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Abstract

We generalize previous results on N = 1, (3 + 1)-dimensional superconformal block quiver

gauge theories. It is known that the necessary conditions for a theory to be superconfor-

mal, i.e. that the beta and gamma functions vanish in addition to anomaly cancellation,

translate to a Diophantine equation in terms of the quiver data. We re-derive results for low

block numbers revealing an new intriguing algebraic structure underlying a class of possi-

ble superconformal fixed points of such theories. After explicitly computing the five block

case Diophantine equation, we use this structure to reorganize the result in a form that can

be applied to arbitrary block numbers. We argue that these theories can be thought of as

vectors in the root system of the corresponding quiver and superconformality conditions are

shown to associate them to certain subsets of imaginary roots. These methods also allow

for an interpretation of Seiberg duality as the action of the affine Weyl group on the root

lattice.
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I. INTRODUCTION

Over the last few decades, the study of quiver theories has occupied a prominent position both

in pure mathematics, especially in algebraic geometry and representation theory (cf. e.g.,[1–5]),

and in theoretical physics, especially in the AdS/CFT correspondence and in the phenomenology

of Standard-like models (cf. e.g.,[6–10]). One salient feature is that gauge theories arising as world-

volume quantum field theories living on stacks of branes probing Calabi-Yau singularities naturally

have a product structure for the gauge group as well as bi-fundamental and adjoint fields realized

by open-strings; such generically supersymmetric gauge theories are thus encoded by quivers.

The dialogue between the world-volume physics and the geometry of the Calabi-Yau singularity

has given us a wealth of new physics and mathematics over the last score of years. There is a variety

of such theories one can construct, or “geometrically engineer”, in this way depending on the type of

branes and the choice of the Calabi-Yau space. Of main interest has been the construction of (3+1)-

dimensional gauge theories preserving N = 1 or N = 2 supersymmetries, which feature centrally to

the AdS5/CFT4 correspondence [11] and which, of course, are of some phenomenological concern.

There has been an industry to construct even more classes of such quiver gauge theories with an

underlying geometry, ranging from orbifolds [6, 9, 12], to toric singularities [13–16], as well as their

avatars as brane tilings [17–21], to more generic spaces [22–24]. A myriad of theories have been

established and countless successes, recounted.

Let us focus on N = 1 theories. Indeed, whereas the N = 2 Lagrangian is fixed once the matter

content is specified, whereby limiting the possibilities for interaction, the N = 1 superpotential

is an additional ingredient to the matter specified by the quiver. In fact, the F-terms prescribe

formal algebraic relations to the arrows in the quiver, giving rise to so-called labelled quivers with

relations, which has been recently intensely investigated by mathematicians. Furthermore, a key

advantage of N = 1 is chirality - a desired phenomenological property; in terms of the quiver, this

is reflected by the fact that not every arrow between two nodes has a counter-part going in the

opposite direction. Finally, because of the inherent holographic nature of certain classes of our

gauge theories, they have superconformal fixed points in the infra-red. This is, of course, reflected

by the archetypal example of AdS/CFT, the N = 4 super-Yang-Mills theory in (3 + 1)-dimensions

from which all our quiver theories geometrically descend.

The natural question thus arises as to whether one could march toward a classification scheme

of the plethora of superconformal N = 1 quiver gauge theories which have bedecked the litera-

ture. This is, of course, an ambitious goal, especially given the unclassified nature of Calabi-Yau

threefold singularities. Note though that the quivers studied here are more general since they are

not necessarily Calabi-Yau threefolds. In the toric subclass of Calabi-Yau manifolds, due to the

combinatorial nature of the geometry, attempts are under way towards an enumeration [21, 25–28].

The organization of quivers by grouping nodes which are unlinked into so-called “blocks” has

emerged in the study of sheaves over del Pezzo surfaces [29]. This was also applied to the super-

conformal context over the years [30–34], culminating in a systematic investigation in [7]. Such

seemingly innocuous procedure turns out to be very powerful. As demonstrated in [7], many of
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the known theories, often corresponding to such complicated geometries as cones over Hirzebruch

surfaces or pseudo del Pezzo surfaces, can have their quiver diagrams contracted to ones with

only a few blocks. Moreover, the necessary conditions for such a theory to be superconformal,

i.e. vanishing beta and gamma functions, translate to Diophantine equations over the quiver data

[33, 35].

Now, it had been realized that Seiberg duality is a very particular transformation on quiver

theories [15, 16, 36] and various geometrical interpretations ranging from Picard-Lefschetz trans-

formations [33] and Weyl group action on the quiver root system [37, 38], to mutations in ex-

ceptional collections of coherent sheaves [32] and to tiltings in the derived category [39, 40] have

been studied. Such a duality is well adapted to the block structure. The possible values, after a

blossoming “tree” of duality transformations, all satisfy the Diophantine equation determined by

the geometry. In other words, the Diophantine equation is an invariant of Seiberg duality.

Our motivation is clear: First, we wish to continue the study of the taxonomy of N = 1 quiver

theories, organized by blocks. In [7], the situation up to four-blocks was detailed. The reason the

case study stopped there is because starting from five-blocks, a qualitative difference arises: it is

not clear which cycles enter in the superpotential, and it is not completely clear if an arbitrary

number of Seiberg Dualities leave the quiver chiral. Our first challenge is to address this issue in

a completely algorithmic and exhaustive way. Indeed, in Sec. III we will see that Seiberg duality

leaves the models chiral.

This possibility to continue to a higher number of block is only the tip of the iceberg. We shall

see how the representation theory of quivers comes to our aid and offers us a unifying light under

which we could examine the quiver block structure, the assignment of ranks and arrows, as well

as the general form which the Diophatine equations must assume. Thus representation theory,

algebraic geometry and number theory come into full interplay with the physics.

The paper is organized as follows: We begin in Section II by setting the notation of our problem

of classifying block-quivers by illustrating with the known examples of three and four-blocks. Along

the way, we reveal a new structure of the block models and show how the Diophantine equation can

be written as a sum over minors of the quiver adjacency matrix. Using the representation theory of

quivers, especially a certain bi-linear form called the Tits form, we reveal the origin of this formula

and show how Seiberg duality is realized in this context. The only input for the derivation of the

superconformal condition is the quiver matrix, a fact implying, quite surprisingly, that the Tits

form automatically encodes the vanishing beta and gamma functions of the theory. We also derive

a similar formula for the four-block quiver and describe its reduction to the three block case. Then,

in Section III we study the first non-trivial case of five-block quivers, which have eluded much of

the physics and mathematics literature. We show, despite the complicated combinatorics, that we

can still use the Tits form to organise the Diophantine equation and shed light into Seiberg duality.

We conclude with outlooks in Section IV. Of use will be Appendix A which is an enlightening but

self-contained review of the rudiments of quiver representation theory which will be used in the

paper.
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II. BLOCK QUIVERS

In this section we begin with a brief reminder for the reader of the concept of block quivers, how

Diophantine equations arise from the requirement of existence of superconformal fixed points, as

well as the emergence of representation-theoretic quantities in relation to physical constraints. We

will illustrate with the well-known example of the three-block quivers, under a new and unifying

light. For short, self-contained exposition to some relevant terminology of quivers, especially from

a mathematical perspective, we refer the reader to Appendix A.

The central object of our concern is the chiral quiver, by which we mean any quiver diagram

which has no bi-directional arrows (including, in particular, self-adjoining loops which connect a

node to itself) and in addition all fields between two adjacent vertices have the same R-charge.

The reason for this restriction will soon be clear; essentially it is because we will only be dealing

with anti-symmetrized adjacency matrices which do not capture the information of bi-directional

arrows. The constraint of no bi-directional arrows is not severe as the majority of the myriad

of quivers which have risen over the last decade of the AdS/CFT correspondence belongs to this

category. The requirement of equal R-charges among fields charged under adjacent blocks though,

does restrict our treatment. Nevertheless, we will find that known five block del Pezzo quivers

are still solutions of our Diophantine equation. In these cases though the R-charges can not be

computed using our methods and one has to use standard tools like a-maximization [41]. Now

following [7], we recall that a block in a chiral quiver diagram is as follows:

DEFINITION 1 A block is a set of equal rank, disconnected nodes all of which are either heads or

tails of arrows connecting them to nodes of other blocks.

Physically, this simply means that we have organised a set of gauge group factors, all of which are

of equal rank and which have no bi-fundamental fields charged amongst them, into a “block”. The

whole set can then be described as a single node with a multiplicity denoting the cardinality of

the set, and single arrows with multiplicities connecting this block to others. We see, indeed, that

we are dis-allowing arrows which join nodes to themselves. With this convention any chiral quiver

diagram has a block structure with all blocks trivially having multiplicity one. We sketch these

notions with an example in Fig. 1. A block quiver can therefore be presented by the following data:

• the number of blocks,

• the number of nodes in each block, and

• the number of arrows connecting any pair of blocks.

Bearing this in mind, let us set the notation to be adopted in this work:

Notation Blocks are indexed by integers i ∈ {1, 2, . . . n}. We denote the number of

nodes in block i by αi and the number of bi-fundamentals between blocks i and j with
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FIG. 1. A three-block structured quiver diagram. Quiver nodes in yellow are gathered in block nodes in violet.

The arrows in both pictures denote collectively all possible arrows among the indicated yellow nodes.

aij . The orientation of the arrows is taken into account by demanding aij = −aji. We

encode the block structure of the quiver by writing its adjacency matrix as qn = {aij};
clearly qn is a n × n antisymmetric matrix over Z. Moreover, we let the R-charge of

the bi-fundamental fields aij be rij . Lastly, we write Ni = Nxi for the rank of the

gauge group of block i, with N representing any common divisor of the ranks of all

the blocks.

Now, the main problem of our interest is the following,

Problem: Among all possible data (Ni, αi, qn) for block quivers, classify those which

may admit a consistent, superconformal quiver gauge theory in (3+1)-dimensions.

The answer to this question, for n = 3, has been given in both the mathematics and the physics

literature [7, 29–33].

A. Three-Block Quivers

We begin by reviewing the physics approach of [7, 30] for n = 3. Given a chiral quiver, like

the one in the right of Fig. 1, we must first clarify the necessary, though not sufficient, physical

constraints that should be imposed in order to have a sensible superconformal gauge theory.

Anomaly Cancellation: First, one has to make sure that the gauge (triangle ABJ) anomalies

are cancelled. This is equivalent to the condition that the block-reduced rank vector d = {αixi} of

the quiver, lies in the kernel of the anti-symmetrized reduced quiver matrix qn:

q3 · d = 0 , q3 =

 0 a12 −a31

−a12 0 a23

a31 −a23 0

 , d :=

 α1x1

α2x2

α3x3

 , (2.1)

where the indices indicate the tail and the head of each arrow respectively. When the matrix

indices are not in agreement with the arrow indices we write a minus sign. Moreover, the quiver
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diagram must be free of source and sink configurations where source (sink) is a node with all

incident arrows outgoing (incoming); this fixes an overall orientation of the quiver which we choose

as counter-clockwise. Now, the kernel of a 3× 3 antisymmetric matrix is one dimensional, and for

the given case the basis vector of ker(q3) is simply

d =

 a23

a31

a12

 . (2.2)

Beta functions: Next, we require the beta functions for each coupling present in the theory

must vanish. The numerators of the beta functions are given by the SU(N) NSVZ formula [42],

which for the ith block reads

βi = Ni +
∑

A∈adj[i]

Ni(rA,i − 1) +
1

2

∑
B∈bifund[i,j]

Nj(rB,ij − 1) , (2.3)

where r is the R-charge of the fields, which are adjoints (adj) or bi-fundamentals (bifund). Of

course, we only have bi-fundamentals here. Note that for our purpose, considering the numerators

of the beta functions is enough, since the vanishing of the numerators is equivalent to the vanishing

of the whole fraction, given that the denominator is finite.

Furthermore, in [43], it was shown that in a (3 + 1)-dimensional conformal field theory the

gravitational central charges c and a are equal in the large N limit, a result which was further

generalized in [7] to any superconformal quiver gauge theory. There, the authors used this fact to

show that there is an extra condition on the beta functions

lim
N→∞

trR =
∑
i

Niβi = c− a = 0 . (2.4)

Gamma functions (marginality): Conformality also requires the gamma functions to vanish.

Our last physical input thus is the requirement that all the operators in the superpotential are

marginal at the interacting superconformal fixed point, namely that they have R-charge equal to

2. The possible operators present in the superpotential for the three-block quiver on the right of

Fig. 1 are its cyclic paths and correspond to cubic operators collectively represented as

X̂12X̂23X̂31 ,

with X̂ij an arrow from block i to block j. The marginality condition then translates to

r12 + r23 + r31 = 2. (2.5)

Putting together the requirement (2.5) and the vanishing of the beta functions (2.3) for the three

couplings results in a system of three unknown R-charges which satisfy four equations. Condition

(2.4) imposes the linear relation among the three beta functions that allows for a solution to the

system. Substituting (2.2),(2.5) in (2.4) results in an equation in terms of the quiver data:

a2
23

α1
+
a2

31

α2
+
a2

12

α3
= a12a23a31 . (2.6)
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This is a Diophantine equation in the variables aij and αi, which are by definition integers.

For α1 = α2 = α3 = α, (2.6) reduces to the well-studied Markov equation. This equation has

solutions over Z which can be organized in a tree (cf. [35]). This also holds for generic values of

α1, α2, α3. More specifically, given a solution (a23, a31, a12) one can construct an infinite set of

solutions by the following operations:

(a23, a31, a12)→

{ (α1a12a31 − a23, a31, a12)

(a23, α2a12a23 − a31, a12)

(a23, a31, α3a23a31 − a12)

. (2.7)

In [15, 16, 35] it was shown how Seiberg duality can be represented as a quiver duality which can

be described as follows: Pick a node to dualize, say node k; define three sets of arrows, Qin, Qout

and Qk̄ containing incoming, outgoing and non incident arrows with respect to the duality vertex;

change the orientation of all arrows in Qin∪Qout; change the arrows in Qk̄ as aij 7→ aij−aikakj . Now

recall that anomaly cancellation forces the rank of each node to be proportional to the number

of its non incident arrows. This condition in combination with the operations described above,

correctly reproduces the rank of the dualized node as Ndual
C = NF − NC , where the number of

flavors of the vertex k is defined as

NF =
∑

ajk∈Qin

ajkxj =
∑

akj∈Qout

akjxj . (2.8)

Note that the transformation (2.7) exactly matches the operations induced by Seiberg duality.

Thus, the latter can be described as the action of the automorphism group on the Markov tree; we

will return to this point on Seiberg duality in the next section. In [7] the solutions corresponding

to the “roots” of the duality trees for generic values of the node multiplicities were found to be

corresponding to all the three-block del Pezzo and pseudo del Pezzo quivers, as well as two new

non-del Pezzo quivers which were dubbed “shrunk”, for it was shown that they arise from a specific

operation (shrinking) on the block quiver.

B. The Markov Equation and the Adjacency Matrix

Let us now derive the same Diophantine equation from a new perspective which does not require

any physical input. As we shall see later, this form of the equation remains qualitatively the same

for any number of blocks enabling us to extrapolate our results to such cases. Recall that the {i, j}-
th first minor Mij of an n× n matrix, is the determinant of the submatrix with row i and column

j deleted while the {i, j}-th cofactor is given by Cij = (−)i+jMij . Because of the anti-symmetry

of q3, given in (2.1), one can see that its minors are quadratic in the edge multiplicities and the

matrix of minors assumes the following simple form:

M = {Mij} =

 a2
23 −a31a23 a12a23

−a31a23 a2
31 −a12a31

a12a23 −a12a31 a2
12

 . (2.9)
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Now, the Diophantine equation (2.6) can be written as a sum over the cofactors of the adjacency

matrix, weighted by the respective elements of the quiver matrix and the block multiplicities αi.

That is, equation (2.6) can be represented as∑
i

Cii
∏
n 6=i

αn −
∑
i<j

q3(i, j)Cij
∏
n

αn = 0 , (2.10)

where the indices run in {1, 2, 3}. The reason for writing the Markov equation in this form will

become evident in the next subsection where we clarify its origin using representation theoretic

concepts, while in Section III we show that it is a general formula that applies for an arbitrary odd

number of blocks and derive an analogous one for even numbers.

Note that this construction, surprisingly suggests that all the necessary physical input of su-

perconformality is somehow hidden in the adjacency matrix. For example, this formula requires

neither the superpotential to be marginal nor the beta functions to vanish as conditions. The

summation over minors automatically ensures these features!

C. The Markov Equation and the Tits Form

Equation (2.6) has been derived in different contexts and via different routes. In the mathemat-

ics literature, using complete exceptional collections of coherent sheaves over del Pezzo surfaces

[29], it was derived as a Diophantine equation which the ranks of the exceptional sheaves should

satisfy∗. In [31, 32, 45, 46] these results were independently re-derived and linked with quiver gauge

theories and Seiberg duality thereof, while in [47] this equation was derived using monodromy.

In this subsection we will show how the generalized Markov equation in the form (2.10) is related

to the Tits form of the quiver. For the sake of completeness we begin by briefly reviewing the basic

facts about bilinear forms associated with quivers. A nice place where the interested reader can

look for further background material on bilinear forms and the Tits form is [48] and references

therein.

Bilinear Forms on Quivers Given a quiver Q = (Q0,Q1), where Q0 denotes the set of

vertices and Q1 the set of arrows, one can define a representation of Q as the assignment of a

vector space Vi to each vertex i ∈ Q0 and a linear map Vρ : Vt(ρ) 7→ Vh(ρ) to each arrow ρ ∈ Q1,

with the subscripts t and h denoting the tail and the head of an arrow respectively. We call the

vector {dimVi} the representation vector of the quiver. A path algebra, with the product operation

given by concatenation of arrows, can be associated to a quiver. In the cases that we consider here

there is also a set of algebraic relations F , that the arrows obey, which come from the F-terms

(superpotential) of the gauge theory. Quivers with such relations are called bounded. The quotient

of the path algebra by F yields the so-called F-flat or Jacobian algebra A of Q .

On the modules of A, we can define the Euler form as the bilinear form given by

∗ See [44] for an equivalence between brane tilings and exceptional collections
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〈x,y〉 =
∑
i∈Q0

xiyi −
∑
ρ∈Q1

xt(ρ)yh(ρ) , (2.11)

where x ≡ {dimVi}. The symmetrization of (2.11), referred to as the Cartan form, can be written

as

(x,y) = 〈x,y〉+ 〈y,x〉 = xTCQy , (2.12)

where CQ = (ci,j)i,j∈Q0 is a symmetric |Q0|×|Q0| generalized Cartan matrix with Z valued entries,

given by

ci,j =

{
2− 2#(loops at i), if i = j

−#arrows between i and j, if i 6= j
(2.13)

Last, we define the Tits form which is the quadratic form associated with the Euler form,

qQ(x) ≡ (x,x) =
∑
i∈Q0

x2
i −

∑
ρ∈Q1

xt(ρ)xh(ρ) =
1

2
xTCQx (2.14)

We are now in a position to relate these concepts to the block quivers. The Tits form for the

three-block case of Fig. 1 using the adjacency matrix (2.1) reads:

qQ(x) = qQ(x1, x2, x3) ≡
∑
i∈Q0

x2
i −

∑
i<j

|q3(i, j)|xixj

= α1x
2
1 + α2x

2
2 + α3x

2
3 − a12x1x2α1α2 − a23x2x3α2α3 − a31x1x3α1α3

(2.15)

The Markov equation though is given by a slightly modified form. For that, let us consider an

orientation dependent version of (2.15), which we call qQs (s for “signed”), without the absolute

value in the adjacency matrix elements. As we immediately show this form yields the desired

Diophantine equation whose roots label superconformal block quivers. We then connect qQs with

the Tits form qQ. For the three-block case it reads:

qQs(x) = qQs(x1, x2, x3) ≡
∑
i∈Q0

x2
i −

∑
i<j

q3(i, j)xixj

= α1x
2
1 + α2x

2
2 + α3x

2
3 − a12x1x2α1α2 − a23x2x3α2α3 + a31x1x3α1α3.

(2.16)

After setting

x1 =

√
α2α3

α1K2
a23 , x2 =

√
α1α3

α2K2
a31 , x3 =

√
α1α2

α3K2
a12, (2.17)

where K2 = 12(9) − (α1 + α2 + α3) for a del Pezzo(non del Pezzo) quiver [7, 29] ensures that

xi ∈ Z, we are left precisely with the Markov equation (2.6)! These conditions are exactly those

found in [29] (cf. Sec 3) in the context of exceptional collections of sheaves and coincide with the

anomaly cancellation (2.2). Going back to the matrix of minors (2.9), we immediately see that

setting qQs = 0 yields the minor summation formula (2.10) with Cij = xixj .
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Now, by adding and subtracting the term a31x1x3α1α3 to (2.15), we obtain qQ = qQs −
2a31x1x3α1α3. Using the fact that we are looking for solutions of the Markov equation, i.e. qQs = 0,

we see that the dimension vector of a quiver gauge theory of this class satisfies

qQ(x1, x2, x3) = −2|q(3, 1)|α1α3x1x3 . (2.18)

Using the relations (2.17) this equation can be rewritten as

qQ(x1, x2, x3) = −2
√
α1α2α3K2x1x2x3 . (2.19)

with
√
α1α2α3K2 ∈ Z. Thus, we arrive at the conclusion that the dimension vectors of supercon-

formal block quiver theories have a negative Tits form†.

The Tits form is important because it defines the type of a quiver: positive definite, positive

semi-definite and indefinite correspond respectively to finite, tame and wild types (cf. [3]). More-

over, together with its extension given by Kac, the Tits form provides the link between quiver

representations and root systems.

We can associate the dimension vector (i.e., the vector whose entries are the ranks of the gauge

group factors) to a root of the root system of the underlying quiver and the Cartan form (2.12) to

the inner product on the root space. The Tits form is therefore the norm-squared of a root vector.

It is a celebrated theorem of Kac (see App. A 1) that real roots correspond to quivers with exactly

one indecomposable representation and the norm-squared of the dimension vector is equal to 1;

in contrast, imaginary roots correspond to the case where there are families of indecomposable

representations and the norm-squared is less than or equal to 0.

In light of Kac’s theorem the fact that we have a negative norm means that our choices of

dimension vectors, imposed by superconformality, correspond to imaginary roots of the root system

associated with the quiver. The ranks of superconformal gauge theories form the subset of such

dimension vectors that satisfy (2.18). It would be very interesting to see if these physically special

quiver representations also have special algebraic properties‡ which could shed some light in the

study of wild quivers. Since very little is known on that subject we will not try to address this

question here, but will leave it as an interesting comment.

D. Seiberg Duality and the Affine Weyl Group

In [37] Seiberg duality was interpreted as the action of the affine Weyl group on the root system

of an (affine) A-D-E type quiver diagram. As we now show, in our construction this result can be

generalized to arbitrary three-block quivers. We will later see that this statement actually holds

for any odd block number. Before discussing that let us briefly remind the reader how one defines

the Weyl group of the root system associated to a quiver Q and connects it with the classification

scheme of finite-tame-wild. The idea behind this construction is to think of the vector space

† See [49] for the appearance of the Tits form in N = 2 quivers.
‡ An example of a root with a special property is a so called Schur root, which corresponds to a dimension vector

of an indecomposable representation [2].
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spanned by the dimension vectors of the quiver as a root space of the algebra associated with the

quiver.

For simplicity we write the vertex set as Q0 = {1, 2, ..., n} and denote the corresponding basis

of ZQ0 as e1, ..., en. For each vertex i ∈ Q0 define an element ri ∈ Aut(ZQ0) whose action on a

dimension vector x ∈ ZQ0 reads

ri[x] = x− 2
(x, ei)

(ei, ei)
ei = x− (x, ei)ei (2.20)

where the inner product (−,−) is given by the Cartan form (2.12). If there are no loops at vertex

i then we call ri a simple reflection and ei a simple root. One can easily check that a simple

reflection leaves the Tits form (2.14) invariant. The Weyl group W (Q) of the quiver is defined as

the subgroup of Aut(ZQ0) generated by the simple reflections ri.

Let us now adapt this discussion in the three-block quivers depicted in Fig. 1 and see how

Seiberg duality arises in this context. Note that since we allow for arbitrary number of arrows

between two nodes, we are not restricted to an A-D-E quiver diagram. To illustrate the idea with

a simple example, we first focus in the case where all block multiplicities αi are set to one, and we

will then generalize to arbitrary numbers. By writing the Tits form (2.15) as

(x,x) =
1

2
xTCQx

one can read off the Cartan matrix of a three-block quiver. That is:

CQ =

 2 −a12 −a31

−a12 2 −a23

−a31 −a23 2

 (2.21)

In general, one can define a Cartan matrix as C = 2I− q, where q is the adjacency matrix defined

irrespectively of the orientation of the arrows. In our case we have defined q3 as the antisymmetrized

adjacency matrix (2.1), hence this relation does not hold. The Cartan matrix is symmetric, so it

is associated to a simply-laced algebra, and it can be easily shown that it is indefinite. That is

it has both positive and negative principal minors. It thus describes some Kac-Moody algebra of

indefinite type, in accordance with the fact that we are dealing with wild quivers.

To proceed, consider the reflection of a vector x = (x1, x2, x3)T with respect to the simple root

e1 = (1, 0, 0)T. We have

r1[x] = x− (2x1 − a12x2 − a31x3)e1 =

 a12x2 + a31x3 − x1

x2

x3

 . (2.22)

Recall that x is the dimension vector representing a superconformal gauge theory and Seiberg

duality is described as the transformation (2.7) and the operations outlined in the paragraph right

below it. In addition, the rank of the node with label “1” is x1 = NC1 , the number of flavors is

given by (2.8) as NF1 = a12x2 = a31x3 while the rank of the dualized node reads Ndual
C = NF −NC .
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We thus see that the top component of the right hand side of (2.22) is the rank of the first node

when Seiberg dualized, plus a shift. Therefore, we arrive at the following realization of Seiberg

duality in terms of roots:

Si[x] = ri[x]−NFiei, (2.23)

where Si[x] denotes Seiberg duality of the quiver gauge theory x with respect to node “i”. Such

an operation is known as an affine reflection. As we now show, affine reflections leave the Markov

equation invariant. Let us demonstrate that by computing the Diophantine equation for the dual-

ized quiver with block multiplicities equal to one. Recall that the Markov equation can be written

(cf. (2.18)) in the form

(x,x) = −2
√
K2
∏
j

xj .

Using (2.23) we find that the norm-squared of a vector dualized with respect to block “i” reads

(Si[x], Si[x]) = −2
√
K2x′i

∏
j 6=i

xj , (2.24)

where x′i = aijxj − xi = NFi − NCi . This nicely demonstrates that the subset of roots that

correspond to superconformal gauge theories is closed under Seiberg duality. In other words, this

results asserts that superconformal gauge theories are special roots of the quiver algebra and Seiberg

duality corresponds to the action of the affine Weyl group on the root system.

We now repeat the discussion for generic three-block quivers. Had we followed the same method

as right above we would have ended up with a Cartan matrix of the form

CQ =

 2α1 −α1α2a12 −α1α3a31

−α1α2a12 2α2 −α2α3a23

−α1α3a31 −α2α3a23 2α3

 . (2.25)

Recall that a Cartan matrix should have 2’s in the diagonal. The αi factors in (2.25) are due to

the block reduction of the quiver. In order to construct the correct CQ, we should instead consider

the nodes in each block as independent entries in the adjacency matrix. By doing that we obtain

a matrix of dimension
∑

i αi ×
∑

i αi with the desired property. In other words we consider the

Tits form as (
∑
αi)-ary quadratic form, where the first α1 variables degenerate to x1, the second

α2 to x2 and the last α3 to x3. We therefore have
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CQ =





−a12 . . . −a12 −a13 . . . −a13

2Iα1

...
. . .

...
...

. . .
...

−a12 . . . −a12 −a13 . . . −a13

−a12 . . . −a12 −a23 . . . −a23

...
. . .

... 2Iα2

...
. . .

...

−a12 . . . −a12 −a23 . . . −a23

−a13 . . . −a13 −a23 . . . −a23

...
. . .

...
...

. . .
... 2Iα3

−a13 . . . −a13 −a23 . . . −a23

, (2.26)

The basis vector, with respect to which we are going to reflect, is a = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
αi

, 0, . . . , 0)

with ones in the i-th αi entries and zeros in the rest. This corresponds to duality of block i.

The norm of this root is given by (a,a) = 2αi. The inner product of a generic vector x =

(x1, . . . , x1︸ ︷︷ ︸
α1

, x2, . . . , x2︸ ︷︷ ︸
α2

, x3, . . . , x3︸ ︷︷ ︸
α3

) with a is given by

(x,a) = αi(2xi − aijαjxj − aikαkxk)

where j, k index the other two blocks. Using the definition of the flavor number, this expression

reads

(x,a) = 2αi(NCi −NFi) (2.27)

Using the reflection formula (2.20) we see that (2.23) generalizes to

Si[x] = ri[x]−NFia, (2.28)

and computing the norm of the dualized vector, we find that it obeys the relation

(Si[x], Si[x]) = (x,x) + 2αiNFi(NCi −N ′Ci). (2.29)

Using (2.19) we arrive at the following result

(Si[x], Si[x]) = −2
√
α1α2α3K2x′i

∏
j 6=i

xj . (2.30)

That is, Seiberg duality corresponds to an affine Weyl reflection for any three-block quiver, where

duality with respect to block “i” maps to reflection with respect to the vector a with ones in the

i-th αi entries and zeros in the rest. The form of the Diophantine equation remains invariant under

this operation so that if x is solution, another one can be obtained as Si[x].
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Summary: In this section we reviewed the concept of block quivers and using new techniques,

we re-derived results well-known in both the mathematics and the physics literature for the case of

three-block quivers. We have shown that conformality of the gauge theory, which the chiral quiver

encodes, and anomaly cancellation place constraints on the adjacency and rank data of the quiver,

in the form of a Diophantine equation which can be presented as a weighted sum over minors of

the adjacency matrix. For three-blocks, this is a (generalized) Markov equation.

We then recalled standard techniques of representation theory of quivers. In particular, we used

the Tits bilinear form defined on the space of dimension vectors - or root space - of the quiver. We

showed that a signed version of the Tits form is precisely the aforementioned Diophantine equation

justifying the minor formula. This allowed for a correspondence between superconformal gauge

theories and root vectors of the quiver’s root system. In the ensuing section, we will see that our

results persist for an arbitrary block quiver.

Finally, on quiver theories in our context, there is the famous Seiberg duality action. We saw

that this translates to an affine Weyl reflection on the root space under which the Diophantine

equation remains invariant. This is in accord with the fact the duality tree of Seiberg-dual theories

are classified by solutions of our Diophatine equation [35].

III. NEW RESULTS FOR HIGHER BLOCK NUMBER

Having reviewed the three-block case under a new perspective, one naturally wonders how to

proceed to higher number of blocks. In this section we will generalize our previous discussion to

four- and five-block quivers and then conjecture the form of the superconformality conditions for

any number of blocks.

A. Four-Block Models

Now, the four-block situation was also addressed in [7] and we refer the reader to the classifica-

tion therein. We remark that for n = 4 there is a unique choice to draw a quiver with no sink or

source configurations. Furthermore, since we have an antisymmetric matrix of even dimension as

the reduced adjacency matrix, the determinant does not vanish automatically and the situation is

a little more difficult to regard it fully in terms of our quadratic form analysis. We are able though

to unravel a similar structure as a sum of minors for the four block case as well. The adjacency

matrix that we will consider is

q4 =


0 a12 −a13 −a14

−a12 0 a23 −a24

a13 −a23 0 a34

a14 a24 −a34 0

 , (3.1)
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such that

det q4 = a41a23 + a31a42 − a12a34 = 0, (3.2)

as required for anomaly cancellation. The 3× 3 first minors of the adjacency matrix vanish since

they are proportional to det q4. Therefore let us consider the 2× 2 second minors of (3.1) where a

second minor Mij,kl is defined as the determinant of the submatrix that results if one removes the

i, j rows and the k, l columns of the original matrix. The relevant minor matrix for our case is

Mq4 =

12 13 14 23 24 34



12 a2
34 −a24a34 a23a34 −a14a34 −a13a34 a12a34

13 −a24a34 a2
24 −a23a24 a14a24 a13a24 −a12a24

14 a23a34 −a23a24 a2
23 −a14a23 −a13a23 a12a23

23 −a14a34 a14a24 −a14a23 a2
14 a13a14 −a12a14

24 −a13a34 a13a24 −a13a23 a13a14 a2
13 −a12a13

34 a12a34 −a12a24 a12a23 −a12a14 −a12a13 a2
12

, (3.3)

where the outer column and row indicate the set of rows and columns of the adjacency matrix that

are deleted in order to obtain the corresponding element of the minor matrix, e.g. Mq4(2, 3) ≡
M13,14 = −a23a24. The Diophantine equation whose solutions are in one to one correspondence

with the superconformal four-block quivers can be written as∑
i<j

Mij,ij

∏
m 6=i,j

αm −
∑

i 6=j<k

(−)j+kq4(j, k)Mij,ik

∏
m 6=i

αm +
∑

i<j<k<l

q4(i, j)q4(i, l)Mij,il

∏
m

αm = 0 (3.4)

supplemented by (3.2), where αi denotes the multiplicity of the i-th block and the indices run in

{1, 2, 3, 4}. By substituting the minors one recovers the Diophantine equation reported in [7],

a2
12

α3α4
+

a2
13

α2α4
+

a2
14

α2α3
+

a2
23

α1α4
+

a2
24

α1α3
+

a2
34

α1α2
+
a12a24a14

α3
− a12a23a13

α4

+
a13a34a14

α2
− a23a34a24

α1
− a12a23a34a14 = 0

(3.5)

Although this formula seems somehow arbitrarily written there is a check for its validity and that

is the way it reduces to the three-block equation. Let us see what happens when we remove the

block with label one for example. This corresponds to the deletion of the first column and first

row of the adjacency matrix q4, leaving us with a three-block model adjacency matrix identical to

q3 in (2.1), while we also set α1 to zero. From the sum (3.4) we see that the only terms remaining

are the ones that are not multiplied by α1. These are,

M12,12α3α4 +M13,13α2α4 +M14,14α2α3

+
(
q4(2, 3)M12,13 − q4(2, 4)M12,14 + q4(3, 4)M13,14

)
α2α3α4 = 0 (3.6)

Now the remaining elements of q4 become entries of q3 as q4(i, j) 7→ q3(i− 1, j − 1) while the 2× 2

minors of q4 become the first minors of q3 and together with the sign (−)j+k yield the cofactors of q3

as (−)j+kM
(q4)
ij,ik 7→ C

(q3)
j−1,k−1. Having this relation in mind one can immediately see that the formula
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(3.4) correctly reduces to (2.10)! In the next paragraph we will see that the five-block Diophantine

equation is identical to the three-block one. This statement, in combination with the fact that the

reduction from four to three blocks can be demonstrated using the minor sum implies, inductively,

that the formula (3.4) holds also for six-block quivers. Thus, one can justifiably extrapolate this

claim to any even number of blocks.

In this case though the relation with a bilinear form on the quiver is not clear. Since the

summation over minors suggests a continuation from the three blocks, it is natural to think that

an analogous perspective would be valid for the four blocks too. We leave this investigation for

future work.

B. Five-Block Models

Let us move on to the next case of n = 5. We are looking for quivers with five blocks where there

are no sink or source configurations. We will readily see that we now encounter a new situation.

For n = 3, 4, the possible topologies of such graphs were unique, but this is not the case for order

five and higher. Hence one has to count all such connected sinkless-sourceless graphs and mod

out by topological equivalence, where we consider two graphs equivalent if they are related by a

permutation of the edges and nodes.

1. The Inequivalent Graphs

We find six equivalence classes, the representatives of which we refer to as Type I to VI. We

draw them in Fig. 2 and we also list the oriented cycles which correspond to operators in the

superpotential. The cycle structure of the six types is summarized as follows (outdegree refers to

the number of arrows going out of the node):
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FIG. 2. The six inequivalent chiral five-block quivers. The numbers in brackets indicate the number of clockwise

internal (the ones not in the perimeter of the pentagon) arrows.

Cycle counting

• Type I: clockwise outdegrees (starting from mid top) (2, 2, 2, 2, 2); 12 cycles; 2 quintics, 5

quartics, 5 cubics

• Type II: clockwise outdegrees (2, 3, 2, 1, 2); 9 cycles; 1 quintic, 4 quartics, 4 cubics

• Type III: clockwise outdegrees (2, 3, 3, 1, 1); 7 cycles; 1 quintic, 3 quartics, 3 cubics

• Type IV: clockwise outdegrees (2, 2, 3, 1, 2); 10 cycles; 3 quintics, 3 quartics, 4 cubics

• Type V: clockwise outdegrees (1, 3, 3, 2, 1); 6 cycles; 1 quintic, 2 quartics, 3 cubics

• Type VI: clockwise outdegrees (2, 1, 2, 3, 2); 9 cycles; 2 quintics, 3 quartics, 4 cubics

2. Detailed Analysis of Type I

Let us begin with a detailed analysis of Type I, whose block quiver is given in Figure 3.

As in the three-block case we are going to impose the following conditions:

1. anomaly cancellation: the dimension vector lies in the kernel of the quiver reduced adjacency

matrix q5;

2. beta functions: the weighted sum of the beta functions vanish;

3. gamma functions: R-charge of each cycle sums to 2.
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FIG. 3. The quiver for Type I of the five-block theory.

Now, following our previous notation, the adjacency matrix is

q5 =


0 a12 a13 −a41 −a51

−a12 0 a23 a24 −a52

−a13 −a23 0 a34 a35

a41 −a24 −a34 0 a45

a51 a52 −a35 −a45 0

 . (3.7)

The first condition then reads (recall that the rank is Ni = Nxi):

q5 · (α1x1, α2x2, α3x3, α4x4, α5x5)> = 0 , (3.8)

which translates to

α1x1 ∝ a45a23 − a35a24 − a52a34 ≡ A1

α2x2 ∝ a51a34 − a45a13 − a41a35 ≡ A2

α3x3 ∝ a45a12 − a51a24 − a41a52 ≡ A3 (3.9)

α4x4 ∝ a23a51 − a35a12 − a13a52 ≡ A4

α5x5 ∝ a34a12 − a41a23 − a13a24 ≡ A5.

These equations can be nicely summarized as

αi1xi1 ∝
1

8
εi1i2i3i4i5ai2i3ai4i5 , (3.10)

where summation over repeated indices is implied. Next, using the NSVZ numerators for the beta
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functions, we find

β1 =Nx1+
N

2

(
A5a51(r51−1)+A4a41(r41−1)+A3a13(r13−1)+A2a12(r12−1)

)
β2 =Nx2+

N

2

(
A1a12(r12−1)+A5a52(r52−1)+A4a24(r24−1)+A3a23(r23−1)

)
β3 =Nx3+

N

2

(
A2a23(r23−1)+A1a13(r13−1)+A5a35(r35−1)+A4a34(r34−1)

)
β4 =Nx4+

N

2

(
A3a34(r34−1)+A2a24(r24−1)+A1a41(r41−1)+A5a45(r45−1)

)
β5 =Nx5+

N

2

(
A1a51(r51−1)+A2a52(r52−1)+A3a35(r35−1)+A4a45(r45−1)

)
.

(3.11)

Finally, since our graph has twelve oriented cycles which could contribute to the superpotential,

we have twelve equations that the R-charges of the various operators should satisfy in order to

have total R-charge equal to two for each cycle. These are:

r12 + r23 + r34 + r45 + r15 = 2 (3.12)

r13 + r14 + r24 + r25 + r35 = 2 (3.13)

r15 + r35 + r23 + r12 = 2 (3.14)

r15 + r45 + r34 + r13 = 2 (3.15)

r15 + r45 + r24 + r12 = 2 (3.16)

r14 + r34 + r23 + r12 = 2 (3.17)

r45 + r34 + r23 + r25 = 2 (3.18)

r15 + r35 + r13 = 2 (3.19)

r45 + r24 + r25 = 2 (3.20)

r14 + r34 + r13 = 2 (3.21)

r25 + r35 + r23 = 2 (3.22)

r14 + r24 + r12 = 2 (3.23)

At this point we are in a situation where we have ten unknown R-charges and seventeen equa-

tions to satisfy, the five beta functions and the twelve R-charge equations. The vanishing of the

beta functions imposes a linear dependence on them reducing the total number of equations to

sixteen while some of the R-charge conditions are linearly dependent on others. In order for the

system to have a solution, one has to choose subsets of R-charge relations of rank six.

Therefore, for Type I five-block quivers one has to make a choice of subsets of gauge invariant

operators to contribute to the superpotential. The choice can be made by suitably adjusting the

couplings of the rest of the operators to zero. In other words, in the five block case superconfor-

mality imposes some form of hierarchy among the couplings of the theory. Mathematically, this is

reflected by the fact that not all of the equations (3.12) are linearly independent and they cannot

all be satisfied simultaneously.

In total, there are 33 choices of subsets of rank six, each of which can be solved consistently.

We list these sets in Appendix B1. Note that each subset is required to have cardinality at



21

least, but not exactly, six since some of the relations may be linearly dependent on others. For

example the set of R-charge relations number (33) of the collection (B1) picks out the relations

(3.12),(3.14),(3.15),(3.16),(3.17),(3.18). The cubic relations are linearly dependent on these so for

this choice one has to set to zero only the coupling of the quintic operator§ (3.13).

y13524â13â35â52â24â41 . (3.24)

That is,

y13524 = 0. (3.25)

Doing this enables one to bypass the marginality condition (3.13) because this quintic term de-

couples from the system which now admits a solution. Putting together the requirement of the

vanishing of the weighted sum of the beta functions
∑
Niβi = 0, the anomaly cancellation (3.9)

and the chosen set of marginal operators, we obtain a Diophantine equation in terms of the quiver

data. We will take advantage of the discussions above and cast the equation into a quadratic form:

A2
1

α1
+
A2

2

α2
+
A2

3

α3
+
A2

4

α4
+
A2

5

α5
= a12A1A2 + a34A3A4 + a51A1A5 + a52A2A5 , (3.26)

where we recall Ai from (3.9) and, in fact, AiAj = Cij ≡ (−)i+jMij , where Cij is a cofactor and

Mij is the {i, j} minor of the reduced quiver matrix q5. The RHS of the above equation can be

written in 5 equivalent ways,

a34A3A4 + a51A1A5 + a12A1A2 + a52A2A5

a45A4A5 + a51A1A5 + a23A2A3 + a41A1A4

a34A3A4 + a45A4A5 + a12A1A2 + a35A3A5

a34A3A4 + a51A1A5 + a23A2A3 + a24A2A4

a45A4A5 + a12A1A2 + a23A2A3 + a13A1A3 .

(3.27)

Re-organizing, as before in the three-block case, we can rewrite (3.26) as a sum over minors Mij

of q5: ∑
i

Cii
∏
j 6=i

αj −
∑
i<j

q5(i, j)Cij
∏
k

αk = 0 , (3.28)

where the indices run in {1, 2, 3, 4, 5}. Upon considering the fact that the determinant of q5 (being

an antisymmetric matrix of odd dimension) is zero and that the determinant can be expressed as

an alternating sum of minors along any line or column weighted by the respective matrix elements,

eq. (3.28) reduces to (3.26) with the RHS being any of (3.27). Written in this way, this five-block

equation is a straightforward generalization of the one found for the three-block case.

However, this formula is correct only for this specific subset of operators and the ones that are

related to it by permutations and arrow reversals as we will see in subsection III B 4. This subset

§ Note that a term like (3.24) represents a collection of operators in the superpotential since there are more than

one nodes in each block.
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is special in the sense that it is the one with maximal cardinality. In other words it is the one that

requires the lowest number of couplings to be set to zero. As we previously saw, the only such

coupling for this choice of simultaneously marginal operators is (3.25).

In this case, one can write the Diophantine equation as the “signed” Tits form of the quiver in

complete analogy with the three-blocks:

qQs(x1, x2, x3, x4, x5) =
∑
i

αix
2
i −

∑
i<j

q5(i, j)αiαjxixj . (3.29)

In other words the dimension vectors for which the resulting gauge theory is superconformal satisfy

qQ(x1, x2, x3, x4, x5) = −2
∑

i<j | q5(i,j)<0

|q5(i, j)|αiαjxixj , (3.30)

where qQ is the actual Tits form (2.14) of the representation. Upon setting xj ∝
√∏

i6=j αi
αj

Aj one

arrives at equation (3.28). The observation that the equation can be written as a sum of minors

now stems from the Tits form construction. The robustness of our results for the low block numbers

implies that they hold for any block quiver. Before formalizing this conjecture let us dwell more

on this specific case.

Furthermore, one can go on and solve for the R-charges. Solving for the 4 out of 5 beta-functions

in addition to the R-charge marginality conditions we have 10 equations and 10 unknowns. The

fifth beta-function will vanish by construction since we have also imposed the Diophantine equation.

We find the following rational functions:

r12 =
2

A1A2

(
a45

A3

α3
− (α4a34a45 + a35)

A4

α4
+ a34

A5

α5

)
r13 =

2

A1A3

(
− a45

A2

α2
+ a23a45A3 + (α4a24a45 − a52)

A4

α4
− a24

A5

α5

)
r14 =

2

A1A4

(
− a35

A2

α2
+ (α3a23a35 − a52)

A3

α3
+ a23a45A4 − a23

A5

α5

)
r15 =

2

A1A5

(
a34

A2

α2
− (a24 + α3a23a34)

A3

α3
+ a23

A4

α4

)
r23 =

2

A2A3

(
a45

A1

α1
+ a51

A4

α4
− (α5a45a51 + a41)

A5

α5

)
(3.31)

r24 =
2

A2A4

(
− a35

A1

α1
+ a51

α3a34A4 + α3a35A5 −A3

α3
− a13

A5

α5

)
r35 =

2

A3A5

(
− a24

A1

α1
− a41

A2

α2
+ a12

α4a24A2 + α4a34A3 −A4

α4

)
r45 =

2

A4A5

(
a23

A1

α1
− (α2a23a12 + a13)

A2

α2
+ a12

A3

α3

)
,

with the remaining 2 given by the marginality conditions (3.12) and (3.14)-(3.18). The rationality

of these values is not surprising since we solved a linear system of ten equations in ten variables.

A comment though is in order at this point. There are known five-block del Pezzo quivers for

which a-maximization predicts irrational R-charges in contrast with (3.31). The subtlety lies in
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the fact that for these models the R-charges of fields between two blocks are not the same and the

formulas (3.31) cannot be applied. Nevertheless, as we will see in the next section, these cases are

still solutions of a reduced version of (3.28).

a. Comments on multitrace operators Let us here briefly comment on the possibility of multi-

trace operators of the form (X̂12X̂23X̂31)m, for the three block models of sec. II A, and analogously

for the five block ones. Such terms, although generically irrelevant, may acquire large anomalous

dimensions due to strong coupling effects and become marginal. The R-charge condition (2.5)

would then become

r12 + r23 + r31 =
2

m
, (3.32)

and the same change would apply to the R-charge conditions for five block models (3.12). This

leads to the following three block Diophantine equation

a2
23

α1
+
a2

31

α2
+
a2

12

α3
=

2m− 1

m
a12a23a31 . (3.33)

This equation can be cast into a minor formula as

m
∑
i

Cii
∏
k 6=i

αk − (1− 2m)
∑
i<j

q3(i, j)Cij
∏
k

αk = 0 , (3.34)

which correctly reduces to (2.10) for n = 1. For the five block case, the minor formula can be

written as

m
∑
i

Cii
∏
j 6=i

αj −
∑
i<j

(
1 + (−)i+j+1

2
(1− 2m) +

1 + (−)i+j

2
(2− 3m)

)
q5(i, j)Cij

∏
k

αk = 0.

(3.35)

For m = m∗ = 1 this formula reduces to (3.28), and in that case, since 1−2m∗ = 2−3m∗, this is a

straightforward generalisation of the three block one (3.34), but for higher values this is not true.

Furthermore, although these equations can be written as a deformed Tits form, the representation

theoretic meaning of such an object would be unclear. Interestingly, (3.34) for the three block

models leads to a whole new family of solutions that differ from the ones found in [7] for the case

m = 1, however, a systematic approach to these cases evades the scope of this paper.

3. Reproducing Known Theories

Now, since we are doing a classification of consistent block quivers which might admit super-

conformal fixed points, we need to check whether theories known in the AdS/CFT literature are

special cases. In this subsection we verify that the toric quiver gauge theories constructed in [21, 26]

are indeed a subclass of solutions of the Diophantine equation presented here. These models, being

toric, have the same rank N in all blocks.

The requirement of equal ranks translates into setting x = A1
α1

= A2
α2

= A3
α3

= A4
α4

= A5
α5

. Then the

rank of the blocks decouples from the equations as a free parameter and the anomaly cancellation
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condition (3.9) becomes

q5 · (α1, α2, α3, α4, α5)> = 0 .

Since the block multiplicities should lie in the kernel of the adjacency matrix, we must replace Ai

with αi. Then equation (3.28) reads

5∑
i=1

αi − α1α2a12 − α1α3a13 + α1α4a41 − α2α3a23 − α2α4a24 − α3α4a34 = 0 , (3.36)

with the rest of the arrows given by the relations

a51 =
α2a12 + α3a13 − α4a41

α5
, a52 =

α3a23 + α4a24 − α1a12

α5

a35 =
α1a13 + α2a23 − α4a34

α5
, a45 =

α2a24 + α3a34 − α1a41

α5
. (3.37)

As can be seen from the quiver diagram these relations are nothing but the requirement of having

equal number of incoming and outgoing arrows for each block. The conditions (3.37) where chosen

randomly on block five since they fix all its incident arrows in terms of the others. Given these

substitutions, all the cofactors of the new adjacency matrix equal the cofactor C55 of the initial

one. This cofactor is the determinant of the four-block matrix that is obtained by deleting the fifth

row and column of q5, or in other words it represents the four-block model that arises from the

five-block one when we remove the fifth node. For all the known five block models in the literature,

this determinant vanishes so that the four block sub-quivers are anomaly free. The equality of all

the cofactors ensures that this will then be valid for all the 4× 4 sub-determinants representing all

the 4b-models that can arise by the removal of a node. By imposing the anomaly cancellation for

the sub-quivers, we essentially further reduce the rank of the matrix from r[q5] = 4 to r[q5] = 2,

since we impose relations for every sub-determinant to vanish. The kernel space of such a matrix

is therefore 3 dimensional and an arbitrary vector reads
α1

α2

α3

α4

α5

 = α


−a52

a51

0

0

a12

+ β


a24

a41

0

a12

0

+ γ


a23

−a13

a12

0

0

 , (3.38)

with α, β, γ positive integers. Given these substitutions for the block multiplicities the Diophantine

equation finally reads

α
[
− a52(αa12a51 − 1) + a51(βa12a24 − 1) + a12(γa51a23 − 1)

]
+

β
[
a12(αa51a24 − 1) + a24(βa12a41 − 1) + a41(γa12a23 − 1)

]
+ (3.39)

γ
[
a23(αa51a12 − 1) + a12(βa23a41 − 1)− a13(γa12a23 − 1)

]
= 0,

with the rest of the arrows given by

a34 =
a24a13 + a23a41

a12
, a35 =

a23a51 − a13a52

a12
, a45 =

a24a51 + a41a52

a12
. (3.40)
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The known del Pezzo quivers PdP2 , dP II2 , dP II3 , PdP II3b , PdP4 are solutions of equations

(3.38),(3.39),(3.40) with (α, β, γ) = (1, 1, 1). For example denoting the solution vector of a model

as

(α1, α2, α3, α4, α5; a12, a13, a41, a51, a23, a24, a52, a34, a35, a45)

the quiver of the second toric phase of the dP3 theory (see Fig. 4) corresponds to

vIIdP3
= (2, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1, 0, 2, 1, 1).

For the sake of completeness we present the other solutions of the known superconformal del Pezzo

FIG. 4. The quiver of the second toric phase of the del Pezzo 3 theory.

quivers.

vPdP2 = (1, 1, 1, 1, 1; 2, 0, 1, 1, 2, 1, 1, 1, 1, 1)

vIIdP2
= (1, 1, 1, 1, 1; 1, 1, 1, 1, 2, 0, 1, 2, 1, 1)

vIIPdP3b
= (2, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1, 0, 2, 1, 1)

vPdP4 = (1, 1, 2, 2, 1; 1, 1, 1, 1, 1, 0, 1, 1, 0, 1)

4. Equivalence Classes for Type I

As previously mentioned, the five-block case is the first where one has to make a choice of

simultaneously marginal operators in the superpotential. For Type I there are 33 such subsets

of six linearly independent R-charge relations, listed in the Appendix (B1), which lead to 33

Diophantine equations. Are any of these equivalent to each other? The answer is positive but

unfortunately not for all. Before discussing that let us clarify what is the equivalence relation.

A n-ary quadratic form can be represented by a symmetric n× n matrix as

q(x) =

n∑
i,j=1

aijxixj ≡
1

2
xTCqx (3.41)
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where x is a column vector with entries x1 . . . xn and Cq is the symmetric matrix with elements

Cq(i, j) = (aij + aji)

Two forms are equivalent if their corresponding symmetric matrices are related by a similarity

transformation. This is because if Cq = ST · Cq′ · S then all the values of q′ are determined from

the values of q as q(x) = q′(S ·x). All the Diophantine equations can be written as quadratic forms

over the variables A1, . . . , A5 defined in (3.9). We thus consider as equivalent two Diophantine

equations, corresponding to two different choices of R-charge conditions, if they are equivalent as

quadratic forms. This means that if one solution x0 of the former equation is known then a solution

of the latter can be immediately written as y0 = S · x0.

We find that there are 6 equivalence classes. Although the Diophantine equations are written

as quadratic forms, the do not obey the nice structure of summation over minors, neither are their

Tits forms negative definite. Since this analysis does not give any further insight into what we have

already seen, we list all our results in Appendix B 2. In there the reader can find the Diophantine

equations for each representative choice of R-charge relations for the Type I quivers. For each

choice we also identify which couplings of the superpotential must be set to zero.

5. Enumeration of Other Types

We recall from the beginning of the section that there are 6 distinct, topologically inequivalent,

types of five-block quivers and we discussed Type I in detail above. Fortunately, all the other

five Types of quiver diagrams and their equivalence classes, are related to Type I by permutations

and orientation reversal operations on the arrows. In other words, all the Diophantine equations

obtained from the various subsets of R-charge marginality conditions for each Type are equivalent

to those of Type I.

We find that Type II, III and V lead to a unique set of simultaneously marginal operators

and are equivalent with Class 4 of Type I, represented by the set (33) of R-charge conditions,

which we discussed in detail in the previous subsections. Types IV and VI have 22 and 11 sets of

simultaneously marginal operators which lead to the same numbers of equations, again related to

the various classes of Type I. The cycle structure of these quivers are listed in Appendix B 3.

6. Duality Tree for Five-Block Models

Let us now comment on Seiberg duality and see that indeed it leaves our Diophantine equation

invariant. As we saw in section III B 2 the five-block Diophantine equation is a straightforward

generalization of the three-block one, and thus Seiberg duality is easily seen to correspond to affine

Weyl reflections for the five-block models as well. Let us here focus on the duality as the set of

operations reported in [16] and reviewed in Section II A. As a bi-product we will find out that the

duality exchanges equations among the six quiver Types that we have.
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So let us analyze a specific example for the Type I quiver drawn in Fig. 3 where, for simplicity,

all the block multiplicities are set to one. Suppose we want to dualize with respect to node “1” in

the quiver. This amounts to the following operations

a51 → −a51, a41 → −a41, a13 → −a13, a12 → −a12

a24 → a24 − a12a41, a52 → a52 + a12a51, a34 → a34 − a13a41, a35 → a35 − a13a51

(3.42)

Let us assume that

a24 > a12a41, a52 > a12a51, a34 > a13a41, a35 > a13a51, (3.43)

so that the “dual” arrows do not change direction. Then Seiberg duality leads to the quiver in

the middle quiver of Fig. 5. Note that the reversal of the arrows incident to node “1” changes the

FIG. 5. Seiberg duality acting on a quiver of type I. Green arrows are the ones that change direction. P

corresponds to the permutation that brings the middle quiver to its canonical form as it is defined in Fig. 2. The

top right labels denote the type of each diagram.

cycle structure of the quiver. In order to see of what Type is the dualized graph, one has to count

its oriented cycles. By doing so we find that it is of Type III. The permutation P = (1)(24)(35)

brings the dualized diagram to its canonical form as defined in Fig. 2, that is with a clear counter-

clockwise orientation of the “outer” pentagon (the perimeter). Note that had we violated one of

(3.43) we would have an outcome of another type. Recall that from the analysis in section III B 2

the rank of the node “i” is proportional to Ai as in (3.9). The transformations (3.42) act on the

A’s as follows

A1 → A1 − a41A4 − a51A5, A2 → −A2, A3 → −A3, A4 → −A4, A5 → −A5. (3.44)

The minus signs in front of the dual ranks are notational artifacts since they arise due to the fact

that we consider the arrows to change sign when reversed. The anomaly cancellation forces the

dimension vector to be in the kernel of the quiver matrix. The overall minus in the dual ranks is

due to the fact that the duality as we define it on the quiver data reflects this vector through the

origin of the null space of q5. This is also evident in the three-block case where the rank vector

is proportional to the vector with entries the non incident arrow of each node (cf. (2.2)). Had we

ended up with a minus sign in the rank of some blocks and positive in the others, then we would

face a real problem, which is certainly not the case here.
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It is straightforward to verify that the transformation A1 → α1a41A4 + α1a51A5 − A1 leaves

the five-block Diophantine equation invariant! The best way to see this is to use the last line of

(3.27) as the RHS of (3.26) since it involves only arrows that remain unaffected from the operations

(3.42). This corresponds exactly to NC1 7→ NF1 − NC1 . The fact that the determinant vanishes

ensures that the number of flavors is uniquely defined, that is a41A4 + a51A5 = a12A2 + a13A3.

C. Summary and Generalization to n-Blocks

In this section we have presented our results for block models up to five nodes, including the

known five-block theories on del-Pezzo surfaces. We saw that they are underlined by an identical

algebraic structure as the three-block ones, while for four-blocks the situation is slightly altered.

Even though there exists a formula which admits a similar structure as in the odd cases the

connection with representation theoretic concepts is blurry. Finally, we saw how Seiberg duality

can be realized as an action on the 5b-quiver that leaves the Diophantine equation invariant.

Unfortunately, due to the exponential increase in complexity we cannot explicitly verify higher-

block quivers but the persistence of the summation over minors formula strongly recommends a

continuation to any quiver. Our highly non-trivial analysis and the robustness of our results for the

low numbers of blocks leads us to conjecture a generic classification of chiral quiver gauge theories

satisfying the necessary conditions for an N = 1 superconformal fixed point to exist:

CONJECTURE 1 Given a quiver with n = 2l + 1 blocks and the maximal set of simultaneously

marginal operators, the resulting anomaly free theory has vanishing beta and gamma functions if

the quiver data, in the notation of Sec.II (cf. p.6), satisfy the following Diophantine equation:∑
i

Cii
∏
j 6=i

αj −
∑
i<j

qn(i, j)Cij
∏
k

αk = 0 , (3.45)

where Cij is the (i, j) cofactor of the anti-symmetrized adjacency matrix qn and the indices run in

{1, . . . , n}.
The dimension vector corresponding to the gauge theory satisfies

qQ(x1, ..., xn) = −2
∑

i<j | qn(i,j)<0

|qn(i, j)|αiαjxixj , (3.46)

where qQ is the Tits form of the quiver. The rank of block i is given by

xi ∝

√
Mii

∏
j 6=i αj

αi
, (3.47)

with Mij being the (i, j), (n− 1)× (n− 1) first minor of qn. The proportionality constant is fixed

so that xi ∈ Z. Therefore, superconformal gauge theories correspond to imaginary roots of the

quiver’s root system. The affine Weyl group that permutes these roots offers a realization of Seiberg

duality in this context.
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CONJECTURE 2 Given a quiver with n = 2l blocks and the maximal set of simultaneously marginal

operators, the resulting anomaly free theory has vanishing beta and gamma functions if the quiver

data, satisfy the following Diophantine equation:∑
i1<i2

Mi1 i2 ,i1 i2

∏
m6=i1 ,i2

αm −
∑

i1 6=i2<i3

(−)i2+i3qn(i2, i3)Mi1i2,i1i3

∏
m 6=i1

αm +

+
∑

i1<...<in

qn(i1 , i2)qn(i1 , in)Mi1 i2 ,i1 in

∏
m

αm = 0 (3.48)

where Mij,kl is the (ij; kl) second minor of the anti-symmetrized adjacency matrix qn and the in-

dices run in {1, . . . , n}.
Having a superconformal 2l-block model the operation of removing one block leads to a superconfor-

mal (2l − 1)-block model; this does not hold for (2l + 1)-block quivers reduced to 2l-block theories.

Even though we have calculated explicitly one even-block quiver the way that 4b reduces to 3b

through the minor formula is suggestive for the 6b construction as well. Note that although the

last term in (3.48) does not participate in the 2l − 1 quiver, since it is weighted by all the node

multiplicities αm, including the one we set to zero in order to descent to 2l−1-blocks, the way it is

written it reproduces a 2l-order term in the arrow multiplicities, which is the order 2l operator in

the perimeter of the polygon. That is for example the analogue of the term a12a23a34a14 in (3.5).

This is because the second minor of a 2l × 2l matrix is of order 2l − 2 in the entries and together

with the quadratic piece yields the term of order 2l.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have organized chiral quiver theories into block structure and derived the

necessary conditions for a theory to be superconformal. The pigeon-holing of the plethora of

quiver theories into block-quivers each block of which contains non-adjacent nodes dramatically

reduces the complexity of the problem and gives a handle on a step-wise catalogue of the gauge

theories of this class that might admit a superconformal fixed point. Many of the complicated

geometries which ordinarily give rise to product gauge groups, especially Calabi-Yau manifolds as

cones over higher del Pezzo surfaces, now simply belong to the class of 3-, 4- or 5-block models.

Importantly, we have incorporated physical conditions of anomaly-cancellation, conformality as well

as marginality by enforcing all superpotential terms to have R-charge 2, directly into our scheme;

these strong constraints translate to combinatorics. We envision that with further computer work,

we can efficiently classify more and more of quivers with superpotential.

A powerful invariant for a block-quiver is an underlying Diophantine equation which the adja-

cency matrix and the ranks of the nodes must obey. Interpreting the ranks as the dimension vector

of the representation of the quiver, and using the so-call Tits quadratic form thereon, we have

shown how the Diophantine equation arises upto 5-blocks and conjectured a general form. The ex-

ponential increase in complexity of our problem as the number of blocks rises, forbids us to further
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support our results by direct computation, but we find it highly non trivial and suggestive that the

first three cases can be attacked in a unified way. The complication of having to enumerate the in-

equivalent graphs for higher block number is one more computational obstacle. The first few terms

in the sequence that counts inequivalent graphs up to seven blocks are (0, 0, 1, 1, 6, 36, 356, ...).

For each geometry, there is a tree of Seiberg-dual theories arising by consecutive action on the

various nodes (blocks). The ranks and subsequent adjacency matrices of these dual theories are,

surprisingly, controlled by this Diophantine equation by precisely being its solutions. Therefore

understanding of this equation is of great significance.

Taking advantage of the presentation of the Diophantine equation as the Tits form of the quiver,

Seiberg duality is seen as affine Weyl reflections in the space of roots, provides a representation-

theoretic approach - complementing the usual geometric ones such as mutation and Picard-Lefshetz

monodromy - to the tree of dualities. Indeed, the Diophatine equation is invariant under such Weyl

reflections. Furthermore, this point of view draws a connection among the representation theory

of quivers, their root systems and N = 1, 4-d superconformal gauge theories for cases with odd

block number. For the quivers with an even number of blocks the situation is more blur. We could

not identify a clear connection with a bilinear form but we managed to show that in that case as

well, the polynomial invariant that controls possible superconformal fixed points, can be presented

as a sum over minors of the adjacency matrix. This fact in combination with the reduction of the

even to odd block Diophantine equations suggests that there might be a representation theoretic

description of these theories as well, a topic we leave for future work.

New mathematical descriptions of physical phenomena is beneficial for both fields. For example,

realizing field theory dualities in different mathematical contexts may reveal aspects thereof not

previously accessible and even lead to new connections among field theories. Alternatively, con-

necting root systems of wild quivers whose representation theory is unknown, to physical systems

such as conformal field theories may open a new path of studying such objects. Our construction,

even though restricted to a subclass of quiver theories and their superconformal fixed points, pro-

vides such a link by mapping field theories obeying a set of physical requirements to subsets of

imaginary roots of the quiver, and thus takes a step towards this direction.

In addition to fitting further known theories into our context, which also includes a huge class of

known examples, there is much left to do. Given the conjectural forms of the Diophatine equations

and block structures, we can reverse engineer the subsequent quivers with superpotential. We can

do this by finding the explicit moduli space of vacua from the quiver data and then find Calabi-

Yau geometries for which the world-volume theories of the D-branes probes are not yet known.

Within the toric sub-class, which comprises most of the known examples to AdS/CFT, there is an

interpretation in terms of brane-tilings where the ranks of all nodes are equal, our classification

frame-work thus also gets simplified. It would be interesting to investigate this class in further

detail as well as to further explore, understand and develop our representation theoretic approach

to the problem of enumerating superconformal theories and their relation to the underlying root

system of the quiver diagram.
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Appendix A: Quivers, an Algebraic Interlude

In this appendix, we give, in an as self-contained fashion as possible, some rudiments on the

representation theory of quiver. The interested reader is referred to [1–4] for a more in depth

presentation of this material and to [8] for considerations in the gauge-theoretic context.

A quiver diagram is defined as a pair Q =(Q0,Q1) where Q0 is a finite set of vertices and

Q1 is a finite set of oriented edges connecting these vertices. For ρ ∈ Q1 we let h(ρ) to denote the

vertex attached to the head of the arrow and t(ρ) the one to the tail. A path in Q is a sequence

x = ρ1 . . . ρn of arrows such that h(ρi+1) = t(ρi). Moreover, for each vertex i ∈ Q0 we consider a

trivial path ei which starts and ends in i. The path algebra kQ associated with the quiver is the

k-algebra whose basis is the collection of paths and with the product rule given by concatenation

of the paths and k is some ground number field, usually taken to be C. That is, the multiplication

is

x · y ≡

{
xy, if h(y) = t(x)

0, otherwise .
(A1)

An important class of quivers consists of the ones that are endowed with a superpotential. The

superpotential is the set of all cyclic paths in the quiver diagram. One can formally define a

derivative with respect to arrows, acting on these cyclic paths. The set of derivatives of all cyclic

paths with respect to all their constituent arrows forms an ideal called the Jacobian ideal. The

quotient of the path algebra by the Jacobian ideal is referred to as the Jacobian algebra. We call

such a quiver with superpotential a bounded quiver since it is bounded by zero-relations, while in

the absence of a superpotential we refer to the quiver as unbounded.

Let us illustrate these definitions with two simple examples.

The Jordan quiver. The path algebra of the Jordan quiver is infinite dimensional, with the

basis set being {e1, ρ, ρ
2, ρ3, . . .}. The algebra is isomorphic to the polynomial ring k[t].

A quiver with relations. The path algebra of the quiver depicted in Fig. 7 has a basis given by

the paths {e1, e2, e3, α, β, γ, βα, γβ, αγ, γβα, . . .}. Note that other combinations of arrows are not
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FIG. 6. The Jordan quiver.

FIG. 7. The oriented Â2 quiver.

allowed, for example γα = 0 since h(α) 6= t(γ). This quiver has also a superpotential given by the

unique cycle S = γβα. The Jacobian ideal is the one generated by the following relations, which

form the zero paths,

∂αS = γβ , ∂βS = αγ , ∂γS = βα

1. Quiver Representations

A representation of a quiver is the assignment of a vector space Vi to each vertex i ∈ Q0

and a linear map Vρ : Vt(ρ) 7→ Vh(ρ) to each edge ρ ∈ Q1. Different representations of a given

quiver are different sets of vector spaces and morphisms that one can assign to each vertex or edge

respectively. The dimension vector is defined as follows,

dV = (dimV1, . . . ,dimVn) ∈ ZQ0 (A2)

where n is the number of vector spaces. This is just the vector labelling the ranks.

Clearly, there are infinite representations, since there are infinite dimension vectors, but one

does not need to classify them. A key notion is that of indecomposable representations of a given

quiver. Let V ≡ (Vi, Vρ), W ≡ (Wi,Wρ) be two representations of a quiver Q , where Latin indices

denote vertices and Greek, edges. Define a direct sum of two representations as

V ⊕W ≡
{

(V ⊕W )i, (V ⊕W )ρ

}
where the resulting vector space set is

(V ⊕W )i = Vi ⊕Wi (A3)
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and the resulting map set (V ⊕W )ρ : (V ⊕W )t(ρ) 7→ (V ⊕W )h(ρ)

(V ⊕W )ρ
(
(v, w)

)
=
(
Vρ(u),Wρ(w)

)
, v ∈ Vt(ρ), w ∈Wt(ρ). (A4)

A representation V is trivial if Vi = 0, ∀ i ∈ Q0 and simple if its only subrepresentation is

the trivial and itself in complete analogy with the group theoretical definitions. In addition, a

representation V is decomposable if it is isomorphic to W ⊕ U for some W,U ∈ Repk(Q), and

indecomposable otherwise. It is an important fact that every representation of a quiver diagram

has a unique, up to isomorphism, decomposition into indecomposable representations.

Thus, one needs only classify the indecomposable representations of a quiver diagram.

Let us once more illustrate the above notions with two simple examples:

An unbounded linear quiver. This diagram has the following indecom-

posable representations U, V,W , where

{U1
∼= k, U2 = 0, Uσ = 0} , {V1 = 0, V2

∼= k, Vσ = 0} , {W1
∼= k, W2

∼= k, Wσ = 1} . (A5)

Therefore, any representation Z = {Z1, Z2;Zσ} of Q is isomorphic to

Z ∼= Uα ⊕ V β ⊕W γ (A6)

with Uα ≡ U ⊕ . . .⊕ U︸ ︷︷ ︸
α

. The positive integers α, β, γ are related to the rank of the morphism Zσ

and the dimensions of the vector spaces Z1 and Z2 as follows. Since the spaces on the LHS are

isomorphic to the direct sum on the RHS for each value of the index i, the dimension vectors must

be the same. Denoting the dimension of a vector space Ai as dim(Ai) ≡ di, where A runs over all

four representations, namely U, V, Z,W , we have

d1 = α+ γ and d2 = β + γ.

The exponent γ is the rank σ of the morphism Zσ. Solving the above equations we find a =

d1−σ, β = d2−σ. Thus, the decomposition of any representation Z of this quiver, with dimension

vector dZ = (d1, d2), is

Z ∼= Ud1−σ ⊕ V d2−σ ⊕W σ . (A7)

Note how dZ governs the decomposition.

The bounded Â2 quiver. The quiver with relations depicted in Fig. 7 falls under the category

of gentle algebras [5, 50]. A gentle algebra is defined as the one that has the following properties:

(C1) At each point of Q start at most two arrows and stop at most two arrows.

(C2) The ideal of zero relations I is generated by paths of length 2.
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(C3) For each arrow β there is at most one arrow α and at most one arrow γ such that αβ ∈ I
and βγ ∈ I.

(C4) For each arrow β there is at most one arrow α and at most one arrow γ such that αβ /∈ I
and βγ /∈ I.

The representation theory of these quivers is well studied. Their indecomposable representations

fall under two categories, the string modules and the band modules. Denoting by A the Jacobian

algebra, a string is by definition a reduced walk w in A avoiding the zero-relations. A string is

cyclic if the first and the last vertex coincide. A band is defined to be a cyclic string b such that

each power bn is a string, but b itself is not a proper power of some string c. The string module

M(w) is obtained from the string w by replacing each vertex that belongs to the walk by a copy

of the field k. The dimension vector dimM(w) of M(w) is obtained by counting how often the

string w passes through each vertex x of the quiver Q . Similarly, each band b in A gives rise to a

family of band modules M(b). All string and band modules are indecomposable, and in fact every

indecomposable A−module is either a string module M(w) or a band module M(b). For the Â2

quiver we have the following string modules: {e1, e2, e3} of zero length giving rise to dimension

vectors {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} and {α, β, γ} of unit length giving rise to dimension vectors

{(0, 1, 1) , (1, 0, 1) , (1, 1, 0)} respectively. Note that there are no band modules since any walk of

length greater than one contains the zero relations.

Let us close this section by stating two important theorems on quiver representations:

Gabriel’s Theorem.

• A quiver is of finite type if and only if the underlying graph is a union of Dynkin graphs of

type A,D or E.

• A quiver is of tame type if and only if the underlying graph is a union of Dynkin graphs of

type A,D or E and extended Dynkin diagrams of type Â, D̂ or Ê.

• The isomorphism classes of indecomposable representations of a quiver Q of finite type are

in one-to-one correspondence with the positive roots of the root system associated to the

underlying graph of Q . The correspondence is given by

V 7→
∑
i∈Q0

dV (i)αi

where ai is the i-th positive root and by graph is meant the set of edges and vertices without

considering the orientations in each case.

Kac’s Theorem. Let Q be an arbitrary quiver. The dimension vectors of indecomposable

representations of Q correspond to positive roots of the root system of the underlying graph of

Q . Real roots correspond to dimension vectors for which there is exactly one indecomposable

representation, while imaginary roots correspond to dimension vectors for which there are families

of indecomposable representations. If a positive root α is real, then q(α) = 1. If it is imaginary,

then q(α) ≤ 0.
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Appendix B: Complementary Results

In this Appendix, we list the results obtained for the rest of the quivers. We list the cycle

structure of each Type as well as all the possible consistent subsets of choices which could satisfy

the constraints of the sum of R-charges of each cycle equalling to 2, for Types I, IV and VI of the

five-block quiver. Each set is given as a reference to the equation number in the text and consists

of 6 members because, as explained, we need a rank six linear space.

1. Subsets of Marginal Operators for Type I

There are 33 possible choices:

1{(3.13), (3.19), (3.20), (3.21), (3.22), (3.23)}, 2{(3.13), (3.14), (3.16), (3.17), (3.19), (3.20)}

3{(3.13), (3.14), (3.16), (3.17), (3.18), (3.19)}, 4{(3.13), (3.14), (3.16), (3.18), (3.19), (3.23)}

5{(3.13), (3.14), (3.17), (3.18), (3.19), (3.20)}, 6{(3.13), (3.14), (3.15), (3.16), (3.20), (3.21)}

7{(3.13), (3.14), (3.15), (3.16), (3.17), (3.20)}, 8{(3.13), (3.14), (3.15), (3.16), (3.17), (3.18)}

9{(3.13), (3.14), (3.15), (3.16), (3.18), (3.21)}, 10{(3.13), (3.14), (3.15), (3.17), (3.22), (3.23)}

11{(3.13), (3.14), (3.15), (3.17), (3.18), (3.20)}, 12{(3.13), (3.14), (3.15), (3.18), (3.20), (3.21)}

13{(3.13), (3.16), (3.17), (3.18), (3.21), (3.22)}, 14{(3.13), (3.15), (3.16), (3.17), (3.19), (3.20)}

15{(3.13), (3.15), (3.16), (3.17), (3.18), (3.19)}, 16{(3.13), (3.15), (3.16), (3.18), (3.19), (3.21)}

17{(3.13), (3.15), (3.17), (3.18), (3.19), (3.20)}, 18{(3.12), (3.13), (3.19), (3.20), (3.22), (3.23)}

19{(3.12), (3.13), (3.19), (3.20), (3.21), (3.22)}, 20{(3.12), (3.13), (3.19), (3.20), (3.21), (3.23)}

21{(3.12), (3.13), (3.19), (3.21), (3.22), (3.23)}, 22{(3.12), (3.13), (3.14), (3.16), (3.17), (3.18)}

23{(3.12), (3.13), (3.14), (3.18), (3.21), (3.23)}, 24{(3.12), (3.13), (3.14), (3.15), (3.20), (3.23)}

25{(3.12), (3.13), (3.14), (3.15), (3.16), (3.17)}, 26{(3.12), (3.13), (3.14), (3.15), (3.16), (3.18)}

27{(3.12), (3.13), (3.14), (3.15), (3.17), (3.18)}, 28{(3.12), (3.13), (3.20), (3.21), (3.22), (3.23)}

29{(3.12), (3.13), (3.16), (3.17), (3.19), (3.22)}, 30{(3.12), (3.13), (3.16), (3.18), (3.19), (3.21)}

31{(3.12), (3.13), (3.15), (3.16), (3.17), (3.18)}, 32{(3.12), (3.13), (3.15), (3.17), (3.20), (3.22)}

33{(3.12), (3.14), (3.15), (3.16), (3.17), (3.18)}

2. Equivalence Classes for Type I Quivers.

Here we list the the Diophantine equations which represent each class within Type I. Recall that

we consider two equations equivalent if they are equivalent as quadratic forms. The six equivalence

classes are

Class 1: Dio1(4), Dio1(10), Dio1(12), Dio1(13), Dio1(14), Dio1(22), Dio1(25),
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Dio1(26), Dio1(27), Dio1(31)

Class 2: Dio1(18), Dio1(19), Dio1(20), Dio1(21), Dio1(28)

Class 3: Dio1(23), Dio1(24), Dio1(29), Dio1(30), Dio1(32)

Class 4: Dio1(1), Dio1(2), Dio1(5), Dio1(6), Dio1(16), Dio1(17), Dio1(33)

Class 5: Dio1(3), Dio1(7), Dio1(9), Dio1(11), Dio1(15)

Class 6: Dio1(8)

where n in Dio1(n) refers to the n-th set of R-charge relations according to the numbering of (B1).

Writing the diagonal part of the quadratic form as QIn =
A2

1
α1

+
A2

2
α2

+
A2

3
α3

+
A2

4
α4

+
A2

5
α5

, the representative

Diophantine equations are as follows:

Class 1 : Set 10

QI10 =
1

2
AT



2

α1
a12 2a13 a41 0

a12
2

α2
0 a42 0

2a13 0
2

α3
0 a35

a41 a42 0
2

α4
0

0 0 a35 0
2

α5


A (B1)

Class 2 : Set 28

QI28 =
1

2
AT



2

α1
0 a13 0 3a51

0
2

α2
0 a24 0

a13 0
2

α3
0 a35

0 a24 0
2

α4
0

3a51 0 a35 0
2

α5


A (B2)

Class 3 : Set 32

QI32 =
1

2
AT



2

α1
2a12 a13 0 a51

2a12
2

α2
0 a24 0

a13 0
2

α3
0 a35

0 a24 0
2

α4
0

a51 0 a35 0
2

α5


A (B3)
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Class 4 : Set 1

QI1 =
1

2
AT



2

α1
a21 0 a41 0

a21
2

α2
0 a24 0

0 0
2

α3
0 a35

a41 a24 0
2

α4
0

0 0 a35 0
2

α5


A (B4)

Class 5 : Set 11

QI11 =
1

2
AT



2

α1
0 2a13 0 0

0
2

α2
2a23 a24 0

2a13 2a23
2

α3
0 0

0 a24 0
2

α4
0

0 0 0 0
2

α5


A (B5)

Class 6 : Set 8

QI8 =
1

2
AT



6

α1
0 a31 0 a51

0
6

α2
0 5a24 0

a31 0
6

α3
6a34 5a35

0 5a24 6a34
6

α4
0

a51 0 5a35 0
6

α5


A (B6)

where A is the column vector with entries A1, . . . , A5 defined in (3.9).

With respect to the above classes, we tabulate below the couplings that have to be set to zero

for each set of R-charge relations so that it admits a solution to the marginality condition:

Class 1 In the first class of Diophantine equations one has to set the couplings of the operators

depicted in Fig. 8 to zero together with the quintic operator formed by the outer pentagon

of the quiver. The setting of this figure corresponds to the set 22 of (B1). Then by rotating

four times according to the rotational symmetries of the dihedral group on the pentagon,

one gets the zero couplings corresponding to sets 25, 26, 27, 31 respectively. For the rest five

sets of class 1 the couplings to be set to zero are depicted in Fig. 9. This figure corresponds

to set 4 and by rotating four times one gets the couplings of sets 10, 12, 13, 14.

Class 2 The five equations of class 2 are described by setting to zero the five quadratic operators

and one out of five cubics each time.
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FIG. 8. A sketch of the operators whose couplings are set to zero. The configuration given by the superposition

of the three images corresponds to the set 22 of class 1. Sets 25, 26, 27, 31 can be found by four consecutive

rotations.

FIG. 9. Set 4 of class 1. Sets 10,12,13,14 can be found by rotations.

Class 3 For class 3 the initial set of zero couplings, corresponding to set 23, is depicted in Fig. 10.

The rest can be found by rotating as previously.

FIG. 10. Set 23 of class 3. Sets 24,29,30,32 can be found by rotating.

Class 4 For class 4 and set 1 we set to zero the coupling of the quintic operator formed by external

lines as well as all the quadratic operators, while for set 33 we set to zero only the other

quintic operator formed by the internal lines of the quiver diagram. Note that this set is

the unique one with maximal cardinality. For the rest five sets of class 4 we start by the

configuration of Fig. 11 corresponding to set 2 and rotate consecutively.

Class 5 For class 5 the initial configuration to be rotated is depicted in Fig. 12 and corresponds to

set 3.

Class 6 Finally, class 6 contains only one set of simultaneously marginal operators. It corresponds

to setting the coupling of the “outer” quintic operator as well as all the cubic operators to

zero.
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FIG. 11. Set 2 of class 4. Sets 5,6,16,17 can be found by rotating this configuration.

FIG. 12. Set 3 of class 5. Sets 7,9,11,15 can be found by rotating this configuration.

3. Properties of Other Types

Here we present the structure of the superpotential through the R-charge relations for rest of

the five-block quivers.

Type II, III and V The R-charge relations for Type II are:

r43 + r54 + r15 + r21 + r32 = 2

r15 + r53 + r32 + r21 = 2

r43 + r54 + r15 + r31 = 2

r43 + r21 + r32 + r14 = 2

r43 + r54 + r32 + r25 = 2 (B7)

r43 + r32 + r24 = 2

r15 + r53 + r31 = 2

r25 + r32 + r53 = 2

r43 + r31 + r14 = 2

For Type III we have:
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r43 + r54 + r15 + r12 + r23 = 2

r15 + r45 + r43 + r13 = 2

r34 + r23 + r12 + r14 = 2

r34 + r45 + r23 + r25 = 2 (B8)

r45 + r43 + r35 = 2

r43 + r23 + r24 = 2

r43 + r14 + r13 = 2

and for Type V:

r34 + r45 + r15 + r12 + r23 = 2

r15 + r45 + r34 + r13 = 2

r34 + r45 + r23 + r25 = 2 (B9)

r45 + r34 + r35 = 2

r34 + r23 + r24 = 2

r15 + r14 + r45 = 2

These relations when more than 6 they are linearly dependent, leading to unique Diophantine

equations related to the Type I special subset (33) discussed in detail in the main part of the paper.

Type IV The R-charge relations for this type are:

r34 + r45 + r15 + r12 + r23 = 2 (B10)

r34 + r15 + r13 + r24 + r25 = 2 (B11)

r34 + r12 + r14 + r35 + r25 = 2 (B12)

r34 + r35 + r24 + r25 = 2 (B13)

r34 + r45 + r15 + r13 = 2 (B14)

r34 + r12 + r23 + r14 = 2 (B15)

r15 + r25 + r12 = 2 (B16)

r34 + r45 + r35 = 2 (B17)

r34 + r23 + r24 = 2 (B18)

r34 + r13 + r14 = 2 (B19)

Out of these 10 R-charge equations one can choose 22 sets of six linearly independent which lead

to 22 Diophantine equations.
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These are:

1{(B12), (B13), (B15), (B16), (B17), (B19)}, 2{(B11), (B13), (B14), (B16), (B19), (B18)}

3{(B11), (B12), (B16), (B17), (B19), (B18)}, 4{(B11), (B12), (B13), (B14), (B15), (B16)}

5{(B11), (B12), (B15), (B16), (B17), (B19)}, 6{(B11), (B12), (B14), (B16), (B19), (B18)}

7{(B10), (B12), (B16), (B17), (B19), (B18)}, 8{(B10), (B12), (B13), (B16), (B17), (B19)}

9{(B10), (B12), (B13), (B14), (B15), (B16)}, 10{(B10), (B12), (B14), (B16), (B17), (B18)}

11{(B10), (B11), (B16), (B17), (B19), (B18)}, 12{(B10), (B11), (B13), (B16), (B19), (B18)}

13{(B10), (B11), (B13), (B14), (B15), (B16)}, 14{(B10), (B11), (B12), (B16), (B19), (B18)}

15{(B10), (B11), (B12), (B16), (B17), (B19)}, 16{(B10), (B11), (B12), (B16), (B17), (B18)}

17{(B10), (B11), (B12), (B13), (B15), (B16)}, 18{(B10), (B11), (B12), (B13), (B14), (B16)}

19{(B10), (B11), (B12), (B13), (B14), (B15)}, 20{(B10), (B11), (B12), (B14), (B15), (B16)}

21{(B10), (B11), (B15), (B16), (B17), (B18)}, 22{(B10), (B14), (B15), (B16), (B17), (B18)}

All subsets are related to the Type I equivalence classes.

Type VI The R-charge relations for the last type are

r34 + r45 + r15 + r12 + r23 = 2 (B20)

r12 + r13 + r35 + r45 + r24 = 2 (B21)

r15 + r45 + r24 + r12 = 2 (B22)

r25 + r35 + r12 + r13 = 2 (B23)

r13 + r35 + r45 + r14 = 2 (B24)

r34 + r45 + r35 = 2 (B25)

r12 + r23 + r13 = 2 (B26)

r15 + r45 + r14 = 2 (B27)

r15 + r25 + r12 = 2 (B28)

Out of these equations one can pick 11 sets of 6 linearly independent, which lead to 11 Diophantine

equations. All subsets are again related to the Type I equivalence classes. These are:

1{(B21), (B22), (B23), (B24), (B25), (B26)}, 2{(B20), (B21), (B23), (B24), (B25), (B26)}

3{(B20), (B21), (B23), (B25), (B26), (B27)}, 4{(B20), (B21), (B24), (B25), (B26), (B28)}

5{(B20), (B21), (B22), (B23), (B24), (B26)}, 6{(B20), (B21), (B22), (B23), (B24), (B25)}

7{(B20), (B21), (B25), (B26), (B27), (B28)}, 8{(B20), (B22), (B23), (B24), (B25), (B26)}

9{(B20), (B22), (B23), (B25), (B26), (B27)}, 10{(B20), (B22), (B24), (B25), (B26), (B28)}

11{(B20), (B22), (B25), (B26), (B27), (B28)}
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