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Abstract

With a bird’s-eye view, we survey the landscape of Calabi-Yau threefolds, compact

and non-compact, smooth and singular. Emphasis will be placed on the algorithms and

databases which have been established over the years, and how they have been useful in

the interaction between the physics and the mathematics, especially in string and gauge

theories. A skein which runs through this review will be algorithmic and computational

algebraic geometry and how, implementing its principles on powerful computers and

experimenting with the vast mathematical data, new physics can be learnt. It is hoped

that this inter-disciplinary glimpse will be of some use to the beginning student.

∗Invited review for the Int. J. of Modern Physics A and based on recent talks at CERN, Simons
Center for Geometry & Physics, Harvard University, McGill University, USTC China, the US Air
Force Academy, and the Oxford James Martin School for the 21st Century.
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1 Introduction

Whereas the archetype of the Renaissance scholar is that of a polymath versed in a

multitude of subjects, and that of the Victorian inventor, a solitary figure labouring

away in some focused esoterica, it is becoming ever clear that the scientist of the

21st century is once more obliged toward the former model. With the increasingly

blurring boundary between intellectual pursuits, the exponential growth of data and

the rapidity of communication, inter-disciplinary research which harnesses the power

of modern computing is assuming a steadily pre-dominant rôle. Indeed, CERN, with

its largest multi-national scientific collaboration, PolyMath, with its efficient utility of

parallel minds blogging together † and SVP, with its global vision to systematically

study the plethora of string vacua, all exemplify the forefront of this new paradigm.

Within the field of mathematical physics, especially in string theory, a success

story particularly illustrative of this mode of theoretical research is that of Calabi-Yau

spaces. The story began in the late 1980’s, when the high energy physics community

was invigorated by the discovery of the ten-dimensional heterotic super-string, its nat-

ural incorporation of GUT-like gauge groups, and its potential to reach the low-energy,

four-dimensional, Standard Model with particle generations upon compactification on

Calabi-Yau threefolds [1]. Thus arose a parallel challenge to physicists and mathemati-

cians, in constructing such spaces and in translating the geometry into the physics.

Over the decades, the study of Calabi-Yau manifolds has blossomed into an incredibly

rich subject, ranging from pure mathematics to particle phenomenology, allowing us

to witness countless ground-breaking research in enumerative geometry, mirror sym-

metry, quiver representations, moduli spaces, dualities in QFT, a wealth of explicit

gauge/gravity holographic duals, et cetera.

This success, and the numerous ones yet to come, certainly place Calabi-Yau man-

ifolds as a central character upon the stage of modern theoretical science. Confronted

with the vastness of the subject, the limitations of space and knowledge clearly restrict

me to a very specialized viewpoint of so breathtaking a landscape. The perspective we

will take is one from algorithmic and computational algebraic geometry.

This standpoint is compelled upon us physically and mathematically. We now know

†As an example, within a month of Zhang’s seminal progress in attacking the Twin-Prime Conjec-
ture, PolyMath has managed to lower the bound from ∼ 7× 107 to ∼ 104.
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there is an overwhelming degeneracy of possible string vacua, all of which resemble (but

perhaps very few completely recover all the aspects of) the Standard Model. Short

of a selection principle, an immediate method of approach in isolating a particular

compactification manifolds is not obvious. Instead, a synthetic rather than analytic

perspective may prove to be conducive: could we attempt to establish large databases

and develop efficient algorithms, and thereby “experiment”, catalogue and analyse, in

order to extract new physics and new mathematics?

As we shall see in the ensuing exposition, this philosophy was indeed the first course

of action even in the infancy of the field, and has since matured fruitfully. Of course,

such a philosophy of algorithmic scanning and data mining is significantly facilitated by

the rapid advances in computational algebraic geometry as well as its implementation

on ever-faster machines, especially over the last decade [2–6]; the cross-pollination of

large-scale computing and computational geometry with theoretical and mathematical

physics has indeed recently been a healthy endeavour [7].

Our review will proceed along this strand of thought and divides itself into three

parts. First, we survey the construction of smooth compact Calabi-Yau threefolds

since the initial challenge three decades ago. We will see how one can improve upon

merely adhering to the tangent bundle by establishing more general stable bundles and

how this leads to more salient phenomenology. Second, we will investigate the space

of non-compact, or local, Calabi-Yau threefolds which became a key player a decade

after the 1980’s when AdS/CFT brought the holographic principle and subsequently

affine Calabi-Yau spaces to the limelight. We conclude in the final part by turning to

gauge theories in a context completely free of string theory, and will find surprising

appearances of our familiar Calabi-Yau geometries.

2 Triadophilia: CY3 and Stable Bundles

2.1 Prologue: a Three-Decade Search

Our story begins with a thirty-year-old quest, which has prompted much activity over

the decades and review some recent methodology and progress in addressing it. The

problem comes from string theory [1] , and constitutes the beginning of what we today
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call string phenomenology: the heterotic string gives a 10-dimensional supersymmetric

theory with gauge group E8×E8, can one find a Calabi-Yau threefold, the compactifica-

tion upon which will break one of the E8 groups (the so-called “visible” ‡) to something

akin to the Standard Model group, together with particles and interactions familiar to

our four-dimensions?

This has turned out to be a succinctly stated and well-motivated challenge to alge-

braic geometry. The initial [8] realization was that the SU(3) tangent bundle TX of

a Calabi-Yau threefold X breaks the E8 to the commutant E6, whereby giving a four-

dimensional supersymmetric E6-GUT theory whose 27 representation, which endoes

all the Standard Model fermions, is computed by the cohomology group H1(X,TX) '
H2,1(X) and whose anti-generations of 27 representations is computed byH1(X,TX∗) '
H1,1(X); here we have used Hodge decomposition to relate the relevant groups to the

familiar Hodge numbers. Hence, that there should be three net generations of particles,

is nicely summarized by the constraint

3 =
∣∣h1,1(X)− h2,1(X)

∣∣ ⇒ χ(X) = ±6 , (2.1)

where we have use the standard topological fact that for a Calabi-Yau threefold, the

difference of the two Hodge numbers is half its Euler number χ(X). Thus this so-

called triadophilia, or the love of three-ness [9], phrased in terms of purely geometrical

conditions, was born §.

Of course, E6 GUTs are less favoured today and our ultimate goal is to reach

the (supersymmetric) Standard Model. Group theoretically, this is a straight-forward

three-step procedure [10]:

1. We can use SU(4) and SU(5) to break the E8 to the commutant SO(10) and

‡The other E8 is called “hidden” and interacts via gravity mediation; we will not discuss the hidden
sector here though much interesting phenomenology exist there as well [11–13].
§ Several classical linguists, of which Oxford certainly has an abundance, were consulted, and we

finally settled with the suggestion by Philip’s daughter on this choice of the Greek. Our love for
“three-ness” is obvious, however, it would be a far greater desire to conceive of a geometrical genesis
of this “three-ness”.
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SU(5) which are more popular GUTs (we include the E6 case for reference)

E8 → G×H Breaking Pattern

SU(3)× E6 248→ (1, 78)⊕ (3, 27)⊕ (3, 27)⊕ (8, 1)

SU(4)× SO(10) 248→ (1, 45)⊕ (4, 16)⊕ (4, 16)⊕ (6, 10)⊕ (15, 1)

SU(5)× SU(5) 248→ (1, 24)⊕ (5, 10)⊕ (5, 10)⊕ (10, 5)⊕ (10, 5)⊕ (24, 1)

2. Next, we can use a Wilson line, which is a discrete finite group, typically Zk or

Zk × Zk′ to break the GUT to the Standard Model. As canonical examples, for

SO(10) broken by a Z3 × Z3 Wilson line to SU(3) × SU(2)U(1)Y ,U(1)B−L , for the

fermions and the Higgs, we have

16→ (3,2)(1,1) ⊕ (1,1)(6,3) ⊕ (3,1)(−4,−1) ⊕ (3,1)(2,−1) ⊕ (1,2)(−3,−3) ⊕ (1,1)(0,3)

10→ (1,2)(3,0) ⊕ (3,1)(−2,−2) ⊕ (1,2)(−3,0) ⊕ (3,1)(2,2) (2.2)

Similarly, for SU(5) broken by an Z2 Wilson line to SU(3)×SU(2)U(1)Y , we have

5→ (3,1)−2 ⊕ (1,2)3 , 5→ (3,1)2 ⊕ (1,2)−3 ;

10→ (3,1)4 ⊕ (1,1)−6 ⊕ (3,2)−1 , 10→ (3,1)−4 ⊕ (1,1)6 ⊕ (3,2)1 . (2.3)

Here, the Standard Model particles are (we include the extra B−L charge), with

requisite multiplicity (generation)

(3,2)1,1 3 left-handed quark

(1,1)6,3 3 left-handed anti-lepton

(3,1)−4,−1 3 left-handed anti-up

(3,1)2,−1 3 left-handed anti-down

(1,2)−3,−3 3 left-handed lepton

(1,1)0,3 3 left-handed anti-neutrino

(1,2)3,0 1 up Higgs

(1,2)−3,0 1 down Higgs

(2.4)

All other representations are exotics.
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3. Finally, the Yukawa couplings are obtained by composing the appropriate triples

of representations which give rise to gauge singlets.

What is the geometrical structure which encapsulates the above group theory? Over

the years, collaborations betweens algebraic geometers and physicists have rephrased

this as a clear problem [14–29]:

Challenge Does there exist a stable holomorphic vector bundle with struc-

ture group G = SU(4) or SU(5) on a smooth compact Calabi-Yau threefold

X with fundamental group Γ = π1(X) such that the relevant equivariant

bundle cohomology group (W is a representation of the Γ-Wilson line)

[H∗(X,
∧q V p ⊗W )]Γ carries the required particle representations above?

More precisely, the cohomology groups H∗(X,
∧q V p), are

G = SU(4) : 16 = H1(V ) , 16 = H1(V ∗) , 10 = H1(∧2V )

G = SU(5) : 10 = H1(V ∗) , 10 = H1(V ) , 5 = H1(∧2V ) ,5 = H1(∧2V ∗) , (2.5)

and the number of vector bundle moduli is given by H1(V ⊗ V ∗). Indeed, the case of

V = TX returns us to the original case of (2.1) and E6 GUTs.

To answer this challege, we need three consecutive steps, which had been undertaken

over the past 30 years, illustrating precisely the keywords of our title: new geometry,

efficient algorithms and large databases:

1. Establish a “landscape” of smooth Calabi-Yau threefolds X;

2. Create databases of stable vector bundles V on various families in X;

3. Develop techniques of computing cohomology group and trilinear (Yukawa) maps

on a large scale.

To each of these steps we shall focus, but first we have with this long physics prologue

introduced our chief protagonist: Calabi-Yau threefolds. Therefore to these we will

turn our present attention.
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2.2 Calabi-Yau Threefolds

The definition of a Calabi-Yau manifold is by now familiar to a neophyte in theoretical

physics: it is a (complex) Kähler manifold admitting flat Ricci curvature. There are

many equivalent definitions of which the above is the most intuitive. Since the incli-

nation of this review will be on the algebraic rather than the differential, perhaps the

useful definition for us is that a Calabi-Yau manifold is

A complex algebraic variety with trivial canonical sheaf.

Note that defined in such generality, we make no assumption whether the Calabi-

Yau space is compact or not, singular or not. Indeed, in the smooth compact case, the

famous theorem of S.-T. Yau states that the vanishing of the first Chern class guarantees

the existence (and uniqueness) of such a flat Kähler metric. We will also encounter

non-compact and singular Calabi-Yau spaces; there, we understand the definition to

be singularities which locally allow so-called crepant resolutions so that the resulting

smoothed space has trivial canonical bundle.

The most famous Calabi-Yau threefold is indubitably the quintic Q, so called

because it is defined as a generic quintic polynomial in P4. This is a general lesson:

a degree d + 2 polynomial with sufficiently generic coefficients in Pd+1 (which has

d+ 2 projective coordinates) will define a smooth Calabi-Yau d-fold. That the sum of

the degrees of the d + 2 projective coordinates is equal to the degree of the defining

polynomial implies the vanishing of the first Chern class.

The construction of Calabi-Yau threefolds (CY3) has a distinguished history. In

Figure 1 (a), we draw a (topogically correct but metrically non-representative) Venn

diagram of some of the popular datasets thus far. In part (b) of the figure, we present

the famous Hodge plot of h1,1(X) + h2,1(X) in the ordinate versus χ = 2(h1,1(X) −
h2,1(X)) in the abscissa; the apparent left-right symmetry of the diagram is the best

experimental evidence for mirror symmetry. In part (c), we also indicate the Log

of the frequency of the Hodge numbers: indeed there is tremendous redundancy, the

some 109 CY3 (we will see in §2.2.3 that there is much more than 109 known CY3s

though their full characterization still awaits work) share only about 105 Hodge pairs

and interestingly the most pre-dominant pair known so far is (h1,1, h2,1) = (27, 27),

totalling 910113.
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Figure 1: (a) The space of CY3, with the 3 most studied datasets. There are also some indi-
vidualized constructions outside the three major databases, symbolically marked as crosses;
these have been tabulated [9, 43, 45]. Q is the quintic, S is the Schoen CY3 and the
most “typical” CY3 has Hodge numbers (27, 27), totalling almost 1 million. (b) Plotting
χ = 2(h1,1 − h1,2) (horizontal) versus h1,1 + h1,2 (vertical) of all the known Calabi-Yau
threefolds. (c) A refinement of (b) with the Log of frequency of the Hodge numbers in the
vertical axis.

Amusingly, the largest known magnitude of Euler number of any CY3 is 960, cor-

responding to the mirror Hodge pairs (11, 491) and (491, 11). This is also twice the

difference between the dimension of the adjoint and the rank of E8 ×E8. Incidentally,

for the reader’s further digression, twice the dimension, 248 ·2 = 496 is the only perfect

number in the hundreds.

2.2.1 CICY Manifolds

To address (2.1), the first database of CY3 was the so-called CICY manifolds [15,30],

or complete intersection Calabi-Yau threefolds embedded as K homogeneous polyno-

mials in Pn1×. . .×Pnm . This is clearly a direct generalization of the quintic. Here, com-

plete intersection means that the dimension of the ambient space exceeds the number K

of defining equations by precisely 3, i.e., K =
m∑
r=1

nr−3. Moreover, the Calabi-Yau con-

dition of vanishing first Chern class of TX translates to
K∑
j=1

qrj = nr + 1 ∀ r = 1, . . . ,m.

Subsequently, each manifold can be written as an m × K configuration matrix (to

which we may sometimes adjoin the first column, designating the ambient product of
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projective spaces, for clarity):

X =


Pn1 q1

1 q1
2 . . . q1

K

Pn2 q2
1 q2

2 . . . q2
K

...
...

...
. . .

...

Pnm qm1 qm2 . . . qmK


m×K ,

K =
m∑
r=1

nr − 3 ,

K∑
j=1

qrj = nr + 1 , ∀ r = 1, . . . ,m .
(2.6)

The Chern classes of X are (of course, cr1(TX) = 0):

crs2 (TX) =
1

2

[
−δrs(nr + 1) +

K∑
j=1

qrj q
s
j

]
, crst3 (TX) =

1

3

[
δrst(nr + 1)−

K∑
j=1

qrj q
s
jq
t
j

]
,

(2.7)

where we have written the coefficients of the total Chern class c = cr1Jr + crs2 JrJs +

crst3 JrJsJt explicitly, with Jr being the Kähler form in Pnr . The triple-intersection form

drst =
∫
X
Jr∧Js∧Jt is a totally symmetric tensor on X and the Euler number is simply

χ(X) = drstc
rst
3 .

The construction of CICYs was thus reduced to a combinatorial problem of classi-

fying the integer matrices in (2.6). It was shown that such configurations were finite in

number and the best available computer at the time (1990’s) was employed, viz., the

super-computer at CERN [15, 30]. A total of 7890 manifolds were found, including,

of course, our quintic in P4, which we can now write as Q = [4|5]1,101
−200, where we have

written the Hodge numbers and Euler number respectively as super- and sub-scripts.

Another famous CICY is the Schoen manifold, S =


1 1

3 0

0 3


19,19

0

, which is a self-mirror

CY3. We mark these two red points in (a) of Figure 1 and will return to address them.

Of these some 8000 threefolds, unfortunately none has χ = ±6, which was an initial

disappointment. Of course, today, our generalization from TX to V no longer has (2.1)

as a triadophilic constraint. Nonetheless, the transpose of S was soon found by Tian

and Yau to have a freely acting Z3 symmetry, so that the quotient M =

1 3 0

1 0 3

 /Z3

has topological numbers M6,9
−6 which did cause a sensation at the time.

A few points are worthy of note. The transpose configuration of a CICY is also a
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CICY and constitutes, in fact, a conifold transition [9,15]. When a CY3 has h1,1 = 1, it

is called cyclic. There are only 5 cyclic CICYs, viz., Q = [4|5], [5|3, 3], [5|2, 4], [6|2, 2, 3], [7|2, 2, 2, 2].

The transposes of these are thus also CICY and we will denote them as cyclicT .

2.2.2 Elliptic CY3

As the CICY manifolds dominated the late 1980’s for a number of years, from the

interest in F-theory in the late 1990’s emerged another dataset [18,31–33] of CY3, viz.,

those which are elliptically fibred over some complex surface B. Over B the CY3 is

realized as a possibly degenerate torus with section σ and can thus be realized as an

elliptic curve.

The existence of the section highly constrains what B could be [31], being only one

of the following:

1. Hirzebruch surfaces Fr for r = 0, 1, . . . , 12;

2. P1-blowups of Hirzebruch surfaces F̂r for r = 0, 1, 2, 3;

3. Del Pezzo surfaces dPr for r = 0, 1, . . . , 9;

4. Enriques surface E.

The Fr are various ways which P1 could fibre over P1. The Enriques surface is a Z2

quotient of K3 and to the del Pezzo surfaces we will return in §3.2.

In terms of the Chern classes of the tangent bundle TB of the base, we have (of

course, c1(TX) = 0):

c2(TX) = π∗(c2(TB) + 11c1(TB)2) + 12σ · π∗(c1(TB)) , c3(TX) = −60c1(TB)2 ,

(2.8)

where π : X → B is the projection map of the elliptic fibration. Even though the

list of possible bases seems limited, by tuning the possible elliptic curve, an incredibly

diverse range of CY3 can be reached. Of the known CY3, many tens of thousands have

been identified as elliptic fibrations [40,41]; the full classification of this rich dataset is

still in progress.
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2.2.3 Kreuzer-Skarke List

The largest set of CY3 known today is due to many years of impressive work by

Kreuzer-Skarke (KS); these are the hypersurfaces in toric varieties of dimension four

[35–37]. This is an extensive generalization of the CICYs with K = 1 by having,

as ambient space, not merely products of projective spaces (in dimension 4 there are

only 5, corresponding to the 5 partitions of 4, P4, P2 × P2, P3 × P1, P1 × P1 × P2,

and (P1)4; these give, of course, precisely our cyclicT CICYs). Indeed, one can think of

hypersurfaces [38] in weighted P4, of which there are about 6000, as a nice intermediate

step.

The general construction is elegant and combinatorial. Take a polytope ∆ ∈ R4

with integer vertices which contains the origin and consider its dual ∆◦ = {~v ∈ R4 :

~m ·~v ≥ −1,∀~m ∈ ∆}. Each defines a toric variety in a standard way. Now, ∆ is called

reflexive if ∆◦ also has integer vertices, in such a case, the (shifted) Newton polynomial

of ∆, defined as P (~x) =
∑
~m∈∆

C~m

4∏
i=1

xi
~m·~vi+1 where ~v are the integer vertices of ∆◦

and C~m are generic complex coefficients, defines a CY3 hypersurface. Therefore, the

classification KS CY3s amounts to that of reflexive integer 4-polytopes; in dimensions

one to three these total 1, 16, 4319, respectively and the present case of dimension

4 was a major computational challenge. The actual calculation was performed on an

SGI origin 2000 machine with about 30 processors and took approximately 6 months

and 473,800,776 was found.

We need to emphasize a few points. These polytopes correspond to possibly sin-

gular 4-folds (in fact, only 124 are smooth [60]), thus the majority thereof requires

desingularization by triangulation, standard to toric geometry. To each desingulariza-

tion we can associate a new hypersurface and therefore the number of CY3 far exceeds

∼ 5 × 109. Nevertheless, the Hodge numbers are invariants under the triangulations

(the intersection form, however, would be different) and 30,108 distinct Hodge pairs

have been found. We show the Log-density plot of these Hodge numbers in Part (a) of

Figure 2.

Of course, the KS dataset, as large as it is, is only the tip of an iceberg, one could

go on to study complete intersections in higher dimensional toric varieties, much like

the CICY case. The situation of the double-hypersurface in toric 5-folds was already
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(a) (b)

Figure 2: (a) A colour Log-density plot of the Hodge numbers of the KS dataset, with
χ = 2(h1,1 − h1,2) (horizontal) versus h1,1 + h1,2 (vertical). (b) A zoom-in of the tip with
small Hodge numbers: the gray are KS CY3s and the coloured are individually engineered
cases; this plot is taken from Candelas-Davies [43].

nearing completion circa Max Kreuzer’s untimely death ¶ in 2010.

There are beautiful patterns in the distribution of the Hodge numbers which still

elude us today and many intriguing properties have been uncovered [39, 40, 42]. A

particularly salient feature is that the “tip” of the plot is almost empty (considering

the millions in the centre); the paucity of CY3 with small Hodge numbers, which also

include all the manifolds which have become of phenomenological interest, suggests a

possible oasis in the landscape of compactifications [9, 43,44,46].

2.3 Stable Vector Bundles

Having taken a brief stroll within the realm of compact CY3 manifolds, we now need

to move onto the next part of our survey, the bundle V over X. Some immediate

constraints can be imposed:

¶ I have a profound respect for Max. It was not long after his visit to Oxford, a very productive
and convivial period, that we received the shocking email that his doctors said he only had a few
months left. During the last weeks on his deathbed as cancer rapidly took hold of him, he emailed
us regularly and our many discussions continued as normal. The several posthumous papers on the
ArXiv are testimonies to his dedication during his last hours; only a true scholar could have the
courage of such extraordinary devotion. In pace requiescat!
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• Supersymmetry and stability: Requiring N = 1 SUSY in the low-energy 4-

dimensional theory implies that V admits a holomorphic connection F satisfying

the Hermitian-Yang-Mills (HYM) equations: Fab = Fāb̄ = gab̄Fab̄ = 0, a gener-

alization of Ricci-flatness for Calabi-Yau manifolds. These impossibly difficult

non-linear PDEs can be circumvented by the celebrated Donaldson-Uhlenbeck-

Yau theorem (DUY) which states that on each (poly-)stable holomorphic vector

bundle, there exits a unique HYM connection.

We focus on special unitary bundles here so c1(V ) = 0 and stability is the alge-

braic condition that there exists a Kähler class J such that for every subsheaf F
of V , the quantity (called slope) µ(F) =

∫
X
c1(F)J2 < 0. The difficulty, there-

fore has been shifted to finding all subsheafs, which in many cases again becomes

a problem in combinatorial algorithmics. One nice consequence of stability for

SU(n) bundles is that, together with Serre duality on X,

H0(X,∧iV ) = H0(X,∧iV ∗) = H3(X,∧iV ) = H3(X,∧iV ∗) = 0 , (2.9)

for all i = 0, . . . , n− 1.

• Triadophilia and Index Theorem: The vanishing conditions (2.9), together with

the Atiyah-Singer index theorem on X imply that

index(/∇X) =
3∑
i=0

(−1)ihi(X, V ) =

∫
X

ch(V )td(X) =
1

2

∫
X

c3(V ) . (2.10)

Consequently, this gives us an expression for the net number of generations of

particles, generalizing (2.1):

Ngens = −h1(X, V ) + h1(X, V ∗) =
1

2

∫
X

c3(V ) = 3k , χ(X) mod k = 0 ,

(2.11)

where k ∈ Z>0 is the order of a possible freely acting group G on X, so that upon

descending to the quotient manifold X/G, there would be precisely 3 generations.

Indeed, in order that G be a free action, k must necessarily (but not sufficiently)

divide the Euler number χ(X).

• Anomaly Cancellation: To ensure Green-Schwarz anomaly cancellation, it is

standard to set
∫
X
R ∧R− F ∧ F = 0, where R is the Ricci form on X, that is,

c2(X) = c2(V ). However, one could allow M5-branes in the bulk, in a heterotic

M-theory Hořava-Witten set-up [19,47], which could wrap effective holomorphic
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2-cycles (i.e., actual, physical, curves). Hence, anomaly cancellation requires that

c2(X)− c2(V ) = effective class in H2(X;Z) . (2.12)

After imposing these preliminary conditions, we can then proceed to computation

of the cohomology groups in (2.5); before doing so, it is expedient to follow the similar

vein above and peruse over the available datasets.

2.3.1 CICY Monads

Since CICYs (in particular the quintic) provided the first database, the immediate next

step was to construct bundles thereon. Historically, this was indeed the case [14] and

recently a programme was resurrected to systematically study such bundles [51–58]

using advanced computing and novel algebro-geometric algorithms [2, 3].

The most appealing property of a CICY is its explicit projective coordinate, and

thence, the description of line-bundles. In general, our ambient space A for CICYs is

a product of m projective spaces in which K homogeneous polynomials define X. We

shall call the situation where h1,1(X) = h1,1(A) = m as favourable; here the Kähler

classes descend completely from A to X. In this case we can write line bundles over

A = Pn1 × Pn2 × . . . × Pnm as OA(k1, k2, ..., km) with corresponding restriction to X.

Equipped with line bundles, a natural (and indeed historical) next step is to construct

so-called monads.

In general, a monad bundle [50] is the cohomology of the (non-exact) sequence

0→ A→ B → C → 0, with A,B,C direct sums of line bundles; for simplicity we take

A to be trivial and our monad bundle V to reside in the short exact sequence

0→ V
f−→ B

g−→ C → 0 ; with B =

rB⊕
i=1

O(bir) , C =

rC⊕
j=1

O(cjr) . (2.13)

Here, short exactness implies that V = Im(f) ' ker(g) and that rk(V ) = rk(B)−rk(C).

The map g is explicitly a matrix of polynomials; e.g., on Pn the ij-th entry is a

homogeneous polynomial of degree ci − bj.

Our above physical constraints readily manifest themselves as a list of combinatorial
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conditions on the integers bir, c
j
r (drst are the triple intersection numbers):

1. Bundle-ness: bir ≤ cjr for all i, j and the map g can be taken to be generic so long

as exactness of the sequence is ensured;

2. SU-Bundle: c1(V ) = 0⇔
rB∑
i=1

bri −
rC∑
j=1

crj = 0;

3. Anomaly cancellation: c2(X)− c2(V ) = c2(X)− 1
2
(
rB∑
i=1

bisb
i
t −

rC∑
i=1

cjsc
t
i)d

rst ≥ 0;

4. Three Generations: c3(V ) = 1
3
(
rB∑
i=1

br
ibs

ibt
i −

rC∑
j=1

cr
jcs

jct
j)drst = 3k .

Once more, we witness a natural course of action: physics to algebraic geometry to

combinatorics to computerization.

We remark that, much like the classification of CICYs, if we impose that all en-

tries of B and C be positive, then one can show that the space of such monads on

(favourable) CICYs is finite (some 7 thousand). Of course, having non-positive entries

is perfectly allowed and could lead to good models. For example, recently, the SU(4)

monad bundle

0→ V → OX(1, 0)⊕3 ⊕OX(0, 1)⊕3 f→ OX(1, 1)⊕OX(2, 2)→ 0 , (2.14)

defined on the bi-cubic CY3, X =
 P2

P2

∣∣∣∣∣∣∣
3

3


2,83

−162

(which is a conifold transition of the

Schoen and Tian-Yau manifolds) has been found to give the exact spectrum of the

MSSM upon a Z2
3 Wilson line [53,54].

2.3.2 Spectral Covers

The difficult part of the monad bundles is to prove stability; this has not yet been

been fully automated. To circumvent this, we turn to the elliptic database, for which

a so-called spectral cover construction guarantees (for sufficiently large fibre class as

polarization) stability [17, 18, 33]. Thereby one can obtain the largest explicit set of

stable SU(n) bundles [21,34] (about 107). Such a bundle is given by the spectral data,

consisting of the following two pieces :
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• The spectral cover CV : this is an n-fold cover of the base and is thus a divisor

(surface) in X with degree n over B, as an element in H4(X;Z) ' H2(X,Z) it

is [CV ] = n σ + π∗η, where σ is the class of the zero section, and η is an effective

curve class in H2(B,Z). In order that V be stable, C needs to be irreducible,

which follows from the constraints that (a) the linear system |η| is base-point free

in B and (b) η − nc1(B) is an effective curve in B.

• The spectral line bundle NV : this is a line bundle on CV with first Chern class

c1(NV ) = n(1
2

+ λ)σ + (1
2
− λ)π∗η + (1

2
+ nλ)π∗c1(B). The parameter λ has to

be either integer or half-integer depending on the rank n of the SU(n) structure

group :

λ =

 m+ 1/2 if n is odd,

m if n is even,
(2.15)

where m ∈ Z. When n is even, we must also impose η = c1(B) mod 2, by which

we mean that η and c1(B) differ only by an even element of H2(B,Z).

The Mori cone of effective curves on X is spanned by

σ · π∗(Ci) , F ∈ H2(X;Z) , (2.16)

where F is the fibre class and Ci are a basis of effective curves in the base B. The

relevant intersections are (curve with surface and surface with surface):

σ·F = 1 , π∗(Ci)·F = 0 , π∗(Ci)·π∗(Cj) = π∗(Ci·Cj) = Ci·CjF , σ·σ = σπ∗(−c1(TB)) ,

(2.17)

where for the second intersection one uses the fact that one can always choose a fibre

which generically misses a pull-back of a curve in the base; for the third one uses

intersection Ci ·Cj in the base, giving a point, which then pulls back to a generic fibre;

for the last, one uses adjunction.

The holomorphic SU(n) vector bundle V on X can be extracted from the above

data by a Fourier-Mukai transformation: (CV ,NV )
FM←→ V . The Chern classes of V

are given in terms of the spectral data as (again, c1(V ) = 0)

c2(V ) = σ · π∗η + π∗
(
n

2

(
λ2 − 1

4

)
η · (η − nc1(B))− n3 − n

24
c1(B)2

)
:= σπ∗η + cFF ,

c3(V ) = 2λη · (η − nc1(B)) . (2.18)
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A combination of spectral cover techniques and simple extensions of bundles over

elliptic CY3 has met reassuring success and produced the first known answers to the

challenge laid out in the beginning of this section. On two different quotients of the

aforementioned Schoen manifold S, stable bundles were constructed so as to give the

exact particle content of the MSSM, together with reasonable Yukawa couplings [48,49].

2.3.3 Polystable Bundles

One of the most fruitful and perhaps also the easiest set of bundles is simply the direct

sum of line bundles. This is slightly different from the SU(n) bundles we have so

far been describing and are S(U(1)n) bundles which can be seen as the “splitting” of

the former along walls of marginal stability within moduli space [55–59]. That is, our

bundles are of the form V =
5⊕
i=1

Li.

In the context of DUY, these are polystable bundles and can indeed also admit

Hermitian Yang-Mills connection. The breaking pattern is a little more complicated,

for example, an S(U(1)5 bundle will break E8 down to an SU(5) × S(U(1)5 GUT. A

Wilson line can then break the SU(5) into a Standard Model group, together with

the extra massive Abelian factor S(U(1)5. Thus, though not minimal in having these

extra U(1) factors, one could still use traditional Green-Schwarz mechanism to let these

acquire D-terms with FI parametres and whence masses.

Such (equivariant) polystable bundles having, up to these U(1) factors, xact MSSM

spectrum and reasonable Yukawa couplings, have been classified over the CICY database

and very nicely give rise to the largest known set of heterotic Standard Models (some

105) [55–57]. Obviously, the components of the line bundles Li must have mixed pos-

itive and non-positive entries in order to admit solutions of polarizations J such that

µ(V ) = µ(Li) = 0. In other words, polystability translates to the simple algebraic sys-

tem tr ∈ R>0 : drst(Li)rt
stt = 0 for all i = 1, . . . , n where drst are the triple intersection

numbers, (Li)r are the entries to the line bundles and tr are the Kähler parametres.

For example [56], on the tetraquadric CY3 (one of the aforementioned 5 that are

both KS and CICY) X =


P1 2

P1 2

P1 2

P1 2


4,68

−128

, V = OX(1,−3, 0, 2) ⊕ OX(0, 1, 0,−1) ⊕
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OX(0, 1, 0,−1)⊕OX(0, 0,−1, 1)⊕OX(−1, 1, 1,−1) is an Z2
2-equivariant S(U(1)5) bun-

dles which gives, up to the U(1) groups, exact MSSM spectrum.

2.3.4 KS Bundles

Of course, the largest gold mine of CY3 still awaits us. To study the distribution

and frequency of exact, and not merely quasi, Standard Models by systematically

constructing stable bundles on at least half-billion manifolds ‖ and computing their

cohomology is under way. This is clearly a task for large-scale parallel computing.

There have been some preparatory works toward this vision. The positive monads

on all KS CY3 which have smooth ambient space have been completely classified [60]

and as a test-run, marching upward in h1,1, the small values have also been addressed

[61]. In parallel, the requisite geometrical data (beyond the topological quantities such

as Hodge numbers and Chern classes) such as intersection form and Mori cone of the

full KS list are currently being computed [62,63].

Furthermore, anticipating the cohomology computation, a very nice computer pack-

age for calculating cohomology of line bundles on toric varieties has been written [64].

Finally, the Sage project, which is an increasingly popular attempt to interface the mul-

titude of computer software for mathematics, is becoming ever prominent and useful

in our and much more general calculations [5].

3 Gauge Theory: CY3 and Quivers

We have taken a rapid survey of the space of known compact CY3 and a glimpse of the

large number of stable bundles for the sake of heterotic compactification, a challenge

posed in the mid-1980’s. Now let us move on to a complementary view that arose

in the mid-90’s: instead of having 6 tiny extra dimensions, can we live on the world-

volume of a brane floating transverse to 6 large extra dimensions? This of course is

the brane-world scenario, a brain-child of Maldecena’s seminal work [65] on AdS/CFT,

highlighting a holographic principle which by now has extended far beyond string theory

‖As discussed above, due to triangulations the actually number is far more than half billion and
the full catalogue is in progress.
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and rests as a corner-stone of 21st century physics.

In this set-up, there is a natural bijection between (1) the world-volume physics,

which, for a stack of D3-branes, is some super-conformal four-dimensional gauge theory

(SCFT) and (2) the transverse or “bulk” geometry, which is generically some non-

compact CY3. The asymptotic metric for the brane is anti-de-Sitter while the CY3 is

a real cone over some 5-dimensional Sasaki-Einstein (SE) manifold. By construction,

the low-energy vacuum moduli space (VMS) parametrized by the scalars in the SUSY

multiplets of our gauge theory is the CY3 since the motion of the branes is realized

by the CY3 and parametrizes the geometrical degrees of freedom for the VMS. Thus

proceeding from (1) to (2) is the calculation of the F- and D-flatness conditions of

a SUSY gauge theory (to this point we shall return in the last section) which gives

the CY3 as a vacuum manifold and from (2) to (1), has been dubbed “geometrical

engineering” [73].

As far as computational geometry is concerned, this amounts to

Challenge: A cartography of the space of non-compact, affine (and typi-

cally singular) CY3.

Such CY3 are also called local and admit crepant resolutions to smooth CY3. In

complex dimension two, we know that CY2 is the K3 surface and locally these are the

ADE surface singularities on which we will expound shortly. Again, in dimension 3,

we are in terra incognita. In Figure 3 we draw the counterpart to Figure 1 and present

a topologically correct and metrically irrelevant Venn diagram of the space of affine

CY3. Indeed, here we have several infinite families.

The simplest affine CY3 is, of course, trivially C3, which is utterly, and not merely

Ricci, flat. The dual gauge theory is the famous N = 4 super-Yang-Mills and the

SE base, simply S5 over which C3 is a cone; this was Maldacena’s archetypal case.

In the 15 years since 1998, in generalizing this, a tremendous amount of new physics

and mathematics has emerged. We will now take a glimpse from the perspective of

algorithmic geometry, the multitude of progenitors of this theory. This parent theory is

best described as a quiver which is a finite directed graph whose nodes are factors in a

product gauge group, usually taken to be
∏
i

SU(Ni) and whose arrows from node i to

j are bi-fundamentals ( , ) of SU(Ni)× SU(Nj) (those from nodes to themselves are
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(a) (b)

W = Tr(X[Y, Z]) .

Figure 3: (a) The space of local (affine) CY3 thus far charted. The crosses symbolize
isolated cases and the Venn diagram are the major families studied. Here we have marked
C3 and the conifold C. (b) The clover quiver for N = 4 super-Yang-Mills, corresponding
to C3.

adjoints). Finally, closed loops in the quiver, formed by tracing along directed paths,

are gauge invariant operators and could be terms in the superpotential.

The C3 theory is conveniently summarized as a clover quiver with the single node

representing U(N) and the three edges, the three adjoint fields X, Y, Z. Moreover,

there is a standard cubic superpotential W = Tr(X[Y, Z]). We present this in part (b)

of Figure 3. Our emphasis in this section will not so much be on breaking this N = 4,

U(n) gauge theory to Standard-like models with N = 1 SUSY, which is itself an

extensive subject [66–72], but more on the wealth of geometrical methods which have

arisen, the classifications which have been addressed, as well as the computational

challenges ahead. Thus the dialogue between the geometry of affine CY3 and the

physics and combinatorics of quivers will be our focal point.

3.1 Orbifolds

The simplest class of affine CY3 is clearly (Gorenstein) quotients of C3; these are the

orbifolds of the form C3/Γ where Γ is a discrete finite subgroup of SU(3). We can

obtain the quiver from the parent C3 by Γ-projection [74–77]. Let {ri} be the set of

irreducible representations of Γ and R a chosen representation (for fermions, this is the

4 = 1⊕1⊕2 and for bosons, the 6 = 1⊕1⊕2⊕2, coming from the SU(4) R-symmetry

of the parent N = 4). Next, form the decomposition

R⊗ ri =
⊕
j

aRijrj . (3.19)
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The resulting theory is the quiver whose adjacency matrix is given by aRij . Explicitly,

we can invert the above using characters to obtain aRij = 1
|Γ|

r∑
γ=1

rγχ
R
γ χ

(i)
γ χ

(j)∗
γ , where rγ

is the order of the conjugacy class containing γ and χiγ is the character of γ in the i-th

representation.

The situation in complex dimension 2 is familiar to algebraic geometers. As men-

tioned above, local CY2 - i.e., K3 surfaces - were already classified in the beginning

of C20th, and fall under an ADE pattern [78]. Explicitly, the affine equations, as

hypersurface singularities in C[x, y, z], are

An : xy + zn = 0

Dn : x2 + y2z + zn−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0 ,

(3.20)

corresponding to the orbifold C2/Γ with Γ discrete finite subgroups of SU(2), which are

the cyclic (Ân ∼ Zn+1), binary dihedral (D̂n) and binary exceptional (Ê6,7,8) groups.

The celebrated result of McKay [79] states that the adjacency matrices aij in (3.19)

are precisely the associated affine Dynkin diagrams. Thus our quiver gauge theories

furnish an elegant physical realization of the McKay Correspondence ∗∗.

Our present situation of dimension 3 follows a similar pattern (we need to point

out that unlike dimension 2, the uniqueness and existence of crepant resolutions is

not guaranteed here. ). Other than the obvious Zk × Zk′ , the non-Abelian subgroups

are [80]

Infinite Series ∆(3n2),∆(6n2)

Exceptionals Σ36×3,Σ60×3,Σ168×3,Σ216×3,Σ360×3

(3.21)

The quivers for these, using (3.19), were painstakingly catalogued [81], especially with

the aid of computer systems [4] and many interesting structures can be uncovered. One

∗∗ Over the past couple of years wherein I have had the fortune to consolidate my friendship with
John, who like a grand-father calls me on skype almost daily to chat on mathematics and life, I had the
singular opportunity to witness the alertness of his mind and the breadth of his knowledge. Working
with him is rather like the challenge and the enjoyment of reading Joyce’s Ulysses, one is transported
to a cosmos most intricate and vast, filled with connexions and allusions, infused with amusements
and humour, and one is always stricken by wonder.
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could proceed further and ask for the full SU(4) group. Here, supersymmetry will be

broken so the physics is not as well controlled. Nevertheless, the full set of group and

quivers can be calculated, combining classical algebra and modern computing [4,80,82].

3.2 del Pezzo

A natural way to construct affine CY3, we have seen, is to realize it as a real cone

over a smooth SE 5-fold. There is a complex analogue of this whereby one realizes

the CY3 X as a complex cone over some complex surface S. Indeed, when the SE is

regular, itself can be realized as a U(1) bundle over S. A simple solution is to have S

possess appropriate positive curvature so that the cone metric “cancels” to give overall

zero curvature for X. We have seen the analogue of this in the compact situation in

§2.2.2, where the CY3 is an elliptic fibration over some base so that the overall first

Chern class vanishes. Complex (Kähler) manifolds admitting positive Ricci curvature

are called Fano and in complex dimension 2, they are Fano surfaces [83] with ample

anti-canonical bundle. These surfaces are the del Pezzo surfaces which are simply P2

blown-up at k = 0, . . . , 9 generic points, denoted as dPk, and the zeroth Hirzebruch

surface F0 = P1 × P1. The family tree is:

(F0 = P1 × P1)

↓

(dP0 = P2)→ dP1 → dP2 → . . .→ dP8 → (dP9 = 1
2
K3) ,

(3.22)

where an arrow denotes a blowup by P1. The extremal case of k = 9 is usually called

half-K3 since its first Chern class squares to 0. Moreover, one could fathom blowing

up F0 at various generic points, however, at one point blown-up, the result is already

isomorphic (bi-rational) to dP1 and thus the families converge and no new progeny is

produced.

For reference, the non-trivial homology (curve classes) is

H2(dPk;Z) = 〈`, Ei=1,...,k|`2 = 1, ` · Ei = 0, Ei · Ej = −δij〉 ;

H2(F0;Z) = 〈S,E|E2 = S2 = 0, S · E = 1〉 ,
(3.23)

where, clearly, for dPk, ` is the class of the P1 ⊂ P2 and Ei are the (exceptional)
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P1-blowups and for F0, S and E are the two P1s. Furthermore, the Chern classes are

c1(dPk) = 3`−
k∑
i=1

Ei , c2(dPk) = 3 + k and c1(F0) = 2S + 2E , c2(F0) = 4.

The astute reader would recognize H2(dPk;Z) as the root lattice of the exceptional

Lie algebra Ek. This Mckay-esque curiosity was further explored [84], wherein the re-

markable observation that (3.22) resembles the structure of M-theory compactification

was made.

Explicit equations for these surfaces can be written as projective varieties (for ex-

ample, dPk is of degree 9− k), with rather complicated equations. Famous is dP6; this

can be realized as the cubic (degree 9− 6 = 3) surface in P3, a classical object know to

the C19th. To obtain the CY3 cone, one simply de-homogenizes and writes these as

affine equations.

How does one geometrically engineer the gauge theory? It turns out that F0 and

dPk≤3 afford toric description, the details of which we shall shortly visit. In general

one could make use of so-called exceptional collections of bundles to compute the

quiver and superpotential [85–90], which can be further exploited for MSSM model

building [67, 91–93]. One structure of note is that these del Pezzo quivers organize

themselves into “blocks” wherein three groups (blocks) of nodes suffice to exhibit the

symmetry [94–96].

3.3 Toric CY3

We have reserved, as in the compact case in the previous section, the largest dataset

for the last. These are the toric CY3 spaces. Of course, we need to emphasize there are

no compact CY3s which are toric (cf. a nice introduction [97]). As much as orbifolds

reduce geometry to finite group representations, toric geometry reduces the CY3 to

the investigation of the combinatorics of integer cones.

A few points deserve emphasis. Because our CY3 is affine and local, we need not

consider the glueing of cones into fans as is done for the standard compact toric variety

(such as the ambient fourfolds in the KS dataset). Thus our situation is easier and each

of our singular CY3 is described by a single integer convex cone in Z3. The Calabi-Yau

condition implies that the endpoints of the integer vectors be co-planar. Thus we have
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the remarkably simple description for each toric CY3: a (convex) grid of integer points

in Z2.

All SU(3) Abelian orbifolds (including the parent herself) of C3 are toric CY3.

The cone for C3 is generated by the 3 standard basis vectors e1,2,3 in Z3, which, upon

exponentiation by the coordinates, give respectively the three monomial generators

x, y, z. And indeed these are free generators without relations: SpecC[x, y, z] ' C3, as

required. Thus the toric diagram consists of the endpoints of these three standard basis

vectors, which are indeed co-planar and can thus, after appropriate linear fractional

transformation, be chosen to be the three lattice points: {(0, 0), (0, 1), (1, 0)} ⊂ Z2.

As mentioned in §3.1, the Abelian CY3 orbifolds are of the form Zm × Zn. The

toric diagram for these are simply the enlargement of the triangle for C3 into an m×n
triangle, including all interior and boundary lattice points in Z2. The key point is

that any CY3 toric diagram is a (convex) sub-diagram of this for sufficiently large m

and n. In Figure 4 we show the toric diagram of C3/Z2
3 and its various sub-diagrams.

Reducing to a sub-diagram is called partial resolution.

Using Witten’s gauged linear sigma model [98], the technique of obtaining the gauge

theory of the D-brane probe on toric CY3 was developed [99, 100] and algorithmized

[101]. The partial resolution corresponds to Higgsing in the gauge theory and since the

quiver and superpotential for the Abelian orbifold can be constructed readily using the

methods in §3.1, the problem of constructing the general dual gauge theory is reduced

to the combinatorics of systematically reducing nodes from the toric diagram. This

was the state of the art for about a decade, the only hurdle being the exponential

growth-rate in complexity as the number of lattice points increases. Nevertheless, a

wealth of gauge theories were obtained [101–106]. In Figure 4 we also include some

quivers for reference.

Given the cumulating data, a few observations could be made for these toric gauge

theories, some by construction, some by geometrical engineering and some empirical

and remained mysterious for a while. These came to be known as the toric conditions:

• All nodes of the quiver are rank 1, i.e., we have a U(1)k gauge theory ††; this is

††Of course, we can augment the gauge group, by a stack of N branes, to U(N)k, whereby the
fields are promoted from complex numbers to matrices; nevertheless, unlike the orbifold or general del
Pezzo cases, we do not automatically have the freedom of unequal ranks.
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Figure 4: The toric diagrams of some partial resolutions (sub-diagrams) of the Abelian
orbifold C3/Z2

3, as well as the quivers for the engineered 4d N = 1 gauge theories. The
various different phases corresponding to the same geometry are Seiberg duals.

due to the fact that underlying toric varieties are C∗-actions.

• All fields (arrows in the quiver) appear in the superpotential exactly twice with

opposite sign; this is due to the so-called binomial ideal definition of a toric

variety [107].

• Let there be NG gauge group factors, NE fields and NW terms in the superpo-

tential; then, curiously, NG −NE +NW = 0. For example for the famous N = 4

SYM, there NG = 1, NE = 3 and NW = 2.

Furthermore, the attentive reader would see that the mapping from the quiver gauge
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theory to the toric diagram is often many to one, i.e., there are often several physical

theories sharing the same moduli space in the IR. Over the years, this was realized to be

Seiberg duality forN = 1 gauge theory [103,106,108–110]. There are two extraordinary

facts about this enormous subject. The operation on the dual quivers has been known

independently in the mathematical community as mutation [111]. Recently, this duality

move has been realized in yet another fundamental and seemingly unrelated field, that

of computation of on-shell amplitudes in SYM [112].

The situation drastically changed in 2005 when it was realized that all these toric

gauge theories can be completely encoded by a bipartite graph drawn on a torus, or

equivalently a doubly periodic tiling of the plane, known as a dimer model or brane

tiling [113]. Much activity ensued [114–117] and by now it is clear that the dimer

description of quiver gauge theories on toric CY3 is the most conducive and enlight-

ening one. The material has blossomed substantially and the reader is referred to two

excellent reviews [118, 119] as well as a rapid introduction [120]. We remark that the

origin of the topological relation in the third of the toric condition is conformality,

while that of the bipartite-ness is geometrical, viz., the binomial ideal definition of a

toric variety. It is intriguing that from such seemingly technical definition could stem

so much physics.

Once we are in the world of embedded bipartite graphs on Riemann surfaces, it

is inevitable that we touch upon Grothendieck’s dessin d’Enfant, and thence, aspects

of algebraic number theory. Let us end this subsection on toric gauge theories with a

view toward dessins [121–124]. The relation between dessins and elliptic curves (CY1)

as well as K3 surfaces (CY2) have been established over the years, it seems that the

correspondence persists to our present case of dimension 3, and possibly beyond.

3.4 The Plethystic Programme

As a parting topic in our geometry-gauge theory correspondence for affine CY3, let us

discuss the important matter of enumeration of operators. In the spirit of the super-

conformal index [125], extensively studied [126–128], a so-called Plethystic Programme

was introduced to study general gauge theories with supersymmetry, especially those

with non-trivial VMS [129, 130]. The methods thus readily adapt to our case of VMS

being affine CY3 and the point d’appui is an object familiar to classical algebraic
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geometry, viz., the Hilbert series, the calculation of which has also recently been of

algorithmic interest [2, 3, 6].

The programme proceeds with the following algorithm:

• Find the vacuum geometry M of the theory, which is the algebraic variety

parametrized by the vacuum expectation values of the scalars. Compute the

Hilbert series

f(t) =
∞∑
n=0

ant
n , an ∈ Z≥0 (3.24)

of M with respect to some appropriate grading dictated by the natural charges

in the system. This is the generating function for counting the basic single-trace

invariants. For example, the Hilbert series of C3 is f(t) = (1 − t)−3, thus the

Taylor coefficient an = 1
2
(n + 2)(n + 1) is the number of single-trace 1/2-BPS

operators at R-charge n.

• To find the multi-trace objects, i.e., the unordered products of the single-traces,

we take the plethystic exponential (sometimes known as the Euler transform)

g(t) = PE[f(t)] := exp

(
∞∑
n=1

f(tn)− f(0)

n

)
=
∞∏
n=1

(1− tn)−an . (3.25)

• There is an analytic inverse function to PE, which is the plethystic logarithm,

given by

f(t) = PE−1(g(t)) =
∞∑
k=1

µ(k)

k
log(g(tk)) , (3.26)

where µ(k) is the Möbius function

µ(k) :=


0 k has repeated prime factors

1 k = 1

(−1)n k is a product of n distinct primes .

The plethystic logarithm of the Hilbert series gives the geometry of M, i.e.,

PE−1[f(t)] = defining equation of M.

In particular, if M were complete intersection, then PE−1[f(t)] is polynomial.

28



• The Hilbert series of the N -th symmetric product is given by

gN(t;M) = f(t; symN(M)), symN(M) :=MN/SN , (3.27)

where the “grand-canonical” partition function is given by the fugacity-inserted

plethystic exponential of the Hilbert series:

g(ν; t) = PEν [f(t)] :=
∞∏
n=0

(1− ν tn)−an =
∞∑
N=0

gN(t)νN . (3.28)

In the gauge theory, this is considered to be at finite N and the expansion gN(t) =
∞∑
n=0

bnt
n gives the number bn of operators of charge n.

One very practical aspect of the plethystic programme is that it could test certain

geometrical properties of the VMS. Suppose one has the explicit polynomial ideal

describing M, then a wonderful theorem of Stanley [131, 132] dictates that if the

Hilbert series has a palindromic numerator, then M is Calabi-Yau.

4 Vacuum Geometry: Search for New Signatures

From the standpoint of computational algebraic geometry, we have described the vari-

ous popular databases of compact and non-compact CY3 in the previous two sections.

From the perspective of phenomenology, particularly string phenomenology, we can

regard the aforementioned as a “top-down” approach. Indeed, the plethora of CY3 is

part of the vacuum degeneracy problem where an overwhelming number of geometries

seems to be candidates in giving Standard-like low-energy behaviour. Of course, the

lesson is the word “like”: we have seen over the last decade or so that even the mildest

constraint such as having exact particle content already cuts potential candidates by

a factor of billions.

In some sense, string phenomenology, due to the rapid advance in mathematics and

computation, has reached a stage akin to the hunt for exo-planets. While large scale

telescopes operating at a wide range of wave-lengths are sifting the visible universe for

planet similar to our own, the string vacuum project uses modern computing to sift

through Calabi-Yau and other geometries whose compactifications give universes with
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our Standard Model.

Can one take a complementary view? Inspired by the study of vacuum moduli

spaces, wherein a natural (complex) geometry is associated to a (supersymmetric)

gauge theory, and aided by the techniques from the plethystic programme, let us forget

about Calabi-Yau manifolds and about string theory and step back to purely consider

field theory. Surprisingly, we will find that we are compelled to return to the Calabi-

Yau world.

Now, for an arbitrary N = 1 four-dimensional gauge theory, we can find its (clas-

sical) VMS by computing the F-terms and D-terms. With the sophistry of symplectic

geometry, this has been rephrased as the geometric invariant theory (GIT) quotient

of the space of solutions of the F-terms prescribed by the Jacobian of the holomor-

phic superpotential by the gauge fixing conditions provided by the D-terms. From the

point of view of algorithmic geometry [134,137,140], this is an elimination problem in

polynomial ideals:

• INPUT:

1. Superpotential W ({φi}), a polynomial in variables φi=1,...,n, corresponding

to the vacuum expectation values of the scalar fields in the chiral multiplet,

charged as adjoints, bi-fundamentals and more complicated representations

of some product gauge group;

2. Generators of gauge invariants: rj(φi), j = 1, . . . , k polynomials in φi, these

are primitive single-trace operators in the fields. For quiver theories, these

are minimal loops in the directed graph, where composition of arrows are

matrix multiplication according to the ranks of the nodes;

• ALGORITHM:

1. Define the polynomial ring R = C[φi=1,...,n, yj=1,...,k],

2. Consider the ideal I = 〈∂W
∂φi

; yj − rj(φi)〉,

3. Eliminate all variables φi from I ⊂ R, giving the ideal M in terms of yj;

• OUTPUT: M corresponds to the VMS as an affine variety in C[y1, . . . , yk].

This computation is perfectly adapted for a Gröbner basis treatment (since, after-

all, the latter is a polynomial generalization of Gaussian elimination [140]) and many
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freely available software have been tailored [2, 3, 5, 138, 139]; of these we have taken

liberal advantage over the years and have been able to distill much useful information.

The draw-back is that Gröbner basis computations suffer from exponential growth in

memory usage and running time as well as non-parallelizability. Recently [133–135],

it was realized that if all that is needed are basic geometrical data such as dimension,

degree and Hilbert series, then it suffices to use so-called homotopy continuation meth-

ods in numerical algebraic geometry which are, crucially, parallelizable. Again, there

is publicly available software to our ready assistance [6].

4.1 The Geometry of the Standard Model

Thus armed, mathematically and computationally, the most natural question to ask

would be: what is the underlying geometry of the most important gauge theory of

them all, the (supersymmetric) Standard Model ‡‡? The first steps toward answering

this question have been addressed [136,137].

To give an idea of the complexity of the input data, let us consult once more the list

of fields from (2.4): Qi
a,α, the SU(2)L doublet quarks; uia, the SU(2)L singlet up-quarks;

dia, the SU(2)L singlet down-quarks; Liα, the SU(2)L doublet leptons; ei, the SU(2)L

singlet leptons, as well as Hα, the up-Higgs and Hα, the down-Higgs, with indices

i, j, k, l = 1, 2, 3 (Flavour), a, b, c, d = 1, 2, 3 (SU(3)C colour) and α, β, γ, δ = 1, 2

(SU(2)L-indices), giving us a total of 18+9+9+6+3+2+2 = 49 scalar components.

The minimal renormalizable superpotential is

Wminimal = C0
∑
α,β

HαHβε
αβ +

∑
i,j

C1
ij

∑
α,β,a

Qi
a,αu

j
aHβε

αβ

+
∑
i,j

C2
ij

∑
α,β,a

Qi
a,αd

j
aHβε

αβ +
∑
i,j

C3
ije

i
∑
α,β

LjαHβε
αβ . (4.29)

The true bottle-neck, however, is the minimal set of gauge invariants operators;

‡‡An analogue situation for the regular non-SUSY Standard Model has also been considered, wherein
the flavour invariants were studied [143]
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which has nevertheless been known for some time [141]:

Type Explicit Sum Index Number

LH LiαHβε
αβ i = 1, 2, 3 3

HH HαHβε
αβ 1

udd uiad
j
bd
k
c ε
abc i, j = 1, 2, 3; k = 1, . . . , j − 1 9

LLe LiαL
j
βe
kεαβ i, j = 1, 2, 3; k = 1, . . . , j − 1 9

QdL Qia,αd
j
aL

k
βε
αβ i, j, k = 1, 2, 3 27

QuH Qia,αu
j
aHβε

αβ i, j = 1, 2, 3 9

QdH Qia,αd
j
aHβε

αβ i, j = 1, 2, 3 9

LHe LiαHβε
αβej i, j = 1, 2, 3 9

QQQL Qia,βQ
j
b,γQ

k
c,αL

l
δε
abcεβγεαδ

i, j, k, l = 1, 2, 3; i 6= k, j 6= k,

j < i, (i, j, k) 6= (3, 2, 1)

24

QuQd Qia,αu
j
aQ

k
b,βd

l
bε
αβ i, j, k, l = 1, 2, 3 8 1

QuLe Qia,αu
j
aL

k
βe
lεαβ i, j, k, l = 1, 2, 3 81

uude uiau
j
bd
k
c e
lεabc i, j, k, l = 1, 2, 3; j < i 27

QQQH Qia,βQ
j
b,γQ

k
c,αHδε

abcεβγεαδ
i, j, k, l = 1, 2, 3; i 6= k, j 6= k,

j < i, (i, j, k) 6= (3, 2, 1)

8

QuHe Qia,αu
j
aHβe

kεαβ i, j, k = 1, 2, 3 27

dddLL diad
j
bd
k
cL

m
α L

n
βε
abcεijkε

αβ m,n = 1, 2, 3, n < m 3

uuuee uiau
j
bu
k
c e
menεabcεijk m,n = 1, 2, 3, n ≤ m 6

QuQue Qia,αu
j
aQ

k
b,βu

m
b e

nεαβ
i, j, k,m, n = 1, 2, 3;

antisymmetric{(i, j), (k,m)}
108

QQQQu Qia,βQ
j
b,γQ

k
c,αQ

m
f,δu

n
f ε
abcεβγεαδ

i, j, k,m = 1, 2, 3; i 6= m, j 6= m,

j < i, (i, j, k) 6= (3, 2, 1)

72

dddLH diad
j
bd
k
cL

m
α Hβε

abcεijkε
αβ m = 1, 2, 3 3

uudQdH uiau
j
bd
k
cQ

m
f,αd

n
fHβε

abcεαβ i, j, k,m = 1, 2, 3; j < i 81

(QQQ)4LLH (QQQ)αβγ4 Lmα L
n
βHγ m,n = 1, 2, 3, n <= m 6

(QQQ)4LHH (QQQ)αβγ4 Lmα HβHγ m = 1, 2, 3 3

(QQQ)4HHH (QQQ)αβγ4 HαHβHγ 1

(QQQ)4LLLe (QQQ)αβγ4 Lmα L
n
βL

p
γe
q m,n, p, q = 1, 2, 3, n ≤ m, p ≤ n 27

uudQdQd uiau
j
bd
k
cQ

m
f,αd

n
fQ

p
g,βd

q
gε
abcεαβ

i, j, k,m, n, p, q = 1, 2, 3;

j < i, antisymmetric{(m,n), (p, q)}
324

(QQQ)4LLHe (QQQ)αβγ4 Lmα L
n
βHγep m,n, p = 1, 2, 3, n ≤ m 9

(QQQ)4LHHe (QQQ)αβγ4 Lmα HβHγen m,n = 1, 2, 3 9

(QQQ)4HHHe (QQQ)αβγ4 HαHβHγem m = 1, 2, 3 3
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There are 28 types as above, totalling 991 invariants. Thus we need to work over

a polynomial ring in 991 + 49 = 1040 complex variables, a tremendous task indeed.

Clearly, this is beyond any conceivable Gröbner basis analysis. However, with enough

computing power, it could be within the parallelizable scope of numerical algebraic

geometry, and is currently being set up.

As bench-marks, one could enquire about two limits: the EW sector and the pure

QCD sector. Here, we find rather intriguing geometries. Setting the quarks to zero

(and not worrying about anomaly for the moment), we find the VMS is three complex

dimensional which explicitly is an affine cone over a classical object, viz., the Veronese

surface. This is a curious appearance of this geometry [136,137].

Now, for the quark sector, the situation is truly remarkable. For pure sQCD with

Nf flavours and Nc colours, and no superpotential, it is a standard fact that the VMS is

of dimension N2
f for Nf < Nc and 2NcNf−(N2

c −1) for Nf ≥ Nc. With our technology,

we can actually find out what it is as an affine algebraic variety; it transpires that it

is [142,144,145] Calabi-Yau! Somehow, “Calabi-Yau-ness” is built into the very fabric

of gauge theory.

With this tantalizing observation let us now take pause. We have amused ourselves

with a promenade in the land of Calabi-Yau threefold geometries, both the compact

and the non-compact cases, and have witnessed that over the intervening years since

the 1990’s, the “bestiary” of Calabi-Yau manifolds [15] has grown to a rich and diverse

kingdom. Central to this explosion of information has been the rapid development

of algorithmic geometry, powerful computing, and the ever-increasing potency of the

cross-fertilization between mathematics and physics. These three decades have fed us

with a cornucopia of new data, new physics and new mathematics, but our feast on

Calabi-Yau geometries has only just begun.

§—E—§
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