(−4, 0, 1, 1), L2 = OX(1, 3,−1,−1), L3 = L4 = L5 = OX(1,−1, 0, 0) . (25)

Evidently, c1(V ) = 0 and, since three of the line bundles are the same, only two slope-zero

conditions (14) have to be satisfied in the four-dimensional Kähler cone. With the intersection

numbers and Kähler cone given in Appendix B, we find that this can indeed be achieved. Further,

c2(TX) = (12, 12, 12, 4) and, from Eq. (11), c2(V ) = (3, 5, 9,−7) so that c2(TX) − c2(V ) =

(9, 7, 3, 11) which represents a class in the Mori cone. Hence, the model can be completed to

an anomaly-free model. By construction we have, of course, ind(V ) = ind(∧2V ) = −3 but, in

general, the distribution of this chiral asymmetry over the various line bundle sector depends on

the model. For our example, the only non-zero line bundle cohomologies are ind(L1) = −3 and

ind(L2 ⊗ L3) = ind(L2 ⊗ L4) = ind(L2 ⊗ L5) = −1 which implies a chiral spectrum

101, 101, 101, 52,3, 52,4, 52,5 . (26)

Hence, the all three chiral 10 multiplets are charged under the first U(1) symmetry and uncharged

under the others. Although, at this stage, we do not know the charge of the Higgs multiplet

5H̄ it is clear that all up Yukawa couplings 5H̄1010 are forbidden (perturbatively and at the

Abelian locus). Indeed, for those terms to be S(U(1)5) invariant we require a Higgs multiplet

with charge −2 under the first U(1) and uncharged otherwise, a charge pattern which is not

available at the Abelian locus.

We also note from Eq. (25) that the matrix (kra) of line bundle entries has rank two. This

means that two of the four U(1) symmetries are Green-Schwarz anomalous with corresponding

super heavy gauge bosons while the other two are non-anomalous with massless gauge bosons.

Those latter two U(1) symmetries can be spontaneously broken, and their gauge bosons removed

from the low-energy spectrum, by moving away from the line bundle locus (see Ref. [18] for

details).
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5 Conclusion and outlook

In this paper, we have studied heterotic model building on the sixteen families of torically

generated Calabi-Yau three-folds with non-trivial first fundamental group [26]. From those 16

manifolds, we have selected the 14 favourable three-folds and we have classified phenomeno-

logically attractive SU(5) and SO(10) line bundle GUT models thereon. Concretely, we have

searched for SU(5) and SO(10) GUT models which are supersymmetric, anomaly free and have

the correct values of the chiral asymmetries to produce a three-family standard model spectrum

(after subsequent inclusion of a Wilson line). For SU(5) we have succeeded in finding all such

line bundle models on the 14 base spaces, thereby proving finiteness of the class computationally.

The result is a total of 122 SU(5) GUT models.

For SO(10) we have obtained a complete classification for all spaces up to Picard number

three, resulting in a total of 55 SO(10) GUT models. For the other six manifolds, all with

Picard number four, only one (X9) was amenable to a complete classification. For the other five

manifolds, although the number of models were converging with increasing line bundle entries,

they had not quite saturated even at fairly high values of about kmax = 20. We expect that

we have found the vast majority of models on these manifolds with a small fraction containing

some large line bundle entries still missing. Altogether we find 28870 viable SO(10) models. All

models, both for SU(5) and SO(10), can be download from the website [32].

The main technical obstacle to determine the full spectrum of these models – before and

after Wilson line breaking – is the computation of line bundle cohomology on torically defined

Calabi-Yau manifolds. We hope to address this problem in the future.

We consider the present work as the first step in a programme of classifying all line bundle

standard models on the Calabi-Yau manifolds in the Kreuzer-Skarke list. A number of technical

challenges have to be overcome in order to complete this programme, including a classification

of freely-acting symmetries for these Calabi-Yau manifolds and the aforementioned computation

of line bundle cohomology.

A Toric Data

i Vertices of ∆̃i Vertices of ∆i

1


x̃1 x̃2 x̃3 x̃4 x̃5

4 −1 −1 −1 −1

−1 0 1 0 0

−1 1 0 0 0

−1 0 0 1 0




x1 x2 x3 x4 x5

0 −5 0 0 5

−4 1 0 3 0

−2 0 1 1 0

1 −1 0 −1 1


continued in the next page
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i Vertices of ∆̃i Vertices of ∆i

2


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6

2 −1 −1 −1 −1 2

0 1 0 0 0 −1

0 0 1 0 0 −1

−1 0 0 1 0 0




x1 x2 x3 x4 x5 x6

3 0 0 3 0 0

−1 0 0 2 −1 0

0 1 0 1 −1 −1

1 0 1 0 −1 −1



3


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

1 −1 −1 −1 1 1 1 −1

0 1 0 0 0 0 −1 0

0 0 1 0 0 −1 0 0

0 0 0 1 −1 0 0 0




x1 x2 x3 x4 x5 x6 x7 x8

2 0 0 0 0 0 0 −2

0 −1 0 1 −1 0 1 0

0 0 −1 1 −1 1 0 0

1 0 0 1 −1 0 0 −1



4


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6

−1 2 −1 −1 −1 −1

0 −1 1 0 0 0

3 −1 0 0 0 1

−1 0 0 1 0 0




x1 x2 x3 x4 x5 x6

3 0 0 0 −3 0

−2 0 1 0 −1 −1

−1 1 0 0 −2 −1

−2 0 0 1 1 0



5


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

−1 −1 1 −1 −1 −1 −1

4 0 −1 0 0 0 2

−2 2 0 0 0 1 −1

−1 0 0 1 0 0 0




x1 x2 x3 x4 x5 x6 x7

−4 0 4 0 0 2 −2

−1 0 2 −1 0 1 −1

0 1 1 −2 0 1 −1

−3 0 0 −1 1 0 −2



6


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

−1 1 −1 −1 −1 −1 −1

2 −1 0 2 0 0 0

0 0 0 −1 0 1 0

−1 0 0 −1 2 1 1




x1 x2 x3 x4 x5 x6 x7

−4 0 0 0 2 0 −2

−3 1 0 −1 0 −2 −2

1 0 1 −1 0 −1 0

−1 0 0 −1 1 0 −1



7


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

−1 −1 1 −1 −1 −1 −1

0 2 −1 0 0 0 0

2 −1 0 0 0 0 1

−1 0 0 0 2 1 0



(
x1 x2 x3 x4 x5 x6 x7

}

−4 0 0 0 2 −2 0

−3 0 1 −1 0 −2 −1

−7 1 0 −1 0 −4 2

−1 0 0 −1 1 −1 0



8


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

−1 1 −1 −1 −1 −1 −1

2 −1 0 0 0 0 0

−1 0 2 0 2 0 1

0 0 0 1 −1 0 0




x1 x2 x3 x4 x5 x6 x7

−2 0 0 4 0 4 2

−2 1 0 1 −1 0 0

−1 0 0 3 −1 2 1

−1 0 1 2 0 1 1



9


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

3 −1 −1 −1 1 −1 −1 1

0 0 0 1 −1 0 0 0

−2 2 0 0 0 0 1 −1

−1 0 1 0 0 0 0 0




x1 x2 x3 x4 x5 x6 x7 x8

−4 4 0 0 0 0 2 −2

−1 2 0 0 0 −1 1 −1

0 1 1 0 0 −2 1 −1

1 0 0 1 −1 −1 0 0



10


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

−1 1 −1 −1 1 −1 −1 −1

0 −1 2 0 0 0 0 1

2 0 0 0 −1 0 1 0

−1 0 0 1 0 0 0 0




x1 x2 x3 x4 x5 x6 x7 x8

0 −4 0 0 2 0 0 −2

−1 1 2 −1 0 0 1 0

0 −1 0 −1 1 0 0 −1

−1 0 1 0 0 1 1 0



11


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

1 1 1 −1 −1 −1 −1 −1

0 0 −1 0 0 1 0 0

0 −1 0 0 0 0 1 0

−1 0 0 0 2 0 0 1




x1 x2 x3 x4 x5 x6 x7 x8

0 0 0 2 −2 0 0 0

1 −1 0 0 0 0 −1 −1

0 1 −1 0 0 1 −1 0

0 1 0 1 −1 0 −1 0


continued in the next page
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i Vertices of ∆̃i Vertices of ∆i

12


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

−1 1 1 −1 −1 −1 −1 −1

0 0 −1 0 0 1 0 0

2 −1 0 0 0 0 0 1

−1 0 0 0 2 0 1 0




x1 x2 x3 x4 x5 x6 x7 x8

0 0 −2 0 0 2 0 0

0 1 0 −1 −3 0 −2 −1

1 0 0 −1 −1 0 −1 0

0 0 −1 −1 1 1 0 0



13


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

1 −1 −1 −1 −1 1 −1 −1

0 0 0 1 0 −1 0 0

−1 2 0 0 2 0 0 1

0 0 1 0 −1 0 0 0




x1 x2 x3 x4 x5 x6 x7 x8

0 0 0 −2 2 0 0 0

−1 −1 2 0 0 0 3 1

0 −1 0 −1 1 0 1 0

−1 0 1 0 0 1 2 1



14


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

1 −1 −1 −1 −1 −1 −1

−1 2 0 2 0 2 0

0 −1 1 0 0 −1 1

0 0 1 0 0 −1 0




x1 x2 x3 x4 x5 x6 x7

0 0 0 −2 2 0 0

−1 −1 2 2 0 0 3

0 −1 0 −1 1 0 1

−1 0 1 2 0 1 2



15


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

−1 3 −1 −1 −1 −1 −1 1

2 −2 0 0 0 0 1 −1

0 −1 1 0 0 0 0 0

−1 0 0 0 2 1 0 0




x1 x2 x3 x4 x5 x6 x7 x8

−4 0 4 −4 0 −4 −2 2

−1 0 2 −3 0 −2 −1 1

−2 1 1 −2 0 −2 −1 1

−1 0 0 −1 1 −1 0 0



16


x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

−3 −1 −1 −1 −1 −1 −1 1

−1 1 0 0 0 0 0 0

−2 0 0 2 0 2 1 −1

0 0 1 0 0 −1 0 0




x1 x2 x3 x4 x5 x6 x7 x8

4 0 0 0 −4 −4 2 −2

2 0 0 1 −3 −2 1 −1

1 1 0 0 −2 −2 1 −1

0 0 1 1 −1 −1 0 0



Table 7: The sixteen pairs (∆̃i,∆i) of reflexive four-polytopes, for i = 1, · · · , 16, each pair

leading to the upstairs Calabi-Yau geometry X̃i ⊂ Ãi and the downstairs geometry Xi ⊂ Ai with

π1(Xi) 6= ∅. The polytopes are described in terms of their integral vertices.

B Base Geometries: Upstairs and Downstairs

In this Appendix, we analyse the quotient relationship between the 16 upstairs manifolds X̃i ⊂ Ãi
and the corresponding 16 downstairs manifolds Xi ⊂ Ai whose defining polytopes were given in

the previous Appendix. In addition, some geometrical properties of these manifolds relevant to

model building will also be discussed.

B.1 An Illustrative Example: the Quintic three-fold

Amongst the sixteen pairs is the quintic manifold X̃1 and its Z5 quotient X1, which we take as

an illustrative example. The corresponding two polytopes ∆̃1 and ∆1 have 5 vertices each.
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Firstly, the vertices of ∆̃1 for the quintic three-fold X̃1 can be read off from Table 7:
x̃1 x̃2 x̃3 x̃4 x̃5

4 −1 −1 −1 −1

−1 0 1 0 0

−1 1 0 0 0

−1 0 0 1 0

 , (27)

where x̃ρ=1,··· ,5 are the homogeneous coordinates on the ambient space P4. The polytope ∆̃1

naturally leads to the usual 126 quintic monomials in x̃ρ; these generate the defining polynomial

of the quintic Calabi-Yau three-fold X̃1.

Similarly, the vertices of ∆1 for the quotiented quintic X1 = X̃1/Z5 are given as follows:
x1 x2 x3 x4 x5

0 −5 0 0 5

−4 1 0 3 0

−2 0 1 1 0

1 −1 0 −1 1

 , (28)

where xρ=1,··· ,5 are again the homogeneous coordinates on the corresponding toric ambient space.

As for the generators of the defining polynomial, the polytope ∆1 leads to the following 26

monomials in xρ:

x5
2 , x1x

3
2x3 , x2

2x
2
3x5 , x3

2x4x5 , x1x
2
2x

2
5 , x2x3x

3
5 , x5

5 , x5
3 , x2

1x2x
2
3 ,

x2x
3
3x4 , x1x

3
3x5 , x2

1x
2
2x4 , x3

1x2x5 , x2
2x3x

2
4 , x1x2x3x4x5 , x2

1x3x
2
5 , x2

3x4x
2
5 ,

x2x
2
4x

2
5 , x1x4x

3
5 , x5

1 , x3
1x3x4 , x1x

2
3x

2
4 , x1x2x

3
4 , x2

1x
2
4x5 , x3x

3
4x5 , x5

4 .

(29)

Now, by demanding that the 26 monomials be invariant, we find the following phase rotation

rule

{x̃1 → x1, x̃2 → e
2iπ
5 x2, x̃3 → e

4iπ
5 x3, x̃4 → e

6iπ
5 x4, x̃5 → e

8iπ
5 x5} , (30)

which links the two sets of homogeneous coordinates.

This phase rotation relates the two manifolds X̃1 and X1 tightly. Not only the Laurant

polynomials are explicitly connected, it turns out that the integral cohomology groups are also

very much similar under the phase rotation.

As an example illustrating the precise relation between upstairs and downstairs space, con-

sider one of the 126 monomials, x̃1x̃
3
2x̃3, defining the upstairs ambient space of the quintic X̃1. If

we transform this monomial using the rules in Eq. (30) we obtain x̃1x̃
3
2x̃3 → x1(e

2iπ
5 x2)3e

4iπ
5 x3 =

x1x
3
2x3. The phase independence of the result means that this is one of the 26 monomials which

define the downstairs manifold X1 = X̃1/Z5. The remaining 25 downstairs monomials can be

obtained by applying this procedure systematically to all upstairs monomials ‡.

‡In some cases, an additional permutation of the downstairs homogeneous coordinate has to be included, as

in some of the examples in Table. 8. This is to ensure that the linear relationships between divisors and integral

basis are literally the same for both the upstairs and the downstairs manifolds.
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We next turn to some relevant base geometries, most of which can be easily extracted from

PALP [30]. Let us start from upstairs. Firstly, the Picard group of X̃1 is generated by a single

element J̃1 and all the toric divisors are rationally equivalent to J̃1:

D̃1 = J̃1, D̃2 = J̃1, D̃3 = J̃1, D̃4 = J̃1, D̃5 = J̃1 .

Note that we do not carefully distinguish harmonic (1, 1)-forms from divisors unless ambiguities

arise. The intersection polynomial is:

5J̃3
1 ,

which means that d111(X̃1) = 5. In general, the coefficient of the monomial term J̃rJ̃sJ̃t in

the intersection polynomial is the value of drst(X̃), without any symmetry factors. Finally, the

Hodge numbers are:

h1,1(X̃1) = 1, h1,2(X̃1) = 101 ,

leading to the Euler character χ(X̃1) = −200.

As for the downstairs manifold X1, the Z5-quotient of the quintic X̃1, the Picard group is

again spanned by a single element J1 and the toric divisors are all equivalent:

D1 = J1, D2 = J1, D3 = J1, D4 = J1, D5 = J1 .

The intersection polynomial is given as:

J3
1 ,

and hence, d111(X1) = 1. Finally, the Hodge numbers are:

h1,1(X1) = 1, h1,2(X1) = 21

and the Euler character χ(X1) = −40.

Note that the intersection polynomial of X1 is equal to that of X̃1 divided by 5, the order of

the discrete group Z5. This remains true for all the fourteen favorable manifolds Xi=1,··· ,14 in an

appropriate basis of H1,1.

B.2 Summary of the Base Geometries

For the remaining fifteen cases, the phase rotations of the homogeneous coordinates are not as

straight-forward as in the quintic example. One needs to make use of some combinatorial tricks to

figure out the explicit results. In some cases, permutations are also required to make the upstairs

and the downstairs intersection polynomials proportional to each other. In Table 8, we summarise

the complete results for all the sixteen pairs of geometries. For each pair, we first present the

phase rotation map between upstairs and downstairs coordinates (and the permutation of the

coordinates if required). The base geometries of X̃i and Xi then follow in order: number of
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generating monomials,§ toric divisors in terms of the (1, 1)-form basis elements, intersection

polynomial. The Hodge numbers h1,1 and h2,1, as well as the Euler character χ of the manifold

X are presented using the notation [X]h
1,1,h2,1

χ . . In addition, the second Chern class c2(TX) and

Kähler cone matrix K for the downstairs manifolds are also being listed. The Kähler cone is

then given by all Kähler parameters satisfying Krst
s ≥ 0 for all r.

Base Geometries: Upstairs and Downstairs

Pair 1: {x̃1 → x1, x̃2 → e
2iπ
5 x2, x̃3 → e

4iπ
5 x3, x̃4 → e

6iπ
5 x4, x̃5 → e

8iπ
5 x5}

[X̃1]1,101
−200 #(monomials) = 126

D̃1 = J̃1, D̃2 = J̃1, D̃3 = J̃1, D̃4 = J̃1, D̃5 = J̃1

5J̃3
1

[X1]1,21
−40 #(monomials) = 26

D1 = J1, D2 = J2, D3 = J2, D4 = J1, D5 = J1, D6 = J2

J1
3

c2(TX) = (10) K = (1)

Pair 2: {x̃1 → x1, x̃4 → e
2iπ
3 x4, x̃5 → e

4iπ
3 x5, x̃2 → x2, x̃3 → e

2iπ
3 x3, x̃6 → e

4iπ
3 x6}

[X̃2]2,83
−162 #(monomials) = 100

D̃1 = J̃1, D̃2 = J̃2, D̃3 = J̃2, D̃4 = J̃1, D̃5 = J̃1, D̃6 = J̃2

3 J̃2
1 J̃2 + 3 J̃1 J̃2

2

[X2]2,29
−54 #(monomials) = 34

D1 = J1, D2 = J1, D3 = J1, D4 = J1, D5 = J1

J2
1 J2 + J1 J2

2

c2(TX) = (12, 12) K =

(
0 1

1 0

)

Pair 3: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃4 → eiπx4, x̃5 → x5, x̃6 → x6, x̃7 → x7, x̃8 → x8}

[X̃3]4,68
−128 #(monomials) = 81

D̃1 = J̃4, D̃2 = J̃3, D̃3 = J̃2, D̃4 = J̃1, D̃5 = J̃1, D̃6 = J̃2, D̃7 = J̃3, D̃8 = J̃4

2 J̃1 J̃2 J̃3 + 2 J̃1 J̃2 J̃4 + 2 J̃1 J̃3 J̃4 + 2 J̃2 J̃3 J̃4

[X3]4,36
−64 #(monomials) = 26

§For simplicity, we do not attempt to explicitly show the generating monomials and only give the number of

viable terms. However, the idea should be clear from the quintic example in section B.1.
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Base Geometries: Upstairs and Downstairs

D1 = J4, D2 = J3, D3 = J2, D4 = J1, D5 = J1, D6 = J2, D7 = J3, D8 = J4

J1 J2 J3 + J1 J2 J4 + J1 J3 J4 + J2 J3 J4

c2(TX) = (12, 12, 12, 12) K =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0



Pair 4: {x̃1 → x1, x̃2 → e
2iπ
3 x2, x̃4 → e

4iπ
3 x4, x̃3 → x3, x̃5 → e

2iπ
3 x5, x̃6 → e

4iπ
3 x6}

[X̃4]4,112
−216 #(monomials) = 145

D̃1 = J̃1, D̃2 = 3 J̃1 + J̃2, D̃3 = 3 J̃1 + J̃2, D̃4 = J̃1, D̃5 = J̃1, D̃6 = J̃2

3 J̃2
1 J̃2 − 9 J̃1 J̃2

2 + 27 J̃3
2

[X4]2,38
−72 #(monomials) = 49

D1 = J1, D2 = 3 J1 + J2, d3 = 3 J1 + J2, D4 = J1, D5 = J1, D6 = J2

J2
1 J2 − 3 J1 J2

2 + 9 J3
2

c2(TX) = (12,−6) K =

(
0 1

1 −3

)

Pair 5: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃6 → eiπx6, x̃4 → x4, x̃5 → x5}
{x3 → x5, x5 → x3}

[X̃5]3,83
−160 #(monomials) = 105

D̃1 = J̃1, D̃2 = J̃2, D̃3 = 4 J̃1 + 2 J̃3, D̃4 = J̃1, D̃5 = J̃2, D̃6 = 2 J̃1 − 2 J̃2 + J̃3, D̃7 = J̃3

2 J̃1 J̃2 J̃3 + 4 J̃1 J̃2
3 − 4 J̃2 J̃2

3 − 16 J̃3
3

[X5]3,43
−80 #(monomials) = 53

D1 = J2, D2 = J1, D3 = J1, D4 = J2, D5 = 4 J2 + 2 J3, D6 = −2 J1 + 2 J2 + J3, D7 = J3

J1 J2 J3 − 2 J1 J2
3 + 2 J2 J2

3 − 8 J3
3

c2(TX) = (12, 12, 4) K =


0 1 −2

1 0 0

0 0 1



Pair 6: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃4 → eiπx4, x̃5 → x5, x̃6 → x6}
{x1 → x5, x5 → x1, x3 → x4, x4 → x3}

[X̃6]3,115
−224 #(monomials) = 153

D̃1 = 2 J̃1 + J̃3, D̃2 = 4 J̃1 + 2 J̃2 + 2 J̃3, D̃3 = J̃1, D̃4 = J̃2, D̃5 = J̃1, D̃6 = J̃2, D̃7 = J̃3
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Base Geometries: Upstairs and Downstairs

2 J̃1 J̃2 J̃3 − 4 J̃2 J̃2
3

[X6]3,59
−112 #(monomials) = 77

D1 = J1, D2 = 4 J1 + 2 J2 + 2 J3, D3 = J2, D4 = J1, D5 = 2 J1 + J3, D6 = J2, D7 = J3

J1 J2 J3 − 2 J2 J2
3

c2(TX) = (12, 12, 0)

K1 =


0 1 −2

1 0 0

0 0 1

 , K2 =


0 0 1

1 0 −2

0 1 −1

, Kjoin =


1 0 0

0 1 0

0 0 1



Pair 7: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃4 → eiπx4}
{x1 → x5, x5 → x1, x2 → x3, x3 → x2}

[X̃7]4,148
−288 #(monomials) = 126

D̃1 = 2 J̃1 + J̃2, D̃2 = 4 J̃1 + 2 J̃2 + J̃3, D̃3 = 8 J̃1 + 4 J̃2 + 2 J̃3, D̃4 = J̃1, D̃5 = J̃1, D̃6 = J̃2, D̃7 = J̃3

2 J̃1 J̃2 J̃3 − 4 J̃2
2 J̃3 − 4 J̃1 J̃2

3 + 16 J̃3
3

[X7]3,75
−144 #(monomials) = 26

D1 = J1, D2 = 8 J1 + 4 J2 + 2 J3, D3 = 4 J1 + 2 J2 + J3, D4 = J1, D5 = 2 J1 + J2, D6 = J2, D7 = J3

J1 J2 J3 − 2 J2
2 J3 − 2 J1 J2

3 + 8 J3
3

c2(TX) = (12, 0,−4) K =


1 −2 0

0 0 1

0 1 −2



Pair 8: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃4 → eiπx4}

[X̃8]4,148
−288 #(monomials) = 201

D̃1 = 2 J̃1 + 2 J̃2 + J̃3, D̃2 = 4 J̃1 + 4 J̃2 + 2 J̃3, D̃3 = J̃2, D̃4 = J̃1, D̃5 = J̃1, D̃6 = J̃2, D̃7 = J̃3

2 J̃1 J̃2 J̃3 − 4 J̃1 J̃2
3 − 4 J̃2 J̃2

3 + 16 J̃3
3

[X8]3,75
−144 #(monomials) = 101

D1 = 2 J1 + 2 J2 + J3, D2 = 4 J1 + 4 J2 + 2 J3, D3 = J2, D4 = J1, D5 = J1, D6 = J2, D7 = J3

J1 J2 J3 − 2 J1 J2
3 − 2 J2 J2

3 + 8 J3
3

c2(TX) = (12, 12,−4) K =


0 0 1

1 0 −2

0 1 −2



Pair 9: {x̃1 → eiπx1, x̃2 → eiπx2, x̃4 → eiπx4, x̃7 → eiπx7}
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Base Geometries: Upstairs and Downstairs

{x3 → x6, x6 → x3}

[X̃9]4,52
−96 #(monomials) = 57

D̃1 = J̃1, D̃2 = J̃3, D̃3 = J̃1, D̃4 = J̃2, D̃5 = J̃2, D̃6 = J̃3, D̃7 = 2 J̃1 − 2 J̃3 + J̃4, D̃8 = J̃4

2 J̃1 J̃2 J̃3 + 4 J̃1 J̃2 J̃4 + 2 J̃1 J̃3 J̃4 + 4 J̃1 J̃2
4 − 8 J̃2 J̃2

4 − 4 J̃3 J̃2
4 − 16 J̃3

4

[X9]4,28
−48 #(monomials) = 29

D1 = J3, D2 = J1, D3 = J1, D4 = J2, D5 = J2, D6 = J3, D7 = −2 J1 + 2 J3 + J4, D8 = J4

J1 J2 J3 + J1 J3 J4 + 2 J2 J3 J4 − 2 J1 J2
4 − 4 J2 J2

4 + 2 J3 J2
4 − 8 J3

4

c2(TX) = (12, 12, 12, 4) K =


1 0 0 0

0 0 0 1

0 0 1 −2

0 1 0 0



Pair 10: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃5 → eiπx5}
{x1 → x2, x2 → x1, x7 → x8, x8 → x7}

[X̃10]4,68
−128 #(monomials) = 81

D̃1 = J̃1, D̃2 = 2 J̃2 + J̃4, D̃3 = J̃2, D̃4 = J̃1, D̃5 = 2 J̃1 + J̃3, D̃6 = J̃2, D̃7 = J̃3, D̃8 = J̃4

2 J̃1 J̃2 J̃3 − 4 J̃2 J̃2
3 + 2 J̃1 J̃2 J̃4 − 4 J̃1 J̃2

4

[X10]4,36
−64 #(monomials) = 41

D1 = 2 J2 + J3, D2 = J1, D3 = J2, D4 = J1, D5 = 2 J1 + J4, D6 = J2, D7 = J3, D8 = J4

J1 J2 J3 − 2 J1 J2
3 + J1 J2 J4 − 2 J2 J2

4

c2(TX) = (12, 12, 0, 0) K =


0 0 1 0

0 1 −2 0

0 0 0 1

1 0 0 −2



Pair 11: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃4 → eiπx4}
{x2 → x4, x4 → x2, x5 → x7, x7 → x5}

[X̃11]4,68
−128 #(monomials) = 81

D̃1 = 2 J̃1 + J̃4, D̃2 = J̃3, D̃3 = J̃2, D̃4 = J̃1, D̃5 = J̃1, D̃6 = J̃2, D̃7 = J̃3, D̃8 = J̃4

2 J̃1 J̃2 J̃3 + 2 J̃1 J̃2 J̃4 + 2 J̃1 J̃3 J̃4 − 4 J̃2 J̃2
4 − 4 J̃3 J̃2

4

[X11]4,36
−64 #(monomials) = 41

D1 = 2 J3 + J4, D2 = J3, D3 = J2, D4 = J1, D5 = J1, D6 = J2, D7 = J3, D8 = J4

J1 J2 J3 + J1 J3 J4 + J2 J3 J4 − 2 J1 J2
4 − 2 J2 J2

4
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c2(TX) = (12, 12, 12, 0) K =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 −2



Pair 12: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃4 → eiπx4}

[X̃12]5,85
−160 #(monomials) = 105

D̃1 = 2 J̃1 + J̃3, D̃2 = 4 J̃1 + 2 J̃3 + J̃4, D̃3 = J̃2, D̃4 = J̃1, D̃5 = J̃1, D̃6 = J̃2, D̃7 = J̃3, D̃8 = J̃4

2 J̃1 J̃2 J̃3 − 4 J̃2 J̃2
3 + 2 J̃1 J̃3 J̃4 − 4 J̃2

3 J̃4 − 4 J̃1 J̃2
4 + 16 J̃3

4

[X12]4,44
−80 #(monomials) = 53

D1 = 2 J1 + J3, D2 = 4 J1 + 2 J3 + J4, D3 = J2, D4 = J1, D5 = J1, D6 = J2, D7 = J3, D8 = J4

J1 J2 J3 − 2 J2 J2
3 + J1 J3 J4 − 2 J2

3 J4 − 2 J1 J2
4 + 8 J3

4

c2(TX) = (12, 12, 0,−4) K =


0 1 0 0

1 0 −2 0

0 0 0 1

0 0 1 −2



Pair 13: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃4 → eiπx4}
{x5 → x6, x6 → x5}

[X̃13]5,85
−160 #(monomials) = 105

D̃1 = 2 J̃1 + 2 J̃3 + J̃4, D̃2 = J̃3, D̃3 = J̃1, D̃4 = J̃2, D̃5 = J̃1, D̃6 = J̃2, D̃7 = J̃3, D̃8 = J̃4

2 J̃1 J̃2 J̃3 + 2 J̃1 J̃3 J̃4 − 4 J̃1 J̃2
4 − 4 J̃3 J̃2

4 + 16 J̃3
4

[X13]4,44
−80 #(monomials) = 53

D1 = 2 J2 + 2 J3 + J4, D2 = J3, D3 = J2, D4 = J1, D5 = J1, D6 = J2, D7 = J3, D8 = J4

J1 J2 J3 + J2 J3 J4 − 2 J2 J2
4 − 2 J3 J2

4 + 8 J3
4

c2(TX) = (12, 12, 12,−4) K =


1 0 0 0

0 0 0 1

0 1 0 −2

0 0 1 −2



Pair 14: {x̃1 → eiπx1, x̃2 → eiπx2, x̃3 → eiπx3, x̃4 → eiπx4}

[X̃14]3,115
−224 #(monomials) = 153

D̃1 = 2 J̃1 + 2 J̃2 + 2 J̃3, D̃2 = J̃3, D̃3 = J̃2, D̃4 = J̃1, D̃5 = J̃1, D̃6 = J̃2, D̃7 = J̃3

2 J̃1 J̃2 J̃3
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Base Geometries: Upstairs and Downstairs

[X14]3,59
−112 #(monomials) = 77

D1 = 2 J1 + 2 J2 + 2 J3, D2 = J3, D3 = J2, D4 = J1, D5 = J1, D6 = J2, D7 = J3

J1 J2 J3

c2(TX) = (12, 12, 12)

K1 =


0 1 0

1 −1 0

0 −1 1

 , K2 =


0 0 1

0 1 −1

1 0 −1

, K3 =


1 0 0

−1 0 1

−1 1 0

, Kjoin =


1 0 0

0 1 0

0 0 1



Table 8: Summary of the Calabi-Yau three-fold geometries, for both upstairs manifolds X̃i and

downstairs manifolds Xi. The phase rotation rule (together with the permutation if needed) is

specified at the start of each geometry pair. The Hodge numbers h1,1 and h2,1, as well as the Euler

Character χ of the manifold X are presented as [Xi]
h1,1,h2,1

χ . Further geometrical properties follow

in order: number of generating monomials, Picard group structure and intersection polynomial,

as well as c2(TXi) and Kähler cone matrix for the downstairs spaces.

C GUT Models

Downstairs Rank-5 GUT Models

[X3]4,36
−64 π1(X3) = Z2

{(-1, 2, 2, 0),(0, -1, 1, 0),(0, -1, 1, 0),(0, 0, -3, 1),(1, 0, -1, -1)} {(-1, 1, 3, 0),(0, 1, -1, 0),(0, 1, -1, 0),(0, 1, -1, 0),(1, -4, 0, 0)}

{(-1, 1, 3, 0),(0, 1, -1, 0),(0, 1, -1, 0),(0, -4, 0, 1),(1, 1, -1, -1)} {(-1, 1, 2, 0),(0, 1, -1, 0),(0, 1, -1, 0),(0, -4, 0, 1),(1, 1, 0, -1)}

{(-1, 1, 1, 0),(0, 1, 1, -2),(0, -1, 0, 1),(0, -1, 0, 1),(1, 0, -2, 0)} {(-1, 0, 1, 0),(-1, 1, 0, -1),(-1, 0, 1, 0),(1, 0, 0, -1),(2, -1, -2, 2)}

{(-1, 0, 1, 0),(-1, 0, 1, 0),(-1, 0, 1, 0),(1, 1, -1, -2),(2, -1, -2, 2)} {(-1, 0, 1, 0),(-1, 1, -1, 0),(0, 1, 2, -2),(1, -1, -1, 1),(1, -1, -1, 1)}

{(-1, 1, 1, -1),(-2, -1, 1, 1),(-1, 1, 1, -1),(2, 1, -2, 0),(2, -2, -1, 1)} {(-1, 1, 1, -1),(-1, 1, 1, -1),(-1, 1, 1, -1),(1, -3, -1, 2),(2, 0, -2, 1)}

[X6]3,59
−112 π1(X6) = Z2

{(-3, 0, 1), (0, 3, -1), (1, -1, 0), (1, -1, 0), (1, -1, 0)} {(-1, 1, 0), (-1, 1, 0), (-1, 1, 0), (1, -4, 1), (2, 1, -1)}

[X9]4,28
−48 π1(X9) = Z2

{(-4, 0, 1, 1),(1, 3, -1, -1),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)} {(-3, 1, -1, 1),(0, 2, 1, -1),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)}

{(-3, 1, 0, 1),(0, 2, 0, -1),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)} {(-2, 3, 0, -1),(-1, 0, 0, 1),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)}

{(-2, 1, 1, 0),(-1, -2, 2, 1),(1, 1, -1, -1),(1, 0, -1, 0),(1, 0, -1, 0)} {(-2, 0, 0, 1),(-1, 3, 0, -1),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)}

{(-2, 1, 0, 1),(-1, 2, 0, -1),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)} {(-2, 0, 1, 2),(-1, 3, -1, -2),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)}

{(-1, 1, 0, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(-1, -1, -1, 1),(4, -2, 1, -1)} {(-1, 1, 0, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(0, -4, 1, 1),(3, 1, -1, -1)}

{(-1, 1, 3, 0),(0, 1, -1, 0),(0, 1, -1, 0),(0, 1, -1, 0),(1, -4, 0, 0)} {(-1, -4, 2, 1),(0, 1, -1, 0),(0, 1, -1, 0),(0, 1, -1, 0),(1, 1, 1, -1)}

[X10]4,36
−64 π1(X10) = Z2

continued in the next page
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Downstairs Rank-5 GUT Models

{(-3, 4, 2, -1),(1, -1, -1, 0),(1, -1, -1, 0),(1, -1, -1, 0),(0, -1, 1, 1)} {(-3, 4, 2, -2),(1, -1, -1, 1),(1, -1, -1, 1),(1, -1, -1, 1),(0, -1, 1, -1)}

{(-4, 3, 2, -1),(2, -2, -1, 1),(2, -2, -1, 1),(2, -2, -1, 1),(-2, 3, 1, -2)} {(-2, 1, 2, 1),(5, -4, -2, 2),(-1, 1, 0, -1),(-1, 1, 0, -1),(-1, 1, 0, -1)}

{(0, 1, 2, -2),(1, -1, -1, 1),(1, -1, -1, 1),(1, -1, -1, 1),(-3, 2, 1, -1)} {(-1, 1, 1, 0),(1, 0, -2, -1),(2, -3, -1, 1),(-1, 1, 1, 0),(-1, 1, 1, 0)}

{(-3, 1, 1, 0),(0, -1, -1, 1),(1, -1, 0, 0),(1, -1, 0, 0),(1, 2, 0, -1)} {(-4, 1, 1, 0),(2, -2, -1, 1),(1, -1, 0, 0),(1, -1, 0, 0),(0, 3, 0, -1)}

{(-4, 1, 1, 0),(2, -1, -1, 1),(1, -1, 0, 0),(1, -1, 0, 0),(0, 2, 0, -1)} {(-4, 1, 1, 0),(1, 2, -1, 0),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)}

{(-2, 1, 1, -1),(2, 1, -1, 0),(1, -1, 0, 0),(1, -1, 0, 0),(-2, 0, 0, 1)} {(-1, 0, 1, 1),(2, -1, -2, 0),(3, -3, -1, 1),(-2, 2, 1, -1),(-2, 2, 1, -1)}

{(-1, 0, 1, 0),(0, 0, -1, 1),(0, 0, -1, 1),(1, -1, 0, 0),(0, 1, 1, -2)} {(0, -1, 1, 1),(1, 0, -2, 0),(-1, 1, -1, 1),(0, 0, 1, -1),(0, 0, 1, -1)}

{(0, -3, 1, 0),(3, 0, -1, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(-1, 1, 0, 0)} {(0, -3, 1, 0),(1, 0, -1, 1),(1, 1, 0, -1),(-1, 1, 0, 0),(-1, 1, 0, 0)}

{(-1, 2, 0, 1),(1, -2, -3, 2),(0, 0, 1, -1),(0, 0, 1, -1),(0, 0, 1, -1)} {(-1, 1, 0, 0),(1, 0, -2, 1),(0, -1, 0, 1),(0, 0, 1, -1),(0, 0, 1, -1)}

{(-1, 1, 0, 0),(2, 1, -1, 0),(1, -3, 0, 1),(-1, 1, 0, 0),(-1, 0, 1, -1)} {(-3, 0, 0, 1),(1, 1, -1, 0),(1, -1, 0, 0),(1, -1, 0, 0),(0, 1, 1, -1)}

{(-3, 0, 0, 1),(1, 2, -1, 0),(1, -1, 0, 0),(1, -1, 0, 0),(0, 0, 1, -1)} {(0, -1, 0, 1),(3, -2, -2, 1),(1, -1, 0, 0),(-2, 2, 1, -1),(-2, 2, 1, -1)}

{(-1, 0, -1, 2),(1, 0, -2, 1),(0, 0, 1, -1),(0, 0, 1, -1),(0, 0, 1, -1)} {(-1, 0, -1, 1),(4, -3, -2, 2),(-1, 1, 1, -1),(-1, 1, 1, -1),(-1, 1, 1, -1)}

{(1, 0, -2, 2),(2, -3, -1, 1),(-1, 1, 1, -1),(-1, 1, 1, -1),(-1, 1, 1, -1)}

[X11]4,36
−64 π1(X11) = Z2

{(2, 2, -1, -1), (-3, 0, 1, 0), (-1, 0, 0, 1), (1, -1, 0, 0), (1, -1, 0, 0)} {(2, 2, -3, -1), (-2, 1, 0, 1), (0, -1, 1, 0), (0, -1, 1, 0), (0, -1, 1, 0)}

{(2, 2, -3, -1), (-1, -1, 1, 1), (-1, 0, 1, 0), (-1, 0, 1, 0), (1, -1, 0, 0)} {(2, 2, -3, -2), (-2, 1, 0, -1), (0, -1, 1, 1), (0, -1, 1, 1), (0, -1, 1, 1)}

{(1, 3, -1, 0), (-4, 0, 1, 0), (1, -1, 0, 0), (1, -1, 0, 0), (1, -1, 0, 0)} {(1, 3, -1, -1), (-4, 0, 1, 1), (1, -1, 0, 0), (1, -1, 0, 0), (1, -1, 0, 0)}

{(1, 2, -1, 0), (-4, 0, 1, 1), (1, -1, 0, 0), (1, -1, 0, 0), (1, 0, 0, -1)} {(1, 2, -3, -1), (-1, -1, 2, 1), (-1, -1, 2, 1), (0, 2, -1, -2), (1, -2, 0, 1)}

{(1, 2, -4, -1), (-1, -1, 2, 1), (-1, -1, 2, 1), (-1, -1, 2, 1), (2, 1, -2, -2)} {(1, 2, -2, -2), (-1, -1, 2, 1), (-1, -1, 2, 1), (0, 1, -1, 0), (1, -1, -1, 0)}

{(1, 1, -2, 0), (-2, 0, 1, 1), (0, -1, 1, 0), (0, -1, 1, 0), (1, 1, -1, -1)} {(1, 1, -1, -1), (-4, 0, 1, 1), (1, -1, 2, 0), (1, 0, -1, 0), (1, 0, -1, 0)}

{(1, 1, -2, -1), (-4, 0, 1, 1), (1, -1, 3, 0), (1, 0, -1, 0), (1, 0, -1, 0)} {(1, 1, -2, -1), (-3, -1, 3, 1), (0, -2, 3, 2), (1, 1, -2, -1), (1, 1, -2, -1)}

{(1, 1, -2, -1), (-3, -1, 3, 2), (0, -2, 3, 1), (1, 1, -2, -1), (1, 1, -2, -1)} {(1, 1, -2, -1), (-2, -1, 3, 1), (-1, 1, -1, 1), (1, -2, 2, 0), (1, 1, -2, -1)}

{(1, 1, -2, -1), (-2, 0, 3, 1), (0, -1, 1, 0), (0, -1, 0, 1), (1, 1, -2, -1)} {(1, 1, -3, -1), (-1, 0, 1, 1), (-1, 0, 1, 1), (-1, 0, 1, 1), (2, -1, 0, -2)}

{(1, 1, -3, -2), (-1, 0, 1, 0), (-1, 0, 1, 0), (-1, 0, 1, 0), (2, -1, 0, 2)} {(0, 3, 0, -1), (-1, -1, 2, 1), (0, -1, 1, 0), (0, -1, 1, 0), (1, 0, -4, 0)}

{(0, 3, 0, -1), (0, -1, 1, 0), (0, -1, 1, 0), (0, -1, 1, 0), (0, 0, -3, 1)} {(0, 2, -1, 1), (-3, 1, 1, 2), (1, -1, 0, -1), (1, -1, 0, -1), (1, -1, 0, -1)}

{(0, 2, 1, -1), (-1, -1, 1, 1), (0, 1, -1, 0), (0, 1, -1, 0), (1, -3, 0, 0)} {(0, 2, 1, -1), (-1, 0, 0, 1), (0, -1, 1, 0), (0, -1, 1, 0), (1, 0, -3, 0)}

{(0, 2, 0, -1), (-1, 0, 2, 1), (0, -1, 1, 0), (0, -1, 1, 0), (1, 0, -4, 0)} {(0, 2, -1, -2), (-3, 1, 1, -1), (1, -1, 0, 1), (1, -1, 0, 1), (1, -1, 0, 1)}

{(0, 1, -1, 0), (-2, -1, 2, 1), (0, 1, -1, 0), (0, 1, -1, 0), (2, -2, 1, -1)} {(0, 1, -1, 0), (-2, 0, 1, 1), (0, 1, -1, 0), (1, -2, 1, 0), (1, 0, 0, -1)}

{(0, 1, -1, 0), (-2, 2, 1, -1), (0, -1, 0, 1), (1, -1, 0, 0), (1, -1, 0, 0)} {(0, 1, -1, 0), (-2, 2, 1, 1), (0, -1, 0, 1), (1, -1, 0, -1), (1, -1, 0, -1)}

{(0, 1, -1, 0), (-1, -2, 4, 2), (0, 1, -1, 0), (0, 1, -1, 0), (1, -1, -1, -2)} {(0, 1, -1, 0), (-1, 0, 1, 0), (-1, 0, 0, 1), (0, 1, -1, 0), (2, -2, 1, -1)}

{(0, 1, -1, 0), (-1, 1, 3, 0), (0, 1, -1, 0), (0, 1, -1, 0), (1, -4, 0, 0)} {(0, 1, -1, 0), (-1, 1, 0, 1), (0, 1, 2, -1), (0, 1, -1, 0), (1, -4, 0, 0)}

{(0, 1, -1, 0), (-1, 1, 1, 1), (0, 1, 1, -1), (0, 1, -1, 0), (1, -4, 0, 0)} {(0, 1, -1, 0), (-1, 2, 2, 0), (0, -3, 1, 1), (0, 1, -1, 0), (1, -1, -1, -1)}

{(0, 1, -1, 0), (0, -4, 1, 1), (0, 1, 2, -1), (0, 1, -1, 0), (0, 1, -1, 0)} {(0, 1, -4, 0), (-1, 0, 1, 0), (-1, 0, 1, 0), (-1, 0, 1, 0), (3, -1, 1, 0)}

{(0, 1, 0, -1), (-2, 1, 1, 0), (0, 0, -1, 1), (1, -1, 0, 0), (1, -1, 0, 0)} {(0, 1, 0, -1), (-1, 0, 1, 0), (-1, 0, 1, 0), (0, 0, -3, 1), (2, -1, 1, 0)}

continued in the next page
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{(0, 1, -1, -1), (-3, -1, 3, 1), (0, 1, -1, -1), (0, 1, -1, -1), (3, -2, 0, 2)} {(0, 1, -1, -1), (-2, -2, 5, 2), (0, 1, -1, -1), (0, 1, -1, -1), (2, -1, -2, 1)}

{(0, 1, -1, -1), (-2, -1, 2, 1), (0, 1, -1, -1), (0, 1, -1, -1), (2, -2, 1, 2)} {(0, 1, -1, -1), (-1, -2, 4, 2), (0, 1, -1, -1), (0, 1, -1, -1), (1, -1, -1, 1)}

{(0, 1, -2, -1), (-1, 0, 1, 0), (-1, 0, 1, 0), (0, 0, -2, 1), (2, -1, 2, 0)} {(0, 1, 0, -2), (-3, 2, 0, -1), (1, -1, 0, 1), (1, -1, 0, 1), (1, -1, 0, 1)}

{(0, 1, 0, -2), (-1, 0, 1, 0), (-1, 1, -1, 0), (1, -1, 0, 1), (1, -1, 0, 1)} {(0, 1, 0, -2), (-1, 1, 0, 1), (-1, 1, 0, 1), (1, -2, 1, -1), (1, -1, -1, 1)}

{(0, 0, -3, 1), (-1, 0, 1, 0), (-1, 0, 1, 0), (-1, 1, 0, -1), (3, -1, 1, 0)} {(-1, 2, -1, 1), (-2, 2, 1, 0), (1, -2, 0, 1), (1, -1, 0, -1), (1, -1, 0, -1)}

{(-1, 2, -2, 1), (-2, 1, 2, 2), (1, -1, 0, -1), (1, -1, 0, -1), (1, -1, 0, -1)} {(-1, 2, -2, -3), (-2, 1, 2, 0), (1, -1, 0, 1), (1, -1, 0, 1), (1, -1, 0, 1)}

{(-1, 1, -1, 2), (-2, 2, 1, 1), (1, -1, 0, -1), (1, -1, 0, -1), (1, -1, 0, -1)} {(-1, 1, -1, 1), (-2, 2, 1, -1), (1, -1, 0, 0), (1, -1, 0, 0), (1, -1, 0, 0)}

[X12]4,44
−80 π1(X12) = Z2

{(1, -4, 1, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(2, 1, -1, 0)}

[X13]4,44
−80 π1(X13) = Z2

{(3, 1, -1, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(0, -4, 1, 0)} {(3, -1, 1, 0),(-1, 0, 1, 0),(-1, 0, 1, 0),(-1, 0, 1, 0),(0, 1, -4, 0)}

{(3, 1, -1, -1),(-1, 1, 0, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(0, -4, 1, 1)} {(3, -1, 1, -1),(-1, 0, 1, 0),(-1, 0, 1, 0),(-1, 0, 1, 0),(0, 1, -4, 1)}

{(2, 1, -4, -1),(-1, 0, 1, 0),(-1, 0, 1, 0),(-1, 0, 1, 0),(1, -1, 1, 1)} {(2, -4, 1, -1),(-1, 1, 0, 0),(-1, 1, 0, 0),(-1, 1, 0, 0),(1, 1, -1, 1)}

{(1, 3, -1, 0),(-4, 0, 1, 0),(1, -1, 0, 0),(1, -1, 0, 0),(1, -1, 0, 0)} {(1, 0, -1, 0),(-4, 1, 0, 0),(1, -1, 3, 0),(1, 0, -1, 0),(1, 0, -1, 0)}

{(1, 0, -1, 0),(-4, 1, 0, 1),(1, -1, 3, -1),(1, 0, -1, 0),(1, 0, -1, 0)} {(1, 0, -1, 0),(-2, 1, 0, -1),(-1, -1, 3, 1),(1, 0, -1, 0),(1, 0, -1, 0)}

{(1, 0, -3, 0),(-1, 1, 1, 1),(0, 1, 0, -1),(0, -1, 1, 0),(0, -1, 1, 0)} {(1, 0, -4, 0),(-1, 3, 1, 0),(0, -1, 1, 0),(0, -1, 1, 0),(0, -1, 1, 0)}

{(1, -1, 0, 0),(-4, 0, 1, 1),(1, 3, -1, -1),(1, -1, 0, 0),(1, -1, 0, 0)} {(1, -1, 0, 0),(-3, 5, -1, 2),(0, -2, 1, -2),(1, -1, 0, 0),(1, -1, 0, 0)}

{(1, -1, 0, 0),(-2, 0, 1, -1),(-1, 3, -1, 1),(1, -1, 0, 0),(1, -1, 0, 0)} {(1, -3, 0, 0),(-1, 1, 1, 1),(0, 0, 1, -1),(0, 1, -1, 0),(0, 1, -1, 0)}

{(1, -4, 0, 0),(-1, 1, 3, 0),(0, 1, -1, 0),(0, 1, -1, 0),(0, 1, -1, 0)}

[X14]3,59
−112 π1(X14) = Z2

{(-1, 1, 3), (0, 1, -1), (0, 1, -1), (0, 1, -1), (1, -4, 0)}

Table 9: Heterotic SU(5)-GUT models on the downstairs Calabi-Yau three-folds [Xi]
h1,1,h2,1

χ with

π1 6= φ. The superscripts and the subscript denote, respectively, Hodge numbers and Euler

character of the Calabi-Yau base. The gauge bundle of each model is a Whitney sum of five line

bundles.

Downstairs Rank-4 GUT Models

[X5]3,43
−80 π1(X5) = Z2

{(3, 3, -1), (-2, 2, 0), (1, -1, 0), (-2, -4, 1)} {(3, 3, -1), (1, -1, 0), (2, -2, 0), (-6, 0, 1)}

{(5, 1, -1), (-2, 2, 0), (-1, 1, 0), (-2, -4, 1)} {(5, 1, -1), (-2, 2, 0), (3, -3, 0), (-6, 0, 1)}

{(5, 1, -1), (-1, 1, 0), (2, -2, 0), (-6, 0, 1}

[X6]3,59
−112 π1(X6) = Z2

{(2, 1, -1), (-1, 1, 0), (-2, 2, 0), (1, -4, 1)} {(6, 1, -1), (-2, 1, 0), (-4, 2, 0), (0, -4, 1)}

{(3, 2, -1), (3, -3, 0), (-2, 2, 0), (-4, -1, 1)} {(3, 2, -1), (2, -2, 0), (-1, 1, 0), (-4, -1, 1)}

continued in the next page
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{(3, 2, -1), (1, -1, 0), (-4, 4, 0), (0, -5, 1)} {(3, 2, -1), (-1, 1, 0), (-2, 2, 0), (0, -5, 1)}

{(0, 3, -1), (2, -2, 0), (1, -1, 0), (-3, 0, 1)} {(0, 3, -1), (1, -1, 0), (-2, 2, 0), (1, -4, 1)}

{(1, 4, -1), (4, -4, 0), (-1, 1, 0), (-4, -1, 1)} {(1, 4, -1), (2, -2, 0), (1, -1, 0), (-4, -1, 1)}

{(1, 4, -1), (2, -2, 0), (-3, 3, 0), (0, -5, 1)} {(1, 4, -1), (1, -1, 0), (-2, 2, 0), (0, -5, 1)}

{(0, 7, -1), (2, -4, 0), (1, -2, 0), (-3, -1, 1}

[X8]3,75
−144 π1(X8) = Z2

{(1, -3, 1), (2, -2, 0), (-3, 3, 0), (0, 2, -1)} {(1, -3, 1), (1, -1, 0), (-2, 2, 0), (0, 2, -1)}

{(1, -3, 1), (1, -1, 0), (2, 0, -1), (-4, 4, 0)} {(1, -3, 1), (-1, 1, 0), (-2, 2, 0), (2, 0, -1)}

{(4, -4, 0), (-3, 1, 1), (-1, 1, 0), (0, 2, -1)} {(4, -4, 0), (-3, 1, 1), (2, 0, -1), (-3, 3, 0)}

{(3, -3, 0), (-3, 1, 1), (-2, 2, 0), (2, 0, -1)} {(2, -2, 0), (-3, 1, 1), (1, -1, 0), (0, 2, -1)}

{(2, -2, 0), (-3, 1, 1), (-1, 1, 0), (2, 0, -1}

[X14]3,59
−112 π1(X14) = Z2

{(1, -1, -5), (0, 2, -2), (0, -3, 3), (-1, 2, 4)} {(1, -1, -5), (0, 1, -1), (0, -2, 2), (-1, 2, 4)}

{(1, -1, -5), (0, 1, -1), (-1, 4, 2), (0, -4, 4)} {(1, -1, -5), (0, -1, 1), (0, -2, 2), (-1, 4, 2)}

{(-1, 1, -5), (2, 0, -2), (-3, 0, 3), (2, -1, 4)} {(-1, 1, -5), (1, 0, -1), (4, -1, 2), (-4, 0, 4)}

{(-1, 1, -5), (1, 0, -1), (-2, 0, 2), (2, -1, 4)} {(-1, 1, -5), (-1, 0, 1), (4, -1, 2), (-2, 0, 2)}

{(1, -1, -4), (0, -2, 1), (-1, 7, 1), (0, -4, 2)} {(1, 0, -4), (0, 2, -2), (0, -3, 3), (-1, 1, 3)}

{(1, 0, -4), (0, 1, -1), (0, -2, 2), (-1, 1, 3)} {(1, 0, -4), (0, -1, 1), (-1, 3, 1), (0, -2, 2)}

{(2, 0, -4), (1, 0, -2), (-4, 1, -1), (1, -1, 7)} {(4, 0, -4), (-5, 1, -1), (-1, 0, 1), (2, -1, 4)}

{(-1, 1, -4), (7, -1, 1), (-2, 0, 1), (-4, 0, 2)} {(0, 1, -4), (2, 0, -2), (1, -1, 3), (-3, 0, 3)}

{(0, 1, -4), (1, 0, -1), (-2, 0, 2), (1, -1, 3)} {(0, 1, -4), (3, -1, 1), (-1, 0, 1), (-2, 0, 2)}

{(0, 2, -4), (0, 1, -2), (1, -4, -1), (-1, 1, 7)} {(0, 4, -4), (1, -5, -1), (0, -1, 1), (-1, 2, 4)}

{(3, 0, -3), (-5, 1, -1), (4, -1, 2), (-2, 0, 2)} {(3, 0, -3), (-4, 1, 0), (3, -1, 1), (-2, 0, 2)}

{(0, 3, -3), (1, -5, -1), (0, -2, 2), (-1, 4, 2)} {(0, 3, -3), (1, -4, 0), (-1, 3, 1), (0, -2, 2)}

{(2, 0, -2), (1, 0, -1), (-5, 1, -1), (2, -1, 4)} {(2, 0, -2), (1, 0, -1), (-4, 1, 0), (1, -1, 3)}

{(2, 0, -2), (-5, 1, -1), (-1, 0, 1), (4, -1, 2)} {(2, 0, -2), (-4, 1, 0), (3, -1, 1), (-1, 0, 1}

Table 10: Heterotic SO(10)-GUT models on the Calabi-Yau three-folds [Xi]
h1,1,h2,1

χ with h1,1 = 3

and π1 6= φ. The superscripts and the subscript denote, respectively, Hodge numbers and Euler

character of the Calabi-Yau base. The gauge bundle of each model is a Whitney sum of four line

bundles.
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