IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Gray, J.,, He, Y,, Jejjala, V., Jurke, B., Nelson, B. D. & Simon, J. (2012).
Necessary conditions on Calabi-Yau manifolds for large volume vacua. Physical Review D,
86(10), 101901. doi: 10.1103/physrevd.86.101901

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12871/

Link to published version: https://doi.org/10.1103/physrevd.86.101901

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

arXiv:1207.5801v1 [hep-th] 24 Jul 2012

Calabi—Yau Manifolds with Large Volume Vacua

James Gra; Yang-Hui Hé, Vishnu Jejjala, Benjamin Jurk®, Brent Nelsofl, Joan Simof
(a) Arnold-Sommerfeld-Center for Theoretical Physicskufgat fur Physik,
Ludwig-Maximilians-Universitat Miinchen, Theresiga8e 37, 80333 Miinchen, Germany
(b) Department of Mathematics, City University, LondonstNampton Square, London EC1V 0HB, UK;
School of Physics, NanKai University, Tianjin, 300071, .RJRina;
and Merton College, University of Oxford, OX1 4JD, UK
(c) Centre for Theoretical Physics, NITheP, and School ofsiis,
University of the Witwatersrand, Johannesburg, WITS 2@dyth Africa
(d) Department of Physics, Northeastern University, BostdA 02115, USA
(e) School of Mathematics and Maxwell Institute for Mathgoah Sciences,
King's Buildings, University of Edinburgh, Edinburgh, EF9Z, UK

We describe an efficient, construction independent, dlyoit test to determine whether Calabi-Yau three-
folds admit a structure compatible with the Large Volume oibstabilization scenario of type 11B superstring
theory. Using the algorithm, we scan complete intersediuhtoric hypersurface Calabi—Yau threefolds with
2 < h*!' < 4 and deduce that18 among4434 manifolds have a Large Volume Limit with a single large
four-cycle. We describe major extensions to this surveyckvhre currently underway.

Introduction—A realistic string model of low energy physics be interpreted as describing resolutions of singularities

requires the moduli of the associated compactification to be Despite the promising features of the LVS, there is a
stabilized. The Large Volume Scenario (LV$) [1] presentsrelative scarcity of explicit exampled [4,6-8]. Althouginse
one of the most promising avenues to such a goal. In this ayutstanding work studying classes of appropriate marsfold
proach a combination of fluxes, non-perturbative effeats, a can be found in[[7[/8], the density of the Swiss Cheese
o' as well as loop expansion corrections are employed to gerfgeometries within the standard constructions of Calahi-Ya
erate a stable vacuum which is well within the regime of va-threefolds is not known. It is the aim of this letter to impeov
lidity of a supergravity description of the theory. One gart  ypon the situation by providing an algorithm that scans for
Iarly nice feature of the LVS is that it avoids the “fine tun’ing Swiss Cheese manifolds in as genera| a manner as possib|e_
of flux parameters required by other scenarios such as thaj particular, this algorithm is independent of the constian
of KKLT [2| B]. The LVS instead balances non-perturbative of the Calabi-Yau threefold, can yield definite negative as
and perturbative effects in a controlled manner by explgiti well as positive results, and produces more general example
a situation where the overall volume of a smooth Calabi—  than those of the forni{1). The analysis is exact and analytic
Yau threefoldX is exponentially Iarger than the scale asso-ywe can look for any number of |arge and small Cyc|es_ To
ciated with four-cycles wrapped by certai3-Brane instan- jllustrate the use of this algorithm we present a scan ower th
tons. Manifolds which are capable of supporting an approcomplete intersection Calabi-Yau manifolds in products of
priate structure of small and large cycles are termed “Swisgrojective spaces (CICYs) as well as Calabi—Yau manifolds
Cheese” realized as hypersurfaces in toric varieties, vttt (X') < 4.

One starting pointin the construction of a LVS string modelwe will see that there are no Swiss Cheeses among the former
is to takeX’ to be a smooth Calabi—Yau threefold where thetype of geometries, while the latter yields a rich set of new
overall volumeV takes a distinctive diagonal form in terms examples.

of a single “large” four-cycle and a number of “small” four- Swiss Cheese Calabi—YauWe begin with some geometric

cycles: preliminaries. LetD; c X be four-cycle divisors oft. The
3 3 triple intersection numbers;;, are defined with respect to

VN T e = D T amat (1) the basis{[D;]} for H1(X;Z) = Div(X). The symplec-

“ tic Kahler (1, 1)-form J is parameterized by'! (X') Kahler

More general possibilities are availablé [4], however, asd parameters’,
such we shall refer to Calabi—Yau manifolds of the tyide (1) as

“Strong Cheese.” With this example geometry, the majority o hblo
four-cycles that are wrapped by #brane instantons are small J =Y t[Di], (2)
i=1

while the Calabi—Yau volume, which gets exponentially &arg

addresses phenomenologically important hierarchy cquresti _

Moreover, the existence of the large cycle proffers a flat powhich endows the Kahler parametéfswith a natural inter-
tential for cosmological inflation. Different numbers ofda  Pretation as two-cycle volumes. Likewise, the holomorphic
and small cycles are also possible and interesting to salidy, (3,0)-volume form that specifies the complex structure de-
though it should be noted that the main theoreni bf [5] state§ends upor*'(X) parameters.

that all but a maximum o9 Kahler parameters can always The overall volume) of & is determined by the Kahler
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parameters and intersection numbers: for some non-degenerate matrix € GL(h'1;Z). In what
1 1 o follows, we will search for suitable solutions for the easi
V= 3 JNINT = 6 Z Riget Itk . (3)  of 4 such that the divisors; are separated out into the two
T ik desired classes:
In a similar fashion, the volumes of the four-cyclbs ¢ X . _
are related to the parametety large cyclesy: L= Lo Narge -
smallcycles,: 7o, = Narge +1,...,h"H(X)

oV 1

1 L (

ik The problem of identifying Swiss Cheese geometries reduces
én essence to characterizing the LVL in an arbitrary basis,
%etermining whether it exists, and checking that the irerers
ahler potential has the correct scaling properties.
Rewriting the Swiss Cheese Conditienin order to deduce
whetherX is Swiss Cheese, one could simply solve for the
volume of X as a function of the and check the scaling of
the inverse Kahler potential directly. However, this regpro-
cedure turns out to be extremely inefficient computatigriall
all but the very simplest of cases. Instead, we reformulage t
conditions for a large volume vacuum in terms of the Kahler

The generic Calabi—Yau threefold admitting a large volum
vacuum has a number of “small” four-cycles, whose volume
remain finite in the large volume limit (LVL), where the three
fold’s volumeV and the volumes of the “large” four-cycles
become parametrically large. The criterion forto be com-
patible with the LVS is in ﬁﬂd]. For the convenience of the
reader we reproduce parts of this discussion.

Let Tly ey TNaman remain small as
TNamand 15+ > ThU1(x) — 00, sendingy — oo. The
low energy limit of type IIB string theory in the LVS is
ad = 4, N = 1 supergravity. The scalar potential, paramej[erﬁ. . ) _
which is constructed from the superpotential and the Kahle Restricted to each d'V'SO_r four-cycle;, the intersection
potential, admits a set of non-supersymmetric AdS minima af°'™M reduces to a symmetric matrix;))x = rijx. Fur-
exponentially large volume located ¥it~ e% i for all small ~ thermore, let = (¢', ..., ¢") denote a (column) vector of the
cyclesi = 1, ..., Nunait and parameters; appearing in the Kahler parameters with respect to the expansion of the sym-
superpotential if and only ih2(x) > ALL(X) > 2 and plecgic form in [2). The four-cycle voLumeEI(42 can then be
each small cycle of volume; behaves like a blow up mode TeWritten asr; = 5#;;,t/t" = 3t k(L. wheret” refers to
resolving a point-like singularity. The first of these caiahis ~ the transposed row vector of Due to the correspondence
leads us to consider only Calabi-Yau threefolds with negati between the four-cycle volumesand the Kahler parameters
Euler characteristic. t*, the LVL sends particular linear combinations of the Kéhle

The essential property ot established in|]4] is that the parameters' to infinity. We split the Kahler parameter vector
inverse Kahler metric for the small four-cycles assodate  into the form
the volumesr,, exhibits non-generic scaling properties with - - -
respect to large cycles. For example, diagonal componénts o t=AatL, + Yals, (®)
the inverse Kahler metric do not have a leading term whichyare\ | and~, are positive real numbers. The (potentially
scales with the second power of large divisor volumes buEIifferent) large volume limits correspond to the limitg —
rather has the form oo for some or severall = 1,..., Niage. Thereforefr,,

Koj; ~VTq . (5) and Fsa fora = 1,..., Ngman refer to the large and small

This condition, which is necessary so that terms do not appeéjlrectmns In the Kahler parameter space. After inserting

in the potential which are parametrically larger than these splitting into [2), we obtain

sponsible for the large volume vacuum, turns out to be ex- 1 24 - = -
tremely restrictive. i = 5 [Mads - (L mets) + 20 - (L, K s,
Crucially, in describing the Swiss Cheese condition, we + Yo - @aﬁ(i){sb)] _ 9)

have assumed a partition of the geometry into large and small
four-cycles. For an arbitrary geometry, the basisbor(.X) Note that the first two terms in this expansion contain powers
that is natural given how the space was constructed may not ki the associated large direction parameters whereas the
compatible with such a partition even if a large volume vac-last term is independent of them.
uum exists. In an arbitrary divisor basis, the large and kmal Due to the general basis chanik (6), we can pick/¥iaye
cycles generically mix together. In performing an alganitb  number ofrs to correspond to our large four-cycleswith
scan for Swiss Cheese manifolds, it is important to inclute athe remaining Kahler moduli corresponding to small cycles
initially arbitrary basis transformation that yields a fiteon 7. From theX power counting in the expansion, the scaling
into small and large four-cycles. of the large cycles and small cycles then demands

We define the rotation . . . .

e large cycles;:  t1, k(nytLy #0 OR tf  knts, # 0,
=Y AlF (6) small cyclesr,:  K(gtL, =0
=1 (10)
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for the respective divisors, such that as eagh— oo, one  can be solved in the interior of the Kahler cone, statesttiist

combination of the large cycle volumes — oc. cone is simply the positive orthant. In the cases we shallstu
Aside from the distinction between large and small cycleshere this has been ensured by an additional transformation o

there are also the conditiorid (5) on the inverse Kahlerimetr the triple intersection form, and we have restricted owesel

In the expansion in inverse volume, for small cycles to cases with simplicial Kahler conég_[13]. In general aenor
1 A A(r)? complicated description of this condition must be input.
aa g oy Ta) +0W?); (11) The system[(1l5) contains many redundancies in the vari-
v 9 ables for which we are solving. Given their definitich (8), we

the second term goes to zero in the LVL by construction agire only concerned about the direction of the vectdrsthe
the small cycle volumes, remain finite wherV — oo. In Kahler moduli space, such that we can uselthé redundan-
terms of the matrix/vector notation for the restricted inée-  cies of their lengthgf| to fix some of the inequalities i (1L5)
tion matrices on the divisor§_{l11) in the limit asserts that  to equalities. Furthermore, the basis change matixis not
. required to be an arbitray L(h':'; Z) matrix in order to iso-
Koo 4(n(a)z% (12) late the small cycles from the large cycles, and some of the

v 9 residual freedom can be used to fix some of the components

and, because of|(5), it must scale @&,. Since this scaling of A. By these means, the_seconql and fourth inequalities in
only involves small cycles, the large volume direction has t (I3) can be set to plus or minus unity.

vanish on the right hand side 6f{12), leading to the conditio N solving the resulting equations, or in proving that they
do not admit a solution, we take a two step approach. Firstly,

(fi(a)fLA)a =0. (13)  we analyze the first, second, and fourth equations of our sys-
tem, which, after the redundancy fixing above, describe an
algebraic variety. Using methods of computational algebra
geometry and in particular the prograénngul ar [IQ] we
check the complex dimension of the solution space of these
) 20 (14) equations using a Grobner basis computaﬁh [10]. If the as

small : sociated dimension is minus one, i.e., if the equationsriesc
To establish the possibility of a large volume vacuum, itthe empty variety, there are, |n.part|cular, no real sohditor

the variables and the case of interest admits no large volume

suffices to check whether a solution to all of the conditions it the di ; fthe ideal | ter th I
we have described exists. vacuum. e dimension of the ideal is greater than or equal

The Algorithm— The input data for our algorithm are the to zero, we must solve the associated equations over the real

. . . . .., . To facilitate this solution, which occurs in the second of ou
triple intersection numbers and a description of the Kéhle WO steps. we primary decompose the ideal using the GTZ al-
cone of the Calabi—Yau to be considered. Since these da%a Steps, P y P 9

will not necessarily be provided in a basis compatible withgomhm [L1]. This returns sets of simpler equation sets on

., for each of the irreducible solution spaces of the system.
the large and small cycle structure of the LVL, we consider . .
Secondly, we proceed to search for a solution to the sim-

the associated basis of four-cycle volumes to be the tilded 0 .= : . . . -
plified equation system, if one exists, with the remaining

given in equatior{{6). inequalities in [(Ib) added back in. This analysis is per-

Since X has non-degenerate intersection numbers, b¥ ; . . .
Poincaré duality we may inveifl(4), which relates thend ormed using standard techniques available in packagés suc
§ asMat hemat i ca. The simplification afforded in these cases

ther;. This allows us to eliminate the two large cycle condi- . - S . ;
Ti ge cy by the primary decomposition of the initial equation set is

tions, as their existence follows from the non-colineaciin- . o :
dition as the complement of the small cycles. Combining a"enough to allow the computation to finish in reasonable time.
i In fact, we find that cases which are not ruled out by the di-

we have learned, this then leaves us with the following min_mension check in the first step of our analysis are almost al-
imal set of conditions to find a Calabi—Yau threefold capable P y

of admitting a LVS vacuum: ways Swiss Cheese.
' The output consists of a Boolean determining whether the

By (@0), this requirement is automatically satisfied forcall
We can express the non-triviality and non-colinearity & th
vectorst,, andt,_ by requiring

det (tLl, o ’tLNlarge’tSl’ R

. manifold is Swiss Cheese and, in the case of a positive result
small cycles: A (kL) =0, a matrix A explicitly identifying the large and small cycles in
basis change: det[A7] £ 0, terms of the original basis of four-cycles.

. . a7 . Results— A scan over the Calabi—Yau manifolds defined as
K~ scaling: Ao' A (R@yts,)7 # 0 (15) complete intersections in the products of projective space
non-triviality: det (11, e tsy, ) #0, (CICYs) showed that there are no Swiss Cheese geometries

" _ -7 -\ of this class fom!'! < 4. Because CICYs at low!:! are all
Kahlercone:  Aa(tLa) + va(ts,)" 2 0 favorable, they lack the blowup cycles that could be associ-

B ated with the small cycles in the LVL, and thus this is not a
We must solve these fot;7, A4, 74, t1.,, andts, . We point  surprise. Nevertheless, this class, along with the knowisSw
out that the last condition, which checks that the cond&ion Cheese manifolds, provides a useful test of the algorithm.
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Implementing the algorithm on the Kreuzer—Skarke dataset Our initial scan of smooth compactification manifolds
of hypersurfaces in toric ambient spacesifor < 4resultsin  with small numbers of Kahler parameteis! < 4 shows
418 Swiss Cheese Calabi—Yau manifolds with one large cyclethat the Calabi-Yau threefold landscape is richly popdlate
The results are summarized in the following table. by Swiss Cheese geometries. This is fortuitous as many
more constraints must be imposed upon a Calabi-Yau
|h!:1]# of Cases Scanngid of Swiss Cheedé of Strong Cheede  threefold than those considered here if it is to give rise to
9 39 29 29 a phenomenologically acceptable vacuum (as emphasized
266 94 50 from a scanning perspective inl [8]). In a future publica-
1 3513 302 106 tion ], we will present the results of performing the scan
outlined here over as large a set of Calabi—Yau threefolds

The Kreuzer-Skarke database contains, respectigély, S possible. Interestingly, requiring the existence of &LV
9244, and 1197 polytopes whose resulting manifolds have already constrains the space of allowed intersection ntsnbe
ALl = 2,3, and4. In many cases there are many pOSSib|esignificantly ]. The future of this research program will
triangulations for each polytope, and thus the number of get_hen consist of cataloguing ever more detailed properties o
ometries to consider a9. 306. and5930 for Al — 2. 3 these geometries in a systematic way. Initial steps in this
and 4, respectively. Of these, the above table counts thosEeg9ard will be to catalogue which structures are available
whose Kahler cones are simplicial. We note that while th©" both moduli stabilization and model building on each
overall volume for allk™>! = 2 Swiss Cheeses can always be manifold, and thus which variants of the LVS can be realized

recast in the Strong Cheese form[ih (1), this can only be don# each case. The database will be made freely availgble ina

for 50 of the h>! = 3 cases and06 of thehl'! — 4 cases. standardized format so that our results may be exploited and
One can ask how far ik it will be possible to push these SUPPlemented by other groups.

scans. In particular, the Grobner basis computation pad

by Si ngul ar is a highly optimized implementation of the

Buchberger algorithm. This has a worst case scenario doub e;:kzzwll\(ﬂad%gg?nfr& (\g\/r(_amtgarg( k‘r.An::éf)?fn’CRMgluan;g;

exponential scaling behavior in the number of unknown vari- gen, M. Licoll, 1. Grimm, S. Kripp , C. May ,

. . d F. Quevedo for useful discussions. This work was
ables[[12]. Solving[{T5) foh"! < 4 can be done in a matter "¢ :
of seconds or minutes, and for the CICYs it has been check rtally supported by the NFS-Microsoft grant NSF/CCF-
that scans up ta!'! = 8 can easily be finished on a standard 048082, the NSF under grant PHY05-51164, EPSRC under

desktop machine. At this stage in our analysis, however, thgrant EP/G007985/1, and the DST/NRF SARChI program.

full possibility of removing redundancies from the variebl

of equation systeni (15) has not been utilized. At present, it

is not clear how far beyond!:! = 8 it will be possible to  [1] V. Balasubramanian, P. Berglund, J. P. Conlon, and Fvede

push the algorithm once the potentially double exponential ~ JHEP0503 007 (2005)|[hep-th/0502058].

improvement in calculation speed afforded by removing [2] S. B. Giddings, S. Kachru, and J. Polchinski, Phys. Re66D

additional redundancies is incorporated. The results isf th 106006 (2002) [hep-th/0105097]. o

work will be presented in a forthcoming publication/[13]. [3] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, Phys
: Rev. D68, 046005 (2003) [hep-th/0301240].

An Example and Future Work-To provide a concrete exam- [4] M. Cicoli, J. P. Conlon, and F. Quevedo, JHEBLQ 105 (2008)

ple of a Swiss Cheese Calabi-Yau found by this algorithm let ~ [arxiv:0805.1029 [hep-th]].

us consider a case whelig¢! = 4. The intersection form for  [5] P. M. H. Wilson, Invent. math. 98, 139-155 (1989).

this case gives the following expression for the volupde (3):  [6] R. Blumenhagen, V. Braun, T. W. Grimm and T. Weigand, Nucl
Phys. B815 1 (2009) [arXiv:0811.2926 [hep-th]].

6V = (2t + 3t3(6tg + t3 + ta) + Oty (43 — 13 — 13 [7] M. Cicoli, M. Kreuzer, and C. Mayrhofer, JHEP202 002
Ao (b 4 £0)) 4 (8D — B3 — 6124, — Gt (2012) [arXiv:1107.0383 [hep-th]].
* :2),( 3t 24)) +3(8%2 3 3; 3 [8] M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo, and
=5ty + 12t5(t3 + ta) + 6t2(ts +14)7)) . (16) R. Valandro| arXiv:1206.5237 [hep-th].

[9] SINGULAR 3.1.3 W. Decker, G.-M. Greuel, G. Pfister, and
H. Schonemann, 2011 (http://www.singular.uni-kl.de).
[10] For related work applying such methods to moduli staation
see, J. Gray, Y. -H. He, and A. Lukas, JHBE09 031 (2006)

The scanning algorithm provides the base change mAtrix
such that by a rotation of the four-cyclgs= A;77;, we obtain

P~ 2

0 1 00 7 3t 202 +15 + ) [hep-th/0606122]; J. Gray, Y. -H. He, A. liderton, and A. lask

-3 1 0 1 T2 | _ 3 (t1 4 3t3) _ Comput. Phys. Commurl80, 107 (2009) [arXiv:0801.1508
6 -1 -2 -2 T3 (t1 + 3(t3 + ta))? [hep-th]]; and J. Gray, Adv. High Energy PhyZ011, 217035

31 1 0 = %(h + 3t4)2 (2011) [arXiv:0901.1662 [hep-th]].

) ] [11] P. Gianni, B. Trager, and G. Zacharias, J. Symb. Comp48;

In this four-cycle basis, the volumg{16) takes the Strong ~ 167 (1988).
Cheese form described inl (1): [12] H. M. Moller and F. Mora, Comput. Sci. 174, 172-183 (298
[13] J. Gray, Y.-H. He, V. Jejjala, B. Jurke, B. Nelson, an&iinon,

1 3 3 3 3
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