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Abstract

We analyse the vector bundle moduli arising from generic heterotic compact-

ifications from the point of view of quiver representations. Phenomena such as

stability walls, crossing between chambers of supersymmetry, splitting of non-

Abelian bundles and dynamic generation of D-terms are succinctly encoded into

finite quivers. By studying the Poincaré polynomial of the quiver moduli space

using the Reineke formula, we can learn about such useful concepts as Donaldson-

Thomas invariants, instanton transitions and supersymmetry breaking.
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1 Introduction, Summary, and Prospectus

The study of moduli constitutes one of the most important subjects in contemporary

string theory. The stabilization of the scalar moduli fields to fix their vacuum expec-

tation values (vevs) to reasonable values is central to any phenomenological model; in

parallel, the space of moduli as an algebraic variety, associated to the geometries which

the moduli themselves parametrize, is a concept indispensable to modern mathematics.

Indeed, be it brane-probes on Calabi-Yau singularities, M-theory on manifolds of G2

holonomy, or any other scenario which could lead to desired four-dimensional physics,

the structure of the moduli space arising from the geometry and the subsequent gen-

eration and extremization of the potential have been under intense investigation.

In the realm of heterotic string compactifications, the oldest approach to string

phenomenology, the algebro-geometric nature of the moduli fields is particularly pro-

nounced. The initial attempts, some three decades ago, of using the tangent bundle

of the compacfication Calabi-Yau threefold X to break the E8 gauge theory to an E6

GUT, possessed geometric moduli given by the complex and Kähler parametres of the

threefold [1]. With the advent of more powerful methods in geometry, the more “gen-

eral embedding” of taking stable holomorphic vector bundles V on X with structure

group beyond SU(3) and coupled to the presence of Wilson lines (cf. e.g. [2, 3]) has

given us the prospects of realistic MSSM vacua [4–6]. At the same time, this favourable

construction produces additional, vector bundle, moduli which need to be addressed.

This in itself has blossomed into a rich subject; q.v. e.g. [7–13, 20–23], of interest to

physicists and mathematicians alike.

Our starting point is the Hermitian-Yang-Mills equations for V which guarantees

the low-energy theory - whose gauge group is the commutant of the structure group

G of V in E8 - to be supersymmetric. In terms of the connection Aµ on V and the

Calabi-Yau metric gµν of X, the equations are

Fab = Fāb̄ = 0 , gab̄Fab̄ = 0 , (1.1)

where F = dA+ A ∧ A is the field strength of A. The first set is a statement of holo-

morphicity and the second, a set of highly non-trivial partial differential equations.

The moduli space of which we speak is then the space of solutions to these equations.
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Physically, the scalar parametres characterizing the solutions obey supersymmetry con-

straints which can be written as vanishing of D-terms. Mathematically, the celebrated

Donaldson-Uhlenbeck-Yau theorem reduces the solutions to so-called poly-stable holo-

morphic bundles and the moduli spaces thereof are intricate algebraic varieties. The

(virtual) dimensions of such varieties are captured by the Donaldson-Thomas (DT)

invariants.

Recently, a systematic outlook was nicely undertaken in [14, 15, 17] to study the

so-called Kähler sub-structure of the vector bundle moduli spaces arising from het-

erotic compactification, whereby providing an algorithmic handle on the geometry. By

identifying stability walls across which stable bundles become unstable and on which

the structure groups “split” to lower rank, chambers of supersymmetry-preservation

can thus be mapped.

This decomposition wherein non-Abelian bundles become non-semi-simple, i.e.,

products of factors of lower rank, and have, in particular, U(1) factors under which

the moduli fields may be charged renders the situation especially poignant. The U(1)

groups may be anomalous in the sense of Green-Schwarz and the corresponding D-terms

are induced whose Fayet-Iliopoulos (FI) parametres are controlled by the vevs of the

moduli fields. A positive-semi-definite potential is perturbatively generated which be-

comes positive in chambers of non-supersymmetry and vanishes where supersymmetry

is preserved. Successive application of this decomposition amounts to, mathematically,

the usage of the Harder-Narasimhan filtration. As a by-product, a recursive algorithm

can be established in computing the Donaldson-Thomas invariants.

The astute reader would find the above discussions, on supersymmetry, chambers

and stability, reminiscent of another vast subject, that of quiver theories. That we

have fields charged under product groups with Abelian factors contributing to Fayet-

Iliopoulos terms compels us into the territory of quiver representations. This is of no

surprise to us since the extrapolation from the large to the small volume limits in the

category of branes, from bundle stability to quiver stability, has been the perspicacious

observations of [38–40]. The incipience of our analysis will thus be along this train

of thought: to reformulate, aided by the string-theoretic language of [38–40] and the

mathematical insights of [32, 37], the rich sub-structure of the vector bundle moduli

space in heterotic compactifications in terms of quiver theories.
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Indeed, we shall see that the quiver perspective on heterotic moduli is the most

natural one and is conducive to explicit computation. The D-terms, charges and inter-

actions amongst the moduli are thus succinctly encoded graphically and with the aid of

powerful explicit formulae from the quiver literature, we can visualize the structure of

the moduli space and in many cases readily obtain such quantities as the Donaldson-

Thomas invariants. Therefore, our quiver approach to heterotic moduli is not mere

linguistic sophistry but of practical value in calculations.

The organization of the paper is as follows. We begin with detailed description

of the two central themes: vector bundle moduli in §2 and quiver moduli in §3. We

will take care to draw parallels between the two, in the definition of mu- and theta-

stability, the wall-separated regions (or chambers) in Kähler parametre space wherein

stability implies the preservation of supersymmetry, and in the D-terms which encode

this information. Along the way we will discuss the computation of Donaldson-Thomas

invariants in §2.2 as well as the concept of Pi-stability which extrapolates to the two

stabilities in §3.2.

We then take a unified perspective in §4 and show how given a heterotic compacti-

fication scenario we can draw a quiver, whose moduli space controls the bundle moduli

space and, in particular, the phenomena of stability walls and crossings, splittings and

calculations of the DT invariants. Of great use is the explicit formula of Reineke, which

we exploit in §4.2. These are supplanted with illustrative examples in §4.3. Given the

algorithmic power of our approach, we show how one can readily analyze large classes

of Calabi-Yau threefolds and demonstrate with a plenitude of concrete examples in

§5.2. We will also present some generalities on analytic results in §5.1, as well as an

interesting “curved” wall in §5.3.

The future directions to our quiver-heterotic dictionary are in abundance. Through-

out this paper we have made the assumption that our special unitary bundle V com-

pletely splits into line-bundles on the wall, this Abelian split suffices to illustrate whilst

significantly simplifies. Of course, the general situation is to have non-Abelian, sheaf

factors; this is an obvious next step. Furthermore, Reineke’s formula is for quivers

without loops. To extend this to arbitrary quivers, whereby accommodating non-trivial

F-terms as well, is certainly important.
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The quiver language and its usage for computation of Donaldson-Thomas invari-

ants also appear in the study of wall-crossing phenomena in N = 2 supersymmetric

string theories. In type II string theory on Calabi-Yau three-folds, one can think of

bound states of elementary D-branes wrapped on various cycles. When the central

charges of the constituents are nearly aligned, an elegant effective description arises

by dimensionally reducing the system to N = 4 quiver quantum mechanics [26]. In

the Higgs branch, the (refined) index is determined by the Poincaré polynomial of the

moduli space of classical vacua of this quiver.

Along this vein of thought, the quiver description has recently been used to de-

termine BPS spectrum of a given N = 2 theory [33, 34], and more direct exploration

of the cohomology structure of the quiver variety has also been undertaken (mainly)

for Abelian quivers (possibly involving loops) in the context of wall-crossing [27–31].

Given that the mathematical formulation of the wall-crossing phenomena is very much

the same as that of heterotic moduli, it is natural to expect a physical bridge between

the two. This suggests another interesting direction for further extensions of this work.

2 Vector Bundle Moduli and µ-Stability

Let us begin by introducing the importance of bundle stability in relation to our het-

erotic moduli. We recall the standard Donaldson-Uhlenbeck-Yau theorem that a holo-

morphic vector bundle V admits a connection A solving the Hermitian Yang-Mills

(HYM) equations

Fab = Fāb̄ = 0 ; gab̄Fab̄ = 0 , (2.1)

on a Calabi-Yau threefold X with Ricci-flat Kähler metric gab̄, if and only if V is poly-

stable. To define the notion of poly-stability one needs the concept of slope; this is a

quantity µB, which for any coherent sheaf F is defined as

µB(F) :=
1

rk(F)

∫
X

c1(F) ∧ ω ∧ ω =
1

rk(F)
dijkc1(F)itjtk . (2.2)

Here, we have explicitly placed a subscript “B” to emphasize that this µ-slope is for

bundles, in order to differentiate from a similar slope which we will later define for

quivers. Furthermore, ω = tiωi is the Kähler form expanded in some basis ωi of
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H1,1(X;R) and dijk =
∫
X

ωi ∧ ωj ∧ ωk are the triple-intersection numbers.

A vector bundle V is stable if all proper subsheaves F ⊂ V with rank 0 < rk(F) <

rk(V ) obey the inequality

µB(F) < µB(V ) . (2.3)

It is poly-stable if it is a direct sum of bundles each of which is stable and all of

which have the same slope with respect to a fixed choice of ω called a polarization.

Furthermore, if the strict inequality (2.3) is relaxed to µB(F) ≤ µB(V ), then V is

called semi-stable. However, we will henceforth only consider stable and poly-stable

sheaves because these match one-to-one with the solutions to HYM equations. Indeed,

when we discuss Donaldson-Thomas invariants in §2.2, these are only defined when

the moduli spaces of semi-stable and stable sheaves coincide [43]. The criterion (2.2)

for determining stability is sometimes referred to as the Gieseker-Mumford-Takemoto

µ-stability.

In the poly-stable case, we have that

V =
m⊕
i=1

Vi , with µB(V ) = µB(Vi) , (2.4)

where the direct (Whitney) summands Vi are all of the same slope. Note that the

division by the rank in the definition of slope exhibits its importance here: the addi-

tivity of the Chern character implies that for the form in Eq. (2.4), rk(V ) =
m∑
i=1

rk(Vi)

and c1(V ) =
m∑
i=1

c1(Vi). Thus, µB(V ) = µB(Vi) is a possible solution under these two

constraints.

Because the solutions to the HYM equations are in one-one correspondence with

poly-stable bundles and stability explicitly depends on the choice of Kähler moduli ti,

there exist stability walls in Kähler moduli space demarcating regions of where the HYM

equations are obeyed. These walls thus divide the Kähler moduli space into chambers

wherein supersymmetry is preserved or broken. In the chambers of supersymmetric

Kähler moduli, there are, in addition, the (stable) vector bundle moduli to which we

shall shortly turn. In particular, the dichotomy between poly-stable and stable is an

important one; it reflects the structure of the bundle as either being a trivial direct

sum or not.
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2.1 Split Extensions and Poly-stability

Suppose that a vector bundle V had a subsheaf F , then we have the short exact

sequence

0→ F → V → Q→ 0 . (2.5)

Here, F injects into V (whence subsheaf) and Q can be thought of as the quotient

V/F . Conversely, V can be regarded as an extension of Q by F . The moduli space of

such possible extensions is measured by the first (sheaf) Ext group [35]

Ext1(Q,F) ' H1(X,F ⊗Q∗) , (2.6)

where Q∗ is the sheaf dual. The trivial element in this space of extensions is, of course,

the case where V splits simply into the direct sum: V ' F ⊕Q.

The subsheaf F de-stabilizes V (whereby making it unstable) if µB(F) ≥ µB(V )

whereas V is stable if there exists no such F . Hence, in Kähler moduli space, the walls

on which regions of stability meet instability must have µB(F) = µB(V ) for some of

its subsheaves. These are precisely the circumstances where V is poly-stable wherein

V is a direct sum of sub-bundles of the same slope as in Eq. (2.4). We summarize by

saying that (cf. section 2 of [17])

PROPOSITION 1 On the walls of stability in Kähler moduli space, the vector bundle

splits into a direct sum of sub-bundles of equal µ-slope.

One could iterate this procedure of quotienting by sub-sheaves and essentially break

up the vector bundle V into an extension of sub-sheaves. We will soon take these to be

the simplest constituents, viz., line bundles. This is a celebrated result [24] (cf. more

pedagogical details in [23]) which states that

THEOREM 1 [Harder-Narasimhan] For a holomorphic vector bundle V on a closed

Kähler manifold X,

• There exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = V (2.7)

7



such that Fi/Fi−1 are semi-stable sheaves for i = 1, . . . ,m with µB(Fi/Fi−1) >

µB(Fi+1/Fi);

• If V is semi-stable, then Fi/Fi−1 are stable with µB(Fi/Fi−1) = µB(V ) for all i;

• The graded sum F1 ⊕ F2/F1 ⊕ . . . ⊕ Fm/Fm−1 is uniquely determined up to

isomorphism.

This filtration thus gives us a whole list of intertwined short exact sequences of the

form (2.5):

0→ F1 → F2 → F2/F1 → 0 ,

0→ F2 → F3 → F3/F2 → 0 ,
...

0→ Fm−1 → V → V/Fm−1 → 0 .

(2.8)

The physical realization of the Harder-Narasimhan filtration as splitting on the

stability walls is nicely described in [15]. Combining Proposition 1 and Theorem 1, we

have, in general, that a rank n bundle V can decompose into a direct sum of lower

rank sheaves on the stability wall. Henceforth - having in mind phenomenological

applications - we will only consider V with special unitary structure group, hence,

c1(V ) and consequently µB(V ) both vanish. Therefore, marking the ranks of bundles

as superscripts for clarity, we have

V (n) −→
m⊕
i=1

V
(ni)
i , µB(Vi) = µB(V ) = 0 . (2.9)

Of the m terms in the decomposition, there will be up to m − 1 anomalous U(1)

gauge factors. We can see this from the simple decomposition of SU(n)

SU(n)→ S[U(n1)× · · · × U(nm)] ' SU(n1)× · · ·SU(nm)× U(1)m−1 , (2.10)

at the Lie algebra level. In the low energy, to each of the U(1) factors there will be

an associated D-term, with a Fayet-Iliopoulos (FI) parametre dependent upon Kähler

moduli. We will return to this point in §4.1.

Because each such term in the extensions (2.8) has associated moduli computed by
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(2.6), we will have a total of m2−m different types of “bi-fundamental” bundle moduli

given by

Ext1(Vj, Vi) = H1(X, Vi ⊗ V ∗j ) , i 6= j = 1, . . . ,m . (2.11)

When some of the Vi are non-Abelian, we also have adjoint bundle moduli in Ext1(Vi, Vi) =

H1(X, Vi⊗V ∗i ). However, in this paper we only consider complete splits into line bundle

summands and hence, the adjoint moduli do not appear.

2.2 Vector Bundle Moduli and Donaldson-Thomas Invariants

Finding and proving the stability of vector bundles, even though being a reduction of

the complicated Hermitian Yang-Mills equations as a set of partial differential equations

to an algebraic formulation, are still rather difficult. Nevertheless, one could enumerate

them without explicitly finding a solution. This enumeration of stable bundles V of a

fixed total Chern class

c(V ) = (rk, c1, c2, c3) (2.12)

with respect to some Kähler polarization ω is provided by the powerful Donaldson-

Thomas invariants. The subject is a vast one and the reader is referred to, for example,

Refs. [25, 43].

First let us define the moduli space, for a Calabi-Yau threefold X,

MV (X, c;ω) = {stable sheaves on X with Chern class c, µB-stable with respect to ω} ;

(2.13)

that this moduli space is well-defined is a subtle issue [18,19], allowing for the definition

of a virtual fundamental class [MV (X, c;ω)]Vir of zero degree. The integral over this

fundamental class is essentially the “volume” of the moduli space which constitutes a

count of the number of stable sheaves; it was shown in Refs. [18, 19] that the result is

indeed an integer, now called the Donaldson-Thomas (DT) invariant:

DT (X, c;ω) =

∫
[MV (X,c;ω)]Vir

1 ∈ Z . (2.14)

Subsequently, it was shown in Ref. [44] that when the moduli space is smooth, the
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virtual fundamental class simply becomes the top Chern class, whence reducing the

DT invariant to a signed Euler number:

DT (X, c;ω) =

∫
[MV (X,c;ω)]

ctop(T
∗MV (X, c;ω)) = (−1)dim(MV (X,c;ω))χ(MV (X, c;ω)) .

(2.15)

This fact will be of greatest computational use to us. Note that this is a signed invariant

depending on whether the dimension of the moduli space is even or odd.

In passing, we also mention that the generating function for the DT invariants

(cf. [20, 45, 46]) often takes remarkable forms in terms of well-known combinatorial

functions. For example, on the complete intersection Calabi-Yau threefold Y = [P5|2, 4]

which is the generic intersection of a quadric and a quartic in P5, the generating function

for stable sheaves of Chern class c = (rk, 2, 0,−m) is

∑
m∈Z

DT (Y, c = (rk, 2, 0,−m);ω)qm = 2M(q2)2χ(Y ) ; (2.16)

where χ(Y ) = −176 and M(q) =
∞∏
n=1

(1− qn)−n is the famous McMahon function.

3 Quiver Moduli Space and θ-Stability

Having expounded on the requisites from the bundle side, in this section, we give some

rudiments of the representation theory of quivers, emphasizing the issue of stability

in a context parallel to the above. The interested reader is referred to, for example,

Ref. [36] for a more in depth presentation of this material.

A quiver diagram is defined as a pair Q = (Q0,Q1) where Q0 is a finite set of

vertices (or nodes) and Q1 is a finite set of oriented edges connecting these vertices.

For ρ ∈ Q1 we let h(ρ) to denote the vertex attached to the head of the arrow and

t(ρ) the one to the tail. A path in Q1 is a sequence x = ρ1 . . . ρn of arrows such

that h(ρi+1) = t(ρi). Moreover, for each vertex v ∈ Q0 we could consider a trivial

path ev which starts and ends in v. The path algebra kQ associated with the quiver

is the k-algebra whose basis is the collection of paths with the product rule given by

concatenation of the paths, and k is some ground number field, usually taken to be C.
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That is, the multiplication is x · y = xy if h(y) = t(x) and 0 otherwise.

A representation of a quiver is the assignment of a vector space Vv to each

vertex v ∈ Q0 and a linear map fρ : Vt(ρ) 7→ Vh(ρ) to each arrow ρ ∈ Q1. We

can collect the dimensions of the various vector spaces into a dimension vector d =

(dimV1, . . . , dimVm) ∈ Zm where m = |Q0| is the number of vertices. Different repre-

sentations of a given quiver are different sets of vector spaces (respectively, morphisms)

that one can assign to each vertex (respectively, edge).

We can define a homomorphism between two representations R and S of the same

quiver, as a set of linear maps φv : VR,v 7→ VS,v for each vertex v ∈ Q0 satisfying

fR,ρφh(ρ) = φt(ρ)fS,ρ where composition of maps is from left to right. That is, we have

the commutative diagram

VR,t(ρ) VR,h(ρ)

VS,t(ρ) VS,h(ρ)

Representation R

Representation S

fR,ρ //

fS,ρ
//

φt(ρ)

��

φh(ρ)

��
(3.1)

If φ is an injective homomorphism into S then R is a sub-representation of S.

Now we are ready to define a notion of stability for the representation of quivers,

as introduced by King in Ref. [37]; this is the so-called θ-stability. As in the case of

µ-stability, this is defined with respect to some choice of parametres in analogy to the

ti in Eq. (2.2), customarily denoted as θv (whence the name). We learn from Ref. [37]

that for a representation S with dimension vector d(S) = (d1(S), . . . , dm=|Q0|(S)), if

we could find θv ∈ Z such that
m∑
v=1

θvdv(S) = 0 and
m∑
v=1

θvdv(R) > 0 for any proper

sub-representation R of S, then S is θ-stable. Noting the greater-than sign which had

been originally introduced into the literature, it will be more convenient to adhere to

the notation of [32] and to define a µ-slope which parallels (2.2). For a dimension

vector d(R) corresponding to representation R, let

µQ(d(R)) :=

m∑
v=1

θvdv

m∑
v=1

dv

for θv ∈ Z . (3.2)
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Note that we have inserted the subscript “Q” to emphasize that this µ-slope is for

quivers, in contrast to µB. The θ parametres are the analogues of the Kähler polariza-

tion ω in the vector bundle case. Thus defined, a representation S is stable if for every

proper sub-representation R, we have

µQ(R) < µQ(S) , (3.3)

for some fixed choice of polarization θv. We note that this choice of θ will be negative

of the convention chosen in Ref. [37] in light of the above discussions.

3.1 Quiver Moduli Space

Using geometric invariant theory (GIT), Ref. [37] constructed the notion of moduli

space of representations: this is the quotient of the total vector space of maps by

the symmetry group of conjugations. Specifically, given the representation (Vv, fρ) for

the quiver as defined above, clearly fρ ∈ hom(Vt(ρ), Vh(ρ)) and there is a symmetry

g ∈ GL(Vv) acting by conjugation as (g · f)ρ := gh(ρ)fρg
−1
t(ρ). Therefore we define the

moduli space as

MQ(d) =
⊕
ρ∈Q1

hom(Vt(ρ), Vh(ρ))/
∏
v∈Q0

GL(Vv) , (3.4)

where d = (dimV1, . . . , dimVm) is the dimension vector for the representations. Now,

for θ-stable representations, Mumford’s method of GIT shows that this is a so-called

“fine” moduli space [37], which is the case we consider here. In such cases, the moduli

space is well-defined and is itself a projective variety.

The vigilant reader will have noticed that we have not mentioned anything about

relations. Indeed, to the path-algebra introduced above, we can impose formal algebraic

constraints amongst the maps fρ, which in general will be of the form {Pj({fρ}) = 0}
for some polynomials Pj in terms of the arrows. Such a quiver is called quiver with

relations. Subsequently, in the definition (3.4) of the moduli space, we must consider

not only the quotient by the symmetry group, but also by the constraints imposed by

the relations in the path algebra.
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The particular case of the Pj polynomials being the Jacobian of a single function

W ({fρ}) is of special interest:

Pj({fρ}) =
∂W ({fρ})

∂fj
= 0 . (3.5)

In supersymmetric gauge theories whose bi-fundamental and adjoint matter contents

can be encoded into a quiver representation, and whose superpotential∗ is some polyno-

mial W in terms of the fields, Eq. (3.5) precisely prescribes the F-term relations coming

from W . Of course, the superpotential W itself must come from gauge invariant terms

corresponding to cycles or loops in the quiver. Because our primary concern, for the

sake of simplicity, will be quivers without loops, we shall ignore the relations in this

paper.

3.2 Π-Stability

Having introduced two moduli spaces and two parallel notions of stability, one from

algebraic geometry and the other, from representation theory, it is natural to wonder

about their connexion. Indeed, the purpose of much of the ensuing investigations will

be to explicitly use the techniques of one to address the other. The two concepts of

stability have been well established [38–40] to be related and bring us to the subject of

Π-stability, which is a string-thereotic construct extrapolating to µ- (respectively θ-)

stability in the large (respectively small) volume limit of compactification.

Following Refs. [39,40], for a holomorphic cycle in the Calabi-Yau manifold X, one

could consider it as a support for some sheaf, call it E, such as in the situation where

E is a supersymmetric cycle wrapped by a brane whose world-volume theory is a gauge

theory with connection on the supported sheaf. The central charge of the brane can

then be defined as

Z = ch(E) · Π , (3.6)

where ch(E) is the Chern character of E and Π is the vector of periods, which consists

of integrals of powers of the Kähler form over appropriate even cycles (equivalently, this

is
∫
C

Ω of the holomorphic 3-form Ω over 3-cycles in the mirror Calabi-Yau manifold).

∗This superpotential should not be confused with that coming from the bundle moduli side.
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In other words, Z =
3∑

a=0

cha(E)
∫

[C(2a)]
Ja. Explicitly, in terms of the triple intersections

dijk =
∫
X
ωi ∧ ωj ∧ ωk and for the Kähler form J = T iωi where T i = Bi + iV i are the

complexified Kähler parametres, the periods are simply

{Π0,Π
i
2,Π

i
4,Π6} = {−1 , T i , −1

2
dijkT

jT k ,
1

6
dijkT

iT jT k} . (3.7)

One can then define

φ(E; Π) =
1

π
argZ(E; Π) =

1

π
Im log

(
3∑

a=0

cha(E)

∫
[C(2a)]

Ja

)
, (3.8)

dependent on the choice of complex structure through the period. Thus, as before we

call E Π-stable if every sub-bundle E ′ has φ(E ′; Π) < φ(E; Π) for some chosen period

Π (whence the name).

In the large volume limit where V � 1, the Π-slope reduces to

φ(E; Π) =
1

π
Im log Π6 +

1

2π
Im

1

Π6rk(E)

∫
X

J ∧ J ∧ c1(E)

' 3

2
+

3

πV

1

rk(E)

∫
X

J ∧ J ∧ c1(E) +O(V −2) . (3.9)

This is precisely the notion of µ-stability in Eq. (2.2).

On the other hand, near the orbifold limit where the Calabi-Yau can be locally

modeled by the affine orbifold variety C3/Γ for some discrete finite subgroup Γ ⊂
SU(3), the brane world-volume theory is a quiver gauge theory [47–49]. Here, we

have D-term contributions to the effective potential as
∑
v

dv(θv − ζv)2 where ζv are FI

parametres. Thus, one can define

θv = ζv −

∑
w

ζwdw∑
w

ewdw
ev , ζv := ImΠv (3.10)

for e being the vector with all entries 1 and d the dimension vector of the representation

as previously defined†. Indeed, substituting this expression into (3.2) and the stability

† Note that because we have reversed the sign of θ in the definition of µQ in analogy to µB , the
sign of the FI parametres is chosen to be positive, as opposed to [38–40].
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condition (3.3), we have that a representation S with dimension vector d(S) is stable

if for every proper sub-representation R,∑
v

ζvdv(R)∑
v

dv(R)
<

∑
v

ζvdv(S)∑
v

dv(S)
. (3.11)

Thus we rephrase θ-stability in terms of a constraint on the FI parametres.

4 Quiver Representation of Bundle Moduli

Given our two parallel skeins of development, especially in the concepts of stability

which can be extrapolated as two different limits, it is natural to enquire whether a

stronger tie exists. Our starting point is that Eq. (2.11) should be reminiscent of the

description of quiver gauge theories using exceptional collections of sheaves, particularly

when computing the bi-fundamentals and Yukawa couplings for D-brane probes over

local Calabi-Yau singularities [50–53].

More precisely, given a split of the form (2.9), we can associate a node to each

direct summand V
(ni)
i and a number of arrows from node i to j dictated by the di-

mension of the group Ext1(Vi, Vj). This is now a finite quiver with representation

(V
(ni)
i ,Ext1(Vi, Vj)). We point out that in the quiver literature, especially for the ex-

ceptional collections for brane-probe theories [50–53], one is more accustomed to the

arrows in the graph corresponding to Ext0 since these are hom-maps and thus prescribe

natural morphisms in the quiver representation. Here, because the bundle moduli are

given by the first cohomology, our arrows in the quiver will be associated with Ext1.

For simplicity, in this paper, we will restrict to the following assumptions, which

will be seen to be sufficient in giving us a rich and illustrative structure:

1. complete splitting into line bundles so that each V
(ni)
i is some line bundle Li and

hence all ranks ni = 1. Thus, V (n) =
n⊕
i=1

Li;

2. there are no loops (directed closed paths or self-adjoining arrows) in the quiver.
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It is clearly an interesting immediate future direction to relax these two artificial con-

straints, a task we will leave to forth-coming work.

A typical portion of our quiver will thus look like

Lj•
Li•

lij // (4.1)

where we have denoted the dimension of the corresponding portion of the bundle moduli

by

lij ≡ dim Ext1(Lj, Li) = h1(X,Li ⊗ L∗j) . (4.2)

In other words, lij is the adjacency matrix of a loop-less quiver; in particular, its

diagonal vanishes. Note that this is transpose of the usual definition of adjacency

matrix. This, in a sense, is more natural due to the cohomology structure in Eq. (4.2).

Therefore, in this way, we have given a quiver structure to the computation of

bundle moduli, in the spirit of Refs. [32, 41, 42]. This should allow us to use powerful

techniques from quiver theory as a handle on the rather complicated object of vector

bundle moduli space, and whence moduli arising from heterotic compactifications.

4.1 Two Perspectives on D-Terms

It has indeed been shown that when the bundle is decomposed completely into Abelian

pieces, the bundle moduli on the wall are subject to the D-term and F-term con-

straints [13–15,57]; a crucial observation is that the stability and holomorphicity parts

in the HYM equations, Eq. (2.1), correspond respectively to the D-terms and F-terms.

Thus, at least locally, the quiver moduli space should be a correct description for the

moduli space of holomorphic and stable sheaves.

Now, the F-terms - essentially the first pair of HYM in the bundle context and the

contribution from superpotential terms in the quiver context - are a priori constrained,

the more non-trivial object of our present concern comes from the D-terms. To these

we now briefly turn.

Suppose our bundle V splits to have a U(1) factor along some stability wall and
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F is the destabilizing sub-sheaf of V . Then, the moduli fields φi will have charge Qi

under this U(1) [15] and the corresponding D-term is

D(φi, ta) = f(ta)−
∑
i,j̄

QiGij̄φ
iφ̄j̄ , f(ta) ∼ µB(F)/V . (4.3)

In the above, ta are our usual Kähler parametres, Gij̄ is some positive definite metric,

V is the volume of X, and the nice fact is that the FI-parametre f(ta) is, up to

normalization, exactly the mu-slope of the sub-bundle F . In the simplest case where

all the moduli fields φ are negatively charged, Qi < 0. Then, on the wall µB(F) = 0

and the vevs of φi are forced to vanish, in the region of stability µB(F) < 0 and

the vevs adjust to compensate, and in the region of instability µB(F) > 0 and hence

supersymmetry is broken by D-terms.

From the quiver perspective, the fact that Abelian group factors give rise to non-

zero FI parametres is reflected by the incidence information of the graph. We recall

that (note we use the opposite sign from Ref. [54]) the incidence matrix ιvi of the

quiver is defined to be n × k, where n is the number of nodes and k, the number of

arrows such that

ιvi =


+1 if arrow i has tail at v

−1 if arrow i has head at v

0 otherwise .

(4.4)

For loop-less quivers this matrix has the same information as the adjacency matrix

in (4.2). Subsequently, the v-th D-term corresponding to the v-th U(1) gauge group

factor is simply

Dv = ζv −
k∑
i=1

ιvi|φ(i)|2 , v = 1, 2, . . . , n , (4.5)

where ζv are FI parametres dependent on Kähler moduli. The encoding of the charges

of the moduli fields by ±1 is a consequence of the Abelian nature of our quivers; this

ensures that the moduli space is a toric variety as dictated by the gauged linear-sigma

model description. We shall bear (4.3) and (4.5) in mind as we proceed.
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4.2 Stable Quivers for Stable Bundles

An immediate consequence of our identification is that we can obtain geometrical

information for MV (X, c;ω) in Eq. (2.13). In Ref. [32], Reineke gave a beautiful

explicit formula (cf. section 5 of Ref. [26]) for the Betti numbers of the moduli space

of (semi-)stable quiver representations for a quiver without loops, given an arbitrary

dimension vector d and θ-parametres. As pointed out in Refs. [26, 32], the moduli

spaces of semi-stable and stable representations are the same when dv are coprime and

θv are linearly independent over Q, except for the trivial relation
∑

v dvθv = 0. We only

restrict to these cases and hence, we will use the two terms interchangeably. Indeed,

this parallels our above discussions on DT invariants.

The formula is given in terms of the generating function, viz., the Poincaré poly-

nomial, of the Betti numbers bi of the quiver moduli space MQ(d;θ) as a projective

variety:

P (t) =

dim(MQ)∑
i=0

biti . (4.6)

In particular, evaluated at −1, P (−1) simply gives the Euler characteristic ‡. The

result is as follows.

THEOREM 2 [Reineke] Given a loop-less quiver (Q0,Q1) with representation (Vv∈Q0 , fρ∈Q1)

and dimension vector dv = dimVv, the Poincaré polynomial of the moduli spaceMQ(d;θ)

of θ-semistable representations is

P (t) = (t2 − 1)
1−

∑
v
dv
t
−

∑
v
dv(dv−1) ∑

d∗

(−1)s−1t
2
∑
k≤l

∑
v→w

dlvd
k
w ∏

k,v

(
[dkv ]t2 !

)−1
.

Here, with the convention that [0]q = [0]q! = 1,

[N ]q :=
1− qN

1− q
(4.7)

‡For a recent study of Poincaré polynomials for Calabi-Yau geometries, q.v. [55].
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is the standard q-bracket and

[N ]q! :=
N∏
k=1

[k]q =
1− q
1− q

1− q2

1− q
. . .

1− qN

1− q
(4.8)

is the q-factorial function. The d∗ sum is over all ordered partitions of the dimension

vector d by non-zero vectors (with non-negative entries) d∗ = (d1, . . . ,ds) so that

dv =
s∑

k=1

dkv and the θ-stability conditions
∑
v

θv(
k∑
l=1

dlv) > 0 are satisfied for all k =

1, . . . , s− 1.

Now, as explained above, we are only considering complete splits into line bundles,

so our dimension vector is simply a list of 1’s. In this case, all dkv are equal to 0 or 1

and the q-factorial values are all 1; hence, Theorem 2 simplifies to

P (t) = (t2 − 1)1−n
∑
d∗

(−1)s−1t
2
∑
k≤l

∑
v→w

dlvd
k
w

. (4.9)

The reader may find the indices in the above equations overwhelming; we will be very

explicit in our illustrative examples below.

4.3 Two Illustrative Examples

Let us now illustrate some examples of quiver structure and present how it can be used

to systematically determine bundle moduli. The examples given in this subsection were

already analyzed in the context of DT invariants in section 5 of Ref. [17], following

Refs. [20, 21]. Here we shall mainly focus on how the same results are reproduced in

our language.

4.3.1 A Rank-2 Example: SU(2)→ S[U(1)× U(1)]

Let us take

X =

[
P1

P3

∣∣∣∣∣ 2

4

]
, (4.10)
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as a bi-degree (2, 4) hypersurface in P1 × P3 and consider SU(2) bundles on X with

the fixed total Chern class

c = (rk, c1, c2, c3) = (2, (0, 0), (−4, 6), 0) , (4.11)

where the first Chern class cr1Jr should vanish for special unitarity of the structure

group, and the second Chern class crs2 (X)Jr ∧ Js is represented by another tuple of

integers c2,t ≡ crs2 drst = (−4, 6) with the following intersection numbers:

d122 = d212 = d221 = 4, d222 = 2, all others zero . (4.12)

In this case, an SU(2) bundle V splitting into OX(a, b)⊕OX(−a,−b), in order to

satisfy the Chern vector (4.11), must have b = −a = 1. Subsequently, µB(OX(a, b)) =

dijk(−1, 1)itjtk = 8t1t2 − 2(t2)2 = 0 implies that there exists a stability wall along the

line
t2

t1
= 4 , (4.13)

on which the rank-2 bundle is poly-stable and decomposes into

V → L1 ⊕ L2 , (4.14)

with L1 = OX(−1, 1) and L2 = OX(1,−1). In Ref. [17], the DT invariant has been

obtained from this as

DT (X, c = (2, (0, 0), (−4, 6), 0);ω = t1J1 + t2J2) =

−10 , if 4 < t2

t1
<∞ ,

0 , if 0 < t2

t1
≤ 4 ,

(4.15)

which is seen to jump when one crosses the stability wall of (4.13).

Let us show how this result can be reproduced in the quiver language. The quiver

10 L2L1

Figure 1: The quiver diagram associated to stable bundles with the fixed Chern class
(rk, c1, c2, c3) = (2, (0, 0), (−4, 6), 0) on the {2, 4} hypersurface in P1 × P3.

associated with the bundle decomposition (4.14) is shown in Figure 1. Note that the
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adjacency matrix is computed using the information about line bundle cohomology on

X [56]:

l12 = h1(X,L1 ⊗ L∗2) = h1(X,OX(−2, 2)) = 10 ,

l21 = h1(X,L2 ⊗ L∗1) = h1(X,OX(2,−2)) = 0 , (4.16)

where lij ≡ h1(X,Li ⊗ L∗j) are the number of arrows from node j to i. Since L1 and

L2 are line bundles, they correspond to U(1) gauge groups and the D-term conditions

can be written, using the prescription of (4.5), as

−
10∑
i=1

|φ(i)
12 |2 = ζ1 ,

10∑
i=1

|φ(i)
12 |2 = ζ2 , (4.17)

where φ
(i)
12 for i = 1, 2, . . . , 10 are the ten complex fields corresponding to the arrows

from node 2 to 1. This requires as usual that ζ1 + ζ2 = 0 and we only have one

independent equation. In case ζ1 < 0 (or equivalently, if the Kähler moduli sit above

the wall), quotienting the D-flat solution space by U(1) gauge transformation gives rise

to P9 and hence, the DT invariant in this chamber is −10. On the other hand, if ζ1 > 0

(that is, below the wall), there are no solutions at all and hence the DT invariant is

0. Note that this is exactly the same wall-crossing as in Eq. (4.15). Indeed, the astute

reader would recognize the above D-terms as the GLSM description of P9 as a toric

variety.

Now, let us compute this in a systematic way by applying Reineke’s formula, from

which the Poincaré polynomial of a quiver variety is given by Eq. (4.9) for an Abelian

quiver. In the example at hand, n = 2 and d = (1, 1) has the following three ordered

partitions

d∗ = ((1, 1)), ((1, 0); (0, 1)), ((0, 1); (1, 0)) . (4.18)

Let us determine which terms precisely contribute to (4.9). From (3.10), substitut-

ing dw = 1 and ζ1 + ζ2 = 0 gives us simply (θ1, θ2) = (ζ1, ζ2) = (ζ1,−ζ1). Therefore,
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our stability condition reads as

µQ(
k∑
l=1

dl) =
1

2

2∑
v=1

(
k∑
l=1

dlv)ζv =
ζ1

2

k∑
l=1

(dl1 − dl2) > 0 , (4.19)

for k = 1, · · · , s − 1 where s is the number of terms in the three partitions in (4.18),

namely 1, 2, 2, respectively. Note that we use the notation that for the dimension

vector, the subscript indexes the node while the superscript indexes the ordering in a

particular partition.

Let us start from the ζ1 < 0 chamber. The first partition d∗ = ((1, 1)) has s = 1

and so (4.19) is not applicable as a constraint and hence ((1, 1)) contributes to the

Poincaré polynomial. The second partition d∗ = ((1, 0); (0, 1)) has s = 2 so (4.19)

should place one constraint, namely ζ1
2

(d1
1− d1

2) > 0. However, here d1
1 = 1 and d1

2 = 0,

so this constraint is violated since we have chosen ζ1 < 0. Hence, the second partition

does not contribute. Moving on to the third partition d∗ = ((0, 1); (1, 0)) which also

has s = 2, the stability constraint requires that ζ1
2

(d1
1 − d1

2) = ζ1
2

(0 − 1) > 0, which is

obviously satisfied. Thus this third partition does contribute.

Therefore, recalling that the only arrows v → w are the 10 from node 2 to 1, and

by summing over d∗ from the first partition where d1 = (1, 1) and the third partition

where d1 = (0, 1), d2 = (1, 0), Eq. (4.9) now reads,

P (t) = (t2−1)−1
[

(−1)0t 2·10·d12d11︸ ︷︷ ︸
d∗=((1,1))

+ (−1)1t 2·10(dl=1
2 dk=1

1 +dl=2
2 dk=1

1 )︸ ︷︷ ︸
d∗=((0,1);(1,0))

]
= (t2−1)−1

[
t20 − 1

]
.

(4.20)

The situation for the ζ1 > 0 chamber is similar but the answer is drastically different.

Here, the stability constraint (4.19) forces us to consider only partition 1 where d1 =

(1, 1) and partition 2 where d1 = (1, 0), d2 = (0, 1). Hence,

P (t) = (t2−1)−1
[

(−1)0t 2·10·d12d11︸ ︷︷ ︸
d∗=((1,1))

+ (−1)1t 2·10(dl=1
2 dk=1

1 +dl=2
2 dk=1

1 )︸ ︷︷ ︸
d∗=((1,0);(0,1))

]
= (t2−1)−1

[
t20 − t20

]
= 0 .

(4.21)
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In summary, we have that the Poincaré polynomial is

P (t) =

 t20−1
t2−1

= 1 + t2 + · · ·+ t18 , if ζ1 < 0 ,

0 , if ζ1 > 0 ,
(4.22)

which is again consistent with Eq. (4.15).

4.3.2 A Rank-3 Example: SU(3)→ S[U(1)× U(1)× U(1)]

On the same Calabi-Yau threefold as in the previous example, let us now consider

SU(3) bundles, with the fixed total Chern class

c = (rk, c1, c2, c3) = (3, (0, 0), (−12, 18),−20) . (4.23)

In this case, we still have the same stability wall along

t2

t1
= 4 , (4.24)

on which the rank-3 bundle is poly-stable and decomposes into

V → L1 ⊕ L2 ⊕ L3 , (4.25)

with L1 = OX(−2, 2), L2 = OX(1,−1) and L3 = OX(1,−1). From this fact, again in

Ref. [17], the DT invariant has been obtained as

DT (c = (2, (0, 0), (−12, 18),−20), ω = t1J1 + t2J2) =

 80 , if 4 < t2

t1
<∞ ,

0 , if 0 < t2

t1
≤ 4 ,

(4.26)

which jumps when crossing the wall.

40 40L2 L1 L3

Figure 2: The quiver diagram associated to stable bundles with the fixed Chern class
(rk, c1, c2, c3) = (3, (0, 0), (−12, 18),−20) on the {2, 4} hypersurface in P1 × P3.

The associated quiver is shown in Figure 2, where the adjacency matrix is computed
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as

l12 = h1(X,L1 ⊗ L∗2) = h1(X,OX(−3, 3)) = 40 ,

l13 = h1(X,L1 ⊗ L∗3) = h1(X,OX(−3, 3)) = 40 , (4.27)

with all the other lij being zero . Then the D-term conditions are

− |φ12|2 − |φ13|2 = ζ1 ,

|φ12|2 = ζ2 ,

|φ13|2 = ζ3 , (4.28)

where φ12 and φ13 are complex forty-dimensional vectors. The three FI parametres

again add up to zero and there remains two independent equations. Note that these

D-term equations can only be solved if both ζ2 and ζ3 are positive, or equivalently, if

the Kähler moduli sit above the stability wall, t2

t1
= 4. In this chamber, quotienting

the D-flat solution space by the two U(1) gauge transformations gives rise to P39×P39

and hence, the DT invariant in this chamber is 80 (and 0 in the other chamber).

Of course, one can directly apply Reineke’s formula to the quiver in Fig. 2, and

we find that the same result is readily obtained. A word of caution for the details

of the calculation is in order, this will be important for our algorithms shortly. It

may seem that we have complete freedom in the choices of the parametres ζv with

the only constraint being that they sum to 0, whereby giving us - taking all possible

combinations of each being either greater or less than 0 - 2n−1 chamber divisions. This

is not the case. We recall from (4.3) that the FI-parametres are, up to an overall

proportionality constant, simply the mu-slope of the line-bundle summands in the

split of the bundle V . The vanishing of this slope, as a function of the Kähler moduli

ti=1,...,h1,1(X) defines the stability wall.

The chambers of stability, which thus control supersymmetry and DT invariants,

are co-dimension one objects in the Kähler cone, which is of dimension h1,1(X) (and

not n − 1). Therefore, in actual computations, we need to consider either side of the

stability wall as determined by mu-slope, giving us the regions of ti values. This then

in turn gives the signs of the FI parametres ζv. In this above example, we indeed have

24



the Poincaré polynomial as

P (t) =

{
(t80−1)2

(t2−1)2
, if ζ1 < 0, ζ2,3 > 0

0, otherwise .
(4.29)

That the result of Eq. (4.9) is always a polynomial with non-negative coefficients, as

exemplified here, is highly non-trivial and is guaranteed by Reineke’s formalism.

5 An Algorithmic Outlook

Having seen our two examples of quiver structure for heterotic moduli on a specific

Calabi-Yau threefold in detail, and emboldened by the success of our description, it is

immediate that we could look at a multitude of situations. Indeed, one is naturally led

to the classification problem for all possible bundle decompositions: to try to obtain

the quiver description for every Chern class c = (rk, c1, c2, c3) given any Calabi-Yau

threefold by studying the stability-wall phenomenon, thereby obtaining the splitting

behaviour of the bundle moduli as well as the DT invariants.

This is, of course, a hugely ambitious goal and will involve, in addition to the need to

generalizing to non-Abelian summands and quivers with loops, some subtleties which

we will shortly discuss in §5.1. For now, let us consider the opposite direction. That is,

we start from the direct sum of line bundles V =
n⊕
i=1

Li , where all the summands have

their slops vanishing on a common wall inside the Kähler cone. As an upside, this pro-

cedure is systematic enough and can easily be put into a computer code. Unfortunately,

one can only get partial information about DT invariants since the bundle decompo-

sitions sometimes include non-Abelian pieces. Although non-Abelian sub-bundles can

also be described by a quiver, they are not completely determined by Chern classes,

unlike line bundles. Here, for the purpose of introducing quiver structure, we content

ourselves with this opposite direction.
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5.1 Some Analytics

Before we move on to the database of threefolds, let us see what generalities one could

draw from Eq. (4.9). The sole input to Reineke’s formula is the quiver adjacency

matrix lij, which is determined by the bundle information. Here, we need to point

out a subtlety. In our case of complete split into line bundles for a bundle with given

Chern vector, we must be careful of contributions coming from sheaves. In this case,

such torsion sheaves would be supported on sub-varieties of X of co-dimension at least

two since line-bundles are in one-one correspondence with divisors which are of co-

dimension one. In other words, for any fixed Chern vector, contributions from both

line bundles and sheaves will be present.

Of course, so long as the Ext1-group is unaffected by the torsion, the adjacency

matrix, and subsequently any details of the quiver variety and bundle moduli, will be

unaffected. In this case, assuming that we are only dealing with line-bundle splits is

sufficient. In [20,21], it was shown that this is the case for our example of the threefold

in Eq. (4.10). In general, we need to be careful.

Nevertheless, we can conclude many analytic results with specific forms of the

input. Suppose we have a rank-2 bundle V = L1 ⊕ L2, then the most general form of

the corresponding loop-less quiver is

ln=2 =

(
0 l12 = Ext1(L2, L1)

0 0

)
, (5.1)

where Li are rank-1 sheaves. Note that the diagonal vanishes to avoid self-adjoining

loops and there can only be one off-diagonal (which we have chosen, without loss of

generality, to be upper-right) for otherwise there will be bi-directional arrows (loop of

length 2) between nodes 1 and 2. There is only one independent FI parametre, ζ1, and

the resulting Poincaré polynomial is

P (t) =

{
(t2l12 − 1)(t2 − 1)−1, if ζ1 < 0

0, if ζ1 > 0 .
(5.2)

Moving on to the general rank-3 case, the situation becomes more unwieldy; this
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is because unlike the n = 2 situation where there is only one free FI parametre, as

discussed above, we need to determine the chambers in the Kähler cone, which requires

information on the mu-slope and the precise split of the line bundle summands. For

this, we will need to know the topology of the Calabi-Yau threefold X. Suppose we have

a rank-3 split V = L1⊕L2⊕L3. Up to re-ordering of the nodes, the adjacency matrix

without loops can take the form of ln=3 =

(
0 l12 l13

0 0 l23

0 0 0

)
, with the entries depending on

the Li, via the appropriate bundle cohomologies on X. Let us assume that the three

entries l12, l13, l23 are all nonzero and that the integral two-vectors c1(L2) and c1(L3)

are proportional to each other by a positive scalar constant. In this case, the Poincaré

polynomial takes the form

P (t) =

{
(t2(l13+l23)−1)(t2l12−1)

(t2−1)2
, if ζ1 < 0, ζ3 > 0

0, otherwise .
(5.3)

We can go on to analyze the Poincaré polynomial for more general rank-3 cases or for

higher ranks. However, perhaps fatigued by abstraction, let us move on to concreteness.

5.2 CICYs: a Plenitude of Examples

Before we start scanning the bundle decompositions, a Calabi-Yau threefold has to be

specified. Since h1,1(X) > 1 is required for nontrivial wall-crossing phenomena, we

demand h1,1(X) = 2 as for the minimal case. A dataset instantly springs to mind, this

is the famous and oldest database of Calabi-Yau threefolds [56, 58, 59], the so-called

CICYs, or complete intersections in products of projective spaces. From this list over

which line bundle cohomologies are rather easily computed, 36 manifolds are found to

have h1,1 = 2.

It is not immediately conducive to exhaustively study all 36 manifolds, so, for

convenience, let us demonstrate with the following four examples:

X1 =

[
P1

P4

∣∣∣∣∣ 0 2

3 2

]
; X2 =

[
P2

P3

∣∣∣∣∣ 2 1

1 3

]
; X3 =

[
P2

P2

∣∣∣∣∣ 3

3

]
; X4 =

[
P1

P3

∣∣∣∣∣ 2

4

]
,

the last two being the only hypersurface cases amongst the 36.

27



On each of the four Calabi-Yau threefolds Xi (i = 1, 2, 3, 4), we can construct rank-

n special unitary bundles V for n = 2, 3, 4, 5, which are the cases of phenomenological

interest. To make the scan finite, we will need to set some artificial bounds on the Chern

class entries of the summands in the splitting of V . Furthermore, as aforementioned,

we only deal with those quivers which do not involve loops. Finally, for convenience,

we will adhere to only bona fide line bundles for the summands, instead of general

rank-1 sheaves.

In summary, we will require, for V =
n⊕
i=1

Li, the following:

1. SU(n): the bundle V is special unitary, i.e.,
n∑
i=1

c1(Li) = 0 ∈ Z2 ;

2. Bound: summands are line bundles OX(a, b) whose entries a, b are bounded by

±3, that is, c1(Li) ∈ [−3, 3]2 ;

3. Stability: all the summands Li have a vanishing slope on a common wall in the

Kähler cone, and hence, there exists a nontrivial vector (t1, t2) in the positive

quadrant such that cr1(Li)t
studrsu = 0, for all i = 1, . . . , n ;

4. Loop-less: the associated quiver has no directed loops. In other words, the

line bundle cohomologies lij = h1(X,Li ⊗ L∗j) are such that there is no closed

path i1 → i2 → · · · → im → i1 of length m ≥ 1, with the linking numbers

li1i2 , li2i3 , . . . , limi1 all positive along the path.

How many such bundles are there on our four manifolds? The statistics for this

scan is summarised in Table 1. We see that even with our constraints and bound on

Chern classes there is plenty of examples to analyze.

As an illustration of the large resulting list, let us consider the following rank-5

example on X4:

V =
5⊕
i=1

Li , with L1,2 = OX4(3,−2) , L3 = OX4 , L4,5 = OX4(−3, 2) . (5.4)

This is a rather non-trivial case shown in Figure 3; the adjacency matrix is also given
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CICY X n = 2 n = 3 n = 4 n = 5

X1 =

[
P1

P4

∣∣∣∣ 0 2

3 2

]
3 3 6 6

X2 =

[
P2

P3

∣∣∣∣ 2 1

1 3

]
9 12 28 41

X3 =

[
P2

P2

∣∣∣∣ 3

3

]
9 13 29 43

X4 =

[
P1

P3

∣∣∣∣ 2

4

]
7 11 25 39

Table 1: Statistics for the number of possible decompositions of SU(n) bundles into the

sum of n line bundles, V =
n⊕
i=1

Li (n = 2, 3, 4, 5), on the four Calabi-Yau threefolds X1,2,3,4

under our 4 constraints. The line bundles Li were constrained so that c1(Li) ∈ [−3, 3]2,
n∑
i=1

c1(Li) = 0 and all the slopes µB(Li) can vanish at a common locus in the Kähler cone.

Furthermore, only those decompositions whose associated quivers do not involve loops were
selected from the scan.

20

168

168

20

20

20

168

168

L1

L3

L4

L5

L2

lij =



0 0 0 0 0

0 0 0 0 0

20 20 0 0 0

168 168 20 0 0

168 168 20 0 0



Figure 3: An example of rank-5 quivers on {2, 4} hypersurface X4 in P1 × P3. On the
stability wall, this quiver describes the split of vector bundles into direct sum of the five line
bundles L1,2 = OX4(3,−2) , L3 = OX4 , L4,5 = OX4(−3, 2).
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for reference. We can then apply the formula (4.9) to readily find that

P (t) =


t1504−t1424−4t1128+4t1088+4t416−4t376−t80+1

(t2−1)4
, if ζ1,2 > 0, ζ4,5 < 0;

0, otherwise .

(5.5)

Again, it is remarkable that this is a polynomial with non-negative coefficients only.

5.3 Division Pattern of the Kähler Cone

In the examples of §4.3, we have seen that the Kähler cone (that is, the positive quad-

rant in R2) is divided into two chambers, with a single stability wall being the flat

line, t2

t1
= 4, between the two. In general, however, one would naturally expect that

the situation is much more intricate. Firstly, the walls of marginal stability could be

curved; for instance, in pure SU(2) Seiberg-Witten theory, which provides a prototyp-

ical example of wall-crossing in field theory, the two-dimensional moduli space for the

Coulomb vevs is divided into two chambers and the stability wall is indeed curved with

a circular topology (cf. [62]). Furthermore, one may in principle expect the presence of

multiple walls and the Kähler cone is divided into many regions separated by non-linear

walls. In this subsection, we will see examples of such patterns of the Kähler cone.

It turns out that, on the Calabi-Yau threefolds with h1,1 = 2, constructed either as

CICYs [56, 58, 59] or as toric hypersurfaces [60, 61], such behaviours can never occur

for our Abelian splits. However, by relaxing either of the two constraints (that is,

the Abelian property or the h1,1 = 2 condition), one can easily obtain some examples

with interesting division pattern of the Kähler cone. Indeed, an illustrative example

of multiple-wall structure has been given for non-Abelian splits [16]. Here, we present

another interesting one, in which the stability wall is a curved locus.

For this, one needs to go higher than h1,1 = 2. Let us consider the following

Calabi-Yau three-fold

X =

 P1 2

P1 2

P2 3

 , (5.6)
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which is a hypersurface of multi-degree (2, 2, 3) in P1×P1×P2. The Kähler cone for this

threefold is simply the positive octant, tr > 0, r = 1, 2, 3, and the triple intersection

numbers are encoded into the coefficients of the polynomial

d(x1, x2, x3) = 18x1x2x3 + 6x1x
2
3 + 6x2x

2
3 . (5.7)

Let us fix the total Chern class as

c = (rk, c1, c2, c3) = (2, (0, 0, 0), (−8, 4, 6), 0) (5.8)

and consider SU(2) bundles. One then finds the split is OX(−1, 1, 1)⊕OX(1,−1,−1).

Thus, using the intersection numbers (5.7), we see that µB(OX(−1, 1, 1)) = 0 implies

18 L2L1

Figure 4: The quiver diagram associated to stable bundles with the fixed Chern class
(rk, c1, c2, c3) = (2, (0, 0, 0), (−8, 4, 6), 0) on the {2, 2, 3} hypersurface in P1 × P1 × P2.

0 1 2 3

t1
0

5

10

15

t2

0

10

20

t3

Figure 5: The stability wall, defined by 6t1t2 + 10t1t3− 2t2t3 = 0 inside the positive octant,
on which the SU(2) bundle decomposes into the sum of two line bundles. The quiver in
Figure 4 describes the split as well as the moduli space of stable bundles near this wall.
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that there is a stability wall located along the curved locus

6t1t2 + 10t1t3 − 2t2t3 = 0 , (5.9)

whereupon the rank-2 bundle becomes poly-stable and decomposes into

V → L1 ⊕ L2 , (5.10)

with L1 = OX(−1, 1, 1) and L2 = OX(1,−1,−1). The associated quiver is depicted in

Figure 4 and the wall inside the Kähler cone, which is seen to be curved, is shown in

Figure 5.
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