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Modular Subgroups, Dessins d’Enfants and Elliptic K3 Surfaces

Yang-Hui He, John McKay and James Read

ABSTRACT

We consider the 33 conjugacy classes of genus zero, torsion-free modular subgroups, computing
ramification data and Grothendieck’s dessins d’enfants. In the particular case of the index 36
subgroups, the corresponding Calabi-Yau threefolds are identified, in analogy with the index 24
cases being associated with K3 surfaces. In a parallel vein, we study the 112 semi-stable elliptic
fibrations over P! as extremal K3 surfaces with six singular fibres. In each case, a representative
of the corresponding class of subgroups is identified by specifying a generating set for that
representative.

1. Introduction

The congruence subgroups of the modular group I' = PSL(2;Z) play a key role in many
branches of modern mathematics. Whereas the upper half of the complex plane H, when
adjoining cusps on the real line, can quotient I' to give a Riemann sphere, it is an interesting
question as for which subgroups a similar sphere arises. Such a subgroup is called genus zero.
Inspired by Moonshine, the authors of looked into the classification problem of congruence,
genus zero, torsion free subgroups of the modular group and found these to be rather rare:
there are only 33 conjugacy classes of these subgroups, of finite index p € {6,12, 24, 36,48, 60}.

Therefrom emerge many remarkable connections to geometry, graph theory, number theory
and physics . First, we naturally extend the modular group action to a so-called
modular surface for each of the groups whose Euler number is precisely p. These turn out to
be elliptically fibred over the genus zero P! formed by quotienting H by the group and are, in
fact, semi-stable in the sense that all singular fibres are of Kodaira type I,,. Moreover, there
are exactly h = & + 2 such singular fibres, and the tuple {n1,...,n} is called the cusp widths.

Next, one can construct the Schreier coset graphs for these groups because they have finite
index. They turn out to be finite trivalent graphs of non-trivial topology. We can interpret
them as clean cubic dessin d’enfants in the sense of Grothendieck. Focus has been made on
the index p = 24 cases because they are K3 surfaces and on the u = 12 cases because they
have interesting associated modular forms . One can check that the Belyi rational maps
for the dessins are precisely the elliptic j-invariants of the Weierstral models for the modular
surfaces with base P! and we will complete this story in the present paper.

In a slightly different but obviously related direction, the classification of extremal, semi-
elliptic K3 surfaces with 6 singular fibres was wonderfully performed by Miranda and Persson in
, and the associated dessins nicely compiled in . It is therefore a natural question whether
they can be affiliated with subgroups of the modular group, not necessarily congruence. Looking
at these dessins, one see them to be trivalent and clean, and since these can be interpreted as
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the Schreier coset graphs of a subgroup of the modular group, the answer must be affirmative.
We shall undertake this task, using the dessins to find the generating set of a representative of
the corresponding conjugacy class of subgroups in each case.

The organization of the paper is as follows. In we introduce the 33 conjugacy classes
of congruence, torsion-free, genus zero subgroups of the modular group, especially their j-
invariants, dessins and Schreier coset graphs. We will see that as the index 24 cases are attached
to K3 surfaces, so too can the index 36 cases be associated to Calabi-Yau threefolds. Then, in
we turn to the 112 extremal semi-stable K3 surfaces, studying their dessins and interpreting
them as coset graphs of some conjugacy class of index 24 modular subgroups. Via a discussion
of the elliptic j-invariants as Belyi maps and the so-called cartographic groups, we find the
generating set for a representative of the class of subgroups in each case. Finally, we conclude
with some outlook and prospects.

2. Torsion-Free, Genus Zero Congruence Subgroups

In this section, we first recall some standard notation regarding the modular group I" and its
congruence subgroups. We focus specifically on the conjugacy classes of the torsion-free, genus
zero, congruence subgroups; there are 33 such classes [10|. In each case, we will compute the
ramification data, and draw the dessin d’enfant which encodes this data. The cases of index
24 and 36 are particularly interesting: the former can be associated to K3 surfaces and we will
demonstrate, using the j-invariants, that each of the index 36 subgroups can be identified with
a specific Calabi-Yau threefold.

2.1. The Modular Group and Congruence Subgroups

First, the central object of our study is the modular group

'=T(1)=PSL(2;Z) =SL(2;Z)/ {1} . (2.1)

This is the group of linear fractional transformations z — ijr“g, with a,b,¢,d € Z and ad — bc =
1. It is generated by the transformations 7" and S defined by:

Tr=7+1 , Srt=-1/7. (2.2)

One presentation of I is <S, T|S? = (ST)3 =1 >, and we will later discuss the presentations of
certain modular subgroups. 2 x 2 matrices for S and T are as follows:

T:<(1) 1) , S:<(1) _01>. (2.3)

Letting x = S and y = ST denote the elements of order 2 and 3 respectively, we see that I’
is the free product of the cyclic groups Cy = <x|x2 = I> and C3 = <y|y3 = I>. It follows that
2 x 2 matrices for z and y are:

x = (? 01> , Y= (? 11> . (2.4)

Cayley Graphs: Given the free product structure of I'; we see that its Cayley graph is an
infinite free trivalent tree, but with each node replaced by an oriented triangle. Now, for any
finite index subgroup H of I', we can quotient the Cayley graph to arrive at a finite cubic graph
by associating nodes to right cosets and edges between cosets which are related by action of a
group element. In other words, this graph encodes the permutation representation of I' acting

on the right cosets of H. This is called a Schreier coset graph and will occupy a central role in
our ensuing discussions.
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Congruence Subgroups:  The most important subgroups of I' are the so-called congruence
subgroups, defined by having the entries in the generating matrices S and T obeying some
modular arithmetic. Some conjugacy classes of congruence subgroups of particular note are
the following;:

— Principal congruence subgroups:
I'(m):={A€SL(2;Z), A=+I mod m}/{£I};

— Congruence subgroups of level m: subgroups of I' containing I" (m) but not any T (n) for
n < m;
Unipotent matrices:

Ty (m) = {A €SL2Z), A=+ ((1) ’1)) mod m}/{i]};

Upper triangular matrices:

Ty (m) ::{(‘; Z) er, czOmodm}/{:l:I}.

In [7], our attention is drawn to the conjugacy classes of a particular family of subgroups of
I': the so-called genus zero, torsion-free congruence subgroups. By torsion-free we mean that
the subgroup contains no element of finite order other than the identity. To explain genus zero,
first recall that the modular group acts on the upper half-plane H := {r € C, Im () > 0}
by linear fractional transformations z — ‘Zjis ‘H gives rise to a compactification H* when
adjoining cusps, which are points on R U co fixed under some parabolic element (i.e. an element
A €T not equal to the identity and for which Tr (A) = 2). The quotient H*/T" is a compact
Riemann surface of genus 0, i.e. a sphere. It turns out that with the addition of appropriate
cusp points, the extended upper half plane H* factored by various congruence subgroups will
also be compact Riemann surfaces, possibly of higher genus. Such a Riemann surface, as a
complex algebraic variety, is called a modular curve. The genus of a subgroup of the modular
group is the genus of the modular curve produced in this way.

Using the Riemann-Hurwitz theorem, the genus of the modular curve can be shown to be:

1% Vg V3 Voo
= ]_ —————— _—
ge= it T T3 20
where g is the index of the subgroup, vs, v3 are the number of inequivalent elliptic points of
order 2 and 3 respectively, and v, is the number of inequivalent cusp points.

Our focus will be on genus zero, torsion-free subgroups, thus we have that

(2.5)

gc=ve=v3=0, (2.6)

whence, by (2.5]), we have a further constraint that u = 6vs, — 12, so that the index of all our
subgroups of concern is a multiple of 6. This means that the index of the subgroup in question
also constrains v, so that for a subgroup of index 6n, we have v, = n + 2.

2.1.1. The 33 Conjugacy Classes of Subgroups As classified in [10], the conjugacy classes
of the genus zero torsion-free congruence subgroups of the modular group are very rare. There
are only 33 of them:

I'(n) with n = 2,3,4,5;

— Ty (n) with n = 4,6,8,9,12, 16, 18;

— T’y (n) with n =5,7,8,9,10, 12;

The intersections T'g (a) NT (b) for {a,b} = {4,2},{3,2},{8,2},{2,3},{25,5}; T1 (8) N
I'(2) and T'g (16) N Ty (8);
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— The congruence subgroups

m 1+ﬂa dﬁ
.m o o _
F(madaG,X).—{:I:< %’y 1+$5),7_amodx}

with (m,d,e,x) = (8,2,1,2), (12,2,1,2), (16,1,2,2), (27,1,3,3), (8,4,1,2), (9,3,1,3),
(16,2,2,2), (24,1,2,2), (32,1,4,2).
For reference, in Table 1 we organize these 33 conjugacy classes of subgroups by index, and
we will shortly explain the notation of the ramification data.

Index Group Ramification Index Group Ramification
32 312
6 T (2) 23 36 T (2) NI (3) 218
23 34 6%
34 312
6 To (4) 23 36 Ty (9) 218
12,4 13,32,93
3% 3T
12 T (3) 26 36 r(9;3,1,3) 218
34 36,92
34 312
12 o (4)NI(2) 26 36 ' (10) 218
22 42 12,22 52,102
34 312
12 I (5) 26 36 To (18) 218
12, 52 13,22 9,18
34 312
12 Ty (6) 26 36 I (27;27,3,3) 218
1,2,3,6 19,3, 27
34 31()
12 T (8) 26 48 I (8)NT(2) 224
12,2,8 24 42 g4
34 31b
12 Ty (9) 26 48 r(;2,1,2) 224
12,9 48 82
3 31()
24 I (4) 212 48 I (12) 224
45 12,2,32,42 6,122
3 31()
24 To(3)NT(2) 212 48 I (12;6,1,2) 224
23 63 2% 4,6% 12
3 3Ib
24 Iy (7) 212 48 To (16) N Ty (8) 224
13,73 14,22, 42 162
3 31()
24 Ty (8) 212 48 I (16;8,2,2) 224
12,2,4, 82 28162
3 31b
24 To(8) NI (2) 212 48 " (24;24,2,2) 224
24 82 14,3%,8,24
3 31()
24 I (8;4,1,2) 212 48 I (32;32,4,2) 224
2%,4%,8 18.8,32
3 3 O
24 To (12) 212 60 r(5) 230
12,32,4,12 512
3 320
24 T (16) 212 60 To (25) N Ty (5) 230
14,4, 16 110 252
3
24 I (16;16,2,2) 212
12,2316

TABLE 1. The 33 conjugacy classes of genus zero, torsion free, congruence subgroups of the
modular group, organized by index (which can be 6, 12, 24, 36, 48 or 60). The ramification
data for each group are defined in ([2.8]).
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2.2. Modular Surfaces, Ramification Data and j-Functions

As detailed in |7], to each torsion-free, genus zero modular subgroup corresponds a distinct
Shioda modular surface [17]. We briefly recall how this is constructed [19]. First, we extend
the action of any subgroup G of I' on H to an action

(2.7)

%x@au,z)ﬁ(w,m’””) ,

ct+d

Z € G and (m,n) € Z2. Next, the quotient of H x C by the above automorphism
defines a surface equipped with a morphism to the modular curve C arising from the quotient of
H by 7 — 7. The fiber over the image of this morphism to the modular curve is generically an
elliptic curve corresponding to the lattice Z @ Z7. What we have therefore is a complex surface
which is an elliptic fibration over the modular curve associated to G. This is the modular
surface.

In our present case, because the base modular curves are genus zero (being the Riemann
sphere P,), our modular surfaces will be elliptic fibrations over P{. It turns out the Euler
number of this surface is the index p of the group H. Hence, the astute reader will recognize
that the index 24 groups should give us K3 surfaces, in particular elliptic K3 surfaces (we
remark that I'1(7), in particular, was realized by Tate to be related to a K3 surface). We will
return to this point later, especially to the observation that index 36 groups, by analogy, give
Calabi-Yau threefolds.

Furthermore, the elliptic modular surface is semi-stable in the sense that all the singular
fibres are of Kodaira type I,; the set of integers (n1,na,...,nx) denoting the indices of the
singular fibres are the cusp widths. For simplicity, we arrange this set in increasing order and
group repeated entries by the short-hand n;* with a; being the multiplicity. Now, we are ready
to introduce the concept of ramification data associated with a subgroup (and its modular
surface); this is the following triplet of integer vectors:

for v = ((CL

3V V' = number of nodes in the Schreier coset graph
2F , E = number of edges (2.8)
nit,ng?, ..., et {n}'} = cusp widths of the elliptic modular surface

Note that the 3 reminds us that all nodes are trivalent and 2, that each edge links two nodes.
We have marked this ramification data in Table 1.

Indeed, given an elliptic fibration, we can write down a Weierstrafl equation, from which
we can then extract a (Klein) j-function. Because of the fibration over P}, the j-function will
explicitly depend on the projective coordinate of this base Riemann sphere and can thus be
treated as a rational map from the base P{, to its range P'. All of these j-functions are given
in [10] and certain simplifications, in |7, [19]. Generalizing [7} 11], we find the nice fact that

PROPOSITION 2.1. The j-function j (t € P¢,) — P! is ramified at only (0,1, 00).

In other words, the only points ¢ € P{, such that < j (¢) [; = 0 are such that j(f) = 0,1 or co.
Moreover, the order of vanishing of the Taylor series at ¢ is the ramification index (we remark
that depending on convention, we may need to appropriately normalize to the j-function by a
factor of 1728).

Specifically, for our 33 conjugacy classes of subgroups, we find that for a group of index 6n,
there are 2n pre-images of 0 and the ramification indices of all these marked points is 3; there
are 3n pre-images of 1 and ramification indices of all these marked points is 2; there are n + 2
pre-images of co, the ramification indices of which are given as the cusp widths in Table 1.
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2.3. Dessins d’Enfants: j-Functions as Belyi Maps

Maps to P! ramified only at (0, 1, 00) are called Belyi maps and can be represented graphically

as {Gro(t})lfndieck’s dessins d’enfants. To draw such a dessin is simple: given ramification data
o (2

{r1 (i)} } specifying the ramification indices at the various pre-images of 0, 1 and infinity,

{reo (1)}
one marks one white node for the i-th pre-image of 0, with r (i) edges emanating therefrom;
similarly, one marks one black node for the j-th pre-image of 1, with r1 (j) edges. Thus we have
a bipartite graph embedded on a Riemann sphere, with W white nodes and B black nodes.
Now we connect the nodes with the edges, joining only black with white, such that we have I
faces, each being a polygon with 2r. (k) sides. Dessins for all the 33 torsion-free, genus zero
modular subgroups are presented in

The Schreier coset graphs for the 33 conjugacy classes of subgroups are discussed and drawn
explicitly in [10]. In our case, let I'"* be the torsion-free, genus zero modular subgroup in
question. The coset graphs display the permutation action of generators x and y with the
relations #2 = y> = I on the coset space of PSL(2,Z) = |Ji_, I'*z; where p is the index of I'*
in PSL(2,7Z). These graphs have u nodes, where p € {6,12,24,36,48,60} is the index of the
modular subgroup in question. The graphs are built from simple edges (x) and triangles (y)
which are assumed to be positively oriented. Reversal of orientation corresponds to applying
the automorphism of the modular group that inverts each of the two generators = and y.

Interestingly, there is a direct connection between the Schreier coset graph and the dessins
d’enfant for each modular subgroup [18|. This connection can be stated as follows:

PROPOSITION 2.2. The dessins can be constructed from the Schreier coset graphs by
replacing each positively oriented triangle with a white node, and inserting a black node into
every edge. Equivalently, the Schreier coset graphs can be constructed from the dessins by
replacing each white node with a positively oriented triangle, and removing the black node
from every edge.

The process of inserting into an edge a bivalent node of a different colouring is standard
in the study of dessins d’enfants; this gives rise to so-called clean dessins. The contraction of
triangles into a node is a less obvious one and should correspond to taking a cube root of the
polynomial factors in the Belyi map.

2.3.1. Dessins for the 33 Conjugacy Classes of Subgroups In this section, we draw the
dessins d’enfants for all 33 conjugacy classes of genus zero, torsion-free congruence subgroups,
using the ramification data in Table 1. Each dessin is labelled by its corresponding conjugacy
class of modular subgroups, and the unique cusp widths for that class. The reader can visually
confirm the aforementioned correspondence between these dessins and the Schreier coset graphs
constructed in [10].
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I (4)
4,4,4,4,4,4
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(9;3,1,

9,9,3,3,3,3,

—

I'(8;2,1,2)
8,8,4,4,4,4,4,4,4,4
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5,5,5,5,5,5,5.5,5,5,5,5
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2.4. Index 36 Subgroups and Calabi-Yau Threefolds

Since all the index 24 torsion-free, genus zero congruence subgroups have been associated in
[10, (19} 2] to K3 surfaces - in particular elliptically fibred K3 surfaces over P! - it is natural to
enquire whether the index 36 groups can be associated with Calabi-Yau threefolds. We shall
see that this is indeed the case, and the threefolds are a simple generalization of the K3 case,
being now elliptic fibrations over P2.

First, let us recall some standard facts about elliptic Calabi-Yau threefolds. The classification
of base surfaces B over which an elliptic fibration is a smooth Calabi-Yau threefold was
performed in [12| [13]: they can be either Hirzebruch surfaces and their blowups; del Pezzo
surfaces; or the Enriques surface. In particular, the local Weierstral model looks like:

vy =2+ f(z)e+g(z) CPL, (2.9)
with
Feyer ((K5H)) o goer (k™). (2.10)

This is an elliptic curve in a P? bundle over B, whose coordinates are z;; the (z,y) are
affine coordinates on the P2. The functions f and g are homogeneous polynomials in the
base coordinates. Specifically, they should be considered as sections I' of appropriate tensor
powers of the anti-canonical bundle K 51 of B: for f, it is the fourth power and for g, the sixth.
A nice summary discussion of this can be found, for example, in §3 of [12].

The j-invariant of a Weierstrafl model is given by:

Af (2)° .
Af ()" — 279 (2)°

Here, we have marked explicitly the dependence on the base coordinates z;. In particular, we

j(zi) =1728- (2.11)

can see that both the numerator and denominator are sections of (Kgl)

Let us return to the index 36 torsion-free, genus zero congruence subgroups. As mentioned,
the j-invariants for these are computed and tabulated in [10]; these are rational functions in
terms of the principal modulus ¢ and we interpreted these as Belyi maps in our above discussions
to construct the dessins. From j we can extract the corresponding polynomials f (¢) and g (¢)
for each subgroup. We find that the f (¢) will be a degree 12 and ¢ (¢), degree 18, polynomial
in ¢. In general, for an index u subgroup (recall again that u € {6,12,24, 36, 48,60} for genus
zero, torsion-free congruence subgroups), the degrees of f and g are /3 and p/2.

Finally, let us recall a standard fact about P? to complete the story. The anti-canonical
bundle of the projective plane is KIPTQ1 = Opz (3), therefore sections of this would be degree 3
homogeneous polynomials in the coordinates. Therefore, if we choose our base B to be P? with
affine coordinates z1, z9, then f(z;) will be a degree 3 x 4 =12 and g (z;) a degree 3 x 6 = 18
homogeneous polynomial in z1,z9. These are the right degrees to match those of f (¢) and
g (t) for the index 36 case! Therefore, setting a linear change of basis (normalizing the leading
coefficient)

z1=t+a , 22=1t+Db a,beC (2.12)

and substituting into appropriately chosen f (z;) and g (z;) should give the required f (¢) and
g (t). Geometrically, this amounts to finding a hyper-plane P! defined by inside the base
B = P? on which our elliptically fibred Calabi-Yau threefold restricts to the required modular
surface for index 36.

The analogous situation for the index 24 case is clear. There, we have K3 surfaces which
are elliptic fibrations over a base P': we know that the anti-canonical bundle is Kp,' = Ops (2)
whose sections are thus quadratics in the projective coordinate t. Hence, f (¢) and g (t) should
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be of degree 2 x 4 =8 and 2 x 6 = 12 , which are indeed in accord with the aforementioned
fact that the degrees should be respectively 1/3 and p/2 with g = 24 here.

2.4.1. Example: Ty (2) NT (3) Let us see how the above setup works for the specific groups
in detail. The j-invariant for the group I'y (2) N T (3) is [10]:

() = (83 +4) (83 + 612 4 4) (8 — 665 + 364 + 83 — 2412 + 16))° (213
= 5 (t+1)3 2 —t+ 1)t —2)° (12 + 2t +4)° '

Therefore, solving for ((t3 + 4) (t3 + 612 + 4) (t6 — 6t° + 36t* + 83 — 24¢% + 16))3 =1728 -4 -
@ and 9 (t+1)° (12—t +1)° (1 —2)° (12 + 2t +4)° = 4f (1) — 27¢ (1)? gives:

1
F) =5 (t'? + 232t 4 960t° + 256> + 256)

g(t) = 316 (¢'® — 516t'° — 12072t — 24640t7 — 30720t° + 6144¢> + 4096)  (2.14)

which we see to be polynomials of the correct degree. Note here that while f = 0 is solvable
and has relatively simple roots, the corresponding equation for g is not solvable.
Now, the most general form of degree 12 and 18 polynomials in two variables are:

12 18
[z, 22) = Zcﬂizézﬂ o 9(z,22) = Zcizizzlg_z ; (2.15)
i=0 i=0

with complex coefficients ¢; and d;. We can readily find the coefficients ¢; and d; as well as
constants a, b which allow (2.15)) to be transformed into the form of (2.14)). Setting, for example,
c1 =d; =0, we find that a = 1, b = —2, and that:

f(z1,22) = W (256212 — 2562527 + 9602527 — 2322923 + 23?) ;
9(21,22) = arreas (—409621% + 614423 21° 4 3072025212 — 246402927 + 1207223227 z 516)2
2.16
We can readily find, using the same technique as above, the explicit Weierstrafl equations,
albeit with very complicated algebraic coefficients, of the remaining index 36 groups, as we had
done for the index 24 cases in [7]. Though the complexity of the numerical expressions makes
the presentation unworthwhile, it should be emphasized that all the coefficient we find for the
Weierstrafl models must be algebraic numbers. This is in accord with the deep theorem of Belyi
that a rational map from a Riemann surface to P! is Belyi (i.e., ramified only on 0,1, 00) if
and only if there exists an algebraic equation for the Riemann surface over Q.

3. Semi-Stable Elliptic K3 Surfaces

We have mentioned above that the nine conjugacy classes of index 24 subgroups are special
in the sense that they correspond to semi-stable elliptic K3 surfaces. Exploring the physics of
these was the subject of |7]. In this section, we will see how they belong to another important
classification scheme which intersects nicely with our above discussion of congruence subgroups.

In [11], the authors study semi-stable elliptic fibrations over P! of K3 surfaces with six
singular fibres. From the cusp widths (or equivalently the ramification data at oo) presented
in Table 1, we see that our subgroups all have six cusps and hence the index 24 cases belong
to this class. In their paper, the authors give a complete list of possible fibre types for such
fibrations - there are 112 such cases. Our nine conjugacy classes of index 24 subgroups of I'
discussed in the previous section correspond to nine of these 112 surfaces.

Remarkably, the elliptic j-invariants for all the 112 surfaces also have the property that, as
rational maps from P! to P!, they are Belyi. Furthermore, all the ramification indices at 0 are
3, and all the ramification indices at 1 are 2; that is, we have trivalent dessins! In |2], the dessins

)
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d’enfants for all 112 cases are constructed, along with explicit j-functions with coefficients in Q

For reference, we include the full list, emphasizing their clean, trivalent nature, in Appendix
. Those with coefficients in Q \ Q have yet to be computed, due to the complexity of finding
exact roots to polynomials in high degree. This is thus an interesting open challenge. Now,
because any finite trivalent graph with nodes replaced by oriented triangles is the Schreier
coset graph of a finite index subgroup of the modular group, one naturally wonders whether
we could attach a conjugacy class of subgroups to each of these dessins. Of course, only 9 of
these will be congruence (they are all genus zero because the K3 surfaces are all fibred over
P1), so what general subgroups can one encounter?

We will see that just as those nine surfaces correspond to these congruence subgroups of I'
(up to modular conjugacy), it turns out that all the 112 surfaces will correspond to some (not
necessarily congruence) subgroup of T'. In this section we shall elaborate on the connections
between these surfaces and the subgroups of I'. The structure of this section is as follows: first,
we discuss the permutation representation of I' on the right cosets of each modular subgroup,
and show how this defines a transitive permutation group known as a cartographic group. We
then compute a generating set for a representative of the conjugacy class of modular subgroups
corresponding to each of the 112 semi-stable elliptic fibrations over P! of K3 surfaces with six
singular fibres.

3.1. Permutation Representations and Cartographic Groups

Returning to our original discussion of the modular group in let 09 and o7 denote the
permutations induced by the respective actions of S and ST on the cosets of each subgroup.
We can find a third permutation o, by imposing the following condition, thereby constructing
a permutation triple:

0001 0o =1. (3.1)

The permutations oy, 01 and o4 give the permutation representations of I' on the right
cosets of each modular subgroup in question. From the point of view of the dessins, there is
an equivalent representation in terms of permutation triples |20} (15, [9]. Let d be the number
of edges, labeled from 1 to d, and write elements of the symmetric group on d elements in the
standard cycle notation. Now, at the i-th black node write the labels for the incident edges
clockwise, forming the cycle B;; likewise, at the j-th white node write the labels for the incident
edges counter-clockwise, forming the cycle W;. Then, o is simply [[; B; while o1 = [[; W;.
Remarkably, 0, as determined by will have as many cycle products as there are faces,
such that twice the length of each cycle is the number of edges of the corresponding face.
Conversely, a unique dessin and Belyi map of degree d is thus determined.

As elements of the symmetric group, o¢ and o7 can be easily computed from the Schreier
coset graphs in [10] by following the procedure elaborated in [16], i.e., by noting that the
doubly directed edges represent an element x of order 2, while the positively oriented triangles
represent an element y of order 3. Since the graphs are connected, the group generated by z
and y is transitive on the vertices. Clearly, og and o7 tell us which vertex of the coset graph
is sent to which, i.e. which coset of the modular subgroup in question is sent to which by the
action of I' on the right cosets of this subgroup.

To express the cycle decomposition of the permutation o, we choose a vertex and apply =,
then y, i.e., we take an edge (doubly oriented) followed by a side of a triangle (always in the
positive orientation), until we return back to the original vertex. The length of this circuit gives
the length of a cycle in 0,,. In this way, we can construct the permutation decompositions oy,
o1 and o4, for every dessin under consideration. In turn, any two of these three permutation
decompositions define a transitive permutation group. Of course, we only need two of these
three permutations since the third will simply be the inverse of the product of the other two
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by (3.1]), and we will henceforth focus on o¢ and . These permutation groups are known as
cartographic groups, and are discussed in e.g. [20].

3.1.1. Cartographic Groups for the 112 K3 Surfaces A priori, one would imagine that
one could obtain the semi-stable elliptic K3 surfaces with 6 singular (I-type) singularities by
partitioning 24 into 6 parts. There are 199 possibilities and [11] showed that only 112 are
allowed. In general, one would try to partition 24 into at least 6 parts - the fact that there are
at least 6 singular fibres is a restriction coming from the geometry of K3 surfaces. In our case,
there are exactly 6 singular fibres, making these surfaces extremal. These surfaces are listed in
[11].

We will thus distinguish our 112 extremal K3 surfaces by a 6-tuple partition (Iy,..., Is) of
24; these will correspond to the I-type singular fibres as well as the ramification data (i.e.,
cusp widths) at infinity. A table of the cartographic groups for the partitions in [11] is given
below. Now, dessins have intriguing number theoretic properties and the field of definition of
(the coefficients in) the corresponding j-function as a Belyi map is an important quantity. For
reference, we include the number field in brackets next to the partition. For simplicity, where
we write (v/—3), for example, we mean the field is Q(v/—3). Where it says e.g. “cubic”, we
mean it is Q extended by the root of some cubic polynomial.

We note that the partitions do not necessarily correspond uniquely to a dessin - when they
do, the j-function is always defined over Q. Where a single partition has multiple dessins defined
over different number fields, we have for completeness computed the cartographic groups for
all such cases, indicating explicitly the field as in [2]. We also keep the order of the entries the
same as the order of the dessins in [2] and in Appendix

To identify these cartographic groups, we use the corresponding dessins given in [2] to
construct the Schreier coset graph in each case, following the procedure detailed in
We then read the permutations oy and o7 directly off these graphs. As mentioned, together
these permutations define a transitive permutation group, which is the cartographic group in
question. Extensive use will be made of the computer software GAP [6]. The decomposition
of each group in terms of better known groups can be identified using commands such as
StructureDescription() and TransitiveIdentification() and it is these decompositions
which are given in the ensuing tableﬂ We follow [5] and use the following group notation: A
(alternating), AL (affine linear), C (cyclic), E (elementary), S (symmetric). Direct products are
denoted by ‘x’, split extensions by ¢:’, and wreath products by ‘. In addition, we use L (n) to
denote groups derived from linear groups as defined in Table 2 [5]. A group name followed by
a number n in round brackets ‘(n)’ denotes that the group operates transitively on n points,
or respectively that a point stabilizer has index n in the group [5].

TWe thank Alexander Hulpke for helping to identify many of the decompositions.
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Name Size Type
L (6) 60 PSL(2,5) = A5 (6)
L(7) 168 PSL(3,2)
L(8) 168 PSL(2,7)
L(9) 504 PSL(2,8)
L (10) 360 PSL(2,9) = A6 (10)
L(11) 660 PSL(2,11)(11)
L(12) 660 PSL(2,11)
L(13) 5616 PSL(3,3)
L(14) 1092 PSL(2,13)
L(15) 20160 PSL(4,2) = As (15)

TABLE 2. The permutation groups L (n)

Where no easy decomposition is available, we have simply given the cartographic group’s
index in the GAP library of transitive permutation groups (here a number of the form t24n...).
The number after ‘t’ in this index gives the degree of the transitive permutation group, while the
number after the ‘n’ gives the location that group in the GAP library of transitive permutation

groups for that particular group degree.

Partition (K3 Surface)

Cartographic Group

Cartographic Group Order

| | | |
oo | u |
e | [ |
oo | [ |
[ voie | [ aro |
EETTS u |
BTN u |
] 16,4,1,1,1,1 (Q) H (((Cg x C3) : Cg) : C3) : O H 28 .3 \
’ 16,3,2,1,1,1 (Q) H £24n24710 = 212 : £18n762 H 217 . 37 ‘
oo | u |
[ esriiio | [ |
’ 16,2,2,2,1,1 (Q) H ((Cg x Cg) : C3) : Cy H 273 \
oo | [ |
e ] u |
T u |
oo | [ rar |
’ 15,3,3,1,1,1 (Q) H Agt Ay H 214 .39 . 54 ‘
[ voreio | [ e |
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12,5,2,2,2,1 (Q)

(Sg 1S3) N Agy

221 .37 .53 .73

12,4,4,2,1,1 (Q)

£24n21388 = 212§ t18n97

215 . 33

12,4,3,3,1,1 (Q)

Sgq X Ay

41.41/2

12,4,3,3,1,1 (Q)

(PSL (2,5) ¢ Ay) : Co

211 g5 . 54

12,4,3,2,2,1 (Q)

£24n23732 = 212, t18n346

215 . 35

12,4,3,2,2,1 (v/=3)

(Sg 2 53) N Agq

221 .37 .53 .73

’ 15,3,2,2,1,1 (v/—15) H o H 241/2 ‘
‘ 15,3,2,2,1,1 (/—=15) H Agy H 24!/2 ‘
’ 14,6,1,1,1,1 (v/=3) H Aoy H 241/2 ‘
’ 14,6,1,1,1,1 (v/=3) H Aoy H 241/2 ‘
‘ 14,5,2,1,1,1 (Q) H Ag 1S3 H 219 .37 .53 .73 ‘
’ 14,5,2,1,1,1 (cubic) H Aoy H 241/2 ‘
’ 14,5,2,1,1,1 (cubic) H o H 241/2 ‘
‘ 14,5,2,1,1,1 (cubic) H Aoy H 241/2 ‘
‘ 14,4,3,1,1,1 (Q) H Aoy H 241/2 ‘
‘ 14,4,2,2,1,1 (vV/=7) H (Bg : L (7))t S3 = ASL(3,2) 1 Sg H 219 .34 .73 ‘
‘ 14,4,2,2,1,1 (V=7) H (Bg : L (7))t S3 = ASL (3,2) S3 H 219 .34 .73 ‘
‘ 14,3,3,2,1,1 (Q) H L (8)1S3 = PSL(2,7) 153 H 210 .34 .73 ‘
‘ 14,3,3,2,1,1 (Q) H A24 H 241/2 ‘
’ 14,3,2,2,2,1 (Q) H Ag 1S3 H 219 .37 .53 .73 ‘
’ 13,7,1,1,1,1 (Q) H Aoy H 241/2 ‘
‘ 13,6,2,1,1,1 (v/=3) H Aoy H 24!1/2 ‘
’ 13,6,2,1,1,1 (v/=3) H Aoy H 241/2 ‘
’ 13,5,3,1,1,1 (Q) H Aoy H 241/2 ‘
‘ 13,5,2,2,1,1 (V635) H Agy H 241/2 ‘
‘ 13,5,2,2,1,1 (V65) H Aoy H 241/2 ‘
‘ 13,4,3,2,1,1 (Q) H Aoy H 241/2 ‘
‘ 13,3,3,2,2,1 (Q) H Aoy H 241/2 ‘
‘ 12,7,2,1,1,1 (vV/=3) H Aoy H 241/2 ‘
‘ 12,7,2,1,1,1 (/=3) H Aoy H 24!/2 ‘
’ 12,6,3,1,1,1 (Q) H Agt Ay H 214 .39 .54 ‘
’ 12,6,2,2,1,1 (Q) H ©24n12260 H 211 . 32 ‘
‘ 12,6,2,2,1,1 (Q) H (L (8)153) N Agy H 212 .34 .73 ‘
’ 12,5,3,2,1,1 (quartic) H Aoy H 241/2 ‘
’ 12,5,3,2,1,1 (quartic) H Aoy H 241/2 ‘
‘ 12,5,3,2,1,1 (quartic) H Aoy H 241/2 ‘
‘ 12,5,3,2,1,1 (quartic) H Aoy H 241/2 ‘
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

12,4,3,2,2,1 (vV/=3) H (Sg 1 S3) N Agy H 221 .37 .53 .73
12,3,3,3,2,1 (Q) H (Ag 1 Ay) : Co H 215 .39 . 54
12,3,3,2,2,2 (Q) H £24n12261 H 211 . 32
11,9,1,1,1,1 (Q) H Agy H 241/2

11,8,2,1,1,1 (cubic) H Aoy H 241/2




Page 16 of [43]

YANG-HUI HE, JOHN MCKAY AND JAMES READ

’ 11,8,2,1,1,1 (cubic) H Agy H 241/2 ‘
‘ 11,8,2,1,1,1 (cubic) H Aoy H 241/2 ‘
’ 11,7,3,1,1,1 (cubic) H Aoy H 241/2 ‘
’ 11,7,3,1,1,1 (cubic) H Agy H 241/2 ‘
‘ 11,7,3,1,1,1 (cubic) H Aoy H 241/2 ‘
’ 11,7,2,2,1,1 (v/=7) H Aoy H 24!1/2 ‘
’ 11,7,2,2,1,1 (V=7) H Aoy H 241/2 ‘
‘ 11,6,4,1,1,1 (V33) H Agy H 241/2 ‘
‘ 11,6,4,1,1,1 (\/ﬁ) H Agy H 241/2 ‘
‘ 11,6,3,2,1,1 (cubic) H Aoy H 241/2 ‘
‘ 11,6,3,2,1,1 (cubic) H Aoy H 241/2 ‘
‘ 11,6,3,2,1,1 (cubic) H Agy H 241/2 ‘
‘ 11,5,5,1,1,1 (Q) H Aoy H 241/2 ‘
’ 11,5,4,2,1,1 (cubic) H Aoy H 241/2 ‘
’ 11,5,4,2,1,1 (cubic) H Agy H 241/2 ‘
‘ 11,5,4,2,1,1 (cubic) H Aoy H 241/2 ‘
’ 11,5,3,3,1,1 (\/5) H Aoy H 241/2 ‘
’ 11,5,3,3,1,1 (\/3) H Aoy H 241/2 ‘
‘ 11,5,3,2,2,1 (Q) H Aoy H 241/2 ‘
‘ 11,4,4,3,1,1 (Q) H Agy H 241/2 ‘
‘ 11,4,3,3,2,1 (Q) H Aoy H 241/2 ‘
‘ 10,10,1,1,1,1 (Q) H ((Ca x Cg x Cg x Cy x Cg) : Ag) : Cg H 28 .3.5 ‘
‘ 10,10,1,1,1, 1 (ﬁ) H 24022755 H 214 . 3.5.11 ‘
‘ 10,10,1,1,1,1 (\/3) H £24n22755 H 214 .3.5.11 ‘
’ 10,9,2,1,1,1 (\/5) H Aoy H 241/2 ‘
’ 10,9,2,1,1,1 (ﬁ) H Agy H 41/2 ‘
‘ 10,8,3,1,1,1 (Q) H Aoy H 241/2 ‘
’ 10,7,4,1,1,1 (Q) H Agy H 241/2 ‘
’ 10,7,3,2,1,1 (m) H Aoy H 241/2 ‘
‘ 10,7,3,2,1,1 (V21) H Agy H 241/2 ‘
‘ 10,7,2,2,2,1 (Q) H Ag 1S3 H 219 .37 . 53 . 73 ‘
‘ 10,6,5,1,1,1 (Q) H Ag 1S3 H 219 .37 .53 . 73 ‘
‘ 10,6,5,1,1,1 (cubic) H Aoy H 241/2 ‘
‘ 10,6,5,1,1,1 (cubic) H Agy H 241/2 ‘
‘ 10,6,5,1,1,1 (cubic) H Aoy H 241/2 ‘
‘ 10,6,4,2,1,1 (Q) H (Sg 1 S3) N Agy H 221 .37 .53 .73 ‘
‘ 10,6,4,2,1,1 (Q) H Ag 1S3 H 219 .37 .53 .73 ‘
‘ 10,6,3,2,2,1 (Q) H Ag 1S3 H 219 .53 .73 ‘
’ 10,5,5,2,1,1 (V5) H ((Cg x Cg X Cg X Cg X Cg) : Ag) : Co H 28 .3.5 ‘
’ 10,5,5,2,1, 1 (ﬁ) H ((Cy x Cg x Cg x Cg x Ca) : Ag) : Co H 28 .3.5 ‘
‘ 10,5,4,2,2,1 (cubic) H (Sg 183) N Agy H 221 .37 .53 .73 ‘
’ 10,5,4,2,2,1 (cubic) H (Sg183) N Agy H 221 .37 .53 .73 ‘
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0,5,4,2,2,1 (cubic) H (Sg 1 S3) N Agy H 221 .37 .53 .73
10,5,3,2,2,2 (Q) H Ag 1S3 H 219 .37 .53 .73
10,4,4,3,2,1 (Q) H (Sg 1 S3) N Agy H 221 .37 .73
10,4,3,3,2,2 (Q) H (Sg 1 S3) N Agy H 221 .37 .53 .73
9,9,2,2,1,1 (Q) H £24n16559 H 210 . 34

9,9,2,2,1,1 (cubic) H £24n24970 H 221 .35 .52 7.

9,9,2,2,1,1 (cubic) H £24n24970 H 221 .35 .52.7. 11

9,9,2,2,1,1 (cubic) H £24n24970 H 221 .35 .52 .7.11

9,8,3,2,1,1 (cubic) H Aoy H 241/2

9,8,3,2,1,1 (cubic) H Agy H 241/2

9,8,3,2,1,1 (cubic) H Aoy H 241/2
9,7,5,1,1,1 (Q) H Aoy H 241/2

9,7,4,2,1,1 (V=7) H Agy H 24!/2

9,7,4,2,1,1 (V=7) H Aoy H 241/2

9,7,3,2,2,1 (cubic) H Aoy H 241/2

9,7,3,2,2,1 (cubic) H Aoy H 241/2

9,7,3,2,2,1 (cubic) H Aoy H 241/2

9,6,5,2,1,1 (cubic) H Aoy H 241/2

9,6,5,2,1,1 (cubic) H Aoy H 241/2

9,6,5,2,1,1 (cubic) H Aoy H 241/2
9,6,4,3,1,1 (Q) H (AgtAy) : Co H 215 .39 . 54

9,6,3,3,2,1 (cubic) H (Ag 1 Ay) : Co H 215 .39 . 54

9,6,3,3,2,1 (cubic) H (Ag 1 Ay) : Oy H 215 .39 . 54

9,6,3,3,2,1 (cubic) H (AgtAy) : Co H 215 .39 . 54
9,5,5,2,2,1 (Q) H Aoy H 241/2

9,5,4,3,2,1 (cubic) H Aoy H 241/2

9,5,4,3,2,1 (cubic) H Aoy H 241/2

9,5,4,3,2,1 (cubic) H Aoy H 241/2
9,5,3,3,3,1 (Q) H Ag Ay H 214 .39 . 54
9,4,3,3,3,2 (Q) H AglAy H 214 .39 . 54
8.8,4,2,1,1 (Q H (((Cq x C3) : Cyq) : C3) : Cp H 263
8,8,3,3,1,1 (Q) H t24n14598 (Index 2 in t8n14 1 Sg3) H 29 . 34

8,8,3,3,1,1 (V=2) H £24n24970 H 221 .35 .52 . 7. 11

8,8,3,3,1,1 (vV=2) H £24n24970 H 221 .35 .52 .7. 11
8,8,2,2,2,2 (Q) H ((C4 x Cy4) : C3) : Cq H 25 .3

8,7,6,1,1,1 (V/=3) H Aoy H 24!/2

8,7,6,1,1,1 (v/=3) H Aoy H 241/2

8,7,5,2,1,1 (cubic) H Aoy H 241/2

8,7,5,2,1,1 (cubic) H Aoy H 241/2

8,7,5,2,1,1 (cubic) H Aoy H 241/2

8,7,4,3,1,1 (v/—6) H Aoy H 24!1/2

8,7,4,3,1,1 (vV/—86) H Agy H 241/2
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8,6,5,2,2,1 (Q) (Sg 1 S3) N Agy 221 .37 .53 .73

8,7,4,2,2,1 (V=7) H (Eg : L(7))1S3 = ASL(3,2) 1 Sg H 219 .34 . 73
8,7,4,2,2,1 (vV=7) H (Bg : L(7))1S3 = ASL(3,2) Sg H 219 .34 .73
8,7,3,3,2,1 (Q) H Aoy H 24!/2
8,6,6,2,1,1 (v/—3) H (Sg 1 S3) N Agy H 221 .37 .53 .73
8,6,6,2,1,1 (v/=3) H (SgtS3) N Aoy H 221 .37 .53 .73
YRRV u
oo )] H
H H

6,6,5,4,2,1 (Q)

(Sg 1 S3) N Agy

6,6,5,3,3,1 (Q) H L(6)1 Ay = PSL(2,5)1 Ay H 210 . 35 . 54
6,6,4,4,2,2 (Q) H (((Cg x Ca ((Ca x Cg x Cg X Ca) : C3)) : Cg) : C3) : Cq H 27 . 33
6,6,4,3,3,2 (Q) H £24n12260 H 211 . 32

| |
| |
| |
| |
| |
| |
| |
| |
‘ 8,6,4,3,2,1 (\/E) H (Sg 1 S3) N Agy H 221 .37 .53 .73 ‘
‘ 8,6,4,3,2,1 (V2) H (Sg 1 S3) N Aoy H 221 .37 .53 .73 ‘
‘ 8,6,4,2,2,2 (Q) H £24n22747 = 212 { t18n217 H 215 . 34 ‘
‘ 8,5,4,3,3,1 (m) H Agy H 241/2 ‘
‘ 8,5,4,3,3,1 (VI0) H Agy H 2412 ‘
’ 8,5,4,3,2,2 (Q) H Ag 153 H 219 .37 .53 . 73 ‘
’ 8,4,4,4,3,1 (Q) H £24n24710 = 212 : £18n762 H 217 . 37 ‘
\ 8,4,4,4,2,2 (Q) H (((C4 x C2) : Cy) : C3) : Cg H 263 \
’ 7,7,7,1,1,1 (Q) H PSL(3,2) H 23 .3.7 ‘
oo | H |
‘ 7,7,5,3,1,1 (V21) H Agy H 241/2 ‘
‘ 7,7,4,4,1,1 (V=7) H £24n24970 H 221 .35 .52 .7. 11 ‘
‘ 7,7,4,4,1,1 (V=7) H £24n24970 H 221 .35 .52.7. 11 ‘
‘ 7,7,3,3,2,2 (V7) H 24124970 H 221 .35 .52 . 7. 11 ‘
‘ 7,7,3,3,2,2 (ﬁ) H 24024970 H 221 .35 .52 .7.11 ‘
‘ 7,6,6,2,2,1 (Q) H L (8) 1S3 = PSL(2,7) 1S3 H 210 .34 . 73 ‘
’ 7,6,5,4,1,1 (Q) H Aoy H 241/2 ‘
’ 7,6,5,3,2,1 (cubic) H Agy H 241/2 ‘
‘ 7,6,5,3,2,1 (cubic) H Aoy H 2412 ‘
’ 7,6,5,3,2,1 (cubic) H Agy H 241/2 ‘
’ 7,6,4,4,2,1 (Q) H Ag 1S3 H 219 .37 .53 . 73 ‘
‘ 7,5,5,4,2,1 (V2) H Agy H 241/2 ‘
‘ 7.5,5,4,2,1 (\/E) H Agy H 241/2 ‘
‘ 7,5,5,3,2,2 (Q H Aoy H 241/2 ‘
‘ 7,5,4,4,3,1 (Q) H Aoy H 241/2 ‘
‘ 7,5,4,3,3,2 (Q) H Agy H 241/2 ‘
‘ 6,6,6,4,1,1 (Q) H £24n12261 H 211 .32 ‘
‘ 6,6,6,2,2,2 (Q) H A4 x Sg H 72 ‘
‘ 6,6,5,5,1,1 (ﬁ) H 24024970 H 221 .35 .52 .7.11 ‘
‘ 6,6,5,5,1,1 (\/3) H £24n24970 H 221 .35 .52 . 7. 11 ‘
| |
| |
| |
| |
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((Cq x C4) : C3) : Cg 25 .3

Ag S3 219 .37 .53 .73

((Ca x Cg X Cg x Cy X Cg) : Ag) : Cq 28 .3.5

221 .35 .52.7. 11

ot
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e
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3.2. Generators for the Modular Subgroups

There is a so-called Reidemeister-Schreier process (discussed in [8]) which enables one
to compute presentations of subgroups H of finite index in a group G defined by finite
presentations. We can use this process to find the presentations of all the modular subgroups of
interest. In our case, G is I' = PSL(2,Z), the presentation of which is <x, y|z?, y5> For all our
conjugacy classes of modular subgroups, the Reidemeister-Schreier process yields the following
group presentation, when the permutation data (here o, o1) are input in the manner detailed
in [8]:

(h,i,7,k,l|—) (3.2)

Thus in every case we have a free group on 5 generators. Considering the specific example of
I (4) for illustration, this should not be surprising, since the modular curve X (4) is P! with
six cusps and no elliptic points, so its fundamental group is the free group on five generators.

We can find the generators for a representative of all the conjugacy classes of subgroups of
interest, which we now know to be free groups on five generators, using GAHF'| First, we use the
permutation data og, o1 obtained from each of the Schreier coset graphs (in turn obtained from
each of the dessins) to find the group homomorphism by images between G and H. We then use
this to define the H in question. Finally, we use the GAP command IsomorphismFpGroup(G),
which returns an isomorphism from the given H to a finitely presented group isomorphic to
H. This function first chooses a set of generators of H and then computes a presentation in
terms of these generators.

To give an example, consider the partition 4,4, 4,4, 4,4, which corresponds to the conjugacy
class of subgroups I' (4). We can find a set of generators as 2 x 2 matrices for a representative
of this class of subgroups by implementing the following code in GAP:

gap> f:=FreeGroup(‘‘x’’,‘‘y’?);

<free group on the generators [ x, y 1>

gap>gamma:=f/[f.1°2,f.2"3];

<fp group on the generators [ x, y 1>

gap> hom:=GroupHomomorphismByImages (gamma,Group(sigma_0,sigma_1),

>Generators0fGroup (gamma) , [sigma_0,sigma_1]);

x, yl ->

[(1,10)(2,4)(3,24)(5,7)(6,21)(8,12)(9,18) (11,14) (13,16) (15,23)

(17,19) (20,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12) (13,14,15)

(16,17,18) (19,20,21) (22,23,24)]

gap> gammad:=PreImage (hom,Stabilizer (Image (hom),1));

Group(<fp, no generators known>)

gap> iso:=IsomorphismFpGroup(gamma4) ;

[ <L [ 1, 1] 1ly*sxxyrxsy*x —1xy*rx"-1>,

<[ [ 2, 171 Jly —1*x*ky ~-Llrxxy -1%x" -1xy -1%x"-1>,

<[ [ 3, 11 Jly*x*y —1skxky —1*kx"—1ky —1*x"—1*y>,

<[ [ 4, 11 Jlx*y*x*y —1kx*y —1xx"-1*y —1*kx"-1xy*x"-1>,
<[ [ 5, 1 1 Jly*x*y —lskxky*x*xy —1*x"-1*y*x"-1*y -1*x"-1> ]
-> [ F1, F2, F3, F4, F5 ]

TWe thank Alexander Hulpke for guidance here.
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Here, the only input in each case are the permutation data oy, o1. Once the output has been
obtained, we will see the five generators [F'1, F2, F'3, F'4, F'5], as indicated in the last line of the
output, as functions of z and y, i.e. the generators of I'. Now, returning to the matrices ,
the only thing left to do is to multiply together the matrices and their inverses as indicated.
This will produce the generators of each H, as desired. Note that one can achieve the same
results here in Magma though use of the Rewrite commancﬂ 13].

3.2.1. Catalogue of Generators as Explicit 2 x 2 Matrices In this section we give the
generators for a representative of each of the conjugacy classes of modular subgroups
corresponding to the entries in the table at the end of For each of the 112 K3 surfaces,
denoted as a 6-tuple partition of 24 (the notation is as before, we also include the number field
of definition for the associated j-function as a Belyi map), we write the five matrix generators
explicitly.

Partition Generators

19,1,1,1,1,1 (Q)

18,2,1,1,1,1 (Q)

18,2,1,1,1,1 (vV/=3)

| |

| |

# k

Loven ™ | (o o )(s g ) (e a) (e 5) (s )
’ 17,3,1,1,1,1 (Q) ‘ (7(1) —i)(—g —3)(725; 713)(—2? —é)(—ig —23>
ez () | (o )0 S)(e o) (e s ) m )
L omeenn (v | (G ) S ) )8 w) (e a )
e [ (o 4 )(e o) (e 5 ) (i 8 ) (i )
’ 16,3,2,1,1,1 (Q) ‘ <_(1) i)(_g _§><_i§; 3)(—32 —%)(—1(2)8 —3?)
L owe2nn v | (o o )(s 1) (e a)(w ) (ko)
L owezn v | (G0 o )(s 1) (s ) (e w) (% e
L owe2e@ [ (G0 ) (W ) ) (e w)( e )
s ® [ (G )(8 9 ) (e ) (e 5 ) ()
R e e E e
Loz | (5 ) s ) F)C 0 s ) (e oY)
e | (b (o o) (n ) (a 2) (s )
oo [ (s (8 (e (e (w4
o | ()08 (a8 e 1)
’ 15,3,2,2,1,1 (V=15) ‘ (7(1) _})<,§ 7§><—}13 —1§><5§ 7&%)(7% 712)
Lws2z v | (5 )0 S)(s o) 0w ) (i)
Lot v | (o 3 )t ) (s ) (ks ) (s )

fWe thank an anonymous referee for this observation.
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14,6,1,1,1,1 (v/=3)

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

)
)
)

)

DI G
)(

5
—22 -13

-2
7

14,5,2,1,1,1 (Q)

14,5,2,1,1,1 (cubic)

4

21
—121 -23

1

4
-29 =7

14,5,2,1,1,1 (cubic)
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13,6,2,1,1,1 (vV=3)

|
|
|
|
|
|
|
|
|
|
|
|

13,6,2,1,1,1 (v/=3)

4
—-81 —19

17

)(
)(

)(
)(

3
—-19 -6

13,5,3,1,1,1 (Q)

)

8
—43 —16

-19 =8
50 21

S

13,5,2,2,1, 1 (\/@)

13,5,2,2,1,1 (\/65)

5

12
—-53 —22

-3 2 1
—-17 -8

-8
27 10

13,4,3,2,1,1 (Q)

)

—-17 —12
27

DIEREIIE

-2 -1
13

13,3,3,2,2,1 (Q)

12,7,2,1,1,1 (V=3)

12,7,2,1,1,1 (v/=3)

12,6,3,1,1,1 (Q)

)
)
)

V(s 7 )( s 3

)(
)(

18 13

—-11 -8

)(

-2
7

12,6,2,2,1,1 (Q)

12,6,2,2,1,1 (Q)

4 1
—25 —6

)(
)(
)(

—-10 -7
33 23

—6
23 19

12,5,3,2,1,1 (quartic)

|
|
|
|
|
|
|

16

19
—25 =21

-2
9

-7
32

—3 1 -3
7 23 17

-5
12

12,5,3,2,1,1 (quartic)

10 —27
-8

3

6 —13

12,5,3,2,1,1 (quartic)

12,5,3,2,1,1 (quartic)

12,5,2,2,2,1 (Q)

12,4,4,2,1,1 (Q)

12,4,3,3,1,1 (Q)
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12,4,3,3,1,1 (Q)

|
|
|
|
|
|
|
|
|
|
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|
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|
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|
|
|
|
|
|
|
|
|
|

12,4,3,2,2,1 (Q)

—-14 -3

—-13 16

)(

12,4,3,2,2,1 (v/=3)

12,4,3,2,2,1 (vV/=3)

)5 i)

T

-3 4 3 -4 -1
7 —-15 —11 33

-5
12

12,3,3,3,2,1 (Q)

)

13 —48
3 -11

7 =22
-3

12,3,3,2,2,2 (Q)

11,9,1,1,1,1 (Q)

11,8,2,1,1,1 (cubic)

11 9

—-16 —13

5) (s 1)
v ai)( )(
)(

=7
23 13

)(

-3
17 11

11,8,2,1,1,1 (cubic)

9

14
—-25 —16

23 16

-10 =7
-13 =5

e D0

|

11,8,2,1,1,1 (cubic)

|

)

29
—100 —31

47 18

)(

6

11,7,3,1,1,1 (cubic)

11,7,3,1,1,1 (cubic)

11,7,3,1,1,1 (cubic)

11,7,2,2,1,1 (V=7)

11,7,2,2,1,1 (V/=7)
11,6,4,1,1, 1 (\/ﬁ)

11,6,4,1,1, 1 (x/@)

|

)

21
—121 —-23

EER

)(
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11,6,3,2,1,1 (cubic)
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(5

7 —18
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|
|

)
)
)

4

21
—-121 -23

) ) o )(
) i)
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—-17 —12
27 19
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5

9
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17 14
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11,5,3,2,2,1 (Q)

11 8 4 1
19 15 —-29 =21 —25 -6

-5 —4
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4

11,4,4,3,1,1 (Q)

11,4,3,3,2,1 (Q)

10,10,1,1,1,1 (Q)

32 9 29 9
—121 -34 —100 31

2
—-11 =5

10,10,1,1,1,1 (\/5)
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14 9 20 9
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7,5,4,4,3,1 (Q)

5,5,5,5,2,2 (Q)

5,5,4,4,3,3 (Q)

4,4,4,4,4,4 (Q)

| |

o | (3 )20 )0 B (s
o | (i (e D8 )
| eesezze | (5 5) (6 )8 S)(w 2)(5 o)
C () | (2 (g @ o m(E
e () | (b ) ) () (e &)
e [ (O (G O (5 8]
oo [ (2 (2 (D G 8
e [ (i) () (A a0 )
oo | ()0 ) (0 ) (a )
e [ ()G ) (0 () w)
; 6,5,4,4,3,2 (Q) } <_§ ﬁ)(_é g)( . )
| |

| |

4. Conclusions and Outlook

In this paper, we have further developed the connections between the torsion-free, genus
zero modular subgroups and the theory of dessins d’enfants. This was accomplished through
construction of the ramification data and the dessins for each conjugacy class of subgroups. In
addition, we have shown that the index 24 and 36 subgroups are of special interest, since they
are naturally associated to K3 surfaces and Calabi-Yau threefolds, respectively.

In a parallel vein, we have found the generating set of a representative of the conjugacy classes
of modular subgroups associated with all the 112 semi-stable elliptic fibrations over P! which
are extremal K3 surfaces with six singular fibres. Indeed, at the intersection of the 112 and 33
lie the nine K3 surfaces. This result is important not only for developing our understanding
of these surfaces and their connection to the theory of modular subgroups, but also because
these connections should give us further tools for categorizing these surfaces, and the relations
between them.

To our intricate web of correspondences we can add physics. In [1], Seiberg-Witten curves
for four-dimensional supersymmetric field theories with unitary gauge groups were given an
interpretation as clean dessins. In |7], the nine K3 surfaces were singled out to relate to the
recently advanced class of N'=2 Gaiotto theories. Now, we have an extensive catalogue of
dessins which have underlying Calabi-Yau structure, to construct their associated gauge theory
is clearly an interesting story which the authors are currently pursuing.
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Appendix A. Dessins from the Miranda-Persson Table

In this appendix we give the dessins for all the entires in [11]. These dessins match those
already given in [2], hence their being relegated to an appendix. Nevertheless, there are two
advantages to our drawings over those in [2]: first, they are drawn electronically; second, we
have marked the black/white nodes as an emphasis of the bipartite nature of the graphs.

S

H

19,1,1,1,1,1 18,2,1,1,1,1 (Q) 18,2,1,1,1,1 (V=3
18,2,1,1,1,1 (v=3 17,3,1,1,1,1 (Q) 17,2,2,1,1,1
17,2,2,1,1, 1 (\/17) 16,4,1,1,1,1 (Q) 16,3,2,1,1,1 (Q)

@ii

&

16,3,2,1,1,1 (v/=2) 16,3,2,1,1,1 (v/=2) 16,2,2,2,1,1 (Q)
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!

15,5,1,1,1,1 (v/=15 15,5,1,1,1,1 (v/=15 15,4,2,1,1,1 (v/=15)
15,4,2,1,1,1 (V=15 15,3,3,1,1,1 (Q) 15,3,2,2,1,1 (Q)
15,3,2,2,1,1 (v/—15 15,3,2,2,1,1 (/=15 14,6,1,1,1,1 (v/=3)

s

14,6,1,1,1,1 (v/=3) 14,5,2,1,1,1 ( 14,5,2,1,1,1 (cubic)
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%

14,5,2,1,1,1 (cubic 14,5,2,1,1,1 (cubic 14,4,3,1,1,1 (Q

f
A

s

14,4,2,2,1,1 (v/=7) 14,4,2,2,1,1 (v/=7) 14,3,3,2,1,1 (Q)
14,3,3,2,1,1 (Q 14,3,2,2,2,1 (Q) 13,7,1,1,1,1 (Q)

=8

13,6,2,1,1,1 (v/=3) 13,6,2,1,1,1 (v/=3) 13,5,3,1,1,1 (Q)
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Eo

13,5,2,2,1,1 (\/65) 13,5,2,2,1,1 (\/65) 13,4,3,2,1,1 (Q)
13,3,3,2,2,1 (Q) 12,7,2,1,1,1 (v/=3) 12,7,2,1,1,1 (v/=3)
12,6,3,1,1,1 (Q) 12,6,2,2,1,1 ( 12,6,2,2,1,1 (Q)

s 43

12,5,3,2,1,1 (quartic) 12,5,3,2,1,1 (quartic) 12,5,3,2,1,1 (quartic)
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[

12,5,3,2,1,1 (quartic) 12,5,2,2,2,1 (Q) 12,4,4,2,1,1 (Q)
12,4,3,3,1,1 12,4,3,3,1,1 (Q) 12,4,3,2,2,1 (Q)
12,4,3,2,2,1 (vV/=3) 12,4,3,2,2,1 (/=3 12,3,3,3,2,1 (Q)

 ® i

12,3,3,2,2,2 11,9,1,1,1,1 (Q) 11,8,2,1,1,1 (cubic)
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o ]

11,8,2,1,1,1 (cubic) 11,8,2,1,1,1 (cubic) 11,7,3,1,1,1 (cubic)
11,7,3,1,1,1 (cubic) 11,7,3,1,1,1 (cubic) 11,7,2,2,1,1 (V=7
11,7,2,2,1,1 (v/=7) 11,6,4,1,1,1 (\/33) 11,6,4,1,1,1 (\/33)

R

11,6,3,2,1,1 (cubic) 11,6,3,2,1,1 (cubic) 11,6,3,2,1,1 (cubic)
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L

11,5,5,1,1,1 ( 11,5,4,2,1,1 (cubic) 11,5,4,2,1,1 (cubic)
11,5,4,2,1,1 (cubic) 11,5,3,3,1,1 11,5,3,3,1,1 5
11,5,3,2,2,1 11,4,4,3,1,1 (Q) 11,4,3,3,2,1 (Q)

o

10,10,1,1,1,1 ( 10,10,1,1,1,1 5 10,10,1,1,1,1 (\f
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bonE

1092111(\f 109,2,1,1,1 10,8,3,1,1,1 (Q)
10,7,4,1,1,1 (Q) 1073211(\/ ) 10732,1,1
10,7,2,2,2,1 (Q) 10,6,5,1,1, 1 10,6,5,1,1,1 (cubic)

2 2 b

10,6,5,1,1,1 (cubic) 10,6,5,1,1,1 (cubic) 10,6,4,2,1,1 (Q)
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A T

10,6,4,2,1,1 (Q) 10,6,3,2,2,1 (Q) 10,5, 5, 2,1,1 5

e e

10,5,5,2,1, 1 (\/5) 10,5,4,2,2,1 (cubic) 10,5,4,2,2,1 (cubic)
10,5,4,2,2,1 (cubic) 10,5,3,2,2,2 ( 10,4,4,3,2,1 (Q)

O

.

10,4,3,3,2,2 (Q) 9,9,2,2,1,1 (Q) 9,9,2,2,1,1 (cubic)
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-

9,9,2,2,1,1 (cubic) 9,9,2,2,1,1 (cubic) 9,8,3,2,1,1 (cubic)

{5}
gk

9,8,3,2,1,1 (cubic) 9,8,3,2,1,1 (cubic) 9,7,5,1,1,1 (Q)
9,7,4,2,1,1 (v/=7) 9,7,4,2,1,1 (vV/=7) 9,7,3,2,2,1 (cubic)

b

9,7,3,2,2,1 (cubic) 9,7,3,2,2,1 (cubic) 9,6,5,2,1,1 (cubic)

el
el
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S

9,6,5,2,1,1 (cubic) 9,6,5,2,1,1 (cubic) 9,6,4,3,1,1 (Q)
9,6,3,3,2,1 (cubic) 9,6,3,3,2,1 (cubic) 9,6,3,3,2,1 (cubic)
9,5,5,2,2,1 (Q) 9,5,4,3,2,1 (cubic) 9,5,4,3,2,1 (cubic)

.

9,5,4,3,2,1 (cubic) 9,5,3,3,3,1 (Q) 9,4,3,3,3,2 (Q)
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Poa

8,8,4,2,1,1 (Q) 8,8,3,3,1,1 (Q) 8,8,3,3,1,1 (vV=2)
8,8,3, 3,1,1 V=2 8,8,2,2,2,2 (Q) 8,7,6,1,1,1 (\/—3)
8,7, 6,1,1,1 v=3 8,7,5,2,1,1 (cubic) 8,7,5,2,1,1 (cubic)

P

8,7,5,2,1,1 (cubic) 8,7,4,3,1,1 (/=6 8,7,4,3,1,1 (v/=6)



MODULAR SUBGROUPS, DESSINS AND K3 SURFACES Page 39 of

e

8,7,4,2,2,1 (/=7 8,7,4,2,2,1 (vV/=7) 8,7,3,3,2,1 (Q)
8,6,6,2,1,1 (v/—3 8,6,6,2,1,1 (v/=3) 8653,1,1 5
8,6,5,3,1,1 5 8,6,5,2,2,1 8,6,4,3,2,1

Y

864321(\f 8,6,4,2,2,2 (Q) 8,5,4,3,3,1
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§

85,4,331 8,5,4,3,2,2 (Q)
8,4,4,4,2,2 ( 7,7,7,1,1,1 (Q)
7,7,5,3,1,1 (\/21) 7,7,4,4,1,1 (V=7)

@

7,7,3,3,2,2 (ﬁ) 773322(\f

SR

8,4,4,4,3,1 (Q)

@

7,7.5,3,1,1 (\/21)

B

7,7,4,4,1,1 (vV/=7)

@

7,6,6,2,2,1 (Q)
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b

7,6,5,4,1,1 (Q) 7,6,5,3,2,1 (cubic) 7,6,5,3,2,1 (cubic)

g

@

7,6,5,3,2,1 (cubic) 7.6,4,4,2,1 7.5,5,4,2,1 (ﬁ)
7,5,5,4,2,1 (\/5) 7,5,5,3,2,2 7,5,4,4,3,1 (Q)

At

:

7,5,4,3,3,2 (Q) 6,6,6,4,1,1 ( 6,6,6,2,2,2 (Q)

@
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& & &

6,6,5,5,1,1 6,6,5,5,1,1(\/§> 6,6,5,4,2,1
6,6,5,3,3,1 (Q) 6,6,4,4,2,2 (Q) 6,6,4,3,3,2 (Q)
6,6,3,3,3,3 (Q) 6,5,4,4,3,2 (Q) 5,5,5,5,2,2 (

5,5,4,4,3,3 (Q) 4,4,4,4,4,4 (Q
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