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Abstract: We present an intriguing and precise interplay between algebraic geometry and

the phenomenology of generations of particles. Using the electroweak sector of the MSSM as

a testing ground, we compute the moduli space of vacua as an algebraic variety for multiple

generations of Standard Model matter and Higgs doublets. The space is shown to have

Calabi–Yau, Grassmannian, and toric signatures which sensitively depend on the number of

generations of leptons, as well as inclusion of Majorana mass terms for right-handed neutrinos.

We speculate as to why three generations is special.ar
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1 Introduction

The Standard Model of particle physics is an incomplete theory of the gauge interactions.

We expect that the physics which extends the Standard Model at energies above 1–10 TeV

invokes supersymmetry and derives from some higher energy theory that also incorporates

gravity. A key property of any quantum field theory is its vacuum and in the context of

supersymmetric gauge theories, the vacuum possesses interesting structure. This is because

the supersymmetric vacuum is the solution of F-flatness and D-flatness conditions. Generi-

cally, this is a continuous manifold parametrized by the gauge invariant operators (GIOs) of

the theory. Importantly, this vacuum moduli space is an algebraic variety, which can have

intricate geometric properties. The topology and algebraic geometry of the vacuum is coex-

tensive with phenomenology [1, 2]. Exploring the structure of the vacuum therefore provides

a low energy window into deducing how certain theories of phenomenological interest can

both encode and be guided by interesting geometry.

The most näıve extension of known particle physics is the MSSM, which expands the

Higgs sector of the theory by introducing separate SU(2)L doublets for up-type quark and

down-type quark Yukawa couplings. The vacuum geometry of this theory, or related theories

like the NMSSM, is not known, even though it has existed as a computational challenge to

the community for many decades [3–7]. This is because the vacuum moduli spaces of N = 1

theories are expressed as relations between the generators of the GIOs, which are monomials

in the superfields of the theory. The minimal list contains 991 generators for GIOs in the

MSSM [3]. These are not fully independent and are related by the 49 F-term equations for

the component matter superfields in the theory. Although this effort motivated [1, 2], solving

for the vacuum of the full MSSM was then beyond our reach.

While the exact vacuum geometry remains unknown, we can ask and hope to answer a

different class of questions. We know, for instance, that for generic numbers of flavors Nf and

colors Nc, the vacuum moduli space of supersymmetric QCD is a Calabi–Yau manifold [8].

Does this property extend to the vacuum geometry of the MSSM? Is there something special,

geometrically speaking, about the particle content that we see experimentally? Why are there

three generations of matter fields at low energies? It is difficult to imagine questions that

are more pressing, especially from the point of view of string theory, which purports to be

a fundamental theory. In this case, the initial conditions that describe the Standard Model

are, in fact, the result of some vacuum selection principle.

Theoretical physicists should be proceeding from low energy data only and be working

from the ground up in order to establish a principle for understanding string vacua. This
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is in some sense orthogonal to the traditional techniques of gauge invariance and discrete

symmetries. A first attempt to define what such a program might look like is given in [1, 2].

Since that time, advances in computational algebraic geometry software, as well as overall

advances in computation, have allowed us to probe further than could have been conceived

eight years ago. The first paper to re-address this fundamental problem appeared recently [9].

The current article seeks to build on these advances to explore the electroweak sector of the

MSSM in the broadest possible context. Fortified by the discovery of interesting geometry

encoded in the vacuum moduli space of the MSSM, we wish to find out whether geometry

can say anything new about the nature of generations of particles. Intriguingly, it does.

The paper is organized as follows. In Section 2, we review how to compute the vacuum

moduli space of a supersymmetric theory. This allows us to set notation and establish our

conventions. In Section 3 we present results obtained from considering a minimal renor-

malizable superpotential and various numbers of particle flavors. We explicitly describe the

vacuum geometry for the cases Nf = 2, 3, 4, 5. In Section 4, we consider multiple generations

of Higgs fields for this minimal superpotential. In Section 5, we then move on to theories

with right-handed neutrinos fields with Majorana mass terms and then without. We give

the vacuum geometry for the cases Nf = 2, 3, 4, as well as a general description for general

Nf in the case without Majorana mass terms. We conclude in Section 6. Appendices A, B

and C contain complementary information about the full MSSM GIO content and about the

method used to obtain toric diagrams from binomial ideals.

2 MSSM Vacuum Moduli Space

We begin by reminding the reader of the algorithm with which we explicitly calculate the

vacuum moduli space of supersymmetric gauge theories from the point of view of computa-

tional algebraic geometry, focusing on the MSSM. First, we introduce the matter content and

the superpotential and then we summarize the algorithm.

2.1 F-terms and D-terms

In order to set the scene and specify our notation, let us briefly review the context of

four-dimensional supersymmetric gauge theories and the Minimal Supersymmetric Standard

Model (MSSM) field content.

A general N = 1 globally supersymmetric action in four dimensions is given by

S =

∫
d4x

[∫
d4θ Φ†ie

V Φi +

(
1

4g2

∫
d2θ trWαW

α +

∫
d2θ W (Φ) + h.c.

)]
, (2.1)
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where Φi are chiral superfields, V is a vector superfield, Wα are chiral spinor superfields, and

the superpotential W is a holomorphic function of the superfields Φi. Each of these objects

transforms under the gauge group G of the theory: Φi under some representation Ri and V

in the Lie algebra g. The chiral spinor superfields are the gauge field strength and are given

by Wα = iD
2
e−VDαe

V .

The vacuum of the theory consists of φi0, the vacuum expectation values of the scalar

components of the superfields Φi that provide a simultaneous solution to the F-term equations

∂W (φ)

∂φi

∣∣∣∣
φi=φi0

= 0 (2.2)

and the D-term equations

DA =
∑
i

φ†i0 T
A φi0 = 0 , (2.3)

where TA are generators of the gauge group in the adjoint representation, and we have chosen

the Wess–Zumino gauge.

The MSSM fixes the gauge group G = SU(3)C × SU(2)L × U(1)Y . We will adopt the

notation given in Table 1 for the indices and the field content of the theory. For the moment,

we do not consider right-handed neutrinos, which are gauge singlets.

INDICES

i, j, k, l = 1, 2, . . . , Nf Flavor (family) indices

a, b, c, d = 1, 2, 3 SU(3)C color indices

α, β, γ, δ = 1, 2 SU(2)L indices

FIELDS

Qia,α SU(2)L doublet quarks

uia SU(2)L singlet up-quarks

dia SU(2)L singlet down-quarks

Liα SU(2)L doublet leptons

ei SU(2)L singlet leptons

Hα up-type Higgs

Hα down-type Higgs

Table 1. Indices and field content conventions for the MSSM.

The corresponding minimal renormalizable superpotential is

Wminimal = C0
∑
α,β

HαHβε
αβ +

∑
i,j

C1
ij

∑
α,β,a

Qia,αu
j
aHβε

αβ

+
∑
i,j

C2
ij

∑
α,β,a

Qia,αd
j
aHβε

αβ +
∑
i,j

C3
ije

i
∑
α,β

LjαHβε
αβ , (2.4)

where C designates coupling constants and εαβ is the totally antisymmetric tensor. These

are the minimal terms consistent with assigning masses to the particles in the theory. All of
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these terms respect R-parity. The problem of finding the vacuum moduli space of the theory

thus reduces to solving (2.2) and (2.3) for the above superpotential.

2.2 Computational Algorithm

Algebraic geometry has proven a useful and powerful tool to tackle problems in gauge fields

theories, not least the challenge of providing a mathematical description of vacuum moduli

spaces [10]. The problem of solving (2.2) and (2.3) is equivalent to the elimination algorithm

detailed below.

Let us denote the gauge invariant operators (GIOs) by rj({φi}). The full list of gen-

erators for the MSSM GIOs is given in Appendix A.1 The description of the moduli space

of N = 1 theories as the symplectic quotient of the space of F-flat field configurations by

the complexified gauge group GC is well known [4–7, 11]. Our goal is to provide an efficient

methodology for implementing this result.

Let us consider the ideal〈
∂W

∂φi
, yj − rj({φi})

〉
⊂ R = C[φi=1,...,n, yj=1,...,k] , (2.5)

where yi are additional variables. Then, eliminating all variables φi of this ideal will give an

ideal in terms of the variables yi in the polynomial ring S = C[yj=1,...,k] only. The result will

be the vacuum moduli space as an algebraic variety in S. From the standpoint of algebraic

geometry, the above prescription amounts to finding the image of a map from the quotient

ring

F =
C[φi=1,...,n]

〈∂W∂φi 〉
(2.6)

to the ring S = C[yj=1,...,k].
2 (See [12, 13] for further details.)

This algorithm can be summarized in the following way:

• INPUT:

1. Superpotential W ({φi}), a polynomial in variables φi=1,...,n.

2. Generators of GIOs: rj({φi}), j = 1, . . . , k polynomials in φi.

• ALGORITHM:

1 This table was already presented in [2] and stems from earlier work of [3]. Here, we have corrected some

minor typographical errors with respect to the indices.
2 It should be noted that, geometrically, the map goes from the algebraic variety to the k-affine space.

However, the ring map goes in the other direction, from the ring S to the quotient ring F .
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1. Define the polynomial ring R = C[φi=1,...,n, yj=1,...,k].

2. Consider the ideal I = 〈∂W∂φi , yj − rj({φi})〉.

3. Eliminate all variables φi from I ⊂ R, giving the ideal M in terms of yj .

• OUTPUT:

M corresponds to the vacuum moduli space as an affine variety in C[y1, . . . , yk].

This paper focuses on discussing the output of this algorithm for the MSSM electroweak

sector, considering various number of particle flavors. The resulting affine varieties M are

intersections of homogeneous polynomials and, as such, we can write them as affine cones

over a compact projective variety B of one lower dimension. We will thus adopt the notation

to which we have adhered for many years,

M = (k|d, δ|mn1
1 mn2

2 . . .) := Affine variety of complex dimension d, realized as an affine

cone over a projective variety of dimension d− 1 and degree δ,

given as the intersection of ni polynomials of degree mi in Pk.

(2.7)

3 Multi-generation Electroweak Models

Presently, we contemplate a renewed effort to calculate the full geometry of the MSSM vac-

uum moduli space. The computing power required for applying the previously described

algorithm with ∼ 1000 GIOs and ∼ 50 fields is well beyond what is accessible by standard

personal computers. The use of supercomputers is envisaged. For this reason, our goal here

is significantly more modest, and we only unveil aspects of the geometry for the electroweak

sector. That is, we study a subsector of the full vacuum moduli space that is given by the

additional constraints that the vacuum expectation values of the quark fields vanish:

Qia,α = uia = dia = 0 . (3.1)

This is perhaps reasonable on phenomenological grounds as SU(3)C is an unbroken symmetry

in Nature. The non-vanishing GIOs that remain from the list in Appendix A are noted in

Table 2.

The minimal renormalizable superpotential of the electroweak sector of the MSSM is then

Wminimal = C0HαHβε
αβ +

∑
i,j

C3
ije

iLjαHβε
αβ . (3.2)
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Type Explicit Sum Index Number

LH LiαHβε
αβ i = 1, 2, . . . Nf Nf

HH HαHβε
αβ 1

LLe LiαL
j
βe
kεαβ i, k = 1, 2, . . . , Nf ; j = 1, . . . , i− 1 Nf ·

(Nf
2

)
LHe LiαHβε

αβej i, j = 1, 2, . . . , Nf Nf
2

Table 2. Minimal generating set of the GIOs for the electroweak sector.

Henceforth, we are explicit about the sums on flavor indices i, j but leave sums on SU(2)L

indices α, β implicit. The corresponding F-terms are

∂Wminimal

∂Hα
= C0Hβε

αβ , (3.3)

∂Wminimal

∂Hβ

= C0Hαε
αβ +

∑
i,j

C3
ije

iLjαε
αβ , (3.4)

∂Wminimal

∂Ljα
=
∑
i

C3
ije

iHβε
αβ , (3.5)

∂Wminimal

∂ei
=
∑
j

C3
ijL

j
αHβε

αβ . (3.6)

In particular, this yields the following F-term equations for the Higgs fields:

Hβ = 0 , (3.7)

C0Hα +
∑
i,j

C3
ije

iLjα = 0 , (3.8)

from the FHα and FHβ
terms, respectively. The other two F-term equations (for the e and L

fields) do not lead to extra constraints as the vanishing of Hβ renders them trivial.

In terms of the {ri}, the only non-trivial GIOs that remain are the LH and LLe operators.

Indeed, HH and LHe vanishes by virtue of (3.7). Furthermore, (3.8) specifies the value of

the LH operators in terms of the LLe operators. Multiplying (3.8) by Liβε
αβ and summing

on α gives

C0LiαHβε
αβ +

∑
j,k

C3
jkL

i
αL

j
βe
kεαβ = 0 . (3.9)

(We have taken C3
ij = C3

ji.) Since there is a free index i in (3.9), there are Nf linear equations

which suppress the LH variables as degrees of freedom in the vacuum moduli space. Thus,

only LLe contributes to the dimension counting of the vacuum geometry and the moduli space

reduces to an affine variety in C[y1, . . . , yk] with k = 1, . . . , Nf ·
(Nf

2

)
given by the relations
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among the LLe polynomials.3 The remaining coordinates y resulting from the LH operators

only provide an embedding into the bigger ring C[y1, . . . , yk+Nf ].

3.1 Relations, Syzygies, and Grassmannian

Having established that the moduli space is only given by the relations among the LLe oper-

ators, let us study these relations4 explicitly for some specified number of matter generations

Nf . Explicitly, LLe = LiαL
j
βe
kεαβ. The flavor index k of the electron can assume any of

the Nf possibilities. The indices i and j must be different due to the contraction with the

antisymmetric tensor. There are therefore
(Nf

2

)
choices for the combination LiαL

j
βε
αβ. Be-

cause the SU(2)L indices α, β only take values 1, 2, there is an upper bound on the number

of lepton doublets that we can introduce before certain composite operators perforce vanish.

Indeed, there are relations between combinations of LLe operators. Taking into account ev-

ery possible index combination with (i, j) 6= (m,n) and k 6= p, a bit of algebra allows us to

deduce the relation

(LiαL
j
βe
kεαβ)(Lmγ L

n
δ e
pεγδ) = (Lmα L

n
βe
kεαβ)(LiγL

j
δe
pεγδ) . (3.10)

These are the relations for the ideal, which we write as

〈 (LiαL
j
βe
kεαβ)(Lmα L

n
βe
pεαβ)− (Lmα L

n
βe
kεαβ)(LiαL

j
βe
pεαβ) 〉 . (3.11)

In a slight abuse of convention, we have restricted the remit of sums over SU(2)L indices

to lie within the parentheses when we write out operators with LL fields explicitly. We will

adopt this convention from now on.

Heuristically, given the form of the relations in the ideal, we can cast the defining relations

as an equality of quotients:

LiαL
j
βe
kεαβ

LiαL
j
βe
pεαβ

=
Lmα L

n
βe
kεαβ

Lmα L
n
βe
pεαβ

, (3.12)

where again the summation over α, β restricts to the numerator or the denominator. The

equality (3.12) informs us that a set of operators with a common ek field will be linearly

proportional to another set of operators with a common ep field (k 6= p). In a strict math-

ematical sense, (3.12) only applies when the operators are non-vanishing in order to avoid

problems with divisions by zero. Nevertheless, this notation is a convenient way to succinctly

3By abuse of terminology, we identify the ring C[y1, . . . , yk] and its corresponding k-affine space Ck, whereby

not making the distinction between the two, as is customary in the physics community.
4The relations are presented in [3]; however, here we add to that analysis by presenting and counting the

redundancy of the relations (syzygies).
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express the relations we have encountered, keeping in mind that the branches with vanishing

operators must be taken into account as well.

To determine the dimension of the variety, we only need to count a minimal generating

set of such equations. There are (Nf − 1)
((Nf

2

)
− 1
)

non-trivial constraints when Nf ≥ 3.

When Nf ≥ 4, more relations occur from the LL component of the LLe operators. We

have

(LiαL
j
βε
αβ)(LkαL

l
βε
αβ) + (LiαL

k
βε
αβ)(LlαL

j
βε
αβ) + (LiαL

l
βε
αβ)(LjαL

k
βε
αβ) = 0 . (3.13)

The set of indices i, j, k, l can be chosen, without loss of generality, to be in a strictly increasing

order. This implies that there are
(Nf

4

)
such relations. Let us introduce

P ijkl := (LiαL
j
βε
αβ)(LkαL

l
βε
αβ) ,

P i(jkl) :=
∑

cyclic permutations (jkl)

P ijkl . (3.14)

We can then readily write (3.13) in the compact form:

P i(jkl) = 0 . (3.15)

In general, this set of equations will be highly redundant as syzygies (relations among the

generators) begin to appear. Among the polynomials P , we have the syzygies

P i(jkl)(LiαL
m
β ε

αβ)− P i(jkm)(LiαL
l
βε
αβ) + P i(jlm)(LiαL

k
βε
αβ) = P i(klm)(LiαL

j
βε
αβ) , (3.16)

P i(jkl)(LjαL
m
β ε

αβ)− P i(jkm)(LjαL
l
βε
αβ) + P i(jlm)(LjαL

k
βε
αβ) = P j(klm)(LiαL

j
βε
αβ) .(3.17)

These syzygies imply that the relations (3.15) can be chosen such that the indices i = 1

and j = 2 without loss of generality. Indeed, all other choices of indices are simply redundant

equations. To see this, we can use the first syzygy (3.16) to generate all P s starting with an

index i = 1 from P s starting with an index i = 1 and j = 2. Explicitly, with the conventions

that indices are in a strictly increasing order, we observe that all P 1(klm) for k, l,m > 2 are

given by the relation

P 1(2kl)(L1
αL

m
β ε

αβ)− P 1(2km)(L1
αL

l
βε
αβ) + P 1(2lm)(L1

αL
k
βε
αβ) = P 1(klm)(L1

αL
2
βε
αβ) . (3.18)

Having established that we can generate every polynomial P starting with an index 1,

we can use the second syzygy (3.17) with a choice of index i = 1 and any indices m > l >

k > j ≥ 3 to show that every relation in (3.15) with indices (i, j, k, l) greater than 2 are

redundant:

P 1(jkl)(LjαL
m
β ε

αβ)− P 1(jkm)(LjαL
l
βε
αβ) + P 1(jlm)(LjαL

k
βε
αβ) = P j(klm)(L1

αL
j
βε
αβ). (3.19)
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We can now count the total number of independent relations:

# relations =

(
Nf − 2

2

)
. (3.20)

This is due to the fact that the independent constraints in (3.15) are given by P 1(2kl) = 0

only. So we need to choose two indices (k and l) among Nf − 2 possibilities (i = 1 and j = 2

being fixed).

Taking all of the above counting together, the dimension of the vacuum moduli space

will be

Nf ·
(
Nf

2

)
− (Nf − 1)

((
Nf

2

)
− 1

)
−
(
Nf − 2

2

)
= 3Nf − 4 . (3.21)

The vacuum geometry can be understood as follows. Explicitly, the index structure

LLe = LiαL
j
βe
kεαβ shows that LiαL

j
βε
αβ furnishes, due to the antisymmetry, coordinates on

the Grassmannian Gr(Nf , 2) of two-planes in CNf . The freely indexed ek, on the other hand,

gives simply a copy of PNf−1. Topologically, the geometry is then given by (the affine cone

over) Gr(Nf , 2)× PNf−1.

In fact, the above dimension counting simply corresponds to the dimension of the Grass-

mannian

dimGr(n, r) = r(n− r) , (3.22)

given by the LL part of the operators. Therefore, according to the product Gr(Nf , 2)×PNf−1,

the affine dimension is obtained

dimMEW = 2(Nf − 2) +Nf = 3Nf − 4 . (3.23)

Thus, the dimension always increases by three when we add another generation of matter

fields to the electroweak sector.

It is a remarkable fact that the dimension increases by the same increment as the number

of fields, despite the number of GIOs growing much faster.

Nf 1 2 3 4 5 6 . . .

number of fields 5 8 11 14 17 21 . . .

number of LLe generators 0 2 9 24 50 90 . . .

vacuum dimension 0 2 5 8 11 14 . . .

Table 3. Vacuum geometry dimension according to the number generations Nf .

In the following subsections, we will study in greater detail the geometry for the cases

Nf = 2, 3, 4, 5.
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3.2 Counting Operators with Hilbert Series

The Hilbert series provides technology for enumerating GIOs in a supersymmetric quantum

field theory. For a varietyM⊂ C[y1, . . . , yk], the Hilbert series supplies a generating function:

H(t) =

∞∑
n=−∞

dimMn t
n =

P (t)

(1− t)d
. (3.24)

This has a geometrical interpretation. The quantity dimMn that appears in the sum con-

stitutes the (complex) dimension of the graded pieces of M. That is to say, it represents the

number of independent polynomials of degree n onM. When we write the Hilbert series as a

ratio of polynomials, the numerator and the denominator both have integer coefficients. The

dimension of the moduli space is d, which is the order of the pole at t = 1. Via the plethystic

exponential and the plethystic logarithm, the Hilbert series encodes information about the

chiral ring and geometric features of the singularity from which the supersymmetric gauge

theory under consideration arises. It should be emphasized that the Hilbert series is not a

topological invariant and can be represented in many ways. For our purposes, an important

caveat is that Hilbert series depends on the embedding of the variety within the polynomial

ring [14]. The reader is referred to [15] for an account of the importance of the Hilbert series

in the context of gauge theories.

In this investigation, we will write the Hilbert series for the vacuum moduli space of the

electroweak sector for various values of Nf . The Hilbert series is a mathematical object that

can be constructed using standard techniques in computational algebraic geometry. Knowl-

edge of certain properties of the Hilbert series will allow us to characterize the structure of

the vacuum geometry.

3.3 Vacuum Geometry

Let us introduce the following label for the non-vanishing LLe operators

yI+C(Nf ,2)·(k−1) = LiαL
j
βe
kεαβ , (3.25)

where C(Nf , 2) =
(Nf

2

)
are binomial coefficients and I = 1, . . . , C(Nf , 2) accounts for the

(i, j) index combinations from LiαL
j
βε
αβ. With this notation, the first set of relations (3.12)

becomes,
yI+C(Nf ,2)·(k−1)

yI+C(Nf ,2)·(l−1)
=
yJ+C(Nf ,2)·(k−1)

yJ+C(Nf ,2)·(l−1)
, (3.26)

for I, J = 1, . . . , C(Nf , 2) and k, l = 1, . . . , Nf . For a minimal set of equations, we can then

choose, for instance, I < J and k = 1. Moreover, there will be a set of relations from (3.15)
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among each yI+C(Nf ,2)·(k−1) for a fixed k when Nf is large enough (Nf ≥ 4). We cannot

write these relations explicitly for all of the Nf at once, so let us consider each value of Nf

separately.5

Nf = 2

In this case, we have only two LLe operators for the two ei fields. Thus, we cannot have any

relations and the vacuum moduli space is trivially the plane M = C2.

Nf = 3

We have nine LLe operators and the vacuum moduli space will be an algebraic variety in C9.

With the above notation (3.25), the relations (3.26) become

y1

y4
=
y2

y5
=
y3

y6
, (3.27)

y1

y7
=
y2

y8
=
y3

y9
. (3.28)

This leads to an ideal given by nine quadratic polynomials

〈 y1y5 − y2y4, y1y6 − y3y4, y2y6 − y3y5,

y1y8 − y2y7, y1y9 − y3y7, y2y9 − y3y8, (3.29)

y4y8 − y5y7, y4y9 − y6y7, y5y9 − y6y8 〉 .

We count (3−1)
((

3
2

)
− 1
)

= 4 equalities in (3.27) and (3.28) and we find that the resulting

moduli spaceM is an irreducible five-dimensional affine variety given by an affine cone over a

base manifold B of dimension four. As a projective variety, B has degree six and is described

by the (non-complete) intersection of nine quadratics in P8, which agrees with the results

of [2, 9]. This can be summarized according to the standard notation (2.7) as

MEW = (8|5, 6|29) . (3.30)

The variety M is in fact a non-compact toric Calabi–Yau. The reader is referred to

Appendix C for a detailed discussion on toric affine Calabi–Yau spaces. Indeed, its Hilbert

series is given by
1 + 4t+ t2

(1− t)5
, (3.31)

and is palindromic. By this, we mean simply that the numerator of the Hilbert series can be

written in the form

P (t) =
N∑
k=0

akt
k , (3.32)

5 We stopped this investigation at Nf = 5 due to limitations of computer power.
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with the simple property that ak = aN−k. It has been shown [16] that the numerator of

the Hilbert series of a graded Cohen–Macaulay domain X is palindromic if and only if X

is Gorenstein6. For affine varieties, the Gorenstein property implies that the geometry is

Calabi–Yau. Additional discussion of this point can be found in [8], and in Appendix C for

clarifications on the Gorenstein property. The vacuum moduli spaces we obtain are non-

compact.

As mentioned in Section 3.1, the topology is given by the cone over Gr(3, 2) × P2. The

Grassmannian Gr(3, 2) is exactly P2, while the second P2 comes from PNf−1. Therefore, the

affine five-dimensional vacuum space described by (3.30) is none other than the cone over

the Segrè embedding of P2 × P2 into P8. We remind the reader that this is the following

space. Take [x0 : x1 : x2] and [z0 : z1 : z2] as the homogeneous coordinates on the two P2s

respectively and consider the quadratic map

P2 × P2 −→ P8

[x0 : x1 : x2] [z0 : z1 : z2] → xizj
, (3.33)

where i, j = 0, 1, 2 give precisely the 32 = 9 homogeneous coordinates of P8. Explicitly,

upon elimination, this is exactly the nine quadrics with the Hilbert series as given in (3.30)

and (3.31). We also point out that this Segrè variety is the only Severi variety of projective

dimension four. Later we will re-encounter Severi varieties of a unique nature in dimension

two.

For the reader’s convenience, let us recall the definition of a Severi variety [17–19].7 It

is a classic result of Hartshorne–Zak [18] that any smooth non-degenerate algebraic variety

X of (complex) dimension n embedded into Pm with m < 3
2n + 2 has the property that its

secant variety Sec(X) — i.e., the union of all the secant and tangent lines to X — is equal

to Pm itself. The limiting case8 of m = 3
2n+ 2 and Sec(X) 6= Pn is called a Severi variety.

The classification theorem of Zak [18] states that there are only four Severi varieties (the

dimensions are precisely equal to 2q with q the dimension of the four division algebras):

n = 2: The Veronese surface P2 ↪→ P5;

n = 4: The Segrè variety P2 × P2 ↪→ P8;

6 In this work, for all the varieties considered, M is always an integral domain arithmetically Cohen–

Macaulay. Hence, we will loosely use the correspondence that, for affine varieties, palindromic Hilbert series

means Calabi–Yau.
7 We are grateful to Sheldon Katz for his insight and for mentioning Severi varieties to us.
8 In general, a k-Scorza variety is a smooth projective variety, of maximal dimension such that its k − 1

secant variety is not the whole of the ambient projective space. The Severi variety is the case of k = 2.
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n = 8: The Grassmannian Gr(6, 2) of two-planes in C6, embedded into P14;

n = 16: The Cartan variety of the orbit of the highest weight vector of a certain

non-trivial representation of E6.

Of these, only two are isomorphic to (a product of) projective space, namely n = 2, 4.

Remarkably, these are the two that show up as the vacuum geometry of the electroweak

sector when Nf = 3.

The connection with Severi varieties could be profound. Indeed, it was discussed in [19]

that these four spaces are fundamental to mathematics in the following way. It is well-known

that there are four division algebras: the real numbers R, the complex numbers C, the quater-

nions H, and the octonions O, of, respectively, real dimension 1, 2, 4, 8. Consider the projective

planes formed out of them, viz., RP2, CP2, HP2 and OP2, of real dimension 2, 4, 8, 16. We

have, of course, encountered CP2 repeatedly in our above discussions. The complexification

of these four spaces, of complex dimension 2, 4, 8, 16 are precisely homeomorphic to the four

Severi varieties. Amazingly, they are also homogeneous spaces, being quotients of Lie groups.

In summary, we can tabulate the four Severi varieties

Projective Planes Severi Varieties Homogeneous Spaces

RP2 CP2 SU(3)/S( U(1)× U(2) )

CP2 CP2 × CP2 SU(3)2/S( U(1)× U(2) )2

HP2 Gr(6, 2) SU(6)/S( U(2)× U(4) )

OP2 S E6/Spin(10)U(1)

(3.34)

Returning to our present case of n = 4, the embedding (3.33) can be understood in terms

of the previously defined y variables. Let us consider the following change of variables,

y1 → z0x2 , y2 → z0x1 , y3 → z0x0 ,

y4 → z1x2 , y5 → z1x1 , y6 → z1x0 ,

y7 → z2x2 , y8 → z2x1 , y9 → z2x0 .

(3.35)

The z coordinates labels the C3 due to the e fields, while the x coordinates label the Grass-

mannian due to LL. With these variables, the relations (3.27) and (3.28) are automatically

satisfied.

This variety is also toric, as can be seen by the binomial nature of the polynomial
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ideal (3.29). Its toric diagram can be presented as follows,

N =



1 0 1 0 0

1 1 0 0 0

1 1 0 1 0

0 0 1 0 0

0 1 0 0 0

0 1 0 1 0

0 −1 1 −1 1

0 0 0 −1 1

0 0 0 0 1


, (3.36)

where each row of the matrix corresponds to the vectors generating the toric cone. They are

five-dimensional vectors as required for a five-dimensional variety. We have nine of them, as

expected from the nine quadratics in (3.29). Further details on the toric diagrams are given

in Appendix B.

Finally, we found that the Hodge diamond of the base space B is given by

hp,q(B) =

h0,0

h0,1 h0,1

h0,2 h1,1 h0,2

h0,3 h1,2 h1,2 h0,3

h0,4 h1,3 h2,2 h1,3 h0,4

h0,3 h1,2 h1,2 h0,3

h0,2 h1,1 h0,2

h0,1 h0,1

h0,0

=

1

0 0

0 2 0

0 0 0 0

0 0 3 0 0

0 0 0 0

0 2 0

0 0

1

, (3.37)

which has the peculiar property to be non-vanishing in its diagonal only. This Hodge diamond

is consistent with the Hodge diamond of P2×P2 as can be seen by using the Künneth formula.

Of course, as is with a later example in (5.58), having the same Hodge diamond is only a

statement of topology, our analysis is more refined in that we can identify what the variety

actually is.

We note that the surface itself was first identified in [2], but the only information that

could be gleaned about the manifold at that time is that encapsulated by the notation

of (3.30).9 Since that time, improvements in computing and software have allowed us to

calculate both the Hilbert series and the above Hodge diamond, as well as leading to a com-

plete understanding of its geometrical nature.

9However, a typographical error in [2] presented the variety as given by six quadratics.
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Nf = 4

For the case of four flavors, we have twenty-four LLe operators. The first set of con-

straints (3.26) leads to (4− 1)
((

4
2

)
− 1
)

= 15 equations. With the notation defined in (3.26)

and the simplified choice of LL labeling, we have

y1

y7
=
y2

y8
=
y3

y9
=

y4

y10
=

y5

y11
=

y6

y12
, (3.38)

y1

y13
=

y2

y14
=

y3

y15
=

y4

y16
=

y5

y17
=

y6

y18
, (3.39)

y1

y19
=

y2

y20
=

y3

y21
=

y4

y22
=

y5

y23
=

y6

y24
. (3.40)

Moreover, we need to take care of the constraints from the second set of relations (3.15). Due

to the fact that we only have six possible LL operators, we will have only one relation among

them, given by

(L1
αL

2
βε
αβ)(L3

αL
4
βε
αβ)− (L1

αL
3
βε
αβ)(L2

αL
4
βε
αβ) + (L1

αL
4
βε
αβ)(L2

αL
3
βε
αβ) = 0 . (3.41)

We can multiply this relation with any e field to obtain the relations among LLe operators,

translated into the y variable. For e1, we have,

y1y6 + y3y4 − y2y5 = 0 , (3.42)

while for the other three e fields, we have,

y7y12 + y9y10 − y8y11 = 0 ,

y13y18 + y15y16 − y14y17 = 0 ,

y18y24 + y21y22 − y20y23 = 0 . (3.43)

It is straightforward to see that these equations do not lead to additional constraints.

Indeed, using (3.38)–(3.40) we can easily recover these from (3.42). Therefore, we have in

total
(

4−2
2

)
= 1 relation as expected. The dimension of the vacuum moduli space is therefore

24− 15− 1 = 8. In fact, we have an irreducible eight-dimensional algebraic variety given by

M = (23|8, 70|2100). (3.44)

In general, for Nf > 3, the Grassmannian does not degenerate to projective space though

the geometry still corresponds to some embedding of Gr(Nf , 2) × PNf−1 into higher dimen-

sional space. The relation (3.41) is none other than the Plücker relation for the Grassman-

nian Gr(4, 2). Geometrically, however, there are no special names for birational embedding

of products of Grassmannians with projective space, as was with the Segrè case.
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The embedding could again be understood from a change of variables. Writing the

Plücker coordinate for Gr(4, 2) as [x0 : x1 : x2 : x3 : x4 : x5] and taking [z0 : z1 : z2 : z3] for

P3, we can consider the change of variables,

y1 → z0x0 , y2 → z0x1 , y3 → z0x2 , y4 → z0x3 , y5 → z0x4 , y6 → z0x5 ,

y7 → z1x0 , y8 → z1x1 , y9 → z1x2 , y10 → z1x3 , y11 → z1x4 , y12 → z1x5 ,

y13 → z2x0 , y14 → z2x1 , y15 → z2x2 , y16 → z2x3 , y17 → z2x4 , y18 → z2x5 ,

y19 → z3x0 , y20 → z3x1 , y21 → z3x2 , y22 → z3x3 , y23 → z3x4 , y24 → z3x5 .

(3.45)

Imposing the Plücker relation

x0x5 − x1x4 + x2x3 = 0 , (3.46)

for the coordinates [x0 : x1 : x2 : x3 : x4 : x5], all required relations are then satisfied.

Using algebraic geometry packages [20, 21], we obtain the Hilbert series

1 + 16t+ 36t2 + 16t3 + t4

(1− t)8
. (3.47)

Noting the palindromic property of the numerator, again we have an affine Calabi–Yau geom-

etry. However, the additional condition (3.42) is not explicitly toric. We have this remarkable

fact that only three generations of particles will provide explicitly toric geometries. Indeed,

any number above three will have relations such as the one above.

Nf = 5

To illustrate the syzygies, let us look at the case with Nf = 5. There are 50 LLe operators.

The relations (3.12) therefore contain 36 equalities:

y1

y11
=

y2

y12
=

y3

y13
=

y4

y14
=

y5

y15
=

y6

y16
=

y6

y17
=

y7

y18
=

y8

y19
=
y10

y20
,

y1

y21
=

y2

y22
=

y3

y23
=

y4

y24
=

y5

y25
=

y6

y26
=

y6

y27
=

y7

y28
=

y8

y29
=
y10

y30
,

y1

y31
=

y2

y32
=

y3

y33
=

y4

y34
=

y5

y35
=

y6

y36
=

y6

y37
=

y7

y38
=

y8

y39
=
y10

y40
,

y1

y41
=

y2

y42
=

y3

y43
=

y4

y44
=

y5

y45
=

y6

y46
=

y6

y47
=

y7

y48
=

y8

y49
=
y10

y50
. (3.48)

The relations obtained from (3.15) lead to the
(

5
4

)
= 5 equations:

y1y6 + y3y4 − y2y5 = 0 , (3.49)

y1y9 + y3y7 − y2y8 = 0 , (3.50)

y1y10 + y5y7 − y4y8 = 0 , (3.51)

y2y10 + y6y7 − y4y9 = 0 , (3.52)

y3y10 + y6y8 − y5y9 = 0 . (3.53)
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The other relations for ei with i 6= 1 will not bring additional constraints due to the first set

of relations (3.12). Now, we claimed that only the
(

5−2
2

)
= 3 relations from P 1(2kl) = 0 are

relevant. Indeed, we can multiply (3.49), (3.50), and (3.51) by the appropriate y variable to

obtain

y2(y1y10 + y5y7 − y4y8) + (y1y6 + y3y4 − y2y5)y7 − y4(y1y9 + y3y7 − y2y8) =

y1(y2y10 + y6y7 − y4y9) = 0 (3.54)

yielding (3.52) and

y3(y1y10 + y5y7 − y4y8) + (y1y6 + y3y4 − y2y5)y8 − y5(y1y9 + y3y7 − y2y8) =

y1(y3y10 + y6y8 − y5y9) = 0 (3.55)

yielding (3.53). Thus we only have three genuine relations and the dimension of the space is

50− 36− 3 = 11 as expected from (3.21).

Using algebraic geometry packages [20, 21], we found an irreducible algebraic variety

given by

M = (49|11, 1050|2525). (3.56)

Its Hilbert series is
1 + 39t+ 255t2 + 460t3 + 255t4 + 39t5 + t6

(1− t)11
, (3.57)

and again, we have an affine Calabi–Yau space which is not itself an explicit toric variety.

4 Multiple Higgs Generations

Before considering the vacuum geometry of the MSSM electroweak sector in the presence

of neutrinos, let us first stop to consider what effect changing the number of generations of

Higgs multiplets might have on the results we have already obtained. Let Nh denote the

number of pairs of Higgs doublets in the theory, and let us restrict ourselves to the case in

which Nh ≤ Nf . Both the up-type Higgs doublet Hk
α and down-type Higgs doublet H

k
α must

now be labeled by a generation index k = 1, . . . , Nh. The Yukawa coupling matrix C3 is now

promoted to a three-index tensor C3
ij,k, where i, j = 1, . . . , Nf and k = 1, . . . , Nh, and we

imagine a bilinear term that allows arbitrary mixing among the Higgs generations: C0
ij , with

indices i, j = 1, . . . , Nh. The range of the indices should be clear from the context and, from

now on, we will leave the range implicit. The GIOs here are summarized in Table 4.

Clearly, such a construction would immediately engender phenomenological objections

to the likely large flavor changing neutral current processes such a model would permit (e.g.,
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Type Explicit Sum Index Number

LH LiαH
j
βε
αβ i = 1, . . . , Nf ; j = 1, . . . , Nh Nf ·Nh

HH H i
αH

j
βε
αβ i, j = 1, . . . , Nh N2

h

LLe LiαL
j
βe
kεαβ i, k = 1, . . . , Nf ; j = 1, . . . , i− 1 Nf ·

(Nf
2

)
HHe H

i
αH

j
βe
kεαβ i = 1, . . . , Nh; j = 1, . . . , i− 1; k = 1, . . . , Nf Nf ·

(
Nh
2

)
LHe LiαH

k
βε
αβej i, j = 1, . . . , Nf ; k = 1, . . . , Nh Nf

2 ·Nh

Table 4. Minimal generating set of the GIOs for the electroweak sector, for number of Higgs doublets

Nh > 1.

large rates for µ→ eγ processes, etc.). But our interest here is to ask whether such a model,

a priori possible, or even natural, from the point of view of an underlying string theory,10 has

a geometry that is significantly different from that which arises in the one generation case.

When Nh 6= 1, we expect a larger set of GIOs and thus, at least näıvely, we might

expect the vacuum moduli space to be of larger dimension than the Nh = 1 case. Indeed,

the operator types LH and LHe from Table 2 now represent Nf · Nh objects, while the

bilinear HH now represents N2
h terms. Since the lepton doublet L and the down-type Higgs

H have the same SU(2)L × U(1)Y quantum numbers, we can extend the list of GIOs in a

straightforward manner. A new operator type in the electroweak sector is HHe. It is the

analog of the LLe term and, because of the implicit antisymmetric tensor, is allowed only in

the case of multiple Higgs doublets.

The minimal superpotential we consider in this section is therefore

Wminimal =
∑
i,j

C0
ijH

i
αH

j
βε
αβ +

∑
i,j,k

C3
ij,ke

iLjαH
k
βε
αβ . (4.1)

10 For example, in the spirit of trinification, there are three generations of Higgs doublets in the ∆27

model [22, 23], which embeds the Standard Model on the worldvolume of a single D3-brane. Three generations

of Higgses are also expected in models based on E6 gauge groups [24–26].
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The F-terms are modified from those of (3.3)–(3.6) to read

∂Wminimal

∂H i
α

=
∑
j

C0
ijH

j
βε
αβ , (4.2)

∂Wminimal

∂H
k
β

=
∑
i

C0
ikH

i
αε
αβ +

∑
i,j

C3
ij,ke

iLjαε
αβ , (4.3)

∂Wminimal

∂Ljα
=
∑
i,k

C3
ij,ke

iH
k
βε
αβ , (4.4)

∂Wminimal

∂ei
=
∑
j,k

C3
ij,kL

j
αH

k
βε
αβ . (4.5)

This leads to the following F-term equations for the Higgs fields:

H
j
β = 0 , (4.6)∑

i

C0
ikH

i
α +

∑
i,j

C3
ij,ke

iLjα = 0 . (4.7)

Once again, the vanishing of H
j
β leaves the other two F-term equations trivially satisfied.

Note that (4.7) now represents Nh separate constraint equations, labeled by the free index k.

As before, the necessary vanishing of theNh fieldsH
j
β in the vacuum ensures the vanishing

of HH, LHe, and the new operators HHe in the vacuum. Similarly, we have a set of relations

for the LH operators formed by contraction of (4.7) with Llβε
αβ. We obtain,

C0
ikH

i
αL

l
βε
αβ +

∑
i,j

C3
ij,ke

iLjαL
l
βε
αβ = 0 . (4.8)

These are Nf · Nh linear equations (from the k and l free indices) which suppress the LH

variables as degrees of freedom in the vacuum moduli space. Thus, once again, only LLe

contributes to the dimension counting of the vacuum geometry and the moduli space reduces

to an affine variety in C[y1, . . . , yk] with k = 1, . . . , Nf ·
(Nf

2

)
given by the relations among the

LLe polynomials. Therefore, we see that the vacuum moduli space is completely independent

of the number of Higgs generations in the model. From this analysis, we can argue that

the vacuum moduli space of the MSSM electroweak sector, without neutrinos, will be a non-

compact Calabi–Yau for all values of Nh ≤ Nf . Despite our näıve intuition, the dimension

of the vacuum geometry is unchanged, though the addition of extra Higgs degrees of freedom

allows for an embedding into the now larger polynomial ring C[y1, . . . , yk+Nf ·Nh ].

5 Right-handed Neutrinos

Neutrinos have mass. The mass can be generated by a coupling of a right-handed neutrino ν

to the up-type Higgs field. Because the neutrino carries no charge under SU(3)C ×SU(2)L×
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U(1)Y , this means that the field ν is itself a GIO. On physical grounds, ν should not appear by

itself in a phenomenological superpotential as this would be a tadpole, which we can remove

by a field redefinition. We may have composite operators involving ν, the simplest being νiνj ,

which introduces Majorana mass terms to the Lagrangian.

When considering right-handed neutrino fields, we previously noticed that some of the

dimensions of the vacuum moduli space geometry get lifted. The resulting geometry becomes

a three-dimensional Veronese surface for the case of three generations of particles [1, 2, 9].

In this paper, we would like to consider cases with different number of particle families and

understand the role of the GIOs for the structure of the vacuum geometry, focusing on the

Majorana mass terms.

Let us consider the electroweak sector as described in the previous section with the

addition of extra right-handed neutrinos fields as presented in Table 5.

Type Explicit Sum Index Number

ν νi i = 1, 2, . . . , Nf Nf

Table 5. Right-handed neutrinos fields.

The corresponding superpotential terms are given by

Wneutrinos =
∑
i,j

C4
ijν

iνj +
∑
i,j

C5
ijν

iLjαHβε
αβ . (5.1)

Again, these interactions respect R-parity. Taking derivatives of the superpotential yields the

F-terms:

∂Wneutrinos

∂Hβ
=
∑
i,j

C5
ijν

iLjαε
αβ , (5.2)

∂Wneutrinos

∂νi
=
∑
j

C4
ijν

j +
∑
j

C5
ijL

j
αHβε

αβ , (5.3)

∂Wneutrinos

∂Ljα
=
∑
i

C5
ijν

iHβε
αβ . (5.4)

Gathering these extra terms with the contributions from the minimal superpotential (3.2)
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gives the full set of F-term equations:∑
i,j

C5
ijν

iLjαε
αβ − C0Hαε

αβ = 0 , (5.5)

C0Hαε
αβ +

∑
i,j

C3
ije

iLjαε
αβ = 0 , (5.6)

∑
i

C5
ijν

iHβε
αβ +

∑
i

C3
ije

iHβε
αβ = 0 , (5.7)∑

j

C4
ijν

j +
∑
j

C5
ijL

j
αHβε

αβ = 0 , (5.8)

∑
i

C3
ijL

j
αHβε

αβ = 0 . (5.9)

Recently in [9], it has been shown that this system of equations implies that the following

GIOs vanish:

νi = 0 , LH = 0 , HH = 0 , LHe = 0 . (5.10)

Moreover, the only non-trivial equation remaining is (5.6). Contracting this condition with

Lkβ, we obtain: ∑
i,j

C3
ije

iLjαL
k
βε
αβ = 0 . (5.11)

The vacuum geometry is therefore given by the relations and syzygies of the LLe operators

intersected with the hypersurface defined by (5.11).

For the sake of completeness, let us recall the demonstration from [9]. First, from (5.9)

and from the non-singularity of the coupling matrix C3
ij , we conclude that the GIOs LHe

must all vanish. Second, we contract (5.7) with Lkα to obtain:∑
i

C5
ijν

iLkαHβε
αβ +

∑
i

C3
ije

iLkαHβε
αβ = 0 . (5.12)

The second term vanishes by virtue of LH = 0, and, assuming a generic matrix C5, we deduce

νiLkαHβε
αβ = 0 . (5.13)

This implies that both νi and LH operators vanish. Indeed, if νi 6= 0, then LkαHβε
αβ = 0.

From (5.8), we conclude that νi = 0, in contradiction with the starting hypothesis. Therefore

νi = 0, which implies LH = 0 from (5.8). Finally, from (5.5), we also have H = 0. This

analysis holds for any number Nf of flavors.
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5.1 Vacuum Geometry

Let us examine the geometries thus obtained. We start with the simple case of two flavors as

an appetizer. Then we look at the famous Veronese solution and the corresponding higher-

dimensional variety resulting from removing the Majorana mass terms. Then, we describe

the corresponding vacuum geometry for the case of an additional flavor, Nf = 4.

Nf = 2

Let us first consider the case of two particle flavors as a warm up. We have seen that it

has only two LLe operators coming from the two ei fields. Moreover, we now have two

right-handed neutrino fields.

Considering the case without Majorana mass term, the system of equations (5.11) reduces

to:

C3
11e

1L1
αL

2
βε
αβ + C3

21e
2L1

αL
2
βε
αβ = 0 , (5.14)

C3
12e

2L1
αL

2
βε
αβ + C3

22e
2L1

αL
2
βε
αβ = 0 . (5.15)

For the case when the coupling matrix C3 is a non-singular matrix, it is clear that the only

solution to the above system is when LLe = 0. Thus the vacuum geometry consists of the

point at the origin in C2.

Another way to write this ideal is to make the following change of variables:

ẽj :=
∑
i

C3
ije

i. (5.16)

We subsequently define y variables in the same way as in Section 3:

y1 = ẽ1L
1
αL

2
βε
αβ , y2 = ẽ2L

1
αL

2
βε
αβ . (5.17)

Thus, the relations (5.14) immediately become

y1 = 0 , y2 = 0 , (5.18)

and so we indeed have the point at the origin in C2 as the vacuum moduli space.

Nf = 3

For the case of three flavor generations, it is well established that the vacuum geometry is

given by the Veronese surface. An analytic demonstration of the Veronese description has

recently been obtained in [9].
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To be complete, let us present again the defining polynomial ideal. Again, it is convenient

to make the change of field variables:

ẽj :=
∑
i

C3
ije

i , (5.19)

and define the following y variables:

yI+C(Nf ,2)·(k−1) = (−1)k−1LiαL
j
β ẽkε

αβ . (5.20)

With this notation, the LLẽ relations retain a similar form to those we have found in Sec-

tion 3.2. In addition, we now have the relation (5.11) which corresponds to,

y1 − y9 = 0 , (5.21)

y2 − y6 = 0 , (5.22)

y4 − y8 = 0 . (5.23)

Thus, the full ideal is given by,

〈 y1y5 − y2y4, y1y6 − y3y4, y2y6 − y3y5,

y1y8 − y2y7, y1y9 − y3y7, y2y9 − y3y8, (5.24)

y4y8 − y5y7, y4y9 − y6y7, y5y9 − y6y8,

y1 − y9, y2 − y6, y4 − y8 〉 .

In fact, the last three linear terms can simply be used as constraints within the 9 quadrat-

ics and, thus, reduce the ideal as a set of 6 quadratic polynomials. We have,

M = (5|3, 4|26) , (5.25)

and the corresponding Hilbert series,

1 + 3t

(1− t)3
. (5.26)

It should be noted that the Hilbert series is not palindromic and therefore the geometry is

not Calabi–Yau.

The Veronese surface is an embedding of P2 into P5. It is in fact the only Severi variety on

projective dimension two, and it is remarkable that two of the four Severi varieties appear as

vacuum geometry for supersymmetric models with three flavor generations. The embedding

is explicitly given by:

P2 → P5

[x0 : x1 : x2] 7→ [x0
2 : x0x1 : x1

2 : x0x2 : x1x2 : x2
2]

(5.27)
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This can again be understood in terms of the following change of variables:

y1 → x0x2 , y2 → x0x1 , y3 → x2
0 ,

y4 → x1x2 , y5 → x2
1 , y6 → x1x0 ,

y7 → x2
2 , y8 → x2x1 , y9 → x2x0 .

(5.28)

It should be observed that the effect of (5.11) is therefore to identify the two projective

spaces arising from the Grassmannian Gr(3, 2) and P2. Imposing the identification relation

[x0 : x1 : x2] = [z0 : z1 : z2] onto (3.33) lead to the vacuum geometry in the presence of

right-handed neutrinos.

Again, we see from the binomial nature of the polynomial ideal (5.24) that the Veronese

variety is toric. Using the same notation as previously, the corresponding diagram is given

by,

N =



−1 −2 0

1 0 0

0 −1 0

1 0 −2

1 0 −1

0 −1 −1


=⇒ (5.29)

where we could include a pictorial representation of the toric cone, as it sits within three

dimensions.

For the base space B of the affine cone, we can compute its Hodge diamond

hp,q(B) =

h0,0

h0,1 h0,1

h0,2 h1,1 h0,2

h0,1 h0,1

h0,0

=

1

0 0

0 1 0

0 0

1

. (5.30)

This confirms our identification of the Veronese geometry.
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Nf = 4

We give only the Hilbert series and dimension as writing the full ideal is tedious and ulti-

mately unilluminating. However we realize that all the previous structures we have noted

remain the same. The geometry stems out of Gr(4, 2) × P3. As in the Veronese case, some

identifications occur between the points in Gr(4, 2) and P3 due to (5.11). With the y variables

definition (5.20), these linear relations (5.11) become:

y1 − y16 + y23 = 0 , (5.31)

y2 − y10 + y24 = 0 , (5.32)

y3 − y11 + y18 = 0 , (5.33)

y7 − y14 + y21 = 0 . (5.34)

The identification is therefore not as straightforward as for the Veronese case, since we have

a sum of three terms in each equality. In terms of the Gr(4, 2) and P3 variables, keeping the

same variables as defined by (3.45), these linear equations become

z0x0 − z2x3 + z3x4 = 0 , (5.35)

z0x1 − z1x3 + z3x5 = 0 , (5.36)

z0x2 − z1x4 + z2x5 = 0 , (5.37)

z1x0 − z2x1 + z3x2 = 0 . (5.38)

The vacuum moduli space is therefore given by (3.45), subject to the constraints (3.46)

and (5.35)–(5.38). It corresponds to a geometry of the type

M = (19|6, 40|284) . (5.39)

It is irreducible, and its Hilbert series is

1 + 14t+ 21t2 + 4t3

(1− t)6
. (5.40)

Again, we do not have a palindromic Hilbert series, so the geometry fails to be Calabi–Yau.

Computationally, identifying further geometrical invariants such as Euler number or Hodge

numbers for this space, due to the complexity of the defining ideal, is prohibitively lengthy

on standard desktop computers. Nonetheless, it is not without hope that future advances in

algebraic geometry software packages will make such computations more easily accessible.
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5.2 Role of the Majorana Mass Term

It should be noted that key to the argument in the previous subsection is the fact that the

νi vanish due to equation (5.8). Now, when considering a superpotential without Majorana

mass terms, e.g., with

C4 = 0 ,

this argument does not apply anymore. Instead, we have the following system for the F-term

equations: ∑
i,j

C5
ijν

iLjαε
αβ − C0Hαε

αβ = 0 , (5.41)

C0Hαε
αβ +

∑
i,j

C3
ije

iLjαε
αβ = 0 , (5.42)

∑
i

C5
ijν

iHβε
αβ +

∑
i

C3
ije

iHβε
αβ = 0 , (5.43)∑

j

C5
ijL

j
αHβε

αβ = 0 , (5.44)

∑
i

C3
ijL

j
αHβε

αβ = 0 . (5.45)

From this, we can deduce again that all LH must vanish from (5.45). The difference is now

that we can also deduce that all LH must vanish from (5.44). Finally, contracting (5.41)

with Hβ and with LH = 0, we also have that HH = 0. In summary, we have the following

vanishing GIOs,

LH = 0 , HH = 0 , LHe = 0 . (5.46)

Again, we have the conditions (5.11) for the LLe operators. However, we now have an

extra condition coming from contracting equation (5.41) with Lkβe
l. This leads to the two

constraints: ∑
i,j

C3
ije

iLjαL
k
βε
αβ = 0 , (5.47)

∑
i,j

C5
ijν

iLjαL
k
βe
lεαβ = 0 , (5.48)

and the geometry is given by the LLe and ν operators satisfying these conditions.

The extra condition (5.48) that we now have for the non-vanishing ν operators are

quadratic polynomials. They are also the only polynomials involving ν. The LLe opera-

tors are subject to the same constraints as the case with Majorana mass terms. Therefore,

we have an embedding of this geometry onto a higher dimensional algebraic variety incorpo-

rating ν degrees of freedom. This embedding is however non-trivial, as we will see below.
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Nf = 2

Considering the case without Majorana mass terms for the right-handed neutrinos, we see

that we now also need to satisfy (5.48). The first condition will lead to LLe = 0 as above and

the second condition will thus be trivially satisfied. The right-handed neutrino fields thus

remain unconstrained, and the vacuum moduli space is then M = C2.

Nf = 3

Let us now consider the case without the Majorana mass term in the superpotential, when

C4 = 0. As explained previously, the right-handed neutrinos do not vanish anymore. Similarly

to the ei fields, we can absorb the coupling constant C5 into a field redefinition,

ν̃j :=
∑
i

C5
ijν

i . (5.49)

We can also define the additional y variables,

y10 = ν̃1 , y11 = ν̃2 , y12 = ν̃3 . (5.50)

We must now consider an ideal in C12. The polynomials from (5.24) remain part of the defining

polynomials for the vacuum geometry. In addition, we now have the condition (5.48). This

gives,

y11y1 + y12y2 = 0 , y10y1 − y12y3 = 0 , y10y2 + y11y3 = 0 ,

y11y4 + y12y5 = 0 , y10y4 − y12y6 = 0 , y10y5 + y11y6 = 0 ,

y11y7 + y12y8 = 0 , y10y7 − y12y9 = 0 , y10y8 + y11y9 = 0 . (5.51)

The full ideal is then,

〈 y1y5 − y2y4, y1y6 − y3y4, y2y6 − y3y5,

y1y8 − y2y7, y1y9 − y3y7, y2y9 − y3y8,

y4y8 − y5y7, y4y9 − y6y7, y5y9 − y6y8,

y1 − y9, y2 − y6, y4 − y8, (5.52)

y11y1 + y12y2, y10y1 − y12y3, y10y2 + y11y3,

y11y4 + y12y5, y10y4 − y12y6, y10y5 + y11y6,

y11y7 + y12y8, y10y7 − y12y9, y10y8 + y11y9 〉 .

This ideal corresponds to

M = (8|4, 7|214) . (5.53)
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We can see that the last nine polynomials from (5.52) are the only ones containing the

neutrino field variables y10, y11 and y12. They also have the property that they all vanish

when y10 = y11 = y12 = 0, thus recovering the Veronese ideal for the particular point in the

vacuum where the neutrino fields vanish. This implies that the Majorana mass terms would

simply lift the right-handed neutrinos from the vacuum.

In analogy with the Veronese analysis, we can define the following change of variables:

y1 → x0x2 , y2 → x0x1 , y3 → x2
0 ,

y4 → x1x2 , y5 → x2
1 , y6 → x1x0 ,

y7 → x2
2 , y8 → x2x1 , y9 → x2x0 ,

y10 → x0λ , y11 → x1λ , y12 → x2λ ,

(5.54)

where we introduced a new coordinate λ. This change of variables satisfies automatically all

constraints form the ideal (5.52). It can be understood as the following embedding,

P2 × C −→ P8

[x0 : x1 : x2] [λ] → [x0
2 : x0x1 : x1

2 : x0x2 : x1x2 : x2
2 : x0λ : x1λ : x2λ]

(5.55)

A general treatment of the corresponding embedding for more general cases with Nf ≥ 4 will

be presented in Subsection 5.3.

Using algebraic geometry packages [20, 21], we can compute its Hilbert series and obtain

1 + 5t+ t2

(1− t)4
. (5.56)

Thus the geometry is an (irreducible) non-compact affine Calabi–Yau. Moreover, we see that

the ideal (5.52) contains only binomials, thus is toric again. The removal of the Majorana

mass term for the right-handed neutrinos thus brings back this property. The toric diagram

is given by,

N =



−2 0 0 −1

0 0 0 1

−1 0 0 0

0 −2 2 1

0 −1 1 1

−1 −1 1 0

−1 1 0 0

0 1 0 1

0 0 1 1



=⇒ (5.57)
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where the pictorial representation corresponds to the three-dimensional hyperplane in which

all the vectors fit, due to the Calabi–Yau property.

The Hodge diamond of the compact base manifold B of the projective variety can be

computed. We find

hp,q(B) =

h0,0

h0,1 h0,1

h0,2 h1,1 h0,2

h0,3 h1,2 h1,2 h0,3

h0,2 h1,1 h0,2

h0,1 h0,1

h0,0

=

1

0 0

0 2 0

0 0 0 0

0 2 0

0 0

1

. (5.58)

Similarly as for the five-dimensional vacuum of the minimal superpotential and the Veronese

surface, this Hodge diamond has the property to be non-vanishing in its diagonal only. It

is consistent with the Hodge diamond of P2 × P1 as can be seen by using the Künneth

formula. Thus, as with (3.37), our vacuum moduli space is topologically P2×P1 but algebro-

geometrically we can pin-point it as the toric variety given above.

Nf = 4

Similarly to the Nf = 3 case, we expect the geometry to be some fibration over the geometry

described previously by (5.39) in the Nf = 4 case with the Majorana mass term. Let us

introduce the neutrino variables

y25 = ν̃1 , y26 = ν̃2 , y27 = ν̃3 , y28 = ν̃4 . (5.59)

where the coupling constant C5 is absorbed into ν̃ as in (5.49). Since the Grassmannian

Gr(4, 2) does not correspond to a projective space, it is not straightforward to give the

embedding of the vacuum moduli space. However, we can give the constraint equations

for the neutrinos variables which determine the fibration of these extra variables over the

geometry described in (5.39). From (5.48), we have,

− y26y1+6n − y27y2+6n − y28y3+6n = 0 , (5.60)

y25y1+6n − y27y4+6n − y28y5+6n = 0 , (5.61)

y25y2+6n + y26y4+6n − y28y6+6n = 0 , (5.62)

y25y3+6n + y26y5+6n + y27y6+6n = 0 , (5.63)
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for n = 0, 1, 2, 3. These 16 equations clearly vanish when the neutrino variables are set to zero

and we recover the ideal from (5.39). Thus the effect of the Majorana mass term is simply to

lift the neutrinos variables from the vacuum.

The above geometry, however, is not as trivial as for the Veronese case. Here, we have a

geometry of the type

M = (23|8, 71|311299) , (5.64)

which is irreducible, and with its Hilbert series given by,

1 + 16t+ 37t2 + 16t3 + t4

(1− t)8
. (5.65)

As the numerator is palindromic, we conclude that the vacuum manifold is Calabi–Yau.

5.3 Vacuum Geometry: General Nf

Having gained experience with the cases of Nf = 2, 3, 4 using algorithmic geometry, we can

now analytically study the general case. We assume that the matrices C5
ij and C3

ij have full

rank, and, without loss of generality, that C0 is nonzero. As previously, we set

ẽj :=
∑
i

C3
ije

i , (5.66)

ν̃j :=
∑
i

C5
ijν

i . (5.67)

Now, define three matrices of variables by:

E =

(
ẽ

ν̃

)
=

1

C0

(
−ẽ1 −ẽ2 . . . −ẽNf
ν̃1 ν̃2 . . . ν̃Nf

)
, L =

(
L1 L2

)
=


L1

1 L1
2

...
...

L
Nf
1 L

Nf
2

 , H =

(
H1 H2

H1 H2

)
.

(5.68)

We will think of the row vectors ẽ and ν̃ as hyperplanes, and the column vectors L1 and L2

as points in an affine or projective space.

With this notation, the four equations (5.41) and (5.42) are equivalent to the matrix

equation

H = EL ; (5.69)

the 2Nf equations (5.43) translate to the matrix equation

HT

(
0 1

−1 0

)
E = 0 ; (5.70)
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and the 2Nf equations (5.44) and (5.45) translate to

H

(
0 1

−1 0

)
LT = 0 . (5.71)

Eliminating the variables in H by using the first of these equations leaves 4Nf equations in

the variables ẽj , ν̃j , and Ljα:

LTET

(
0 1

−1 0

)
E = 0 , EL

(
0 1

−1 0

)
LT = 0. (5.72)

These equations are homogeneous separately in the four sets of Nf variables: ẽj , ν̃j , L
j
1, and

Lj2, so let X ⊂ PNf−1 × PNf−1 × PNf−1 × PNf−1 be the zero set of these 4Nf equations, with

each factor of projective space parametrized by one of the four sets of variables.

As we are interested in the vacuum moduli space, which is the affine cone over the image

of X under the GIO’s ν and LLe, let ∆ij = LiαL
j
βε
αβ be the 2 × 2 minors of the matrix L,

and let ∆ be the ideal generated by these minors. Any point on V (∆), where V denotes the

variety corresponding to the ideal, maps via the LLe operators to the origin, so the images

of points in X ∩ V (∆) are easy to understand, and are subvarieties of the moduli spaces

identified below.

Let us compute equations which cut out X \ V (∆). Multiply the second matrix equa-

tion (5.72) by the Nf × 2 matrix which is zero except in rows i and j: the i-th row is

(−L1
j ,−L2

j ), and the j-th row is (L1
i , L

2
i ), obtaining

0 = EL

(
0 1

−1 0

)
LT



0 0
...

...

−L1
j −L2

j
...

...

L1
i L2

i
...

...

0 0


= ∆ijEL (5.73)

Since this holds for all i and j, dividing by ∆ij we see that X \ V (∆) is cut out by the

four polynomial entries of the matrix EL. Notice that once these vanish, then certainly the

matrix equations (5.72) vanish. On the complement of V (∆), these four polynomials define

an irreducible variety of codimension four. (If, for instance, we consider the subset for which

∆12 6= 0, we can multiply the matrix L on the right to ensure that the first 2 rows of L form
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the identity matrix. The resulting four equations write ẽ1, ẽ2, ν̃1, ν̃2 in terms of the other

variables, which shows that the variety is irreducible of codimension four.) Therefore, the

closure Y of X \ V (∆) is also irreducible with codimension four (this holds for any Nf ≥ 2,

although it is not very interesting for Nf = 2). Therefore, dimY = 4(Nf − 1)− 4 = 4Nf − 8.

A closer analysis using Macaulay2 [20] shows that for Nf ≥ 4, the ideal of Y is generated

by these four polynomials. For Nf = 3, the ideal is generated by these four polynomials,

together with the 2× 2 minors of the matrix E.

Notice that in the case Nf ≥ 4, Y can be described more geometrically as the locus of

(ẽ, ν̃, L1, L2) ∈ PNf−1 × PNf−1 × PNf−1 × PNf−1 (5.74)

such that the hyperplanes ẽ and ν̃ contain the points L1 and L2 (and therefore the line M

joining L1 and L2, if these points are distinct).

For Nf = 3, Y is described geometrically as the locus of

(ẽ, ν̃, L1, L2) ∈ P2 × P2 × P2 × P2 (5.75)

such that the lines ẽ and ν̃ are equal, and contain the points L1 and L2 (and therefore equals

the line M joining L1 and L2, if these points are distinct).

Now, consider the image of Y under the GIO’s LLe and ν. This map factors as follows:

PNf−1
ν × PNf−1

e × PNf−1
L1

× PNf−1
L2

−→ PNf−1
ν × PNf−1

e ×Gr(2, Nf ) −→ PNf−1
ν × P(Nf

2
)Nf−1

∪ ∪ ∪
Y −→ Y1 −→ Y2

,

(5.76)

where the first map is given by the minors of the matrix L, and is the identity on the first

two factors. The second map is the Segrè embedding. As marked, let Y1 be the image of

Y under the first map, and let Y2 be the image under the final map. The fibers of the map

Y −→ Y1 have dimension two, and therefore the dimension of Y1 is 4Nf − 10. The second

map is an isomorphism of Y1 and Y2, and so they have the same dimension. In conclusion,

for Nf ≥ 3, the vacuum moduli spaceM is the affine cone over Y2, and so has dimension two

larger, giving in general that

dimM = 4Nf − 8 , Nf ≥ 3 . (5.77)

The locus Y1, in the case Nf ≥ 4, is described geometrically as the set of

(ẽ, ν̃,M) ∈ PNf−1
e × PNf−1

ν ×Gr(2, Nf ) (5.78)
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such that the hyperplanes ẽ and ν̃ contain the line M . In the case Nf = 3, Y1 is the set

(ẽ, ν̃,M) ∈ P2 × P2 ×Gr(2, 3) (5.79)

such that the lines ẽ, ν̃, and M are all equal.

6 Discussion and Outlook

In order to fully appreciate the vacuum moduli space geometries’ dependence on the elec-

troweak theories — that is, the field content and superpotential — let us tabulate a summary

of all the results previously described. On physical grounds, we know that three generations

of Standard Model matter fields are required for CP violation. On geometric grounds, the

vacuum of the electroweak sector is trivial when Nf < 3. Thus, in the table below, we omit

the cases of Nf = 2, which give points or C2. The table lists the GIOs that are non-vanishing

in the vacuum. The toric property refers to whether the ideals are explicitly in a toric form.

The Calabi–Yau property is checked by the palindromicity of the numerator of the Hilbert

series associated to the geometry M.

W Vacuum GIOs Nf dimension degree Toric Calabi–Yau

HH + LHe LLe, LH 3 ? 5 6 X X

4 8 70 X

5 11 1050 X

HH + LHe+ LHν + νν LLe 3 † 3 4 X

4 6 40

HH + LHe+ LHν LLe, ν 3 4 7 X X

4 8 71 X

Table 6. Summary of algebraic geometries encountered as the vacuum moduli space of supersymmetric

electroweak theories. Here W is the superpotential; vacuum GIOs are the GIOs after imposing the F-terms,

and thus furnish explicit coordinates of the moduli space, of affine dimension and degree as indicated; Nf

is the number of generations. We also mark with “X” if the vacuum moduli space is toric or Calabi–Yau.

Furthermore, the † corresponds to the cone over the Veronese surface and the ?, the Segrè variety. These

two are Severi varieties, in fact, the only two which are isomorphic to (products of) projective spaces.

The observations that can be drawn from this table are the following. First, for the

minimal superpotential, that is W = HH + LHe, the dimension increases by three when

adding one more flavor in the theory (which corresponds to adding three fields). The geome-
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tries for this superpotential correspond to the affine cone over Gr(Nf , 2)× PNf−1, which is a

Calabi–Yau space. Therefore, the affine dimension 11 of the moduli space is 3Nf − 4.

With the addition of the right handed neutrino in the superpotential, i.e., W = HH +

LHe+LHν, the geometry becomes an affine cone over the bi-projective variety Y2 described

in (5.76), of affine dimension 4Nf−8. Alternatively, the moduli space can be seen as a double

affine cone over a complete intersection in (PNf−1)4. For Nf = 3, it is topologically a cone over

P2×P1. In any event, the moduli space is Calabi–Yau. However, when we further we add the

Majorana mass term for the neutrino, giving the superpotential W = HH+LHe+LHν+νν,

this lifts the neutrinos variables form the vacuum, having the effect of removing the Calabi–

Yau property of the vacuum. In particular, for Nf = 3, we have the cone over the Veronese

surface.

One intriguing observation can be readily made: we have shown that only for three

generations do we obtain toric varieties for all superpotentials considered. Moreover, at

Nf = 3, we obtain two of the four Severi varieties as the vacuum moduli space: the cone

over the Veronese for W = HH + LHe+ LHν + νν and the cone over the Segrè variety for

W = HH + LHe. These unique Severi varieties of dimension two and four are, in fact, the

only Severi varieties which are themselves projective. It is interesting that this “triadophilia”

— the love of three generations of particles — could so be geometrically interpreted; one could

compare and contrast with [27] for the context of this “threeness” in string compactification.

An increase in the number of flavors introduces non-binomial constraints in the variety

ideals. It would be worth investigating these varieties from an algebraic geometry point of

view to understand whether any properties relate them together, such as in the case of the

Severi varieties. We should also be mindful of (3.34), especially of the underlying Lie group

structure of these spaces. Because we have obtained the first two Severi varieties which are

essentially complex projective spaces and which have S(U(1)×U(2)) isometry, it is conceivable

that they arise because of the electroweak gauge group. It will be indeed interesting to see

whether the other two arise for other gauge groups. These await further computations.

A full categorization of the vacuum moduli spaces obtained with all possible combinations

of the renormalizable terms in the superpotential is under way. The algorithmic complexity of

Gröbner bases decomposition render some computations out of reach of personal computers.

However, it is not without hope that a numerical approach might lead to a complete calcula-

11 Incidentally, we note that the degree is
(3Nf )!

Nf !3(9Nf−3)
, which happens to be [28] the number of possible

necklaces consisting of Nf white beads, Nf red beads and Nf − 1 black beads, where two necklaces are

considered equivalent if they differ by a cyclic permutation. This is due to the Grassmannian symmetry.
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tion of all the different possibilities for the electroweak sector of supersymmetric theories.
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A Gauge Invariant Operators in the MSSM

Type Explicit Sum Index Number

LH LiαHβε
αβ i = 1, 2, 3 3

HH HαHβε
αβ 1

udd uiad
j
bd
k
c ε
abc i, j = 1, 2, 3; k = 1, . . . , j − 1 9

LLe LiαL
j
βe
kεαβ i, k = 1, 2, 3; j = 1, . . . , j − 1 9

QdL Qia,αd
j
aLkβε

αβ i, j, k = 1, 2, 3 27

QuH Qia,αu
j
aHβε

αβ i, j = 1, 2, 3 9

QdH Qia,αd
j
aHβε

αβ i, j = 1, 2, 3 9

LHe LiαHβε
αβej i, j = 1, 2, 3 9

QQQL Qia,βQ
j
b,γQ

k
c,αL

l
δε
abcεβγεαδ

i, j, k, l = 1, 2, 3; i 6= k, j 6= k,
j ≤ i, (i, j, k) 6= (3, 2, 1)

24

QuQd Qia,αu
j
aQkb,βd

l
bε
αβ i, j, k, l = 1, 2, 3 81

QuLe Qia,αu
j
aLkβe

lεαβ i, j, k, l = 1, 2, 3 81

uude uiau
j
bd
k
ce
lεabc i, j, k, l = 1, 2, 3; j < i 27

QQQH Qia,βQ
j
b,γQ

k
c,αHδε

abcεβγεαδ
i, j, k = 1, 2, 3; i 6= k, j 6= k,
j ≤ i, (i, j, k) 6= (3, 2, 1)

8

QuHe Qia,αu
j
aHβe

kεαβ i, j, k = 1, 2, 3 27

dddLL diad
j
bd
k
cL

m
α L

n
βε
abcεijkε

αβ m,n = 1, 2, 3, n < m 3

uuuee uiau
j
bu
k
ce
menεabcεijk m,n = 1, 2, 3, n ≤ m 6

QuQue Qia,αu
j
aQkb,βu

m
b e

nεαβ
i, j, k,m, n = 1, 2, 3;
antisymmetric{(i, j), (k,m)} 108

QQQQu Qia,βQ
j
b,γQ

k
c,αQ

m
f,δu

n
f ε
abcεβγεαδ

i, j, k,m, n = 1, 2, 3; i 6= k, j 6= k,
j ≤ i, (i, j, k) 6= (3, 2, 1)

72

dddLH diad
j
bd
k
cL

m
αHβε

abcεijkε
αβ m = 1, 2, 3 3

uudQdH uiau
j
bd
k
cQ

m
f,αd

n
fHβε

abcεαβ i, j, k,m, n = 1, 2, 3; j < i 81

(QQQ)4LLH (QQQ)αβγ4 Lmα L
n
βHγ m,n = 1, 2, 3, n ≤ m 6

(QQQ)4LHH (QQQ)αβγ4 LmαHβHγ m = 1, 2, 3 3

(QQQ)4HHH (QQQ)αβγ4 HαHβHγ 1

(QQQ)4LLLe (QQQ)αβγ4 Lmα L
n
βL

p
γeq m,n, p, q = 1, 2, 3, n ≤ m, p ≤ n 30

uudQdQd uiau
j
bd
k
cQ

m
f,αd

n
fQ

p
g,βd

q
gεabcεαβ

i, j, k,m, n, p, q = 1, 2, 3;
j < i, antisymmetric{(m,n), (p, q)} 324

(QQQ)4LLHe (QQQ)αβγ4 Lmα L
n
βHγe

p m,n, p = 1, 2, 3, n ≤ m 18

(QQQ)4LHHe (QQQ)αβγ4 LmαHβHγe
n m,n = 1, 2, 3 9

(QQQ)4HHHe (QQQ)αβγ4 HαHβHγe
m m = 1, 2, 3 3

Table 7. The set D = {ri} of generators of gauge invariant operators for the MSSM.
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B Toric Varieties

In this appendix, we would like to present how the toric diagrams have been obtained for the

relevant varieties. The reader may find this brief review of use since it differs from most of

the toric literature in the physics community, because it emphasizes the Gröbner basis and

algorithmic aspects of the geometry. Further clarification of what it exactly means to be

Calabi–Yau will be addressed in the next appendix.

The encountered ideals had the property to be a binomial ideal, i.e., it consists only of

generators of the form of “monomial” = “monomial”,

~y ~m+ = ~y ~m− , ~m+, −~m− ∈ Zk≥0 , yj=1,...,k ∈ C , (B.1)

where the notation ~y ~m denotes the monomials ym1
1 ym2

2 . . . ymkk . Now, an irreducible binomial

ideal geometrically describes a toric variety [31]. This fact is exploited and constitutes the

bipartite structure of toric quiver gauge theories [32].

For the case of the Veronese, the given ideal definition (5.24) clearly has three redundant

linear variables which simply amount to setting one coordinate variable equal to another, e.g.,

y1 = y9. We strip our ideal of these, giving us what is known as a minimal presentation

of the ideal as nine quadratics in {y3, y5, y6, y7, y8, y9}, which can be seen as projective coor-

dinates of P5. Furthermore, these nine quadratics are not independent and can be generated

by only six minimal generators in the form of six quadratics which we will see in (B.2).

It is expedient to draw the toric diagram since, after all, within the pictorial lies the

power of toric geometry. The diagram is readily constructed from the exponent vectors in the

binomial ideal. This is done as follows. First, we extract the exponent vectors. With relative

minus signs, we can choose the left-hand side to be m+ and the right-hand side to be m−.

Using the minimal presentation of the binomial ideal, which we now rewrite for the readers’

convenience, we obtain:

〈y6 y8 − y5 y9, y3 y8 − y6 y9, y6 y7 − y8 y9,

y5 y7 − y2
8, y3 y7 − y2

9, y3 y5 − y2
6〉

⇒ M :=



y3 y5 y6 y7 y8 y9

0 −1 1 0 1 −1

1 0 −1 0 1 −1

0 0 1 1 −1 −1

0 1 0 1 −2 0

1 0 0 1 0 −2

1 1 −2 0 0 0


(B.2)

where each row of M corresponds to a generator in the (minimally generated and minimally

presented) ideal.
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Next, we find the relations among these generators, i.e., whether rows obey sum relations.

In other words, we find the integer kernel of M, which is the matrix of lattice generators N

such that M ·N = 0. This is not just the null space of M over Z but the minimal generators

over Z of the nullspace, again, an algorithm conveniently implemented in [20]. As a familiar

example, consider the conifold, given by the quadric uv = zw in C4. Here, M = (1, 1,−1,−1),

so the integer kernel is N =


1 1 0
−1 0 1
0 1 0
0 0 1

, which is the familiar co-planar square cone of the toric

diagram for the conifold, with rows as three-vectors.

Returning to the case of the Veronese, we find that

N = kerZ(MT ) =



−1 −2 0

1 0 0

0 −1 0

1 0 −2

1 0 −1

0 −1 −1


=⇒

(B.3)

The rows of N are automatically of length three, meaning that we can draw them in R3, as is

indeed required for a three (complex) dimensional toric variety, here, the affine cone over the

Veronese surface. The endpoints are vectors generating the toric cone and we represent them

above as lattice points. The astute reader may question that this looks like the toric diagram

for the affine Calabi–Yau singularity C3/Z2 × Z2. However this is not the case: we see that

the points in the toric diagram are co-planar at height 2 and not the required height 1 for

Calabi–Yau (the reader is referred to Appendix C for a detailed discussion on this point).

This is indeed consistent with the fact that the Hilbert series does not have the palindromic

numerator needed for the Gorenstein/Calabi–Yau property.

Using the same methods as above, we can readily obtain the toric diagrams, where

possible, of other of our geometries as well. Of course, if the geometries are of high dimension,

say complex dimension n > 3, then the toric diagram will consist of lattice points in Rn and
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visualization will become difficult. Nevertheless let us present them here.

The variety in (5.52), after reducing to minimal presentation and redefining y11 → −y11,

indeed corresponds to a binomial ideal of fourteen quadrics in

P8[y3 : y5 : y6 : y7 : y8 : y9 : y10 : y11 : y12], viz.,

〈y9y11 − y6y12, y8y11 − y5y12, y7y11 − y8y12, y9y10 − y3y12, y8y10 − y6y12,

y7y10 − y9y12, y6y10 − y3y11, y5y10 − y6y11, y6y8 − y5y9, y3y8 − y6y9,

y6y7 − y8y9, y5y7 − y2
8, y3y7 − y2

9, y3y5 − y2
6〉 ,

yielding

M :=



y3 y5 y6 y7 y8 y9 y10 y11 y12
0 0 −1 0 0 1 0 1 −1
0 −1 0 0 1 0 0 1 −1
0 0 0 1 −1 0 0 1 −1
−1 0 0 0 0 1 1 0 −1
0 0 −1 0 1 0 1 0 −1
0 0 0 1 0 −1 1 0 −1
−1 0 1 0 0 0 1 −1 0
0 1 −1 0 0 0 1 −1 0
0 −1 1 0 1 −1 0 0 0
1 0 −1 0 1 −1 0 0 0
0 0 1 1 −1 −1 0 0 0
0 1 0 1 −2 0 0 0 0
1 0 0 1 0 −2 0 0 0
1 1 −2 0 0 0 0 0 0


. (B.4)

Subsequently, we find that

N =



−2 0 0 −1
0 0 0 1
−1 0 0 0
0 −2 2 1
0 −1 1 1
−1 −1 1 0
−1 1 0 0
0 1 0 1
0 0 1 1


. (B.5)

First, the fact that we get four-vectors is reassuring since we have computed the geometry

to be an affine Calabi–Yau fourfold. We note that the vector (−1, 0, 0, 1) is perpendicular

to the difference of every one of the vectors subtracted by the first one, (−2, 0, 0,−1). This

means that the four-vectors are co-hyperplanar at height 1, having their endpoint all lying

in a hyperplane of dimension three. This is the Calabi–Yau condition, as corroborated by

the palindromic numerator of the Hilbert series. Hence, we can plot the projection of the

toric diagram into three dimensions, by, say, removing the first column of coordinates. This

is included in the above.
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Finally, we recognize the ideal in (3.30) to be also binomial, already in minimal presen-

tation in (3.29). Repeating the above, we find that

M =



0 0 0 0 −1 1 0 1 −1
0 −1 1 0 0 0 0 1 −1
0 0 0 −1 0 1 1 0 −1
0 0 0 −1 1 0 1 −1 0
−1 0 1 0 0 0 1 0 −1
−1 1 0 0 0 0 1 −1 0
0 −1 1 0 1 −1 0 0 0
−1 0 1 1 0 −1 0 0 0
−1 1 0 1 −1 0 0 0 0


⇒ N =



1 0 1 0 0
1 1 0 0 0
1 1 0 1 0
0 0 1 0 0
0 1 0 0 0
0 1 0 1 0
0 −1 1 −1 1
0 0 0 −1 1
0 0 0 0 1


; (B.6)

again, the rows of N are five-vectors, as is needed for a five-fold.

C Affine Calabi–Yau Toric Varieties

In this appendix, we will clarify, in a rigorous manor, the meaning of “toric Calabi–Yau”,

and its relation to the property of being Gorenstein, and having palindromic numerator in

the Hilbert series. Importantly, we present the proof of the useful equivalent condition for a

(possibly singular) toric variety to be Calabi–Yau: that the toric diagram be co-hyperplanar

at height one. This extra height-one condition is often overlooked in the physics community

— where toric Calabi–Yau is often taken to mean coplanar toric diagram — and needs to be

emphasized. Indeed, whereas in the smooth case [29], this height one condition is redundant,

it is crucial for the singular case, as are the ones discussed here and in the context of D-branes

in AdS/CFT.

Throughout this section, we will make extensive use of the wonderful new text book on

toric varieties [31]. When we say “cone”, we mean a strongly convex rational polyhedral cone.

Let N = Zd, and M = HomZ(N,Z) = Zd its dual lattice. To keep from getting confused, it

is helpful to use this terminology, instead of simply writing Zd for the two dual lattices.

Let Σ ⊂ NR = Rd be a full-dimensional fan (full dimensional means that the correspond-

ing toric variety has “no torus factors”). Let

φ = {v1 . . . vr} : Zr −→ N

be the matrix whose columns vi ∈ N are the r rays of Σ. The entries in each vi are integers,

having greatest common divisor equal to one.

Let X = XΣ be the d-dimensional normal toric variety corresponding to Σ. X is deter-

mined by the following data: the d× r matrix of rays, φ, and the maximal cones of Σ. Each

cone can be thought of as a subset of {1, . . . , r}, i.e., we write i ∈ σ to mean that the ith ray

vi is an extremal ray of σ.

When the toric variety XΣ is smooth, then we have the following theorem (cf. [29, 30]).
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Theorem C.1 The smooth toric variety X = XΣ is Calabi–Yau if and only if the endpoints
of the extremal rays v1, . . . , vr all lie on an affine hyperplane of the form:

a1x1 + . . .+ adxd = 1,

where the ai are all rational.

Consider the following example. X = Xσ is the affine toric variety defined by the cone

σ, where σ̌ is the cone in MR which is the convex hull of

{−1,−2, 0}, {1, 0, 0}, {0,−1, 0}, {1, 0,−2}, {1, 0,−1}, {0,−1,−1}. (C.1)

This is the cone in C5 over the Veronese surface in P4 discussed in Section B, in particular,

the row of N in (B.3).

It is easy to check that the affine coordinate ring Aσ is not Gorenstein, and therefore (see

later in this appendix) is not Calabi–Yau either. Using Macaulay2 [20] to compute this cone,

we obtain that σ has extremal rays

{0,−1, 0}, {0, 0,−1}, {2,−1, 1}.

The endpoints of these rays do lie on an affine hyperplane: x−y−z
2 = 1. This appears to be

in contradiction with Theorem C.1. We will show that it is not since Xσ is not smooth: it is

the cone over the Veronese surface and thus there is a singularity at the origin.

The main purpose of this appendix is to sketch a proof of the following extension of

Theorem C.1, viz.,

Theorem C.2 The toric variety XΣ is Calabi–Yau if and only if the endpoints of the ex-
tremal rays v1, . . . , vr all lie on an affine hyperplane of the form:

a1x1 + . . .+ adxd = 1,

where the ai are all integers.

Notice that this theorem applies to the above example, and shows that it is not Calabi–

Yau, since the coefficients of the affine hyperplane are rational, not integer.

In order to prove the statement, let us be careful with the definition of Calabi–Yau. As

in the smooth case, we say that the toric variety X = XΣ is Calabi–Yau if the canonical

sheaf ωX ∼= OX . This implies that the Weil divisor KX = −D1 − . . . − Dr is a Cartier

divisor (i.e., locally, is generated by a single equation), and in the class group Cl(X), that

0 = −D1 −D2 − . . .−Dr.

We use the following well-known result, proved for example in Cox–Little–Schenck [31].
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Fact C.3 (Theorem 4.1.3, page 172, [31]) The class group of X is generated by D1, . . . , Dr,
and a presentation for this group is cokerφT :

0 −→M −→ Zr −→ Cl(X) −→ 0.

Proof of Theorem C.2

We wish to show that X is Calabi–Yau exactly when there is a vector m ∈ M such that

〈m, vi〉 = 1, for all i = 1, . . . , r (this is the definition of the desired affine hyperplane). Now,

X is Calabi–Yau exactly when 0 ∼ −D1− . . .−Dr, which is equivalent to this element being

zero in the class group, which is the same as saying that the vector (−1,−1, . . . ,−1) is in the

Z-span of the rows of φ, thanks to Fact C.3. But to be in the Z-span of the rows is the same

as the existence of an integer vector m′ ∈ Zd = M such that 〈m, vi〉 = −1 for all i. Taking

m = −m′ gives our desired hyperplane. �

Let us now restrict to the case of affine toric varieties. We will show that the Calabi–

Yau property in this case is just the Gorenstein-ness of the affine coordinate ring. This is

well-known, but we include the short proof for completeness.

Theorem C.4 Let X = Xσ be an affine normal toric variety. Then

X is Gorenstein ⇐⇒ X is Calabi–Yau.

Recall that X is called Gorenstein if the dualizing sheaf ωX is a line bundle. In terms of

divisors, this means that Xσ is Gorenstein exactly when KX = −D1 − . . . −Dr is a Cartier

divisor.

We will need the following fact about when Weil divisors are Cartier on toric varieties

XΣ.

Fact C.5 (Theorem 4.2.8, page 181, [31]) A Weil divisor D =
∑r

i=1 aiDi is Cartier
if and only if for each maximal cone σ ∈ Σ, there is an integer vector mσ ∈ M such that
〈mσ, vi〉 = −ai, for all i ∈ σ (recall we are thinking of σ as a subset of the indices {1, . . . , r}).

Proof of Theorem C.4

If X is Calabi–Yau, then as noted above, KX is Cartier, hence X is Gorenstein. Conversely, if

X is Gorenstein, then −D1− . . .−Dr is Cartier. The just quoted fact then implies that there

is a vector mσ ∈M (there is only one cone in this case), such that 〈m, vi〉 = 1 for all i = 1..r.

But this is just the equivalent condition proved above, showing that Xσ is Calabi–Yau. �
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It is also well known that Xσ is Gorenstein exactly when the affine coordinate ring Aσ

is Gorenstein. One way to see this is the following. Recall that the canonical module of Xσ

and of the coordinate ring Aσ are the same, and that ωX ⊂ Aσ is the subset generated by

the monomials in the interior of σ̌. Aσ is Gorenstein exactly when this ideal is generated by

a single element. This is equivalent to the canonical divisor being the divisor of an invariant

rational function on Xσ and therefore the canonical divisor is principal. But any principal

divisor is Cartier, so the canonical divisor is Cartier, and therefore Xσ is Gorenstein. The

other direction is simpler: Given that ωX is Cartier, this means that there exists an m ∈M
such that 〈m, vi〉 = 1, for all vi. The canonical module is generated by the corresponding

monomial, therefore Aσ is Gorenstein.

C.1 Illustrative Examples

To illustrate the foregoing discussions, let us take two concrete examples: the Veronese from

the previous appendix, and the quotient C3/Z2 × Z2. The first is not Calabi–Yau, but the

second example is. To be completely explicit, we will use Macaulay2 [20] to analyze them,

and include all the relevant code for reference.

To simplify the examples below, we first load the following Macaulay2 code. This is in

the file toric-calabi-yau.m2 included below.

-- file: toric-calabi-yau.m2

-- load the packages we will use:

needsPackage "FourTiTwo"

needsPackage "Polyhedra"

needsPackage "NormalToricVarieties"

-- Compute and display a hyperplane passing through the endpoints of the given rays

-- if such a hyperplane exists.

findHyperplane = method()

findHyperplane Cone := (C) -> findHyperplane entries transpose rays C

findHyperplane List := (rays) -> (

M := (matrix rays) | (matrix {#rays:{1}});

Z := syz M;

if numColumns Z == 0 then return "no hyperplane exists";

if numColumns Z > 1 then error "original cone is not full dimensional";

Z = flatten entries Z;

if Z#-1 < 0 then Z = -Z;

-- construct the hyperplane from Z

G := sum apply(#Z - 1, i -> (-Z_i) * expression(x_(i+1)));

G/Z#-1 == 1

)

-- Compute the ideal of the affine toric variety.

-- This particular function uses the 4ti2 package, which is overkill for the

-- examples in this section, but is useful on large examples.

toricIdeal = method()

toricIdeal(Cone, Symbol) := (C, x) -> (

C’ := dualCone C;

H := matrix {hilbertBasis C’};

A := transpose matrix H;
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ncols := numColumns H;

R = QQ[x_1..x_ncols];

trim toricMarkov(H,R)

)

Example 1: Veronese: The first example is from the previous appendix. We start with

the vectors from Equation (C.1). Let C ⊂ NR be the dual cone to the cone C ′ spanned by

the columns of the matrix m:

i1 : load "toric-calabi-yau.m2"

i2 : m = transpose matrix {{-1,-2,0},{1,0,0},{0,-1,0},{1,0,-2},{1,0,-1},{0,-1,-1}}

o2 = | -1 1 0 1 1 0 |

| -2 0 -1 0 0 -1 |

| 0 0 0 -2 -1 -1 |

3 6

o2 : Matrix ZZ <--- ZZ

i3 : C’ = posHull m

o3 = {ambient dimension => 3 }

dimension of lineality space => 0

dimension of the cone => 3

number of facets => 3

number of rays => 3

o3 : Cone

i4 : C = dualCone C’

o4 = {ambient dimension => 3 }

dimension of lineality space => 0

dimension of the cone => 3

number of facets => 3

number of rays => 3

o4 : Cone

The extremal rays of the cone C ⊂ NR are the columns of the following matrix.

i5 : rays C

o5 = | 0 0 2 |

| -1 0 -1 |

| 0 -1 1 |

3 3

o5 : Matrix ZZ <--- ZZ

The hyperplane is “at height 2”, so the affine toric variety X corresponding to the cone C is

not Calabi–Yau:

– 45 –



i6 : findHyperplane C

x - 2x - 2x

1 2 3

o6 = -------------- == 1

2

o6 : Expression of class Equation

The ideal of this toric variety is in a polynomial ring which has one variable for each Hilbert

basis generator of the dual cone of C. The corresponding ideal is the Veronese, and its Hilbert

series is not palindromic, as expected, since this variety is not Calabi–Yau.

i7 : hilbertBasis dualCone C

o7 = {| 0 |, | 1 |, | 1 |, | -1 |, | 0 |, | 1 |}

| -1 | | 0 | | 0 | | -2 | | -1 | | 0 |

| -1 | | -1 | | -2 | | 0 | | 0 | | 0 |

o7 : List

i8 : I = toricIdeal(C,symbol x)

2 2 2

o8 = ideal (x - x x , x x - x x , x x - x x , x - x x , x x - x x , x - x x )

5 4 6 2 5 1 6 2 4 1 5 2 3 6 1 2 3 5 1 3 4

o8 : Ideal of R

i9 : reduceHilbert hilbertSeries I

1 + 3T

o9 = --------

3

(1 - T)

We now use the NormalToricVarieties Macaulay2 package, written by Greg Smith and

included with Macaulay2, to analyze this variety in a somewhat higher level fashion. First,

the function normalToricVariety expects a list of rays of all of the cones in the fan of a toric

variety, as well as a list of list of indices, indicating which rays correspond to maximal cones

in the fan.

i10 : raysC = entries transpose rays C

o10 = {{0, -1, 0}, {0, 0, -1}, {2, -1, 1}}

o10 : List

i11 : X = normalToricVariety(raysC, {{0,1,2}})

o11 = X

o11 : NormalToricVariety

By the results of this appendix, we see that the affine toric variety X is not Calabi–Yau.

– 46 –



i12 : isSmooth X

o12 = false

i13 : KX = toricDivisor X -- the (toric) canonical divisor on X

o13 = - D - D - D

0 1 2

o13 : ToricDivisor on X

i14 : isCartier KX -- not Cartier, therefore X is not Calabi-Yau

o14 = false

Finally, let us desingularize X, which corresponds to subdividing the cone to smooth simplicial

cones. In this case, one ray is added, resulting in three maximal cones. The resulting smooth

toric variety Y is not Calabi–Yau.

i15 : Y = makeSmooth X

o15 = Y

o15 : NormalToricVariety

i16 : raysY = rays Y

o16 = {{0, -1, 0}, {0, 0, -1}, {2, -1, 1}, {1, -1, 0}}

o16 : List

i17 : conesY = max Y

o17 = {{0, 1, 3}, {0, 2, 3}, {1, 2, 3}}

o17 : List

i18 : findHyperplane raysY -- But Y is not Calabi-Yau

o18 = no hyperplane exists

i19 : isCartier toricDivisor Y -- However, Y is smooth, therefore Gorenstein

o19 = true

Example 2: C3/Zk × Zk: We analyze the quotient X = C3/Zk × Zk, for k = 2, although

we could set k to other values as well. As we see during the example, X is Calabi–Yau, as

expected.

i20 : k = 2

i21 : m = transpose matrix {{k,-1,-1},{0,0,1},{0,1,0},{1,0,0}}

o21 = | 2 0 0 1 |

| -1 0 1 0 |

| -1 1 0 0 |
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3 4

o21 : Matrix ZZ <--- ZZ

i22 : C = dualCone posHull m

o22 = {ambient dimension => 3 }

dimension of lineality space => 0

dimension of the cone => 3

number of facets => 3

number of rays => 3

o22 : Cone

The cone C is the cone whose extremal rays are the columns of the following matrix.

i23 : rays C

o23 = | 1 1 1 |

| 0 2 0 |

| 0 0 2 |

3 3

o23 : Matrix ZZ <--- ZZ

In this case, it is clear that the endpoints of these rays lie on the plane x1 = 1, and so the

corresponding toric variety is Calabi–Yau.

i24 : findHyperplane C -- the toric variety corresponding to this cone is Calabi-Yau

o24 = x == 1

1

o24 : Expression of class Equation

The ideal defining the toric variety is a toric hypersurface. As such affine toric hypersurfaces

are all Calabi–Yau, this gives an independent confirmation that X is Calabi–Yau.

i25 : I = trim toricIdeal(C,symbol x) -- singular toric hypersurface, so Calabi-Yau

2

o25 = ideal(x x x - x )

2 3 4 1

o25 : Ideal of R

i26 : raysC = entries transpose rays C

o26 = {{1, 0, 0}, {1, 2, 0}, {1, 0, 2}}

o26 : List

i27 : X = normalToricVariety(raysC, {{0,1,2}})

o27 = X

o27 : NormalToricVariety
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i28 : isSmooth X

o28 = false

i29 : KX = toricDivisor X -- the (toric) canonical divisor on X

o29 = - D - D - D

0 1 2

o29 : ToricDivisor on X

i30 : isCartier KX -- Cartier, therefore X is Calabi-Yau

o30 = true

The desingularization Y of X has 6 rays, and the original cone has been subdivided into 4

smaller simplicial cones.

i31 : Y = makeSmooth X

o31 = Y

o31 : NormalToricVariety

i32 : raysY = rays Y

o32 = {{1, 0, 0}, {1, 2, 0}, {1, 0, 2}, {1, 1, 0}, {1, 0, 1}, {1, 1, 1}}

o32 : List

i33 : conesY = max Y

o33 = {{0, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}}

o33 : List

The desingularization Y is Calabi–Yau, and Y is Gorenstein, since it is nonsingular.

i34 : findHyperplane raysY -- Y is Calabi-Yau too

o34 = x == 1

1

o34 : Expression of class Equation

i35 : isCartier toricDivisor Y -- Y is smooth, therefore Gorenstein

o35 = true

If we were to start with the dual of C, instead of C, we would obtain an affine toric

variety which is not Calabi–Yau, which would in fact be the cone over the k-uple embedding

of P2.
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F. L. Zak, Birkhäuser Verlag, Basel-Boston, MA, 1984.
http://mathecon.cemi.rssi.ru/zak/files/Zak_TSAV.pdf.

[19] M. Atiyah and J. Berndt, “Projective planes, Severi varieties and spheres,” Surveys in
Differential Geometry VIII, Papers in Honor of Calabi, Lawson, Siu and Uhlenbeck
(International Press, Somerville, MA) 1 (2003) [math/0206135].

[20] D. Grayson and M. Stillman, “Macaulay 2, a software system for research in algebraic
geometry.” Available at http://www.math.uiuc.edu/Macaulay2/.

– 50 –

http://mathecon.cemi.rssi.ru/zak/files/Zak_TSAV.pdf


[21] G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular: A computer algebra system for
polynomial computations,” Centre for Computer Algebra, University of Kaiserslautern (2001).
Available at http://www.singular.uni-kl.de/.

[22] G. Aldazabal, L. E. Ibanez, F. Quevedo, and A. M. Uranga, “D-branes at singularities: A
bottom up approach to the string embedding of the standard model,” JHEP 0008, 002 (2000)
[hep-th/0005067].

[23] D. Berenstein, V. Jejjala, and R. G. Leigh, “The Standard Model on a D-brane,” Phys. Rev.
Lett. 88, 071602 (2002). [hep-ph/0105042].

[24] J. L. Hewett and T. G. Rizzo, “Low-energy phenomenology of superstring Inspired E(6)
Models,” Phys. Rept. 183, 193 (1989).

[25] S. F. King, S. Moretti, and R. Nevzorov, “Theory and phenomenology of an exceptional
supersymmetric standard model,” Phys. Rev. D 73, 035009 (2006) [hep-ph/0510419].

[26] J. Kang, P. Langacker, and B. D. Nelson, “Theory and phenomenology of exotic isosinglet
quarks and squarks,” Phys. Rev. D 77, 035003 (2008) [arXiv:0708.2701].

[27] P. Candelas, X. de la Ossa, Y. -H. He, and B. Szendroi, “Triadophilia: A special corner in the
landscape,” Adv. Theor. Math. Phys. 12 (2008) 429 [arXiv:0706.3134].

[28] N. J. A. Sloane, “The On-Line Encyclopedia of Integer Sequences”, Sequence A024489.

[29] V. Bouchard, “Lectures on complex geometry, Calabi-Yau manifolds and toric geometry,”
hep-th/0702063.

[30] S. Reffert, “The Geometer’s Toolkit to String Compactifications,” [arXiv:0706.1310 [hep-th]].

[31] D. Cox, J. Little, and H. Schenck, “Toric Varieties,” Grad Studies in Maths, AMS 2011,
ISBN-13: 978-0-8218-4819-7.

[32] Y. -H. He, “Bipartita: Physics, geometry & number theory,” in Proc. of The XXIX
International Colloquium on Group-Theoretical Methods in Physics (GROUP 29),
arXiv:1210.4388.

– 51 –


	1 Introduction
	2 MSSM Vacuum Moduli Space
	2.1 F-terms and D-terms
	2.2 Computational Algorithm

	3 Multi-generation Electroweak Models
	3.1 Relations, Syzygies, and Grassmannian
	3.2 Counting Operators with Hilbert Series
	3.3 Vacuum Geometry

	4 Multiple Higgs Generations
	5 Right-handed Neutrinos
	5.1 Vacuum Geometry
	5.2 Role of the Majorana Mass Term
	5.3 Vacuum Geometry: General Nf

	6 Discussion and Outlook
	A Gauge Invariant Operators in the MSSM
	B Toric Varieties
	C Affine Calabi–Yau Toric Varieties
	C.1 Illustrative Examples


