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We review the recent programme undertaken∗ to construct, systematically and algorith-
mically, large classes of heterotic vacua, as well as the search for the MSSM therein.

Specifically, we outline the monad construction of vector bundles over complete inter-
section Calabi-Yau threefolds, their classification, stability, equivariant cohomology and

subsequent relevance to string phenomenology. It is hoped that this top-down algorithmic

approach will isolate special corners in the heterotic landscape.
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1. Triadophilia: A Twenty-Year-Old Challenge

Ever since the realization [1], shortly after the discovery of the heterotic string [2],

that it provides a promising venue wherein the Standard Model may be embed-

ded, string phenomenology was born. Indeed, the E8 gauge group of the het-

erotic string encompasses a natural gauge unification of the Standard Model

SU(3) × SU(2) × U(1) group. A mathematically succinct and physically appeal-

ing approach was thereby engendered, where the E8 string was compactified on a

Calabi-Yau threefold X. The tangent bundle TX of X admits, by the Calabi-Yau

nature, an SU(3) connection and E8 is thus broken to an E6 GUT group, the com-

mutant of SU(3) therein. This was the initial setup and the E6 particle content is

conveniently computed by the cohomology groups taking value in TX , which, by

standard Hodge decomposition of Kähler manifolds [62, 63], are simply the Hodge

numbers of X:

n27 = h1(X,TX) = h2,1

∂̄
(X) , n27 = h1(X,T ∗X) = h1,1

∂̄
(X) . (1.1)

Now, the 27 of an E6 GUT theory contains the entirety of the Standard Model

fermions, hence the net number of generations is simply (the absolute value of) the

∗Based on various talks by the author, given lately in Providence, Tucson, London, Potsdam

and Fort Lauderdale, and on joint efforts by the Oxford Group for algebro-geometric methods in
string phenomenology, to which the author is most grateful for countless enlightening and jovial

discussions and collaborations.
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difference between the above two terms, which, by rudimentary topology, is half the

Euler number of X.

Our desire, is that there be three net generations, in accord with experimental

observations. Therefore, one of the first questions in string phenomenology was

whether there exists a Calabi-Yau threefold (CY3) with Euler number ±6:

|χ(X)| = 2|h1,1(X)− h2,1(X)| ?
= 6 . (1.2)

This, was the genesis of Triadophilia [6] (Gk., love of three-ness).

The beautiful work of Candelas et al. attempted to address this problem [7–12]

in the first decade after the incipience of heterotic model-building. This was a pre-

cursor to an algorithmic approach to string phenomenology and a large data-set,

of 7890 manifolds, was constructed. These are the so-called CICY manifolds, or

complete intersection Calabi-Yau threefolds embedded as K homogeneous polyno-

mials in Pn1 × . . .× Pnm . Here, complete intersection means that the dimension of

the ambient space exceeds the number K of defining equations by precisely 3, i.e.,

K =
m∑
r=1

nr−3. Moreover, the Calabi-Yau condition of vanishing first Chern class of

TX translates to
K∑
j=1

qrj = nr +1 ∀ r = 1, . . . ,m. Subsequently, each manifold can be

written as an m×K configuration matrix (to which we may sometimes adjoin the

first column, designating the ambient product of projective spaces, for redundant

clarity):

X =


Pn1 q1

1 q1
2 . . . q1

K

Pn2 q2
1 q2

2 . . . q2
K

...
...

...
. . .

...

Pnm qm1 qm2 . . . qmK


m×K ,

K =
m∑
r=1

nr − 3 ,

K∑
j=1

qrj = nr + 1 , ∀ r = 1, . . . ,m .
(1.3)

The authors of [7–11] proved that there can be only a finite number of such

matrices and spent a number of years, in the nascent days of computer power,

to establish a complete classification. The most famous example is, of course, the

manifold [4|5]1,101
−200 (or simply [5]), known commonly as the quintic. We have marked

the Hodge numbers as superscript and Euler number, subscript.

Unfortunately, none of the 8000 or so CICYs has Euler number ±6. Nevertheless,

it was soon realized by Tian and Yau that freely-acting quotients of these spaces

could have the correct property and the manifold M =

[
1 3 0

1 0 3

]
/Z3 has topological

numbers M6,9
−6 . It was thus not surprising that this manifold became central to string

phenomenology in the early days [3–5].

Nowadays, E6 GUT theories are less favoured than their SU(5) or SO(10) coun-

terparts, which can then be broken to the (Minimally Supersymmetric) Standard

Model (MSSM) by turning on discrete Wilson lines. Furthermore, M6,9
−6 has 6 entire

generations of anti-families, another cumbersome feature.
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Modern heterotic phenomenology focuses on SU(5) or SO(10) GUTs and their

subsequent breaking to the MSSM. Now, obtaining these gauge groups is relatively

straight-forward: one simply recalls that their commutants in E8 are, respectively,

SU(5) and SU(4). Therefore, endowing the CY3 X with an SU(n) bundle V with

n = 3, 4, 5 will generalize the traditional setup where V = TX (now known as

“standard embedding”) to give these GUT theories (now known as “general em-

bedding”) [13,14]. The adjoint 248 of E8 branches accordingly:

E8 → G×H Residual Group Structure

SU(3)× E6 248→ (1, 78)⊕ (3, 27)⊕ (3, 27)⊕ (8, 1)

SU(4)× SO(10) 248→ (1, 45)⊕ (4, 16)⊕ (4, 16)⊕ (6, 10)⊕ (15, 1)

SU(5)× SU(5) 248→ (1, 24)⊕ (5, 10)⊕ (5, 10)⊕ (10, 5)⊕ (10, 5)⊕ (24, 1)

The associated particle content is likewise captured by the various vector-bundle-

valued cohomology groups:

Decomposition Particle Content

SU(3)× E6 n27 = h1(V ), n27 = h1(V ∗) = h2(V ), n1 = h1(V ⊗ V ∗)
SU(4)× SO(10) n16 = h1(V ), n16 = h2(V ), n10 = h1(∧2V ), n1 = h1(V ⊗ V ∗)
SU(5)× SU(5) n10 = h1(V ∗), n10 = h1(V ), n5 = h1(∧2V ), n5 = h1(∧2V ∗)

n1 = h1(V ⊗ V ∗)

Next, breaking the GUT to the MSSM gauge group is also elementary (what is dif-

ficult, as we shall see, is obtaining the precise spectrum and couplings): one enriches

the above structure of the pair (X,V ) with a discrete Wilson line W such that the

commutant of W in SU(5) or SO(10) is SU(3) × SU(2) × U(1) (with a possibil-

ity of an extra U(1) factor). On a Calabi-Yau manifold with non-trivial (discrete)

fundamental group W = π1(X), one can turn on a W -Wilson line and compute

the W -equivariant cohomology groups for V , in conjunction with the action of the

Wilson line, to obtain the final particle spectrum. This has been developed in a

programme led by Ovrut, Donagi, Pantev et al.over the past decade: cf. [15–18]

(q.v. brief review in [19]) and [20–24]. This search for the MSSM, wherein the

particle content is encaptured by bundle cohomology, the moduli, bundle endo-

morphisms, and Yukawa couplings, trilinear compositions amongst the cohomology

groups, has been a substantial challenge and a healthy dialogue for collaborative

efforts between physicists and mathematicians.

2. A Special Corner

A preliminary success of the aforementioned endeavour culminated in 2005 where,

sifting through some number of suitable vector bundles over so-called elliptically-

fibered CY3s (another large class of manifolds), two complementary heterotic MSSM

models with no exotic particles, no anti-generations, exactly one pair of Higgs and

reasonable Yukawa couplings were found after years of search. One [25–27] was

based on an SU(4) bundle coupled with a Z3 × Z3 Wilson-line, giving rise to, via
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an SO(10) GUT, the MSSM with an U(1)B−L, the other [28, 29], on an SU(5)

bundle coupled with a Z2 Wilson-line, giving the MSSM via an SU(5) GUT. Both

models are based (respectively by equivariant Z3 × Z3 and Z2 actions) on a parent

self-mirror X19,19
0 manifold, which is a T 2-fibration over a nineth del Pezzo surface,

which is itself an elliptic fibration over P1.

Remarkably, this X19,19
0 covering manifold, from which both quotients descend,

resides in the intersection between the database of elliptically fibered threefolds and

CICYs and it was an astute observation, initially made by Candelas, that it is, in

fact, intimately related to the cover of the Tian-Yau manifold:

X19, 19
0 =

1 1

3 0

0 3

 , X14,23
−18 =

[
1 3 0

1 0 3

]
. (2.4)

Why indeed should the two most favoured manifolds from two completely different

data-sets, spanning over a decade of search, be connected by so simple a transposi-

tion of configuration matrices?

The observatio curiosa prompted the investigations in [6] wherein the two man-

ifolds, together with the bi-cubic CICY, X2,83
−162 =

[
3

3

]
, as well as their various

quotients were shown to be conifold transition of each other. The bundles thereon,

were proposed to be linked by so-called transgressions, where a bundle on one is

taken, being trivial on the conifold blowup P1 cycles, to another bundle on the other

after the conifold transition. Indeed, all CICYs are related by conifold transitions

and it is a conjecture known as Reid’s fantasy that all CY3s are related by blow-

up/down transitions generalizing the conifold; it is thus natural to speculate that

all (stable) vector bundles on all CY3s should transgress – perhaps the plethora of

heterotic vacua are all inter-laced after all!

To have a glimpse of this multitude, a plot was made of all the known CY3s

to date in [6], and in the spirit of [7–11] as well as the pioneering work in mirror

symmetry by Candelas et al., the ordinate and abscissa are taken, respectively,

as the sum and the difference (Euler number) of the two Hodge numbers. This is

presented in Part (a) of Figure 1. There are about 500 million known Calabi-Yau

manifolds, including the CICYs, the elliptically fibered, isolated examples, etc.; the

largest family by far, however, is the impressive list compiled over the 1990’s, of

smooth hypersurfaces in toric four-folds, performed in the lovely work of Kreuzer-

Skarke [30, 31], consisting of 473,800,776 inequivalent CY3s, with 30,108 distinct

pairs of Hodge numbers contributing to Figure 1 (a).

There are certainly many intriguing observations to be made on the plot, such

as whether there can exist a CY3 whose Euler number exceeds 960 in magnitude†.

†The author has bet a fine bottle of port with Dr. Andrew Dancer of Jesus College, Oxford, a
wager recorded in the antiquate Betting Book of the said College, the first pages of the present
Volume consisting of entries concerning the forces of Napoleon, that there does not exist such a

Calabi-Yau threefold.
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Fig. 1. (a) Plotting χ = 2(h1,1 − h1,2) (horizontal) versus h1,1 + h1,2 (vertical) of all the some
5 × 108 known Calabi-Yau threefolds; (b) magnification of the bottom corner in (a).

More immediate to our concern, however, is that the centre of the plot has multiple

occupation, that is, each point represents up to hundred of thousands of CY3s.

Nevertheless, as two decades of construction have taught us, in conjunction with

subsequent work in [32, 33], that the bottom corner of the plot is rather sparse.

Zooming into this special corner, presented in part (b) of the Figure, shows rather

pretty patterns. Importantly, these low-Hodge-number manifolds comprises of the

few “good” examples on which bundles begetting exact MSSM spectrum live and

mutually transgress. Is this corner an oasis in the seeming supererogation of string

vacua, wherein a world like ours could blossom, while the remaining plenitude are

no more than a swap-land [34,35]?

3. Algorithmic Scan of Vacua

Short of a selection principle, an immediate method of approach to the special

corner is not obvious, instead, a synthetic rather than analytic perspective may

prove to be conducive. This has been undertaken over the past few years [36–44],

where large classes of bundles are constructed over large data-sets of CY3s and then

those with MSSM properties, carefully selected. Such a philosophy of algorithmic

scan is indeed facilitated by the rapid advances in computational algebraic geometry

as well as its implementation on ever-faster machines [45, 46]; the cross-pollination

of this subject with theoretical and mathematical physics has also recently been a

healthy endeavour [47–49].

3.1. Physical and Mathematical Constraints

We therefore wish to explicitly construct a large number of special unitary vector

bundles V on CY3s; quite a few physical constraints can instantly be imposed.

Supersymmetry: We are aiming for the MSSM, and hence require N = 1 SUSY

in the low-energy 4-dimensional theory, which in turn implies that V admits a
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holomorphic connection F satisfying the Hermitian-Yang-Mills (HYM) equations:

Fab = Fāb̄ = gab̄Fab̄ = 0, a generalization of Ricci-flatness for Calabi-Yau manifolds.

Solving these PDEs explicitly are currently impossible. Luckily, we are saved by the

Donaldson-Uhlenbeck-Yau theorem [51,52], which states that on each (poly-)stable

holomorphic vector bundle, there exits a unique HYM connection.

Let us not delve into the details of stability, but only emphasize that this can

be construed as a purely algebraic condition, without recourse to hard analysis.

Some immediate and calculationally important consequences are that the zeroth

and highest cohomologies of a stable bundle V vanish: H0(X,V ) = H3(X,V ) = 0;

this, coupled with Serre duality for any bundle V on a CY3, that Hp(X,V ) '
H3−p(X,V ∗)∗, imply the following [62,63]:

H0(X,V ) = H0(X,V ∗) = H3(X,V ) = H3(X,V ∗) = 0 . (3.5)

Net Generations: The vanishing conditions (3.5), together with the Atiyah-

Singer index theorem on X which generalizes the statement for the Euler number,

yield that

index(/∇X) =

3∑
i=0

(−1)ihi(X,V ) =

∫
X

ch(V )td(X) =
1

2

∫
X

c3(V ) . (3.6)

Consequently, this gives us an expression for the net number of generations of

particles, analogous to (1.2):

Ngens = −h1(X,V ) + h1(X,V ∗) =
1

2

∫
X

c3(V ) . (3.7)

We will require that this number be a multiple of three, say 3k, where k is the order

of a possible freely acting group G on X, so that upon descending to the quotient

manifold X/G, there would be precisely 3 generations. Indeed, in order that G be a

free action, k must necessarily (but not sufficiently) divide the Euler number χ(X).

Anomaly Cancellation: To ensure Green-Schwarz anomaly cancelation [50], it

is standard to set
∫
X
R ∧ R − F ∧ F = 0, where R is the Ricci form on X, that

is, c2(X) = c2(V ). However, one could allow M5-branes in the bulk, in a heterotic

M-theory Hořava-Witten setup [53, 54], which could wrap effective holomorphic 2-

cycles (i.e., actual curves). Hence, one could allow that the difference c2(X)− c2(V )

correspond to an effective class.

Finally, since we are dealing with SU-bundles, c1(V ) = 0. Thus, in sum, we have

constraints on all the three Chern classes of V .

3.2. Monad Bundles: A Large Class

Our strategy is clear. We will attempt to construct a large class of bundles satisfy-

ing the above constraints over a substantial data-set of CY3s. The most systematic

method is the so-called monad construction over projective varieties [55], devel-

oped by algebraic geometers in the later half of the last century. In fact, all vector
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bundles over projective spaces can be so obtained, which is perhaps why such a

Leibnizian name, with regard to the universality implied, was originally chosen. It

is thus not surprising that these bundles have been used sporadically but fruitfully

in a physical context since the early days of string model building [56–61].

The building block to a monad is a line bundle, the simplest vector bundle

on any manifold. On CICYs, a line bundle is easy to describe and so let us begin

with this historical data-set [36–39, 41, 42, 44]. Denote OPn(k), as is standard, the

k-th power of the hyperplane bundle O(1) over Pn, then its first chern class is

c1(O(k)) = kJ with J being the Kähler class of Pn. Subsequently, one could restrict

this to any projective variety X to obtain OX(k) with the proviso that X also has

only a single Kähler class, as descended from the ambient Pn. Such cases of when

h1,1 of the ambient and variety itself are both unity is called cyclic.

In general, our ambient space A for CICYs are products of m projective spaces

in which K homogeneous polynomials define X. We shall call the cases where

h1,1(X) = h1,1(A) = m as favourable; here the Kähler classes descend completely

from A to X. In this case we can write line bundles over A = Pn1×Pn2×. . .×Pnm as

OA(k1, k2, ..., km) with corresponding restriction to the CICY, X. Finally, we have

the Kodaira vanishing theorem [62, 63] which states that for a positive line bundle

P on a Calabi-Yau manifold X , Hq(X,P ) = 0 for all q > 0. For CICYs, a positive

line bundle is one for which each ki entry above is positive. This vanishing will be of

significant aid to us in computing the spectrum and couplings later. Therefore, our

starting point will be monads constructed from positive line bundles over favourable

CICYs.

Thus prepared, we can define a monad as the bundle V which resides in a short

exact sequence (i.e., a free resolution of length 2):

0→ V
f−→ B

g−→ C → 0 ; with B =

rB⊕
i=1

O(bir) , C =

rC⊕
j=1

O(cjr) . (3.8)

Here, short exactness implies that V = im(f) ' ker(g) and that rk(V ) = rk(B) −
rk(C). The map g is explicitly a matrix of polynomials; e.g., on Pn the ij-th entry is

a homogeneous polynomial of degree ci − bj . Moreover, our positivity requirement

implies that all integers bir, c
j
r be strictly positive.

In summary, the physical constraints in §3.1 manifest themselves as a list of

combinatorial conditions on the integers bir, c
j
r:

(1) Bundle-ness: bir ≤ cjr for all i, j and the map g can be taken to be generic so

long as exactness of the sequence is ensured;

(2) SU-Bundle: c1(V ) = 0⇔
rB∑
i=1

bri −
rC∑
j=1

crj = 0;

(3) Anomaly cancellation: c2(X)− c2(V ) = c2(X)− 1
2 (

rB∑
i=1

bisb
i
t −

rC∑
i=1

cjsc
t
i)J

sJ t ≥ 0;

(4) Three Generations: c3(V ) = 1
3 (

rB∑
i=1

br
ibs

ibt
i −

rC∑
j=1

cr
jcs

jct
j)JrJsJ t = 3k, with k
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a divisor of χ(X) .

Upon finding such monads, we shall then prove stability and compute the par-

ticle spectrum and Yukawa couplings. These are extremely technical and difficult

problems and have been a major hindrance to existing literature if one were to cal-

culate them for large classes on the order of thousands or more. A break-through

in the method of attack of the programme in [36–44] is the extensive use of the

recent rapid advances in computer algebra, especially in algorithmic algebraic ge-

ometry [45, 46]. We shall not dwell too much in this review on these technicalities

and shall only mention that for stability, at least for cyclic manifolds, a so-called

Hoppe’s criterion reduces the problem to computing cohomology groups. To arrive

at the various cohomologies, the standard approach here is to use spectral sequence

induced from the Koszul resolution of V , whereby simplifying the problem to known

cohomologies (via Bott-Borel-Weil and Künneth [62, 63]) on the ambient product

of projective spaces.

It was shown in [37] that positive bundles satisfying the above list

of constraints is finite in number, amounting to about 7000 on only

a small number of CICYs. We present the statistics thereof below and

the histograms of c3(V ), i.e., the number of generations, in Figure 2:

Bundles ind(V ) = 3k
ind(V ) = 3k

an d k divides χ(X)

ind(V ) = 3k

|ind(V )| < 40

and k divides χ(X)

rank 3 5680 3091 458 19

rank 4 1334 207 96 2

rank 5 104 52 5 0

Total 7118 3350 559 21
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200

400

600

800

1000

1200

1400

(b) -80 -60 -40 -20
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Fig. 2. (a) Histogram for the index, ind(V ), of the 7118 positive monads found over 36 favourable
CICYs: the horizontal axis is ind(V ) and the vertical, the number of bundles; (b) the same data set,
but only taking into account monads with ind(V ) = 3k for some positive integer k, such that k divides
the Euler number of the corresponding CICY.
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3.3. A Needle in A Haystack

Emboldened by our ability to classify and further intrigued by the rarity of oc-

currence of anything akin to the MSSM, we enlarged our data-set to include the

so-called semi-positives; these are monads with possible zeros in the entries. Cur-

rently, short of strong isomorphism theorems we do not have a finiteness result even

though the numbers are expected to be so; preliminary scans have produced a sub-

stantially larger set. On these bundles an initial scan was performed and single one

was so far found [44] to have the exact MSSM spectrum‡. Interestingly, the base

manifold turned out to be the bi-cubic, X =
[
P2

P2

∣∣∣∣ 33
]2,83
−162

, again one of the guises of

the Tian-Yau manifold!

Specifically, this new heterotic standard model, to be added to the other two

within the special corner, has no anti-generations, no exotic particles, one pair of

MSSM Higgs and an U(1)B−L. It is obtained from an SU(4) monad bundle

0→ V → OX(1, 0)⊕3 ⊕OX(0, 1)⊕3 f→ OX(1, 1)⊕OX(2, 2)→ 0 , (3.9)

giving first an SO(10) GUT, which is subsequently broken by a Z3×Z3 Wilson line

to give the desired SU(3) × SU(2) × U(1) × U(1)B−L group. In order to turn on

this Wilson line we ensured that there exists a freely acting Z3 × Z3-group, which

was found in [6], giving a quotient manifold X2,11
−18 . To guarantee that the bundle V

also descends to the quotient, it was further shown that (3.9) admits an equivariant

structure with respect to the group action, and hence the quotient is also a bona

fide bundle.

4. Outlook

Armed with the advances in contemporary algebraic geometry, encouraged by the

possibility of extensively utilizing computer algebra coupled with physical intuition

and insight in order to sift through vast data-sets, and spurred by the observation

and speculation of transgressions within a special corner in the space of stringy

vacua, our spirits are enheartened by optimism. For the first time, the prospects of

an systematic and thorough expedition of the heterotic landscape, a venture dreamt

of for two decades, seem within our grasp. We have explored the oldest geography

of the CICYs, and already found a rare occurrence of the MSSM; meanwhile, recon-

naissance into the further territory of the elliptic manifolds and most importantly

the toric hypersurfaces are well under way [40, 43]. The glimpse into a barren ex-

panse of a terra incognita, harbouring perhaps a rare treasure cove bejewelled by

universes close to our own, enlivens our souls. Onwards we must march.

‡The author is most obliged to Mlle. N. Davis, Zuleika Mertonensis, for the charming diversions
afforded unto him during this work.
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