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Abstract

We investigate the vacuum moduli space of supersymmetric gauge theories en masse

by probing the space of such vacua from a statistical standpoint. Using quiver gauge

theories with N = 1 supersymmetry as a testing ground, we sample over a large

number of vacua as algebraic varieties, computing explicitly their dimension, degree

and Hilbert series. We study the distribution of these geometrical quantities, and

also address the question of how likely it is for the moduli space to be Calabi-Yau.
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1 Introduction

One of the key properties of a quantum field theory is its vacuum structure. Already, in the

famous “Mexican hat” of the Higgs potential, the vacuum presents us with non-trivial

geometry. In general, the classical expectation values of scalar fields can parameterize

intricate manifolds called the vacuum moduli space (VMS), which are then quantum

mechanically corrected. In field theories with supersymmetry, where there is an abundance

of these scalar fields, the VMS generically assumes interesting and complicated forms.
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One could exploit this “vacuum” geometry, for example, to investigate phenomeno-

logical issues; this was a programme launched in [1, 2, 3, 4], where sometimes unexpected

geometrical signatures are found in the standard model. In the context of string theory,

realizations and interpretations of the algebraic geometry of the vacuum as the low-energy

limit of a compactification or holographic scenario is key to the “geometrical engineering”

of field theories [5]. With the advances in computer algebra and modern algebraic geome-

try [6, 7, 8, 9] - of whose powers we will make extensive here - the algorithmic geometry of

gauge theories is now a fruitful enterprise [10]. Recently, efficient and highly parallelizable

methods of numerical algebraic geometry have been applied to studying the VMS [11, 12].

Perhaps the most studied class of supersymmetric gauge theories in four dimensions

are the so-called quiver gauge theories, whose matter content and superpotential can be

encoded into a finite graph whose nodes represent factors in a product gauge group and

whose arrows, bi-fundamental and adjoint fields. Via Higgsing and addition of flavour

nodes, more general types of fields can also be incorporated. The reason for focusing on

these theories over the last two decades is two-fold: (1) the product gauge group structure

is clearly an important step toward standard-model building and (2) the generic quantum

field theory engineered from string theory, especially from holography (AdS/CFT), is of

quiver type.

While steady progress has been made to understand the classification of N = 2 four-

dimensional gauge theories, particularly of (generalized) quiver type [13, 14, 15, 16, 33],

the perhaps more phenomenologically interesting N = 1 theories presently proliferate

wildly beyond control. Nevertheless, some progress has been made in organizing N = 1

quiver theories by introducing appropriate “order parameters”, be they block-structures

[17, 18], geometric invariants such as the Hilbert series [19], or combinatorics of finite

directed graphs [20].

By far the most studied and understood class of super-conformal quiver theories are

those whose moduli space is a (non-compact) toric Calabi-Yau variety, notably of complex

dimension three [21, 22, 23]. Here, the virtues of toric geometry engenders a bipartite-

graphic description of the gauge theory [24, 25]. From a computational point of view,

the moduli spaces are easier to handle in the toric case because the gauge groups are

Abelian and the fields are simply complex numbers rather than complex matrices. Thus,

we are working over polynomial rings over the complex numbers and all the technology

of algebraic geometry naturally applies.

Bearing the above points in mind - the relevance of the VMS, the efficacy of com-

putational geometry and the ubiquity of quivers - a natural question arises: what is the

typical supersymmetric vacuum? We are reminded of and motivated by a similar problem

2



in pure geometry. Whereas algebraic curves are topologically classified by genus, surfaces

and higher dimensional varieties thus far defy a complete catalogue. Even in CP3, there

are cases not yet known concerning the existence of curves of given genus and degree

(cf. Fig. 18 of IV of [26]). We shall thus take a statistical approach, using toric quiver

gauge theories as a testing ground, and map out the cartography, with identifiers such as

dimension, degree, and Hilbert series, of the space of VMS. Thence, we will have hint at

what the “typical” vacuum of a gauge theory might be.

The paper is organized as follows. In section 2, we describe in detail the quiver gauge

theories of our study. We then discuss how the vacuum space can be expressed as an

algebraic variety via calculating relevant gauge invariants in section 3. An outline of the

algorithms used to generate both the quiver theories and relevant statistics is given in

section 4. A selection of our catalogued results are presented for an initial test collection

and further generalised to a larger group of non-toric theories. We illustrate in section

5 the VMS landscape with distributions of vacuum spaces with respect to both degree

and dimension. We also collect the Hilbert series data in a vast catalogue for the VMS.

Finally, we conclude with prospects in section 6.

2 Preliminaries on Quiver Gauge Theories

We begin with a brief review of our illustrative class of quantum field theories, namely su-

persymmetric gauge theories which afford quiver description. Such theories are generically

expected to have non-trivial (and often Calabi-Yau) vacuum geometry.

2.1 Quiver Diagrams

Quivers provide a convenient representation of the particle content of gauge theories

that describes D-branes on orbifolds [27]. A quiver diagram, Q, is a finite directed

multigraph where each node represents a compact gauge factor U(Ni) of the total gauge

group
∏

i U(Ni). Nodes are customarily labeled by the index i of these gauge factors.

The edges represent bi-fundamental fields, those which transform under (U(Na), U(Nb))

where U(Na) and U(Nb) are the head and tail gauge groups respectively. We denote these

fields by Xm
ab for fields charged under a and b respectively whilst multiplicities are indexed

by m. Self-loops, where the head and tail gauge groups coincide, are fields transforming

under the usual adjoint representation AdU(Ni) that we denote by φm
i .

The gauge invariant terms are constructed by contracting the gauge indices between

fields hence they correspond to closed paths in the quiver. A generating set for these
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invariants is easily obtained from the quiver without adjoints by taking the simple cycles.

However, when self-loops are present, additional terms including the adjoint fields must

be included among the gauge invariants. Henceforth we shall refer to minimal loops in

reference to this expanded set of cycles.

2.2 Quiver Theories

A quiver theory is a pair (Q,W ) where W is the superpotential defining the theory. The

superpotential is a formal polynomial in the edges of the quiver where each monomial term

is gauge invariant. Hence the superpotential takes the form

W =
∑

n

anTr(XijXjk · · ·Xmi), (1)

where in general an ∈ C. Allowing for fractional branes one can choose the ranks of

the nodes freely and the fields are matrices. In the following we consider gauge groups

of the form ΠiU(1) describing a single brane-probe where all the representations are

one dimensional. This introduces a significant redundancy in the number of possible

superpotentials for each quiver diagram due to the commutativity of the fields.

We consider Calabi-Yau quivers: these are where the vacuum space is Calabi-Yau.

A sufficient condition is that the theory is anomaly-free, a requirement independent of the

superpotential. It can be stated as a restriction on the quiver diagram: a quiver theory

is Calabi-Yau if all nodes have indegree equal to the outdegree.

A toric quiver theory can be defined as a theory in which each field appears exactly

twice in the superpotential in separate terms where the terms have opposite sign. This

“toric condition” was first discussed in [23] and then used to construct bipartite models

in [24]. The condition ensures that the moduli space is a toric variety. For additional

details we refer the reader to the books [28, 29] and the physics review paper [30]. We

relax the toric condition in our investigations and consider any polynomials in the gauge

invariants as possible superpotentials.

2.3 The Action

We consider a general gauge theory with N = 1 supersymmetry. In the presence of a

(compact) gauge group G we have chiral superfields Φi transforming under G and a vector

superfield V transforming under the Lie algebra of G.

The standard action [31] in terms of superspace coordinates is

S =

∫

d4x

[
∫

d4θ Φ†
ie

VΦi +
1

4g2

(
∫

d2θ tr(WαW
α) +

∫

d2θ W (Φi) + h.c.

)]

, (2)

4



where Wα = iD
2
e−VDαe

V is the gauge field strength and W (Φi) is the superpotential

which is a holomorphic function of the chiral superfields. We note that any quadratic

terms in the superpotential can be integrated out so we only consider monomials of cubic

and higher order.

In the usual way, we calculate the conditions on the classical vacuum state in the

Wess-Zumino gauge. It reduces to two types of conditions on the scalar components φi

of the chiral superfields Φi. We must satisfy the following:

∂W (φi)

∂φi

= 0, (3)

and
∑

i

φ†
iT

Aφi = 0. (4)

These are the F-flatness and D-flatness conditions. The space of solutions to these flatness

conditions can be parameterised by an algebraic variety.

3 Parameterizing the Vacuum

Having introduced our chief class of field theories, we now move on to explicitly describe

the mathematical technique of computing the VMS. The tool we will employ is computa-

tional algberaic geometry of affine varieties.

3.1 Algebraic Varieties

Since we will be viewing vacuum space in terms of algebraic geometry we briefly introduce

some necessary terminology. The fundamental objects of study in algebraic geometry are

algebraic sets, that is, sets of solutions to polynomial equations. Let K be an algebraically

closed field. We introduce an affine variety, X , as the locus of points in the affine space

AK on which a set of polynomials vanish. So we have

X = {x ∈ AK | fi(x) = 0, ∀i}. (5)

Henceforth we shall set K = C as relevant to this work. It is well known that we can

describe any submanifold of AK with a finite set of polynomials.

The geometric properties of an affine variety can be encoded in its coordinate ring.

Associated with Cn we have the polynomial ring C[x1, · · · , xn]. We take the ideal gen-

erated by the set of polynomials defining X which we denote by I(X) for brevity. Since
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I(X) is an ideal we take the quotient C[x1, · · · , xn]/I(X) as our primary object associated

with the variety. Tools of algebraic geometry allow one to extract geometric data from

this ring.

For example, the dimension of the space has numerous equivalent definitions includ-

ing the usual Krull dimension of the quotient ring. The degree is closely related to the

number of intersection points of the variety with a straight line but the detailed definition

is not required for our analysis.

It is possible to define regular maps Φ : X → Y ⊂ Cm between varieties which are

given by m polynomials on the points of X whose images lie in Y . These induce maps on

the polynomials rings (often written again using the same symbol) which is actually the

pullback Φ∗ : C[x1, · · · , xm]/I(Y ) → C[x1, · · · , xn]/I(X) defined by Φ∗(f) = f(Φ).

We note given two varieties X and Y we can define a product X × Y which is also a

variety. Let X ⊂ Cn and Y ⊂ Cm be varieties defined by the sets of polynomials fi(x)

and gi(x) respectively. We have

X × Y = {(x, y) ∈ C
n+m | fi(x) = gj(y) = 0 ∀i, j}. (6)

The quotient ring associated with this variety is simply

C[x1, · · · , xn+m]/(I(X) + I(Y )). (7)

We note some further structure relevant to later discussion. Consider a regular map

on a product variety D : X × Y → Cn+m that is a Cartesian product of functions

D = (D1, D2) where D1 : X → Cn and D2 : X → Cm. The image of this map is clearly

the product variety

ℑ(D1)×ℑ(D2) ⊂ C
n × C

m. (8)

Equivalently the coordinate ring map we defined earlier has the domain

C[x1, · · · , xn+m]/(I(ℑ(D1)) + ℑ(D2))).

3.2 The Vacuum as a Moduli Space

Exploiting the extra gauge invariance of the action Eq.(2) allows one to write the space

of vacuum solutions as a symplectic quotient and hence an algebraic variety. For a more

detailed discussion of the main points we refer the reader to the original paper containing

these results [32].

We can introduce a less restrictive gauge in which the invariance under the complexified

gauge group Gc remains. The F-terms are covariant under the imaginary part of the
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gauge group since the superpotential is a holomorphic function of terms with a gauge

index. Hence under this transformation of a solution the F-flatness conditions remained

satisfied.

For every F-term solution there is only one D-term solution. Under the imaginary

part of the gauge group we can rotate the solution on a D-orbit which contains exactly

one solution to the D-terms. Hence we have the fact that the vacuum moduli space is

given by the symplectic quotient

M = F // Gc, (9)

where F is the F-term solution manifold.

Now using some standard results we relate this to variety. First we notice F can be

naturally viewed as an affine variety since it corresponds to points at which the polynomial

conditions of Eq.(3) vanish in Cn, where n refers to the number of fields. So we have the

polynomial ring F ∼= C[φ1, · · · , φn]/〈∂iW 〉. Lutty and Taylor [32] highlight the fact that

given F as a variety there is a bijection between Eq.(8) and the variety defined by the

ring of gauge invariant elements in the ring F .

So taking the minimal generating set of gauge invariants D = {r1, · · · , rm} we need

the image of this map in S = C
m. The vacuum moduli space is

M ⋍ Im(F
D

−→ S). (10)

Given the original ingredients of the gauge invariants or minimal loops of the quiver

and F-flatness conditions we can calculate features of the vacuum moduli space (VMS).

This technique is sometimes referred to as a version of the Forward Algorithm.

We utilise Macaulay2 functions to calculate the ideal of the ring map associated to

Eq.(9), namely ker(S
D

−→ F). This gives the ideal in S defining the vacuum space. There

are inbuilt functions to calculate the dimension, degree and Hilbert series of the associated

variety in the standard sense.

3.3 Note on Disconnected Quivers

We consider a disconnected quiver diagram with connected components Qj and associated

fields {Φj}. The sets of minimal loops and hence gauge invariants can be partitioned into

sets associated with each connected component. Thus, a superpotential takes the form

W (Φi) =
∑

j Wj(Φj). The algebraic variety is thus a product F =
∏

j Fj and the map D

defined by the gauge invariants is a Cartesian product of the maps on each Fj.
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By our earlier discussion of these types of maps in Eq.(7), we know the image of the

gauge invariants calculated using Eq.(9) will be a product of the images of the Fj in

Sj ⊂ S. Thus we present results only for connected quiver theories.

4 Outline of Algorithms

Our strategy is to use the following procedure to generate the statistics in a systematic

manner:

1. Given a pair of integers (n, e) generate every unique quiver (excluding disconnected

quivers) with n nodes and e edges that satisfies the Calabi-Yau conditions.

2. For each quiver generate all the possible minimal loops of the quiver corresponding

to the gauge invariants.

3. Find all possible superpotentials W with coefficients taken from a particular integer

set whilst removing the extra redundancy in the superpotentials.

4. For each superpotential calculate the dimension, degree and Hilbert series corre-

sponding to the algebraic variety describing the vacuum space M.

In these initial investigations we restrict ourselves to quiver diagrams with n ≤ 10 and

e ≤ 14 for which we can obtain data using standard modern computers. Routines were

tested by checking the results for known quivers with small (n, e). We outline in further

detail the algorithms involved in each of these steps.

4.1 Generating Quivers

Generating all possible edge sets given n nodes by brute force methods is computationally

intensive. Since we are interested in Calabi-Yau quivers only, we exploit the fact that the

Calabi-Yau condition implies that the quiver is composed of edge disjoint cycles. We

identify all possible combinations of cycle lengths by generating all tuples {c1, ..., ck} that

satisfy
∑n

k=1 kck = e, where ck is the number of k−cycles5.

However to generate all possible graphs of some cycle combination from scratch is a

non-trivial task. The fact that adding an extra cycle to a graph with n = N and e = E

would result in a new graph with n = N and e > E can considerably reduce the amount

of computations. That is, if we want to generate graphs with n = N and e = E, we can

5By k−cycle, we mean a cycle of length k.
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build them by adding one cycle to graphs with n = N and e < E which we have already

generated.

We take n = 6 and e = 8 and consider the cycle combination {0, 1, 2, 0, 0, 0} as an

example. A particular graph belonging to this subset is shown in Figure 1. We can obtain

all our desired graphs by simply adding one 2-cycle in every possible way to graphs of the

combination {0, 0, 2, 0, 0, 0} which we have generated in a previous process. For example

the Figure 1 graph can be generated by adding a 2-cycle to the graph in Figure 2. However

note in our example that the graph in Figure 2 is disconnected. When we are interested

only in connected graphs, this subtlety means we must continue to reserve disconnected

graphs generated in intermediate steps.

Figure 1: A Graph of Cycle Combination {0, 1, 2, 0, 0, 0}

Figure 2: A Graph of Cycle Combination {0, 0, 2, 0, 0, 0}

Additionally we must be careful when handling graph isomorphisms. It is well known

that determining whether two graphs are isomorphic is an NP problem [40]. With our

computational resource limitations we are forced to remove redundant graphs each time

we generate the full set of graphs for a given cycle combination. After that any pair of

graphs within the same cycle combination are no longer isomorphic.

There is additional redundancy introduced by our algorithm: some graphs can be

decomposed into cycle combinations in more than one way. Thus, when combining the

graph sets corresponding to all relevant cycle combinations, we need to remove redundancy

once again. The latter is our main obstruction to handling higher n and e values.

Considering only connected quivers reduces the redundant data generated. The vac-

uum data for all theories can be obtained from these connected cases as discussed in

section 3.3. We note there are more efficient approaches for generating the connected

quivers with toric data such as [20]. For the purposes of this work the more general al-
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gorithm was sufficient as the calculation of the vacuum statistics rather than quivers was

the limiting factor.

We use the Python-igraph module as a Python language interface for graph manipula-

tions. This module uses a C library called igraph [41] to perform underlying computations.

Thanks to the efficiency of the C language we are able to generate quivers with n ≤ 10

and e ≤ 14.

4.2 Generating Gauge Invariants and Superpotentials

The set of gauge invariants D is found by generating the minimal loops (see section 2.1)

of the quiver. For each vertex, a recursive algorithm traces all possible paths beginning

at the vertex until any vertex in the path is repeated (excluding the cases when the

repeated vertex is a loop). Higher order loops are then generated by taking all possible

combinations of the set of gauge invariants.

Superpotentials are generated from a set of terms by selecting coefficients from a

coefficient set C. First we take C to be {−1, 0, 1} as a special case study. Clearly the

number of superpotential terms grows exponentially with the number of invariants. Given

x gauge invariants of three or more fields, we have (3x − 1)/2 nontrivial superpotentials.

For large numbers of gauge invariants we take random samples of possible superpotentials.

In general a sample size s = 500 is taken unless otherwise stated. We then repeat our

analysis for more general coefficients with C = {−5, · · · , 5}, where there are now (11x −

1)/2 non-trivial superpotentials given x invariant terms above quadratic order.

4.3 Computing the Moduli Space

For each quiver theory generated, the calculations involving algebraic varieties were per-

formed using the Macaulay2 software [7]. We note that for the purposes of computation

the field C was replaced with the more manageable Z/101Z. We found that for large

numbers of superpotential terms (hence F-terms) algorithms became difficult to run on

a standard computer. Fixing the number of superpotential terms is required to extend

analysis to higher order theories.

4.4 Some Illustrative Examples

As a simple example consider the case of two nodes and four edges. We have three

inequivalent quivers presented in Figure 3. For each we generate the minimal loops. The

first two diagrams have only a single cycle giving the gauge invariant {X1
12X

1
21}. However
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(1) (2)

12

(3)

12

12

Figure 3: Unique Connected Quivers for (n, e) = (2, 4)

including the adjoint fields in each case gives three additional invariants in the generating

set. Diagram (3) has a set of four operators {X1
12X

1
21, X

1
12X

2
21, X

2
12X

1
21, X

2
12X

2
21} which

generate the invariants. The superscripts of the fields are the indices of the multi-edges.

Considering terms that are first order in the gauge invariants only, we obtain the

superpotentials

W1 = a1φ
1
1X

1
12X

1
21 + a2φ

1
2X

1
12X

1
21 + a3φ

1
1φ

1
2X

1
12X

1
21 (11)

and W2 = a1φ
1
1X

1
12X

1
21 + a2φ

2
1X

1
12X

1
21 + a3φ

1
1φ

2
1X

1
12X

1
21, (12)

where Wi corresponds to diagram (i) and aj ∈ {−1, 0, 1}. We note the extra redundancy

here due to the commutativity of the fields.

Additionally, since we take all gauge groups to be identical, the position of adjoints in

the quiver is only relevant in so far as determining simple cycles the loop can be combined

with. Hence the invariants and VMS for quivers (1) and (2) are identical as the structure

does not distinguish between the fields φ1 and φ2.

The VMS details for the first of the pair are listed explicitly in Table 1. While the

degree of the vacuum space is always one, there are 10 theories with dimension one and

16 of dimension zero.

Restricting to first order terms in gauge invariants for quiver (3) gives a trivial su-

perpotential as we require monomials of degree three or higher. Including products of

invariants to second order we obtain the set of models with

W3 = a1X
1
12X

1
21X

2
12X

2
21 + a2X

1
12X

1
21X

1
12X

2
21 + a3X

1
12X

1
21X

2
21X

1
12

+a4X
1
12X

1
21X

1
12X

1
21 + a5X

2
12X

2
21X

2
12X

2
21 + a6X

2
21X

2
12X

2
21X

1
12. (13)
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Table 1: VMS Data for Quiver (1) of Figure 3

Superpotential dim(M) deg(M)

φ1
1X

1
12X

1
21 0 1

φ1
2X

1
12X

1
21 0 1

φ1
1X

1
12X

1
21 + φ1

2X
1
12X

1
21 0 1

−φ1
1X

1
12X

1
21 + φ1

2X
1
12X

1
21 0 1

φ1
1φ

1
2X

1
12X

1
21 1 1

φ1
1X

1
12X

1
21 + φ1

1φ
1
2X

1
12X

1
21 1 1

−φ1
1X

1
12X

1
21 + φ1

1φ
1
2X

1
12X

1
21 1 1

φ1
2X

1
12X

1
21 + φ1

1φ
1
2X

1
12X

1
21 1 1

φ1
1X

1
12X

1
21 + φ1

2X
1
12X

1
21 + φ1

1φ
1
2X

1
12X

1
21 0 1

−φ1
1X

1
12X

1
21 + φ1

2X
1
12X

1
21 + φ1

1φ
1
2X

1
12X

1
21 0 1

−φ1
2X

1
12X

1
21 + φ1

1φ
1
2X

1
12X

1
21 1 1

φ1
1X

1
12X

1
21 − φ1

2X
1
12X

1
21 + φ1

1φ
1
2X

1
12X

1
21 0 1

−φ1
1X

1
12X

1
21 − φ1

2X
1
12X

1
21 + φ1

1φ
1
2X

1
12X

1
21 0 1

Increasing the number of edges rapidly produces theories with large numbers of invari-

ants. Hence we can still obtain interesting results whilst we strict ourselves to superpo-

tentials to first order in the invariants. For example the quiver with (n, e) = (3, 7) shown

in Figure 4 has the five simple loops

{X1
21X

1
12, X

1
13X

1
31, X

1
23X

1
32, X

1
13X

1
32X

1
21, X

1
12X

1
23X

1
31}. (14)

The set of invariants including terms with φ1
1 has an additional four terms

{X1
31φ

1
1X

1
13, X

1
21φ

1
1X

1
12, X

1
31φ

1
1X

1
12X

1
23, X

1
32X

1
21φ

1
1X

1
13}. (15)

Taking the full set of gauge invariants and coefficients in the set {−1, 0, 1} we obtain

a total of 364 (x = 6) non-trivial superpotentials. Details of the VMS for this quiver are

given in Figure 4. The majority of theories have a VMS of dimension one, slightly more

than double the 74 theories out of 364 that have dimension three. The distribution of

degrees is more interesting; there are more theories with degree one than for degree two

up to seven combined. Notably in this case there are no theories of degree seven. From

the scatter plot we observe there are a limited number of combinations of degree and

dimension occurring in the set of vacuum spaces.
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Figure 4: Distribution of Vacuum Spaces for Example Quiver with (n, e) = (3, 7)
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5 Computational Results

We outline results for quiver theories where superpotentials are constructed from the

terms to first order in the gauge invariants, that is, terms corresponding to the minimal

loops in the quiver as discussed in section 4.2. Table 2 details the number of connected

quivers generated for the various pairs (n, e).

Entries where the quiver count is underlined or framed indicate we have computed the

VMS statistics. The underlined entries highlight cases for which we considered coefficients

in the set {−5, · · · , 5} rather than just the simple case study of coefficients in {−1, 0, 1}.

We refer to these two cases as the generic case and basic case respectively from here

on. Unmarked quiver counts indicate where we reached the limits of efficient calculation

using Macaulay2 either due to the number of terms in the superpotentials or large quiver

count.

We present a short selection of the VMS data we generated along with the associated

quivers in sections 5.1 and 5.2. Sample sizes of s = 500 are used unless otherwise stated.

We collate the statistics in general under the pairs (n, e) in section 5.3 rather than indi-

vidual quivers to give a clearer picture of the vacuum landscape. In section 5.4 we present

a degree versus dimension scatter for all (n, e) we have computed.

Table 2: Counts of Connected Quivers for Various (n, e). The underlined and framed cases

are those for which we explicit compute all the relevant geometrical information for the VMS;

the framed are at the limit of current computing power.

n e

2 3 4 5 6 7 8 9 10 11 12 13 14

2 1 1 3 3 6 6 10 10 15 15 21 21 28

3 0 1 2 5 14 24 46 81 130 202 314 452 652

4 0 0 1 2 12 34 105 245 578 1201 2463 4658 8658

5 0 0 0 1 3 18 88 327 1088 3187 8694 22027 52944

6 0 0 0 0 1 3 32 187 942 3899 14670 49515 156107

7 0 0 0 0 0 1 4 45 370 2309 12224 56292 234463

8 0 0 0 0 0 0 1 4 68 662 5243 33654 189116

9 0 0 0 0 0 0 0 1 5 90 1147 10804 84297

10 0 0 0 0 0 0 0 0 1 5 126 1839 21034

14



5.1 Two Node Quivers

We list some low order examples of quivers with n = 2 along with some features in

Tables 3 and 4. The first column contains the unique quiver diagrams with the given n

and e. The second indicates whether random samples are used: “YES” in this column

indicates a sample of size s = 500. The third column tables give the distribution of the

vacuum spaces according to the dimension or degree of the moduli space.

Shown in Table 3 are three inequivalent quiver diagrams with n = 2 and e = 5. The

majority of theories associated with the first two diagrams have a VMS with dimension

zero while about 20 percent have non-vanishing dimension. A similar distribution occurs

for the degree of the VMS for these quivers. The third quiver has only 40 theories all of

dimension two, while the degree of the VMS was either two or three split in the ratio 2:3.

There are six inequivalent quiver diagrams in Table 4 when we have added an ad-

ditional edge. The first three quivers should have the same features since we are only

considering the Abelian gauge theory and the quivers only differ in the location of the

self-adjoint fields. Similarly, the fourth and fifth quivers should generate the same theories.

The small differences in the results for these quivers are due to statistical error.

Again we see that the VMS of most theories for the first three quivers have dimension

zero, while about 25%–30% have dimension one and a handful of cases have dimension

Table 3: VMS Statistics for (2, 5) Quivers for the Basic Case: The first two quivers have the

same physical content when coefficients are restricted to {−1, 0, 1}. Differences in this table

are a result of sampling.

QUIVER SAMPLING Dim | Count Deg | Count

12

YES

0 397

1 42

2 61

1 445

2 43

3 12

12 YES

0 385

1 44

2 71

1 436

2 56

3 8

12 NO 2 40
2 24

3 16
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Table 4: VMS Statistics for (2, 6) Quivers in Basic Case

QUIVER SAMPLING Dim | Count Deg | Count

12

YES

0 373

1 123

2 2

3 2

1 420

2 67

3 9

4 2

6 2

12 YES

0 336

1 153

2 9

3 2

1 395

2 83

3 13

4 6

5 1

6 1

10 1

12 YES

0 365

1 126

2 8

3 1

1 424

2 59

3 13

4 3

6 1

12

YES

1 432

2 52

3 16

1 85

2 222

3 120

4 46

5 10

6 16

10 1

12 YES

1 425

2 57

3 18

1 86

2 195

3 126

4 61

5 12

6 18

10 2

12 NO N/A N/A
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two or three. The degree distributions are similar though the degree varies over a larger

range of values. The features of the final two quivers are a contrast. There are no spaces

of dimension zero here but rather most theories have dimension one. And the majority of

theories have degree two as opposed to degree one. There are no theories subject to our

conditions for the last quiver in the table.

5.2 Three Node Quivers

We present data for quivers with n = 3 in Tables 5, 6 and 7 using the same format as the

previous section. Up to e = 5 there are few enough theories to obtain an exact catalog

of the VMS spaces. For clarity we include all unique quivers, although as discussed in

Table 5: VMS Statistics for (3, 3) Quivers in Basic Case

QUIVER SAMPLING Dim | Count Deg | Count

1

23

NO 0 1 1 1

Table 6: VMS Statistics for (3, 4) Quivers in the Basic Case

QUIVER SAMPLING Dim | Count Deg | Count

12 3 NO N/A N/A

1

23

NO 0 4 1 4
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Table 7: VMS Statistics for (3, 5) Quivers in Basic Case

QUIVER SAMPLING Dim | Count Deg | Count

12 3

NO
1 2

2 2
1 4

12 3 NO 1 1 1 1

1

23

NO
0 31

1 9
1 40

1

23

NO
0 31

1 9
1 40

1

23

NO 2 4 1 4

section 4.4, quivers with interchangeable adjoint fields have the same content.

5.3 Larger Data Sets

Of particular interest are the statistics regarding the number of Calabi-Yau manifolds

of complex dimension three for various diagrams. We require large data sets to gain a

clearer picture of the distribution of these spaces among the vacuum moduli of the quiver

18



theories.

Presented in Tables 8, 9, 10 and 11 is some further data generated in order to initiate

the construction of such a picture. Tables 8 and 9 list the data for the basic cases, i.e.

the coefficient of each GIO term can only take a value in {−1, 0, 1}. The remaining two

tables list data for the generic case where the coefficients take integral values from −5

to 5. The sample size is chosen to be s = 500 as before. For each pair (n, e) we list the

counts of spaces of particular degree or dimension respectively.

In order to present this information, we combined the data generated for all quivers

with a given (n, e). In cases where random samples were taken for some or all the quivers,

we needed to estimate an actual frequency of occurrence in the population of theories

for (n, e). For example, if the quiver Q generates tQ superpotentials, and we find mQ(d)

superpotentials with dimension d, the proportion of theories with dimension d is estimated

via

P (d) =

∑

Q

mQ(d)

s
· tQ

∑

Q

tQ
. (16)

Table 8: Dimension of VMS for Pairs (n, e) in the Basic Case: Given a pair (n, e) we present

tables containing all possible values of dim(M) in the left column and the corresponding

proportion of theories for each dimension on the right. we set s = 200 where random samples

were required for quivers with n = 10, e = 13.

n e = n e = n+ 1 e = n + 2 e = n+ 3 e = n + 4

2 N/A 0 100%
0 61.5%

1 38.5%

0 76.8%

1 8.4%

2 14.8%

0 69.9%

1 28.2%

2 1.5%

3 0.4%

3 0 100% 0 100%

0 69.7%

1 23.6%

2 6.7%

0 80.8%

1 9.3%

2 9.3%

3 0.6%

0 72.7%

1 24.2%

2 2.8%

3 0.2%

4 0.003%

Continued on next page →
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n e = n e = n+ 1 e = n + 2 e = n+ 3 e = n + 4

4 0 100%
0 80%

1 20%

0 60.9%

1 25.7%

2 13.4%

0 67.1%

1 22.0%

2 9.4%

3 1.5%

0 65.8%

1 27.1%

2 6.8%

3 0.4%

4 0.03%

5 0 100%
0 66.7%

1 33.3%

0 56.8%

1 27.9%

2 15.2%

0 58.4%

1 27.2%

2 12.4%

3 2.0%

0 59.4%

1 30.1%

2 9.9%

3 0.6%

4 0.01%

6 0 100%
0 66.7%

1 33.3%

0 50.0%

1 32.1%

2 17.9%

0 51.6%

1 30.4%

2 15.5%

3 2.6%

0 52.8%

1 33.3%

2 12.7%

3 1.2%

4 0.008%

7 0 100%
0 61.5%

1 38.5%

0 47.8%

1 33.7%

2 18.5%

0 47.2%

1 32.1%

2 17.7%

3 3.0%

N/A

8 0 100%
0 61.5%

1 38.5%

0 43.8%

1 36.4%

2 19.8%

0 42.9%

1 33.9%

2 19.9%

3 3.4%

N/A

9 0 100%
0 58.8%

1 41.2%

0 42.0%

1 37.7%

2 20.3%

0 38.5%

1 35.5%

2 22.1%

3 3.9%

N/A

10 0 100%
0 58.8%

1 41.2%

0 39.2%

1 39.7%

2 21.1%

0 35.7%

1 36.1%

2 23.9%

3 4.3%

N/A

As expected, we observe more complex vacuum structure as we increase the number

of edges for a given quiver with n nodes in Table 8. Fixing (e − n), the data reveals
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some interesting trends with increasing n. The proportion of zero dimensional spaces

decreases significantly from roughly 80% to 40% for e − n = 3 for example. And the

largest dimension is congruously (e − n). Increasing the number of nodes gives us more

theories with non-vanishing dimension and richer structure.

In Table 9, the distribution of the VMS degree on the whole exhibits similar features

to the dimension distribution. In our set of quivers we found theories with degree up to

10, although higher degree vacuums may exist that did not appear in our samples.

Table 9: Degree of VMS for pairs (n, e) in the Basic Case: Given a pair (n, e) we present tables

containing all possible values of deg(M) in the left column and the corresponding proportion

of theories for each degree on the right. We set s = 200 where random samples were required

for quivers with n = 10, e = 13.

n e = n e = n + 1 e = n + 2 e = n+ 3 e = n+ 4

2 N/A 1 100% 1 100%

1 86.5%

2 10.8%

3 2.7%

1 81.0%

2 14.6%

3 2.9%

4 1.0%

5 0.1%

6 0.3%

10 0.07%

3 1 100% 1 100% 1 100%

1 91.0%

2 7.9%

3 1.1%

1 82.0%

2 14.0%

3 2.7%

4 1.0%

5 0.1%

6 0.2%

7 0.0001%

8 0.01%

Continued on next page →

21



n e = n e = n + 1 e = n + 2 e = n+ 3 e = n+ 4

4 1 100% 1 100%
1 98.5%

2 1.5%

1 90.1%

2 9.0%

3 0.8%

4 0.02%

1 77.1%

2 17.6%

3 3.8%

4 1.1%

5 0.2%

6 0.2%

7 0.0002%

8 0.000004%

10 0.03%

5 1 100% 1 100%
1 99.0%

2 1.0%

1 88.3%

2 10.4%

3 1.2%

4 0.1%

1 74.3%

2 19.8%

3 4.2%

4 1.3%

5 0.2%

6 0.2%

7 0.0001%

8 0.008%

10 0.01%

6 1 100% 1 100%
1 97.4%

2 2.6%

1 86.4%

2 12.3%

3 1.2%

4 0.1%

1 71.1%

2 21.5%

3 5.0%

4 1.7%

5 0.3%

6 0.2%

7 0.01%

8 0.01%

10 0.007%

7 1 100% 1 100%
1 97.6%

2 2.4%

1 85.6%

2 12.9%

3 1.3%

4 0.2%

N/A

Continued on next page →
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n e = n e = n + 1 e = n + 2 e = n+ 3 e = n+ 4

8 1 100% 1 100%
1 96.6%

2 3.4%

1 84.0%

2 14.1%

3 1.6%

4 0.2%

N/A

9 1 100% 1 100%
1 96.5%

2 3.5%

1 82.2%

2 15.4%

3 2.2%

4 0.3%

6 0.01%

N/A

10 1 100% 1 100%
1 95.7%

2 4.3%

1 80.9%

2 16.5%

3 2.3%

4 0.3%

6 0.02

N/A

Expanding our set of possible coefficients for the generic case resulted in a more limited

range of spaces in our results shown in Tables 10 and 11. Although the number of theories

increased for each quiver, our sample no longer included spaces with the higher dimension

or degree values seen in the basic case. For example spaces of dimension 4 and degree

above 3 that occurred in samples for unit coefficients were no longer present.

The proportion of spaces with dimension zero is notably higher in these tables com-

pared to the basic case. We infer that the distributions are skewed further towards lower

degree and dimension when generic coefficients are allowed.

Table 10: Dimension of VMS for Pairs (n, e) in Generic Case

n e = n e = n+ 1 e = n + 2 e = n + 3

2 N/A 0 100%
0 84.7%

1 15.3%

0 98.3%

1 1.4%

2 0.3%

Continued on next page →
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n e = n e = n+ 1 e = n + 2 e = n + 3

3 0 100% 0 100%

0 95.5%

1 4.0%

2 0.5%

0 98.5%

1 1.4%

2 0.1%

3 0.001%

4 0 100%
0 92.3%

1 7.7%

0 92.7%

1 6.2%

2 1.1%

0 95.3%

1 4.6%

2 0.1%

3 0.002%

5 0 100%
0 88%

1 12%

0 90.9%

1 7.7%

2 1.4%

0 93.0%

1 6.6%

2 0.4%

3 0.02%

6 0 100%
0 88%

1 12%

0 86.7%

1 11.4%

2 1.9%

0 91%

1 8%

2 0.9%

3 0.05%

7 0 100%
0 86.5%

1 13.5%

0 87.0%

1 11.3%

2 1.7%

N/A

8 0 100%
0 86.5%

1 13.5%

0 84.2%

1 13.9%

2 1.9%

N/A

9 0 100%
0 85.7%

1 14.3%

0 82.4%

1 15.5%

2 2.1%

N/A

10 0 100%
0 85.7%

1 14.3%

0 81.2%

1 16.8%

2 2.1%

N/A

24



Table 11: Degree of VMS for Pairs (n, e) in Generic Case

n e = n e = n + 1 e = n+ 2 e = n+ 3

2 N/A 1 100% 1 100%

1 99.7%

2 0.3%

3 0.002%

3 1 100% 1 100% 1 100%

1 99.9%

2 0.1%

3 0.003%

4 1 100% 1 100%
1 99.97%

2 0.03%

1 99.9%

2 0.1%

3 0.0002%

5 1 100% 1 100%
1 99.96%

2 0.04%

1 99.7%

2 0.3%

3 0.0001%

6 1 100% 1 100%
1 99.8%

2 0.2%

1 99.6%

2 0.4%

3 0.0007%

7 1 100% 1 100%
1 99.8%

2 0.2%
N/A

8 1 100% 1 100%
1 99.6%

2 0.4%
N/A

9 1 100% 1 100%
1 99.7%

2 0.3%
N/A

10 1 100% 1 100%
1 99.6%

2 0.4%
N/A

5.4 Degree-Dimension Scatter

Finally we collect our data from both the simple and generic cases respectively to demon-

strate the relationship between degree and dimension.

The charts to the left in Figures 5 and 6 give the density of the occurrence of various

(deg, dim) pairs while we give estimates of the raw frequencies for each pair on the right.
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Figure 5: Scatter Plot in Basic Case: On the left, dark to light indicates an increasing

frequency of quiver theories for given pairs of dimension and degree. On the right, a figure

x indicates a raw frequency estimate for a given degree and dimension in the range 10x to

10x+1.
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Figure 6: Scatter Plot in Generic Case: On the left, dark to light indicates an increasing

frequency of quiver theories for given pairs of dimension and degree. On the right, a figure

x indicates a raw frequency estimate for a given degree and dimension in the range 10x to

10x+1.

Our estimates were calculated using

Freq(deg, dim) =
∑

n, e

∑

Q

mQ(deg, dim)

s
· tQ , (17)

where mQ, s and tQ are the quantities previously defined in Eq. (16).
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5.5 Algebraic Geometry of VMS

It is expedient to step back and briefly see our VMS computation from the point of view of

algebraic geometry. For the completely generic situation of random complex coefficients,

the dimension of the VMS can be readily estimated by counting the degrees of freedom

(how many complex variables and how many constraining equations). However, what

we are doing here is a substantial refinement. First, inspired by the “toric condition” for

quiver theories, we have considered the restriction of coefficients to {0,±1}, what we refer

to as the basic case, a sublocus of the generic case in the complex structure moduli space.

Moreover, we have also computed also the degree and, importantly, the Hilbert series

of the variety, encoding the precise algebraic and birational information of the vacuum.

We recall that one of the most fundamental quantities which characterises an algebraic

variety X is the Hilbert series, which is the generating function for the number dim(Xi)

of independent polynomials at a given degree on X :

H(t; X) =
∞
∑

i=0

dim(Xi)t
i = (1− t)−kQ(t) = (1− t)− dim(X)P (t) . (18)

In the above, k is the number of variables in the defining equation of X and most impor-

tantly, P (t) and Q(t) as defined are polynomials with integer coefficients. The Hilbert

series is key to the Plethystic programme of enumerating gauge invariant operators [19].

We generated the Hilbert series using Macaulay2 for all the quivers investigated in

this paper for a more detailed catalog of VMS spaces. The results are too extensive to be

Table 12: Percentages of Palindromic Hilbert Series for Pairs (n, e) in Basic Case

n\e e = n e = n + 1 e = n+ 2 e = n+ 3 e = n+ 4

2 N/A 100% 100% 96.5% 82.7%

3 100% 100% 100% 97.4% 89.1%

4 100% 100% 100% 98.1% 91.2%

5 100% 100% 100% 97.9% 92.6%

6 100% 100% 100% 97.6% 93.1%

7 100% 100% 100% 97.3% N/A

8 100% 100% 100% 96.9% N/A

9 100% 100% 100% 96.3% N/A

10 100% 100% 100% 97.3% N/A
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Table 13: Percentages of Palindromic Hilbert Series for Pairs (n, e) in Generic Case

n\e e = n e = n+ 1 e = n + 2 e = n + 3

2 N/A 100% 100% 98%

3 100% 100% 100% 98.9%

4 100% 100% 100% 99.7%

5 100% 100% 100% 99.7%

6 100% 100% 100% 99.8%

7 100% 100% 100% N/A

8 100% 100% 100% N/A

9 100% 100% 100% N/A

10 100% 100% 100% N/A

included within this document. Instead we have provided the full information at GitHub6

by listing all possible Hilbert series and their prevalence for each (n, e). Both the basic

and generic cases are available in both a readable format and as raw data.

In tables 12 and 13, we present the statistical data of palindromic Hilber series in

percentages for both basic and generic cases. Now, importantly, when the numerator of

the Hilbert series is palindromic, i.e., the coefficients pi are such that pi = pn−i for all i, a

theorem of Stanley [38] guarantees that the algebraic variety is Calabi-Yau; this was first

used in the gauge theory context in [39]. Scanning over our database of 926883 Hilbert

series in basic case and 270410 in generic case, we find that 879852 and 270052 in each

case have this property. We conclude that 94.9% of our VMS are Calabi-Yau in basic

case, and 99.9% in generic case. It is interesting to see that with increasing complexity

of the theory (increasing number of fields and gauge groups), the chances of it being

Calabi-Yau seems to decrease. We can also see from our statistics that restricting the

coefficients in superpotentials from {−5, · · · , 5} to {−1, 0, 1} reduces the probability of

being Calabi-Yau by about 5%.

6 Conclusions and Prospects

Given the vast landscape of quantum field theories, especially those with N = 1 su-

persymmetry whose matter content and interaction abound untameably, and given their

6https://github.com/dayzhou/Hilbert-Series
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underlying geometry in the form of the vacuum moduli space whose efficacy has ranged

from phenomenology to holography, it is clearly desirable to investigate the space of such

vacua. In this paper, we have initiated the study of the statistics of this space of vacuum

moduli spaces, in the distribution of the dimension and degree as algebraic varieties and

have explicitly computed the Hilbert series for thousands of samples.

We find that the representative vacuum for our study of n ≤ 10 and e ≤ n+4 quivers

has low dimension and degree: our distributions appear highly skewed particularly for the

generic case. Although increasing n produces more interesting phenomena, the spaces of

complex dimension three remain ≤ 5% of the quivers for (n, e) in our study, validating

our approach as heavily selective of the vacuum landscape. Our catalog of Hilbert series

elucidate deeper information: the chances of the VMS being Calabi-Yau decreases as

(e− n) increases or when we we restrict the coefficient set to {−1, 0, 1}.

Indeed, we have only begun a clearly profitable enterprise. Throughout this paper we

have used Abelian quiver gauge theories (in the basic (toric) case and the generic case)

as a testing ground, one can extend this to more general quivers and to field theories

admitting more than bifundamental and adjoints. Physically, the class of such theories is

by far the most studied, especially in the context of string theory and AdS/CFT because

of the underlying toric Calabi-Yau geometry. Mathematically, it is interesting to point out

that every projective variety (note that all our affine varieties are trivially complex cones

over some projective variety) is a quiver Grassmannian [36]. Thus, from both physical

and mathematical motivations, our representative class of theories is highly non-trivial.

Recently, there has been nice papers [34, 35] studying the instabilities in the landscape

of high-dimensional moduli spaces. Specifically, as stated in [34], “tunneling rates, and

hence vacuum instability, grow so rapidly with the number of moduli that the probability

of a given local minimum being metastable is exponentially small”. Our statistical outlook

is very much in this spirit. It would be interesting to extract such physical properties from

our data. For example, our data shows that the proportion of large dimensional moduli

spaces (the real/global vacua of the theories) in all moduli spaces is considerably small,

which is consistent with the conclusion of [34]. Indeed, a programme of using vacuum

geometry for the sake of particle phenomenology of the standard model and beyond has

been ongoing [1, 2, 4, 37]. Our geometric data should be useful toward the question of

how geometrically generic the (supersymmetric) standard model is.
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