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Abstract

We systematically approach the construction of heterotic E8 ×E8 Calabi-Yau models, based on

compact Calabi-Yau three-folds arising from toric geometry and vector bundles on these manifolds.

We focus on a simple class of 101 such three-folds with smooth ambient spaces, on which we perform

an exhaustive scan and find all positive monad bundles with SU(N), N = 3, 4, 5 structure groups,

subject to the heterotic anomaly cancellation constraint. We find that anomaly-free positive monads

exist on only 11 of these toric three-folds with a total number of bundles of about 2000. Only 21 of

these models, all of them on three-folds realizable as hypersurfaces in products of projective spaces,

allow for three families of quarks and leptons. We also perform a preliminary scan over the much

larger class of semi-positive monads which leads to about 44000 bundles with 280 of them satisfying

the three-family constraint. These 280 models provide a starting point for heterotic model building

based on toric three-folds.

hey@maths.ox.ac.uk
s.lee1@physics.ox.ac.uk
lukas@physics.ox.ac.uk

1

ar
X

iv
:0

91
1.

08
65

v2
  [

he
p-

th
] 

 1
1 

D
ec

 2
00

9



Contents

1 Introduction 3

2 The Base Manifolds: Calabi-Yau Threefolds as Hypersurfaces in Toric Fourfolds 4

2.1 Smooth Ambient Spaces and the Selection of 101 Spaces . . . . . . . . . . . . . . . . 6

2.2 Geometrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Construction of Vector Bundles 9

3.1 Line Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 The Monad Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Mathematical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Physical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Mori Cones and Basis Change in H2(X,Z) . . . . . . . . . . . . . . . . . . . . . . . 13

4 Classification of Positive Monads 13

4.1 Finiteness of the Classification Programme . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 The Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Partial Search: Semi-Positive Monads 18

6 Conclusions and Prospects 20

A Construction of the Manifolds in Toric Geometry 22

A.1 Basic Definitions: Lattices, Cones and Fans . . . . . . . . . . . . . . . . . . . . . . . 22

A.2 Construction of Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.3 Construction of Calabi-Yau Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . 24

B Relevant Properties of the Manifolds 25

C The Database and an Illustrative Example 30

2



1 Introduction

Heterotic compactification has recently been met with some renewed interest and substantial de-

velopment. This most traditional method of string phenomenology involves a succinct formalism

in terms of stable holomorphic vector bundles on smooth, compact Calabi-Yau manifolds. Current

progress is mainly due to advances in algebraic geometry, both conceptual and computational, the

latter facilitated greatly by the ever-increasing power of computers and new algorithms. In par-

ticular, a programme has been established over the past few years on the systematic investigation

of the so-called “general embedding” realised by special unitary bundles of ranks 3, 4 and 5, on

large datasets of the Calabi-Yau threefolds [1–4]. Specifically, extensive use has been made of the

“monad construction”, one of the most efficient methods in creating vector bundles on projective

varieties [5]. Such a construction has been utilised throughout the years in string model build-

ing [6–9]. A database of monad bundles was constructed in Ref. [2], based on complete intersection

threefolds in products of projective spaces, or CICYs, a famous set of 7890 three-folds first classified

in Ref. [10–14]. On these, a total of 7118 positive bundles were found and the associated parti-

cle content and interactions, computed. The result was conducive to an algorithmic approach to

string phenomenology, making possible the construction of a plethora of candidate models and the

systematic selection of promising GUT or standard-model like theories.

It is expedient to summarise here the key features of heterotic compactification in our context

which will be of use later. For a more complete discussion see for example [15–18].

• An SU(N) stable holomorphic vector bundle V on a Calabi-Yau threefold X breaks the E8

gauge theory down to an N = 1 four-dimensional GUT theory with gauge group E6, SO(10)

and SU(5), respectively for N = 3, 4, 5.

• The first Chern class of the bundle vanishes: c1(V ) = 0.

• The second Chern class of V , c2(V ), is constrained by the second Chern class c2(X) of the

manifold X through Green-Schwarz anomaly cancellation.

• The number of families and anti-families is given by the dimensions of the bundle cohomologies

H1(X,V ) and H2(X,V ), respectively.

• Stability of V implies that the cohomology groups H0(X,V ) and H3(X,V ) vanish, and, hence,

the Atiyah-Singer index theorem shows that the index ind(V ) = 1
2

∫
X c3(V ) = −h1(X,V ) +

h2(X,V ) provides the net number of generations.

To break the SU(N) group further one requires a non-trivial first fundamental group of the three-fold

and a Wilson line. The former is usually achieved by identifying a freely acting discrete symmetry

G of X “upstairs” and forming the “downstairs” quotient X̃ = X/G. In addition, the bundle V

on X needs to descend to a bundle Ṽ on X̃, typically a non-trivial constraint. Here, we will not

address this aspect of the construction in detail but merely impose a necessary condition for such a
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“downstairs” model to exist and to produce three families. The “upstairs” and “downstairs” indices

are related by ind(Ṽ ) = ind(V )/k, where k = |G| is the order of the discrete symmetry group. We

will require three families “downstairs”, that is ind(Ṽ ) = 3, and that k divides χ(X), the Euler

number of the three-fold, a necessary condition for the existence of a free quotient. In addition,

we will use the more refined topological invariants of X introduced in Ref. [11] in order to further

constrain the group order k.

In the present paper, we will take the first steps to carry out the aforementioned programme

for the largest available class of Calabi-Yau three-folds available, namely the hypersurfaces in toric

varieties classified in Refs. [20–26] and consisting of some 500 million manifolds. From those man-

ifolds, 124 embed into smooth toric ambient spaces and 101 of those have a particularly simple

structure of their Kähler cone (the number of Kähler cone generators equals h1,1(X)). In this pa-

per, we will make a modest start and focus on these 101 toric manifolds and the bundles which

can be constructed on them. For brevity, we henceforth refer to “Calabi-Yau hypersurfaces in a

toric variety” as “toric Calabi-Yau manifolds”.1 We hope that methods similar to the one devel-

oped for this relatively small set can ultimately be applied to a very large class of manifolds and

bundles in a systematic search for the standard model from heterotic Calabi-Yau compactifications.

The organization of the paper is as follows. In Section 2 we collect the relevant facts on construct-

ing smooth Calabi-Yau threefolds as hypersurfaces in an ambient toric fourfold, focusing especially

on the 101 manifolds of interest; we leave some more detailed discussion to the appendices. In Sec-

tion 3 we show how to construct monad bundles on these toric hypersurfaces, and how constraints

on the Chern classes come from various mathematical and physical restrictions. We proceed to show

that a large class, the so-called “positive” monads are finite in number and in Section 4 present their

complete classification. In Section 5 we extend our search to semi-positive monads and we conclude

with discussion and prospects in Section 6.

2 The Base Manifolds: Calabi-Yau Threefolds as Hy-

persurfaces in Toric Fourfolds

As mentioned above, the largest known data-set to date of smooth, compact Calabi-Yau threefolds

consists of hypersurfaces in ambient toric four-folds and has been constructed in Ref. [21,22]. These

hypersurfaces are defined by the zero set of a single equation in an ambient toric four-foldA. Already,

this leads to a substantial number of manifolds, namely 473, 800, 776. In this paper, we will focus

on the cases where the ambient A is, in addition, smooth. It is the purpose of this section to briefly

1Of course, this is a slight abuse of nomenclature, since there are no compact, toric varieties which are Calabi-Yau (see,

for instance, Ref. [30]).
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summarise the relevant properties of these Calabi-Yau threefolds, on which we shall construct a large

class of vector bundles in the ensuing section. We shall not give a pedagogical introduction to toric

geometry and the reader is referred to many excellent texts [27–30]. Instead, we leave a somewhat

self-contained collection of nomenclature and pertinent facts to Appendix A, and here focus on the

geometrical data of the base Calabi-Yau space, as well as of the ambient toric variety, important to

the monad construction. In due course, we shall often draw similarities with the CICY dataset of

Calabi-Yau threefolds embedded in products of projective spaces, studied in detail in [1,2,10,11], of

which we have some intuition and familiarity (cf. also a recent three-generation model found in [32]).

The first ingredient is the construction of the ambient four-fold A; this is the analogue of the

product of projective spaces for the CICYs. The power of toric geometry is in using the combinatorics

of integer lattices to encode geometrical information. The ambient space is specified by a convex

integer polytope ∆ in R4 containing the origin. We can think of this polytope as a collection of

vertices (dimension 0), each of which is a 4-vector with integer entries. Each pair of neighbouring

vertices defines an edge (dimension 1), each triple a face (dimension 2), and each quadruple, a facet

(dimension 3). Alternatively, we could define the polytope by a list of integer inequalities, each of

which slices a facet. The polytope is the convex body in R4 enclosed by these facets. We will only

consider those polytopes containing the origin (0, 0, 0, 0) as an interior point. We define the dual

polytope ∆◦ to ∆ as all vectors in R4 whose inner product with all interior points of ∆ is greater

than or equal to −1, that is,

∆◦ = {v ∈ R4 | 〈m,v〉 ≥ −1 ∀m ∈ ∆}. (1)

To this dual polytope we can associate the collection of cones over its faces which, together, form the

normal fan Σ. This normal fan encodes the information necessary to construct the toric ambient

space A and a brief review of this construction can be found in Appendix A.2. It involves associating

to each edge of Σ a coordinate xρ. Each cone in Σ determines a patch of the toric variety and these

patches are glued together in a way determined by how the cones adjoin each other.

Next, we define a Calabi-Yau hypersurface X in A. It turns out that this is straight-forward:

as long as the polytope is reflexive we can define X. The polytope ∆ is called reflexive if the

vertices of its dual ∆◦ defined by Eq. (1) are all integer 4-vectors. Note that in this case, ∆◦ is also

a reflexive polytope, by symmetry in the definition. To a reflexive ∆, we can associate a smooth

Calabi-Yau threefold X given by the vanishing set of the polynomial

0 =
∑
m∈∆

Cm

k∏
ρ=1

x
〈m,vρ〉+1
ρ , (2)

where Cm are numerical coefficients parametrising the complex structure of X, xρ=1,...,k are the

coordinates of A, and finally, vρ=1,...,k are the vertices of ∆◦, with k being the number of vertices

in this dual polytope or equivalently, the number of facets in the original polytope ∆.
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As a concrete example, the quintic manifold in P4 is a hypersurface in the toric variety P4. We

have x1,...,5 as the (homogeneous) coordinates of P4 and can think of the reflexive polytope ∆ as

having vertices
m1 = (−1,−1,−1,−1),

m2 = ( 4,−1,−1,−1),

m3 = (−1, 4,−1,−1),

m4 = (−1,−1, 4,−1),

m5 = (−1,−1,−1, 4) ,

(3)

as well as all the points interior to these extremal points, including, for example, (0, 0, 0, 0). The

dual polytope ∆◦ is easily checked to have vertices

v1 = (1, 0, 0, 0),

v2 = (0, 1, 0, 0),

v3 = (0, 0, 1, 0),

v4 = (0, 0, 0, 1),

v5 = (−1,−1,−1,−1) .

(4)

Then, according to Eq. (2), each lattice point m ∈ ∆ contributes a quintic monomial in the co-

ordinates x1,...,5 to the defining polynomial. For example, the origin m = (0, 0, 0, 0) gives rise to

the monomial x1x2x3x4x5. We then sum over these monomials, with arbitrary complex coefficients,

giving us a homogeneous quintic polynomial which defines the quintic Calabi-Yau three-fold in P4.

All complex projective spaces and products thereof are toric varieties. To anchor ourselves, it

is worth mentioning that five of the manifolds we shall subsequently encounter are hypersurfaces in

products of projective spaces for which monad bundles have already been analysed in the literature

[2]. These are the five manifolds correspond to the ambient spaces, P4, P1×P3, P2×P2, P1×P1×
P2, and P1 × P1 × P1 × P1. The first is the quintic mentioned above. It is also interesting to point

out that the transpose CICYs [31] of these five are the so-called cyclic CICYs, which have been

studied in Ref. [1].

2.1 Smooth Ambient Spaces and the Selection of 101 Spaces

Half-billion reflexive 4-polytopes ∆ and their associated Calabi-Yau threefoldsX represent a formidable

dataset. Of these, 124 distinguish themselves in that the ambient four-fold A is smooth (we empha-

sise that all X in the list, even if A is singular, are smooth). These smooth toric 4-folds and the

corresponding smooth Calabi-Yau 3-folds form a natural starting point. In this paper we restrict

ourselves even further to the 101 pairs, whose toric 4-folds are not only smooth but also equipped

with simplicial Kähler cones (we will expound more upon this shortly), and thereon we build vec-

tor bundles. We will call the spaces with the latter property simple manifolds. Focusing on this

6



subset leads to a number of technical simplifications which are helpful in dealing with the bundle

construction. A systematic analysis of singular toric varieties and their Calabi-Yau hypersurfaces

will be the subject of future work.

We will adhere to the notation of Eq. (4) and represent both A and X by the vertices of the dual

polytope ∆◦. For reference, we present the complete dataset of the 124 smooth ambient toric 4-folds

in Appendix C; the rows are the integer 4-vectors for the coordinates of the vertices. Furthermore,

for comparision, we have marked numbers 1 (the quintic), 2, 7, 26, 40 with a subscript P because

these are precisely the 5 manifolds whose ambient spaces are the products of projective spaces. It is

interesting to notice that our dataset includes 10 ambient spaces of the form A = dPk1 × dPk2 and

4 of the form A = dPk1 × P1 × P1 (k1, k2 = 0, 1, 2, 3), where dPk is del Pezzo surface with k general

points blown-up. Table 8 in Appendix C lists these ambients separately. We have also marked 23

numbers with a subscript N , which means that their Kähler cones are non-simplicial and we did

not attempt to analyse them in this paper.

2.2 Geometrical Data

Armed with our dataset, we now proceed to discuss some geometrical quantities which will be

important to the construction of vector bundles on X. Again, we leave the details to Appendix B

and will walk the reader through a detailed example in Appendix C.

First, we can compute the Hodge numbers of X by simple combinatorics [33] of ∆◦ (beautifully

reflecting mirror symmetry); the relevant equations are explicitly presented in (50) and (51). It turns

out that the equality h1,1(X) = h1,1(A) holds for each of the 101 Calabi-Yau 3-folds, which means

that all the closed (1,1)-forms of X descend from A. We will say that X is favourable if it has this

property; favourability turns out to be very convenient for the description of line bundles which

we will see shortly. Indeed, for the CICY dataset, containing 7890 threefolds, 4515 of them are

favourable in the same sense. It was on these favourable spaces that monads were classified in

Ref. [2]. It is convenient that not only the 101 simple manifolds, but all our 124 manifolds with

smooth ambient space are favourable. To find h1,1(A), we use the relation

Pic(A) ' H2(A,Z) ' Zk−n , (5)

where Pic(A) is the Picard group of A, k, as before, is the number of vertices in the dual polytope

and n = dimCA = 4. For favourable manifolds we then have h1,1(X) = h1,1(A) and this number

can be easily extracted from Table 7 in Appendix C; one only needs to count the number of vertices

and subtract 4 from it. For reference, Table 1 shows the distribution of Hodge numbers h1,1(X) of

the 101 simple manifolds.

Next, we need a description of the Kähler cone of X. The Kähler cone of the toric ambient

space A is determined by the structure of its polytope (for the details, see Theorem B.2 and Theorem

7



h1,1 1 2 3 4 5 6

Number 1 9 28 44 18 1

Table 1: Number of simple toric Calabi-Yau hypersurfaces X in smooth toric ambient spaces for each value

of h1,1(X).

B.3 in Appendix B). Since our Calabi-Yau hypersurface X is taken to be favourable, every closed

(1, 1)-form in X can be thought of as the pull-back of a (1, 1)-form in A. Hence, the Kähler cone of

X must contain that of A (note the reverse inclusion). It is reasonable to suppose that the Kähler

cone of X is the same as that of A. To be more precise, we first introduce a basis {Jr} of (1, 1)

forms. We will explain the precise definition of this basis shortly. A general (1, 1) form J can then

be expanded as J = trJr. We can represent the Kähler cone of A (and of X) by an m×h1,1 matrix

K = [K r̄
r], such that all tr satisfying

K r̄
rt
r ≥ 0 for r̄ = 1, · · · ,m (6)

correspond to allowed Kähler parameters. Here, the barred index r̄ runs over the facets of the

Kähler cone and m represents the number of these facets. Since the number of facets cannot be less

than the dimension of the cone, we have

m ≥ h1,1 . (7)

Our definition of simpleness, for our database of 101 Calabi-Yau threefolds, is then when (7) is

saturated, that is, m = h1,1. Appendix B explains in detail how the matrix K can be determined.

We will also need the Mori cone of effective curve classes on X; this will be crucial to check

the anomaly cancellation conditions. Mori cone is the dual cone to the Kähler cone and can thus

be determined from the latter readily.

Furthermore, we will require the Chern classes and the intersection numbers of X; these

can be determined by a restriction from A. Indeed, the Adjunction formula dictates that we have

the following relation

c(A) = c(X) ∧ c(N ) (8)

between the total Chern classes of A and X, where N is the normal bundle of X, of which we have a

good understanding because its Chern class is simply the (multi-)degree of the defining polynomial

of X in A. In practice, these degrees can be obtained from the so-called charge matrix βrρ which

follows from the linear relations between the vertices vρ=1,··· ,k, as described in Appendix B. Given

the charge matrix we simply have

c1(N ) = nrJr , where nr =
k∑
ρ=1

βrρ . (9)
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The Chern class c(A) can be again determined by the combinatorics of the toric data and is presented

in Appendix B (see (55) and (56), for the formula). Using the relation (8) we subsequently find,

apart from the vanishing c1(X), that:

c2(X) =

 ∑
1≤ρ<σ≤k

βrρβ
s
σ

 Jr ∧ Js , (10)

c3(X) =

 ∑
1≤ρ<σ<τ≤k

βrρβ
s
σβ

t
τ − (

∑
1≤ρ<σ≤k

βrρβ
s
σ) · (

∑
1≤τ≤k

βtτ )

 Jr ∧ Js ∧ Jt . (11)

Finally, the intersection numbers on A are

drstu =
∫
A
Jr ∧ Js ∧ Jt ∧ Ju ; (12)

note that we slightly abuse notation and refer to both the (1, 1)-forms in A and X as Jr with

r = 1, . . . , h1,1(X) = h1,1(A), because all our X are favourable. A number of linear relations for the

intersection numbers of A, explicitly given in Eq. (53), can be extracted from the toric data and

explicitly solved for drstu. Subsequently, the triple intersection numbers drst of X can be determined

from the intersection numbers on A by

drst =
∫
X
Jr ∧ Js ∧ Jt =

∫
A
Jr ∧ Js ∧ Jt ∧ c1(N ) = nudrstu . (13)

3 Construction of Vector Bundles

For heterotic string models, gauge bundles need to be constructed over the Calabi-Yau 3-folds. In

the preceding section, we have introduced the base Calabi-Yau manifolds as hypersurfaces in toric

four-folds. In this section, our purpose is to construct explicit vector bundles on them. In particular,

we will extend the so-called monad construction which has been applied to the CICY dataset in

Ref. [2], and arrive at analogous classification results.

3.1 Line Bundles

In our vector-bundle construction, we will make frequent usage of line-bundles; they are the basic

building blocks of our gauge bundles. We begin by studying line-bundles on the ambient A and

then consider their restriction to X.

We have seen earlier that Pic(A) ' Zk−4 ' H2(A, Z), where k is the number of vertices in the

dual polytope for A. Hence, we can denote line bundles on A by OA(a) for a ∈ Zk−4. With the

standard basis {er} of unit normal vectors in Zk−4, we can then define a basis {Jr} of (1, 1)-forms

by setting

Jr ≡ c1(OA(er)) , r = 1, · · · , k − 4 (= h1,1(A)) . (14)
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Relative to this basis, the first Chern class of an arbitrary line bundle OA(a) can be expressed as

c1(OA(a)) = arJr , (15)

where the sum over r is implicit. The restriction of OA(a) to the hypersurface X will be denoted

by OX(a). Favourability of X says that we obtain all line bundles on X in this way. Positive line

bundles on X are those whose first Chern class is in the interior of the Kähler cone. From Eq. (6)

this means a line bundle OX(a) is positive iff

K r̄
ra
r > 0 for r̄ = 1, · · · ,m . (16)

For such positive line bundles the Kodaira vanishing theorem implies that H i(X,OX(a)) = 0 for all

i > 0, that is, the zeroth cohomology is the only non-trivial one.

3.2 The Monad Construction

Having understood the properties of the Calabi-Yau manifolds X and the line bundles on them, we

are now ready to apply monad construction in order to create vector bundles over X. We can form

direct sums of such line bundles and a monad bundle is essentially the quotient of two such sums.

More precisely, a monad bundle V over X is defined by the following short exact sequence:

0→ V → B
f→ C → 0 (17)

where B =
rB⊕
i=1
OX(bi), C =

rC⊕
j=1
OX(cj) are direct sums of line bundles of ranks rB and rC , respec-

tively.

From the definition, one can readily compute all relevant Chern classes of the monad bundle V :

rk(V ) = rB − rC = N , with N = 3, 4, or 5 ,

c1(V ) =

 rB∑
i=1

bri −
rC∑
j=1

crj

 Jr ,

c2(V ) =
1
2
drst

 rC∑
j=1

csjc
t
j −

rB∑
i=1

bsi b
t
i

 νr , (18)

c3(V ) =
1
3
drst

 rB∑
i=1

bri b
s
i b
t
i −

rC∑
j=1

crjc
s
jc
t
j

 ,

where the 4-forms νr furnish the dual basis elements to the Kähler cone generatos Jr, and satisfy

the duality relation: ∫
X
Jr ∧ νs = δsr . (19)

As was discussed in Ref. [2], a number of constraints should be imposed on our monad construc-

tion. Let us summarise these constraints.
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3.2.1 Mathematical Constraints

Bundleness: It is not a priori obvious that the exact sequence (17) indeed defines a bundle

rather than a sheaf in general. However, thanks to the theorem by Fulton and Lazarsfeld [34] this

is the case provided the map f : B → C is sufficiently generic and the bundle C ⊗ B? is globally

generated. One can ensure that both conditions are met by requiring that all the line bundles in

C ⊗ B? =
⊕

i,j OX(kij) are positive, that is, the vectors kij ≡ ci − bi should all satisfy Eq. (16).

So, explicitly, we demand that

K r̄
sk
s
ij ≥ 0 ∀r̄, i, j . (20)

Non-triviality: Suppose we have a monad bundle VR defined by the short exact sequence

0→ VR → B ⊕R fR→ C ⊕R→ 0 . (21)

where R is a sum of line bundles. Comparing Eqs. (21) and (17), one can see that VR is actually

equivalent to V . To remove such equivalent monad bundles we should require that no line bundle is

contained in both B and C. This means that we can somewhat strengthen the bundleness constraint

and require, in addition to Eq. (20), that there exists at least one r̄ such that K r̄
rk
r
ij > 0.

Positivity: We will call a monad positive if both B and C are sums of positive line bundles.

From Eq. (16) this means a positive monad is characterised by

K r̄
rb
r
i > 0 ∀r̄, i ; K r̄

rc
r
j > 0 ∀r̄, j . (22)

Unlike the previous two conditions, positivity is primarily a technical requirement which simpli-

fies many calculations due to Kodaira vanishing being applicable. It also has important physical

consequences. For example, consider the long exact cohomology sequence

0 → H0(X,V ) → H0(X,B) → H0(X,C)

→ H1(X,V ) → H1(X,B) → H1(X,C)

→ H2(X,V ) → H2(X,B) → H2(X,C)

→ H3(X,V ) → H3(X,B) → H3(X,C) → 0 .

(23)

Given that H i(X,B) = H i(X,C) = 0 for all i > 0 it follows immediately that H2(X,V ) =

H3(X,V ) = 0. In particular, positive monads do not have anti-families. There is also a more

tenuous connection between positivity and stability of the bundle V . It was shown in Ref. [1] that

all positive monads on cyclic CICYs are stable and, indeed, that all non-positive monads are un-

stable. The relation is less clear on non-cyclic CICYs but in this case stability has been proven for

a large number of positive monads and it is suspected that all positive monads are stable. On the

other hand, it is also known that on non-cyclic CICYs positivity is not a necessary condition for
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stability and some explicit examples of non-positive stable monad bundles are known [40, 41]. In

the following section, we will focus on positive monads, that is monads satisfying the condition (22)

and work out a complete classification of these bundles. Subsequently, we will slightly relax this

condition and also study semi-positive monads, that is monads, which, instead of (22), satisfy:

K r̄
rb
r
i ≥ 0 ∀r̄, i ; K r̄

rc
r
j ≥ 0 ∀r̄, j (24)

3.2.2 Physical Constraints

In addition to the mathematical constraints above, we should also consider physical ones.

Correct structure group: For the structure group of monad bundles to be either SU(3),

SU(4) or SU(5), we first need N = rB − rC = 3, 4 or 5. In addition, c1(V ) needs to vanish because

the structure group is special unitary. Therefore, we have that

rB∑
i=1

bri =
rB−N∑
j=1

crj ≡ Sr , ∀r = 1, · · · , h1,1(X). (25)

Anomaly cancellation: To ensure that 4-dimensional N = 1 gauge theory is anomaly-free

upon compactification, we use the standard Green-Schwarz cancellation method. We can further

allow the existence of a bulk 5-brane which wraps a holomorphic curve C, such that its class W = [C]

represents a true complex curve. Hence W should be effective, that is, it should be an element of the

Mori cone of X. If we take, for simplicity, a trivial hidden bundle, the 5-brane class then becomes

W = c2(X)− c2(V )

=

c2r(X)− 1
2
drst

 rC∑
j=1

csjc
t
j −

rB∑
i=1

bsi b
t
i

 νr (26)

≡ wr({bi}, {cj})νr .

Note, that the five-brane class W is determined by the coefficients wr which are functions of the

integers bri and crj . Hence, for each monad we can compute this five-brane class explicitly and, since

we have determined the Mori cone for our base manifolds as discussed earlier, we can check if W

is indeed effective. For favourable CICYs the Mori cone is the positive quadrant 2 and this check

amounts to verifying that all wr ≥ 0. Here, the situation is somewhat more complicated since the

Mori cone of our toric Calabi-Yau manifolds is not necessarily the positive quadrant in our chosen

basis νr of four-forms. We will now explain how to deal with this technical complication.

2To be precise, the terminology positive “quadrant” is only valid in dimension 2 but we adhere to this without ambiguity.
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3.3 Mori Cones and Basis Change in H2(X,Z)

For a simple space, by definition, the Kähler cone only has h1,1 facets and hence, it also has exactly

h1,1 generators which we denote by J̃r. So the generators J̃r can be set as the standard basis elements

of the h1,1-dimensional vector space by an appropriate linear transformation. In other words, upon

the linear transformation, the Kähler cone fits into the positive quadrant. This is a crucial step for

the finiteness arguments in the next section.

With our new basis elements, an arbitrary closed (1, 1)-form can be re-expressed as

asJs = asδtsJt = as(K−1)trK
r
sJt = ãrJ̃r , (27)

where ãr = Kr
sa
s and J̃r = Jt(K−1)tr. Note that we no longer distinguish barred indices from

unbarred ones and use the unbarred for both upper and lower indices of K since the Kähler cone

matrices are square for simple spaces.

Let ν̃r be the dual basis elements of J̃r such that∫
X
J̃r ∧ ν̃s = δsr (28)

and let us rewrite the 5-brane class in terms of the new basis:

W = wrν
r = w̃rν̃

r. (29)

It is then straightforward to see that the condition for anomaly cancellation gets translated as

follows:

The 5-brane class W is effective if and only if w̃r = (K−1)srws ≥ 0 for all r. (30)

Here, the matrix K which describes the Kähler cone of X has been introduced in Section 2.2 and

the ws are computed from Eq. (26).

4 Classification of Positive Monads

We have now laid the groundwork necessary to address the main purpose of this paper, namely,

to initiate the systematic study of monad bundles with structure group SU(N), N = 3, 4, 5 over

Calabi-Yau threefold hypersurfaces in four complex dimensional toric ambient varieties. To begin

with, we have first restricted to the 124 smooth ambient spaces which all turn out to be favourable,

and thence further to the 101 simple spaces where the number of Kähler cone generators equals to

the dimension of the cone. On these spaces, we can very easily define monads, especially positive

monads where the entries which determine the sums of line bundles B and C in (17) are all strictly

positive. Some of the reasons for focusing on this data set of positive monads initially have already

been explained: technical advantages in computing bundle cohomology due to Kodaira vanishing,
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the guaranteed absence of anti-families and the likely stability of positive monad bundles. In this

section, we will prove another attractive property which has already been observed in the context of

CICYs: Subject to the constraints explained in the previous section positive monad bundles form a

finite set. This opens up the possibility of a complete classification which we will carry out explicitly.

4.1 Finiteness of the Classification Programme

One obvious question to ask before we start the actual search for positive monads is whether there

are finitely many solutions given the constraints described in the previous section. To answer

this question, we begin by re-stating the problem in a more formal way. We translate the list of

constraints in the previous section to a set of explicit Diophantine (in)equalities, in complete analogy

to the CICY case in [2]. For any simple Calabi-Yau hypersurface X defined in a nonsingular

toric 4-fold, and for any N = 3, 4, 5, we wish to find all sets of integers b̃ri and c̃rj , where r =

1, · · · , h1,1(X), i = 1, · · · , rB = rC +N and j = 1, · · · , rC , satisfying the following constraints:

1. b̃ri ≥ 1, c̃rj ≥ 1 , ∀ i, j, r ;

2. k̃rij ≥ 0 ∀ i, j, r where k̃rij = c̃rj − b̃ri ;

3. ∀ i, j, ∃ r such that k̃rij > 0 ;

4.
rB∑
i=1

b̃ri =
rC∑
j=1

c̃rj = S̃r , ∀ r ; (31)

5. d̃rst

 rC∑
j=1

c̃sj c̃
t
j −

rB∑
i=1

b̃si b̃
t
i

 ≤ 2c̃2r(X) , ∀ r .

Here, tilded quantities are obtained by transforming lower r, s, t-type indices of their un-tilded

counterparts with (K−1)sr and upper indices with Ks
r, so, for example

d̃rst = dr′s′t′(K−1)r
′
r(K

−1)s
′
s(K

−1)t
′
t ,

b̃ri = Kr
r′b

r′
i .

Here, K is the matrix which describes the Kähler cone of the manifold and was introduced in

Section 2.2. A few lines of algebra (see Eq. (5.7) in Ref. [2]) then lead us to the following inequality

on b̃rmax = maxi{b̃ri }:
2
N
c̃2r(X) ≥Mrsb̃

s
max, (32)

where Mrs =
h1,1∑
t=1

d̃rst. It turns out that these inequalities provide upper bounds of b̃rmax for every

simple Calabi-Yau 3-fold on which we are working. Moreover, since each b̃rmax is a strictly positive

integer, not all of the 101 simple spaces admit solutions to b̃rmax. In fact, the inequalities above
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immediately eliminate all but 18 spaces, which include the 5 products of projective spaces studied

in Ref. [2].

In order to proceed further, having bounded the maximal entries of the bundle B, we now find

an upper bound of rB, the rank of B. This once again proceeds along the same lines as Section 5

of Ref. [2]. There turn out to be three independent bounds, and for each Calabi-Yau, we can check

which one leads to the strongest constraint, which is then used in any further calculations. These

independent constraints are inequalities (5.13), (5.14) and (5.16) of Ref. [2]:

1. Given the calculated values of b̃rmax, the following inequality gives us an upper bound:

rB ≤ N

1 +
h1,1∑
r=1

b̃rmax

 . (33)

2. We first find non-negative integers ur, satisfying

Mrsu
s ≤ 2c̃2r(X). (34)

Note that the inequality above has essentially the same form as the one (32) for b̃rmax and,

therefore, the solution space for the ur is finite. The non-negative integers ur are related to

rB by

rB = N +
h1,1∑
r=1

ur . (35)

Given the finite solution set for ur, we take the maximum of the corresponding rB values.

3. As in method 2, we first solve the inequality below for non-negative integers ur:

h1,1∑
s=1

2
h1,1∑
t=1

d̃rstb̃
t
max + d̃rss

us ≤ 2c̃2r(X) +Nd̃rstb̃
s
maxb̃

t
max. (36)

Then we calculate all possible values of rB from Eq. (35) and find their maximum.

Since rB and b̃rmax are now both bounded, we conclude that, as in the CICY cases, the number

of positive monads over the 101 simple Calabi-Yau hypersurfaces in smooth toric 4-folds is finite,

and in fact exists only on 18 of them.

4.2 The Classification Results

Given that our problem is bounded we can now explicitly classify all solutions by a computer scan.

For each of the 18 simple Calabi-Yaus with solutions to the inequalitiy for b̃rmax, we scan over

all allowed values of N, rB and over all values of the sum vector S̃r. This last vector, is again

constrained, and is subject to inequality (5.7) of [2]:

2c̃2r(X) ≥ N

rB
MrsS̃

s. (37)
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For each fixed set of these quantities we generate all multi-partitions of entries b̃ri and c̃rj modulo

permutation symmetry, since the order of summands in a direct sum of line bundles is clearly

irrelevant.

Upon performing this scan, we find that positive monads only exist over 11 simple Calabi-Yaus

out of the 18. There are 2190 positive monads in total. The majority of these bundles, namely 1853

of them, arises on the five hypersurfaces in products of projective spaces and is, therefore, already

contained in the classification carried out in Ref. [2]. The remaining 337 bundles are new. The

number of bundles as a function of ind(V ), the net number of generations, is shown in part (a) of

Fig. 1 and Table 2 lists the number of solutions for each of the 11 base manifolds. Two explicit

examples are

1 : 0→ V +
1 → OX1(1, 1)⊕7 f1→ OX1(5, 1)⊕OX1(1, 3)⊕2 → 0 ,

2 : 0→ V +
2 → OX2(1, 1)⊕15 f2→ OX2(1, 2)⊕5 ⊕OX2(2, 1)⊕5 → 0 ,

where the first one is an SU(4)-bundle on the space number 6 and the second one an SU(5)-bundle

on 7P (the numbering of the spaces is according to Table 7 where the toric data for these base spaces

can be found). Note that h1,1 = 2 for both of the spaces.

Space No. 1P 2P 3 4 6 7P 12 17 22 26P 40P

SU(3) 20 611 4 9 153 38 74 34 9 304 251

SU(4) 14 308 0 0 35 27 0 0 0 135 70

SU(5) 9 56 0 0 19 10 0 0 0 0 0

Table 2: Number of positive monad bundles over the 11 CY 3-folds for which positive monads exist. The

numbers labelling the space are according to Table 7 where the toric data of the base manifolds can be found.

The subscript P indicates that the space is a hypersurface in a product of projective spaces.

We would now like to impose a basic three-familiy constraint on our models. We require that

the number of families is a multiple of three, that is, ind(V ) = 3k for k ∈ Z6=0, and that the Euler

number of X is divisible by the potential group order k, that is, k | χ(X). These two conditions

are clearly necessary (although not sufficient) for the existence of a free quotient X/G with three

generations “downstairs”, where |G| = k. The number of models satisfying these condition is given,

as a function of ind(V ), in part (b) of Fig. 1 and their total number is given in Table 3.

For the above constraints, we have used that possible orders, k, of discrete symmetry groups

must divide the Euler number of the manifold. There exist a number of more refined topological

invariants, given in Ref. [11], which can be used to further constrain the group order. These are

the Euler characteristics χ(N k ⊗ TX l) and Hirzebruch signatures σ(N k ⊗ TX l) of the “twisted”

bundles N k ⊗ TX l (where N is the normal bundle of X) which must be divisible by the group
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No Constraints ind(V ) = 3k, k | χ(X)

SU(3) 1507 (283) 204 (59)

SU(4) 589 (35) 57 (5)

SU(5) 94 (19) 4 (0)

Tot. 2190 (337) 265 (64)

Table 3: Total number of positive monads on the 11 base manifolds (left column) and those which satisfy

a basic three-generation constraint (right column). The numbers in the parenthesis only count new monads

which have not been already found in Ref. [2].

(a) (b)

Figure 1: The number of positive monads as a function of ind(V ). Fig. (a) contains all models, Fig. (b)

only those which satisfy the three-familiy constraint ind(V ) = 3k, k | χ(X). The three colours blue, red, and

green correspond to SU(3), SU(4) and SU(5) models, respectively.

order |G| for all integers k, l ≥ 0. It was shown in Ref. [11], that is it sufficient to consider the cases

(k, l) = (0, 1), (1, 0), (2, 0), (3, 0) for the Euler characteristic and (k, l) = (1, 1) for the Hirzebruch

signature without loosing information. We have computed these indices for all the 11 spaces with

positive monad bundles, using the equations provided in Ref. [11]. Their common divisors in any

one case provides us with a list, S(X), which must include the orders of all freely-acting symmetry

groups for X. Requiring that k = ind(V )/3 is an element of this list dramatically reduces the

number of solutions and we remain with 21 positive monads over 3 Calabi-Yau spaces, all of which

are hypersurfaces in products of projective spaces. These 21 models have already been found in

Ref. [2] and will, therefore, not be discussed further in this paper. We conclude that there are no

physically relevant positive monad bundles on the 101 simple Calabi-Yau hypersurfaces in smooth

toric varieties over and above what has been found for CICYs.
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5 Partial Search: Semi-Positive Monads

As was mentioned above, unfortunately, the classification programme of positive monads has not

given us any new three-generation string models. So, a natural approach to take, in order to

find more realistic string models, is to look for bundles under somewhat weaker constraints. The

most obvious relaxation is to accept zeros for b̃ri and c̃rj , which means that we are searching for

semi-positive monads. It is straightforward to see that the classification problem, based on the

constraints in Section 3.2 but with the positivity condition (22) replaced by (24) is no longer closed,

in the sense that infinite sets of sums of line bundles B and C compatible with all constraints

can be found. The set of associated inequivalent bundles V might still be finite, due to more

subtle isomorphisms between monads, but we will not address this somewhat involved problem

here. Instead, we “artificially” impose the bound S̃r ≤ 2 for all r which leads to a finite search

problem for semi-positive monads.

As before, we impose the following physical constraints on the bundle solutions:

1. ind(V ) = 3k , k 6= 0 ,

2. k | χ(X) , (38)

3. k belongs to the set, S(X), of possible group orders .

in order to filter out candidates for realistic three-generation models. The statistics of semi-positive

monads on the 101 simple Calabi-Yau manifolds is summarised in Figure 2 and Table 4.

No Constraints ind(V ) = 3k, k | χ(X) Constraints Eq. (38)

SU(3) 35206 1902 195

SU(4) 8066 579 72

SU(5) 1049 109 13

Tot. 44321 2590 280

Table 4: The cumulative number of semi-positive monads on the 101 simple Calabi-Yau manifolds with

S̃r ≤ 2. The left column gives the total number of models, the middle column the models satisfying the

“mild” three-generation constraint ind(V ) = 3k, k | χ(X) and the right column those which satisfy the

“strong” three-family constraint, Eq. (38).

While positive monads existed on only 11 of the 101 base manifolds, semi-positive monads can

be found on all spaces. Their number is considerably larger than that of positive monads, as can be
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(a) (b)

Figure 2: The number of semi-positive monads as a function of ind(V ). Fig. (a) contains all models, Fig. (b)

only those which satisfy the “strong” three-familiy constraint, Eq. (38). The three colours blue, red, and

green correspond to SU(3), SU(4) and SU(5) models, respectively.

seen by comparing Tables 4 with 3. Recall, that in the case of positive monads, there was no model

which satisfied the “strong” three-generation constraint (38). In contrast, we now have 195 SU(3)

models, 72 SU(4) models and 13 SU(5) models consistent with this constraint, as Table 4 shows.

These models arise on 11 different base manifolds, distributed as shown in Table 5.

Space No. 40P 43 56 61 63 69 71 78 105 106 113

SU(3) 10 3 2 13 7 32 15 39 6 6 62

SU(4) 4 1 0 5 2 13 3 19 2 2 21

SU(5) 1 0 0 1 0 2 0 5 0 0 4

Table 5: Number of semi-positive monad solutions with S̃r ≤ 2, which satisfy the “strong” three-family

constraint (38). The subscript P stands for a product of projective spaces.

We remark that the bound on S̃r was set to 2 merely for practical reasons, in order to keep

cpu times in the computer search low. There is no implication that physical models with S̃r > 2

do not exist. In fact, it can be explicitly seen, at least for some base spaces, that this is not the

case. For example, as can be seen from Table 5, we have found no three-generation bundles with

S̃r ≤ 2 on the space 73, while, for S̃r ≤ 3 there turn out to exist 49, 21 and 6 bundles with structure

groups SU(3), SU(4) and SU(5), respectively. Hence, our results do not represent an exhaustive

classification of semi-positive three-family models. However, they show that a significant number of

promising models do indeed exist.

Now, let us take a glance at some example solutions. We will consider SU(4) semi-positive

monads over the space 71 (the seventh column in Table 5), whose set of possible group orders,

S(X), turns out to be {2, 4, 8, 16}. For this example, h1,1(A) = h1,1(X) = 4, and therefore, every
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line bundle is described by a 4-tuple of integers. As can be seen in Table 5, there are three SU(4)

semi-positive monads over X defined by the exact sequence (17):

1 : 0→ V1 → OX(1, 0, 0, 0)⊕OX(0, 1, 0, 0)⊕2 ⊕OX(0, 0, 0, 1)⊕2 f1→ OX(1, 2, 0, 2)→ 0 ,

2 : 0→ V2 → OX(1, 0, 0, 0)⊕2 ⊕OX(0, 0, 1, 0)⊕2 ⊕O(0, 0, 0, 1)⊕2 f2→ OX(1, 0, 1, 1)⊕2 → 0 ,

3 : 0→ V3 → OX(1, 0, 0, 0)⊕2 ⊕OX(0, 1, 0, 0)⊕2 ⊕O(0, 0, 0, 1)⊕2 f3→ OX(1, 1, 0, 1)⊕2 → 0 .

Finally, as the number of SU(5) bundles are reasonably small, we list them exhaustively in Table 6.

6 Conclusions and Prospects

In this paper, we have constructed heterotic E8 × E8 string models, based on toric Calabi-Yau

manifolds and non-trivial vector bundles on them. Specifically, we have restricted our search to a

simple class of toric Calabi-Yau manifolds, namely the 101 manifolds which arise as hypersurfaces

in smooth toric four-folds and which have simplicial Kähler cones. Monad bundles with structure

group SU(N) (where N = 3, 4, 5) have been built over each of these 101 spaces, and a stringent

3-generation constraint (see Eq. (38)) has been imposed on the resulting models, in order to filter

out phenomenologically promising cases.

We have completely classified all positive monads, consistent with heterotic anomaly cancellation,

on our 101 base spaces, resulting in a total of 2190 bundles concentrated on just 11 manifolds. From

those, only 21 (19 of rank 3, 1 of rank 4, and 1 of rank 5) pass the three-family test, but they all

correspond to base spaces which are hypersurfaces in products of projective spaces and have, hence,

already been found in the classification of positive monads on CICYs carried out in Ref. [2]. We

have then moved on to a partial search of semi-positive monads, which led to a substantially larger

list of about 44000 models. Among these, 280 (195 of rank 3, 72 of rank 4, and 13 of rank 5) pass

the three-family test. The 13 semi-positive monads of rank 5 have been listed in Table 6; each of

them leads to an SU(5) grand unified theory with three generations. These models, particularly the

ones with rank 4 and 5, provide a starting point for the construction of realistic heterotic models

on toric Calabi-Yau manifolds with monad bundles.

It is encouraging that even our preliminary scan of the semi-positive bundles has led to a sig-

nificant number of promising models. It is likely that a more systematic scan, possibly allowing

for slightly negative values of the integers bri and crj which specify the monad bundle, will lead to

thousands of such models. Such a systematic scan as well as a more detailed analysis of the resulting

models will be the subject of future work.
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 0
1
0
1
1
1

⊕2

-21

OX

 0
1
0
0
0
1

⊕
 0

1
0
0
0
0

⊕
 0

0
1
0
0
0

⊕2

⊕

 0
0
0
0
1
0

⊕2

⊕

 0
0
0
0
0
1

 OX

 0
1
1
0
1
1

⊕2

-21

OX

 0
1
0
0
1
0

⊕
 0

1
0
0
0
0

⊕
 0

0
1
0
0
0

⊕2

⊕

 0
0
0
0
1
0

⊕
 0

0
0
0
0
1

⊕2

OX

 0
1
1
0
1
1

⊕2

-21

Group Order

2, 4, 8, 16

2, 4, 8, 16

2, 4, 8, 16

2, 4, 8, 16

7

Table 6: Exhaustive list of SU(5) semi-positive monads with S̃r ≤ 2, satisfying the three-generation con-

straint (38); we have marked the simple toric Calabi-Yau spaces in the left-most column, as well as their

respective possibilities for orders of freely acting symmetry groups in the right-most.
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A Construction of the Manifolds in Toric Geometry

The three sub–sections in this appendix will constitute a step-wise summary of the construction of

our three-folds. First, we introduce the basic tool kit which will be essential in toric description of

varieties, namely, lattices, cones and fans. Second, we outline the construction of the toric variety,

and finally, we define the Calabi-Yau manifold as a hypersurface in this ambient toric variety. For

a more complete review, the reader can consult [27–30,35–37].

A.1 Basic Definitions: Lattices, Cones and Fans

Let us begin by discussing the spaces on which the toric combinatorial data is defined. We first

introduce a rank n integer lattice N and define its dual lattice M via the natural inner-product

〈 · , · 〉 : M × N → Z. Their extensions over R are denoted by NR and MR, and the same bracket

symbol will be used for the extended inner-product. We can think of N and M (respectively NR

and MR) as being isomorphic to Zn (respectively Rn), and the inner product can be taken as simply

the vector dot-product. Note that neither the lattices nor their real extensions are directly where

the toric variety itself lives; they only furnish as auxiliary spaces. The rank of the lattices, however,

is equal to the complex dimension of the toric variety.

Having introduced these objects, we can now define the basic tool-kit. A set σ ⊂ NR is a strongly

convex rational polyhedral cone if

σ =

{
k∑
i=1

aivi | ai ∈ R≥0

}
(39)

for a finite set of vectors v1, · · · ,vk ∈ N and σ ∩ (−σ) = {0}. For simplicity, σ is often called a

cone. Every cone σ ⊂ NR has its dual cone σ̌ ⊂MR defined as

σ̌ = {m ∈MR | 〈m,v〉 ≥ 0 ∀v ∈ σ} . (40)

A set τ ⊂ σ is called a face of the cone σ if it is spanned over R≥0 by a subset of generators of σ

and lies on the boundary of σ. A fan is then defined as a collection Σ of cones in NR such that each

22



face of a cone in Σ is also a cone in Σ and the intersection of two cones in Σ is a face of each. The

collection of d-dimensional cones in Σ is denoted by Σ(d) for 0 ≤ d ≤ n. We also denote the union

of all the cones in Σ by |Σ| and call it the support of Σ.

Figure 3: The fan for P2 (left) and the 2-dimensional dual cones (right).

As an example, Figure 3 depicts a fan in NR = R2, shown at the left. This fan consists of

one 0-dimensional cone, namely, the origin (0, 0), three 1-dimensional cones, namely the three rays

generated respectively by v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1), as well as three 2-dimensional

cones (shaded), generated respectively by the neighbouring pairs: {v1,v2}, {v2,v3}, and {v3,v1}.
The three 2-dimensional dual cones are depicted on the right.

A.2 Construction of Toric Varieties

There are several equivalent ways how we construct toric varieties from their toric data, that is

from their associated fans. Amongst them is the algebro-geometric construction, where each affine

patch of the variety is explicitly realised as the maximal spectrum of some ring. One of the basic

ideas underlying this local construction is that there is an one-to-one correspondence between the

cones σ ∈ Σ and the orbits of the torus action T on the toric variety A. It turns out that the

correspondence is dimension-reversing. To be precise,

dim(σ) + dim(orb(σ)) = n. (41)

In particular, the top-dimensional cones correspond to the fixed points of the T -action and the

1-dimensional cones to the T -invariant divisors. We denote such divisors by Dρ where ρ ∈ Σ(1) are

the edges in the fan.
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In this paper, however, we are more interested in the global construction. Let us first recall the

ordinary construction of Pn. One considers Pn as the quotient of Cn+1 − {0} by the multiplicative

group C∗. Each point in Pn is labelled by its homogeneous coordinates (x1, · · · , xn+1), which we

identify with λ · (x1, · · · , xn+1) for all λ ∈ C∗. This can be easily generalised to the case of arbitrary

toric varieties.

With each edge ρ ∈ Σ(1) of the fan Σ, we associate a homogeneous coordinate xρ. So there are

k homogeneous coordinates (x1, · · · , xk) on Ck, where k = |Σ(1)|. Just as for ordinary projective

spaces, the next task is to identify certain measure zero subsets of Ck which should be removed.

Let S be a subset of Σ(1) that does not span a cone of Σ and let Z(S) ⊂ Ck be the linear subspace

defined by setting xρ = 0 ∀ ρ ∈ S. Now let Z(Σ) ⊂ Ck be the union of all such subspaces V (S).

Then the toric variety is constructed as a quotient of Cn −Z(Σ) by some group G. We refer to [35]

for a detailed description of how G is constructed. Here we rather content ourselves with a partial

answer which is valid for the smooth toric varieties which are the primary interest of the present

paper.

For such cases, G is isomorphic to (C∗)k−n and the G quotient is implemented by the following

equivalence relations

(x1, · · · , xk) ∼ (λβ
r
1

r x1, · · · , λ
βrk
r xk) , (42)

with λr ∈ C∗. The coefficients βrρ are defined by the linear relations
k∑
ρ=1

βrρvρ = 0 which amount to

n independent conditions. Hence, βrρ form an (k−n)×k matrix which is often referred to as a charge

matrix [35]. Choosing all its entries to be integers and requiring that g.c.d.(βr
1, · · · , βr

k) = 1 it

is uniquely defined (up to lattice isomorphisms). It is easy to see that G preserves Ck − Z(Σ) and

hence, we can take the quotient

A = (Ck − Z(Σ))/G , (43)

to construct the toric variety.

A.3 Construction of Calabi-Yau Hypersurfaces

In this sub–section, we briefly describe how to construct our desired Calabi-Yau three–fold X as a

hypersurface of a 4-dimensional ambient toric variety A.

Not every toric n-fold contains a Calabi-Yau hypersurface. To formulate what exactly the con-

dition on the fan is, we first need to introduce an n-dimensional polytope ∆ ⊂MR. By a polytope,

we mean that ∆ is the convex hull of a certain set, which one can take to be the set of vertices

of ∆. This is called the vertex representation, for the obvious reason. As an equivalent definition,

a polytope can also be defined as the intersection of a finite number of half-spaces, which can be

chosen as the collection of facet-defining half-spaces. We only consider a polytopes containing the
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origin and hence, can subsequently define its dual polytope ∆◦ ⊂ NR as

∆◦ = {v ∈ NR | 〈m,v〉 ≥ −1 ∀m ∈ ∆} . (44)

The polytope ∆ is called reflexive if all the vertices of ∆ as well as ∆◦ are lattice points. Note that

the dual polytope ∆◦ ⊂ NR also contains the origin as its interior point. We can then define a fan

Σ in NR which consists of the cones over the faces of ∆◦ with their apexes at the origin. This fan Σ

is called the normal fan of the polytope ∆, and we have the following statement: the normal fan

Σ in NR of a reflexive polytope ∆ ⊂ MR defines a toric n-fold as well as a Calabi-Yau (n-1)-fold

embedded therein.

More precisely, the normal fan tells us about the defining equation of the Calabi-Yau hypersurface

as follows. To each lattice point m of a reflexive polytope ∆ ⊂MR we assign a monomial

x[m] =
k∏
ρ=1

x
〈m,vρ〉+1
ρ , (45)

where xρ=1,··· ,k are the homogeneous coordinates of the toric variety A associated to the polytope ∆.

These homogeneous coordinates correspond to the k edge vectors vρ=1,··· ,k of the normal fan Σ of ∆.

Now, it turns out that a linear combination of all the monomials corresponding to the lattice points

m ∈ ∆ is a homogenous polynomial and hence, its zero locus can define a hypersurface X to A.

What is more, the hypersurface X indeed satisfies the Calabi-Yau condition. It is straightforward

to see that this defining polynomial is a section of the line bundle OA(
k∑
ρ=1

Dρ), the anticanonical

bundle of the ambient space A. In other words, the normal bundle of X is

N = OA(
k∑
ρ=1

Dρ) . (46)

Figure 4 is a 2-dimensional example depicting a reflexive polytope ∆ ⊂MR and the dual polytope

∆◦ ⊂ NR. Note that the normal fan Σ of ∆, which is the collection of the cones over the faces of

∆◦, reproduces the fan for P2 in Figure 3. Note also that the polytope ∆ ⊂MR in the figure gives

us all the monomials of degree 3 and hence, defines the toric variety P2 as well as the family of cubic

Calabi-Yau hypersurfaces. Of course, the lattice of our main concern is of rank 4, rather than of

rank 2 as in this simple example. It turns out that there are 473, 800, 776 4-dimensional reflexive

polytopes [21] and hence, that many Calabi-Yau 3-folds arise this way.

B Relevant Properties of the Manifolds

Various properties of the ambient toric varieties and their associated Calabi-Yau hypersurfaces can

be easily read off from the toric data. Here, we summarise the ones relevant to our string models.
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Figure 4: A polytope ∆ ⊂MR(left) and its dual polytope ∆◦ ⊂ NR(right).

Given a toric variety constructed by its fan, a natural question to ask is how we describe line

bundles thereon; this will be key to our discussion of monads. We have a simple answer to this

question for a smooth, compact, toric variety. The Picard group Pic(A), which parametrises the

space of line-bundles on A, is determined by the following short exact sequence

0→M
α→

k⊕
ρ=1

ZDρ
β→ Pic(A)→ 0 (47)

where k = |Σ(1)| is the number of edges in Σ and n = dimCA, we recall, is the complex dimension

of A. The first map α maps m to
k∑
ρ=1
〈m,vρ〉Dρ and therefore,

Ker(β) = Im(α) = {(〈m,v1〉 , · · · , 〈m,vk〉) | m ∈M} .

This expression for Ker(β) together with the exactness of the sequence (47) fixes the linear map β

up to lattice isomorphisms. In fact, the (k − n)× k matrix representing the β-map, is precisely the

charge matrix
[
βrρ
]

defined in A.2. Since the dual lattice M is isomorphic to Zn, the short exact

sequence (47) implies

Pic(A) ' Zk−n . (48)

So every line bundle is determined by a (k − n)-tuple of integers, and we can denote it by OA(a)

for a ∈ Zk−n. A basis of (1, 1)-forms for H2(A,Z) can then be defined by setting Jr ≡ c1(OA(er))

for r = 1, · · · , k − n, where er are the standard unit normal vectors in Zk−n. With this definition

the first Chern class of line-bundles can be written as

c1(OA(a)) = arJr , (49)

where the sum over the index r is implicit.
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The non-trivial Hodge numbers of the smooth Calabi-Yau 3-fold X are given by the formulas [33]

h1,1(X) = l(∆◦)− 5−
∑

codimΘ̌=1

l?(Θ̌) +
∑

codimΘ̌=2

l?(Θ̌)l?(Θ) , (50)

h2,1(X) = l(∆)− 5−
∑

codimΘ=1

l?(Θ) +
∑

codimΘ=2

l?(Θ)l?(Θ̌) . (51)

Here, l(Θ) denotes the number of lattice points in Θ, and l?(Θ) the number of lattice points in the

interior of Θ. The summations run over the faces Θ and Θ̌ of the polytopes ∆ and ∆◦, respectively.

As was mentioned in the main text of this paper, it turns out that all the pairs of A and X within

our database satisfy dim(Pic(A)) = h1,1(X) = h1,1(A). For simplicity, we will denote this number

by h1,1.

Another important task is to compute the intersection numbers of both the ambient space A
and the Calabi-Yau hypersurface X. We first work out the intersection numbers of A

drstu =
∫
A
Jr ∧ Js ∧ Jt ∧ Ju , (52)

where r, s, t, u = 1, · · · , h1,1. The basic idea is to take four edge vectors of the fan and check whether

they span a four-cone or not. A linear equation on drstu arises from the choice of the four distinct

edges ρ1, ρ2, ρ3, ρ4 as follows:

drstuβ
r
ρ1β

s
ρ2β

t
ρ3β

u
ρ4 =

{
1 if {vρ1 ,vρ2 ,vρ3 ,vρ4} spans a 4-cone ,

0 otherwise ,
(53)

where the summations over r, s, t, u are implicit. Even if a vector appears multiple times in the set

{vρ1 ,vρ2 ,vρ3 ,vρ4} Eq. (53) still holds provided the set does not span a cone. By making different

choices for the set of vectors we can obtain a set of simultaneous equations which uniquely determine

the intersection numbers drstu. It is then straightforward to calculate the intersection numbers drst
of the (favourable) Calabi-Yau hypersurface X by

drst =
∫
X
Jr ∧ Js ∧ Jt

=
∫
A
Jr ∧ Js ∧ Jt ∧ c1(N ) (54)

= nudrstu

where c1(N ) := nuJu. Note that, by abuse of notation, we denote the (1,1) forms on A and their

pull-backs to X by the same symbol Jr.

We now move on to Chern classes. The total Chern class of A is given by

c(A) =
k∏
ρ=1

[1 + c1(OA(Dρ))] (55)
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where OA(Dρ) is the line-bundle associated to the toric divisor Dρ. On the other hand, the corre-

spondence between divisors and line-bundles can be inferred from the β-map which appears in (47).

The expression (55) for the Chern class then simplifies to

c(A) =
k∏
ρ=1

[
1 + βrρJr

]
, (56)

where Jr ≡ c1(OA(er)) for r = 1, · · · , k− n. For instance, for the first two non-trivial terms in (56)

one reads off

c1(A) =
∑

1≤ρ≤k
βrρJr ,

c2(A) =
∑

1≤ρ<σ≤k
βrρβ

s
σJrJs .

On the other hand, we have the following standard short exact sequence

0→ TX → TA|X → N → 0 , (57)

which relates the tangent bundles TX of our Calabi-Yau threefold X, the restriction TA|X of the

tangent bundle TA of A to X and the normal bundle N of X in A. The above sequence implies

that the Chern classes of these three bundles are related by

c(A) = c(X) ∧ c(N ) . (58)

This relation can also be understood in terms of the adjunction formula. Combining the result with

Eqs. (46) and (56), it is straightforward to calculate c(X), and in particular, c2(X), which, in fact,

turns out to be equal to c2(A).

In the rest of this section, we study Kähler and Mori cones. As a preparation, we cite the

following theorem

THEOREM B.1 The toric variety of a fan Σ in NR is projective if and only if Σ is the normal fan

of an n-dimensional lattice polytope ∆ ⊂MR.

which assures us that A always admits Kähler structures.

In order to determine the Kähler cone of A, we first associate to each cohomology class a =
k∑
ρ=1

aρ [Dρ] ∈ H1,1(A,R), a support function ψ : |Σ| → R defined as follows. For every maximal

cone σ ∈ Σ, there is a unique mσ ∈MR such that

〈mσ,vρ〉 = −aρ if vρ ⊂ σ , (59)

and extending this linearly over the cone σ we can define a linear function on σ ⊂ Σ. Now, with

this as a local definition, we construct the support function ψ on the whole support |Σ|, which can
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be thought of as the union of all maximal cones of Σ. More precisely, we define the Σ-piecewise

linear function ψ : |Σ| → R so that

ψ(v) = 〈mσ,v〉 , (60)

where σ is a maximal cone containing v. Note that ψ(v) has a well-defined value even when v

is contained in more than one maximal cones, due to Eq. (59) and to the linearity over each σ.

We call ψ the support function of the class a. The cohomology class a is said to be convex if its

support function ψ is a convex function in the usual sense.3 Convex classes form a cone denoted by

cpl ⊂ H1,1(A,R). Now, the following theorem determines the Kähler cone of A:

THEOREM B.2 If A is a simplicial projective toric variety4, then cpl(Σ) ⊂ H1,1(A,R) is a strongly

convex polyhedral cone with nonempty interior in H1,1(A,R). Furthermore, the interior of this cone

is precisely the Kähler cone of A.

Support functions ψ corresponding to Kähler classes are then strictly convex. Thus, the theorem

below provides the practical prescription for the Kähler cone:

THEOREM B.3 If A is a simplicial projective toric variety, then the support function ψ of
k∑
ρ=1

aρ[Dρ]

is strictly convex if and only if for every primitive collection5 P = {v1, ...,vl}, we have

ψ(v1 + ...+ vl) > ψ(v1) + ...+ ψ(vl) . (61)

For each primitive collection P, Eq. (61) gives a linear homogeneous inequality for aρ, which then

leads to the corresponding inequality for the Kähler moduli tr. Here, we make use of the map

β, which relates aρ linearly to tr. Now we scan over all the primitive collections of the fan Σ and

choose a maximal set of the independent inequalities. This set forms a system of linear homogeneous

inequalities on tr which can be written as

K r̄
rt
r ≥ 0 for r̄ = 1, · · · ,m . (62)

with an m× h1,1 matrix K = [K r̄
r], where m is the cardinality of the maximal set.

For a favourable Calabi-Yau hypersurface X, every closed (1, 1)-form in X can be thought of as

the pull-back of a (1, 1)-form in A. Hence, the Kähler cone of X must contain that of A (note the

reverse inclusion). Although we do not have a complete understanding of the Kähler cone of X, it

is plausible to conjecture that for smooth toric ambient spaces the Kähler cone of X is equal to that

3A real-valued function f defined on a convex subset C ⊂ Rn is called convex if, for any two points x and y in its

domain C and any t in [0, 1], we have f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).
4A toric variety is simplicial if each cone in its fan is simplicial, i.e., if the generators of each cone are linearly independent.
5A primitive collection of a fan Σ is a subset P ⊂ Σ(1) s.t. P itself is not the set of generators of a cone in Σ while

every proper subset of P is.
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of A. We will work under this assumption when we need the precise details of the Kähler cone of

X.

The set of effective curves in a Kähler manifold generates a cone; these live in H2(A,Z) and

form a cone which is dual to the Kähler cone. This cone is called the Mori cone of A. Of course,

once the Kähler cone is known, the Mori cone can be obtained as its dual. On the other hand, the

toric data provides an alternative way of calculating the Mori cone [38], and this can serve us as a

consistency check for our Kähler cone calculations. Indeed, we have confirmed that each of the edge

vectors of the Mori cone corresponds to a facet of the Kähler cone.

Now, the Mori cone of X should be contained in that of A due to the duality of Mori and Kähler

cones. We assume that the two Mori cones are the same for our collection of smooth spaces.

C The Database and an Illustrative Example

Table 7 lists the complete database of the 124 smooth toric 4-folds which contain the Calabi-Yau 3-

folds; the two hodge numbers of the Calabi-Yaus are denoted below the space number as (h1,1, h2,1).

The toric data is expressed in terms of the 4-dimensional reflexive polytopes ∆◦ ⊂ NR. For reference,

we separately tabulate in Table 8 those ambient spaces which are products of del Pezzo surfaces

and projective spaces.

As outlined previously, the polytope information is sufficient in order to determine all the relevant

differential-geometric properties of the ambient and Calabi-Yau spaces. Let us illustrate this by an

explicit example. The two simplest spaces in Table 7, with labels 1P and 2 correspond respectively

to the quintic hypersurface in P4 and the bidegree-(3,3) hypersurface in P2 × P2. Hence, we will

work with the next simplest and non-trivial space with label 3.

Fan: The toric data in Table 7 shows the lattice vertices of ∆◦ ⊂ NR. Because the normal fan Σ

in NR consists of the cones over the faces of ∆◦, the lattice vertices of ∆◦ correspond precisely to

the edge vectors of Σ. Hence, the set of one-cones can be directly read off from Table 7:

v1 = e1; v2 = e2; v3 = e3; v4 = e4; v5 = (−1, 0, 0, 0); v6 = ( 1,−1,−1,−1) .

Here, e1, · · · , e4 are the standard unit vectors. From these, one can also compute the higher dimen-

sional cones, and this process has already been automated in the computer programme PALP [39].

Figure 5 shows the PALP input and output screen for our example, and it lists all the cones in the

normal fan Σ.

PALP also has the routine for calculating the hodge numbers of X and the result is, as shown

in Figure 5,

h1,1 = 2; h1,2 = 90 .

We could as well work out these numbers by hands, using Eqs. (50) and (51).
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Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 6

Type the 24 coordinates as dim=4 lines with #pts=6 colums:

1 0 0 0 -1 1

0 1 0 0 0 -1

0 0 1 0 0 -1

0 0 0 1 0 -1

M:7 6 N:111 8 H:90,2 [176]

Incidences as binary numbers [F-vector=(6 14 16 8)]:

v[d][i]: sum_j Incidence(i’th dim-d-face, j-th vertex) x 2^j

v[0]: 100000 001000 010000 000010 000100 000001

v[1]: 101000 110000 011000 100010 001010 010010 100100 001100 010100 100001 001001 000011 000101 000110

v[2]: 111000 101010 110010 011010 101100 110100 011100 101001 100011 001011 100101 001101 100110 010110 000111 001110

v[3]: 111010 111100 101011 101101 110110 100111 011110 001111

Figure 5: The in/out-put screen in PALP [39]. The first input 4 and 6 denote the lattice rank and the number

of the vertices in ∆◦, respectively, and the second input is the list of those vertices, ρ-th column being vρ

for ρ = 1, · · · , 6. The output includes two Hodge numbers and Euler character of X, which are denoted by

H in the middle, as well as the incidence information of the normal fan Σ. The latter is expressed in binary

notation: for instance, the first entry in the last row, 111010, represents a four-cone generated by the four

edge vectors v2,v4,v5 and v6.

Charge Matrix: The six edge vectors v1, · · · ,v6 have two linear relations

v1 + v5 = 0 ,

−v1 + v2 + v3 + v4 + v6 = 0 ,

and thus, we have the following charge matrix:

β =

(
1 0 0 0 1 0

−1 1 1 1 0 1

)
.

So, the divisor-linebundle correspondence follows from the short exact sequence (47), which tells us

that Pic(A) ' Z2 and that the divisor D = aρDρ corresponds to the line-bundle

β(D) = β · a =

(
β1
ρa
ρ

β2
ρa
ρ

)
,

where sums over ρ are implicit.

Normal Bundle: The normal bundle N of the Calabi-Yau hypersurface is, by Eq. (46), the

line-bundle corresponding to the divisor DN = D1 + · · · + D6, which gets mapped by β to the

31



2-tuple:

β(DN ) =

(
2

3

)
.

Thus, the normal bundle is represented as

N = OA(2, 3) ,

and hence, bi-degree (2, 3) homogeneous equations define the family of our Calabi-Yau hypersurfaces

in this toric variety. For instance, the monomial corresponding to the origin 0 ∈ ∆ is, by (45),

x[0] = x1x2x3x4x5x6 ,

whose bi-degree (a, b) is obtained as

a = 1 + 0 + 0 + 0 + 1 + 0 = 2 ,

b = −1 + 1 + 1 + 1 + 0 + 1 = 3 .

Note that the degrees are added up weighted by the entries of the charge matrix β. One can check

that every lattice point in ∆ corresponds to a monomial of the same bi-degree.

Intersection Numbers: The intersection numbers drstu in A have 5 degrees of freedom, namely,

d1111, d1112, d1122, d1222 and d2222. Thus, we have to make at least five choices of four edge vectors

in the fan, in order to obtain five linear equations of the form (53). Many of these are redundant

and five independent choices are:

{v1,v2,v3,v5} → 010111 → 0 = d1122 − d1222

{v2,v3,v4,v5} → 011110 → 1 = d1222

{v2,v3,v4,v6} → 101110 → 0 = d2222

{v1,v5,v5,v5} → 010001 → 0 = d1111 − d1112

{v1,v1,v5,v5} → 010001 → 0 = d1111 − 2d1112 + d1122 .

Note that the middle column is written in binary notation so that we can check with the incidence

information shown in Figure 5, and that Eq. (53) has been used in the last step. The solution to

the above set of simultaneous equations is

d1111 = 1; d1112 = 1; d1122 = 1; d1222 = 1; d2222 = 0 .

Now, the intersection numbers drst in X are, from Eq. (54), (with n1 = 2 and n2 = 3)

d111 = 5; d112 = 5; d122 = 5; d222 = 2 .
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Chern Class: The total Chern class of A is directly given by (56)

c(A) = (1 + J1 − J2)(1 + J2)4(1 + J1)

= 1 + (2J1 + 3J2) + (J2
1 + 7J1J2 + 2J2

2 ) + (4J2
1J2 + 8J1J

2
2 − 2J3

2 ) + (6J2
1J

2
2 + 2J1J

3
2 − 3J4

2 ) ,

from which all the Chern classes can be read off. The relation (58) between c(X), c(A) and c(N )

can then be used to compute the total Chern class of X:

c(X) =
c(A)

1 + 2J1 + 3J2
= 1 + (J2

1 + 7J1J2 + 2J2
2 )− (2J3

1 + 13J2
1J2 + 17J1J

2
2 + 8J3

2 ) .

Note that c1(X) vanishes and c2(X) = c2(A) = 50ν1 + 44ν2, where ν1, ν2 are the 4-form basis

elements satisfying ∫
X
Jr ∧ νs = δsr .

Kähler cone: Our final task is to compute the Kähler and the Mori cone of A. Because the

two cones are dual to each other, it is enough to work out the former. We first need to find all of

the primitive collections, and, as can be seen in Figure 5, PALP computes these as P1 = 010001

and P2 = 101110. Now, applying the inequality (61) of Theorem B.3 to P1, the strictly-convexness

condition becomes

ψ(v1 + v5) > ψ(v1) + ψ(v5) ⇒ 0 > −a1 − a5 , (63)

where ψ(vρ) = −aρ is obvious from the definition of support function. Similarly, we have from the

other primitive collection P2,

ψ(v2 + v3 + v4 + v6) > ψ(v2) + ψ(v3) + ψ(v4) + ψ(v6) ⇒ − a1 > −a2 − a3 − a4 − a6 . (64)

As the Kähler cone lives in the vector space H1,1, we had better express (63) and (64) in terms of

t1 = β1
ρa
ρ = a1 + a5 and t2 = β2

ρa
ρ = −a1 + a2 + a3 + a4 + a6. It is obvious to see that they are

equivalent to

t1 > 0; t2 > 0 , (65)

which is exactly the first quadrant.
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−1 0 0 0

1 0 −1 0

0 0 1 −1

75

(4, 67)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

0 0 −1 −1

76

(4, 72)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 −1 −1

77

(4, 76)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 1 −1 −1

78

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 0 0 −1

79

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 1 −1

80N

(4, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 0

−1 0 0 −1

1 1 1 0

0 0 −1 1

81

(4, 65)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 0

−1 0 0 −1

1 1 1 0

1 1 0 0

82

(4, 69)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

2 0 −1 −1

83

(4, 81)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

2 0 −1 −1

84

(4, 84)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

2 1 −1 −1

85

(4, 91)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

2 2 −1 −1

86

(5, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

87N

(5, 57)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 1 1

88N

(5, 59)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

0 1 −1 0

1 −1 1 −1

89

(5, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

1 0 0 −1

1 0 −1 0

90

(5, 60)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

1 0 −1 0

0 0 1 −1

91

(5, 56)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 0 −1 0

1 1 0 0

0 −1 0 −1

92

(5, 57)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 0 −1 0

1 1 0 0

1 0 0 −1

93

(5, 58)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 0 −1 −1

1 0 0 1

0 1 1 0

94

(5, 62)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 −1 −1 0

1 1 0 0

1 0 0 −1

95

(5, 60)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 −1 −1 0

1 1 0 0

1 1 0 −1

96

(5, 66)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 −1 0

0 0 1 −1

97

(5, 69)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 −1 0

1 0 0 −1

98N

(5, 60)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

0 0 −1 −1

1 1 1 1

99

(5, 64)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

0 1 −1 0

1 0 0 −1

100

(5, 70)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 1 −1 0

0 0 1 −1

39



no. Vertices of ∆◦ no. Vertices of ∆◦ no. Vertices of ∆◦ no. Vertices of ∆◦

101

(5, 70)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 −1 0

1 1 0 −1

102

(5, 75)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 1 −1 0

1 1 0 −1

103N

(5, 57)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

0 −1 −1 0

1 1 1 −1

104

(5, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

0 1 1 0

1 0 0 −1

105

(5, 63)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 0 −1

106

(5, 59)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

0 −1 0 −1

107

(5, 65)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

1 1 0 −1

108N

(5, 59)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

0 0 −1 −1

109N

(5, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

1 0 −1 −1

110N

(5, 65)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

1 1 −1 −1

111N

(5, 50)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 −1 0

0 −1 0 −1

0 −1 1 −1

−1 1 −1 1

112N

(5, 67)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

2 0 −1 −1

113

(6, 55)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

0 0 1 1

114N

(6, 54)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 −1

0 0 −1 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

115N

(6, 46)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 −1 −1

−1 −1 1 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

116N

(6, 54)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 −1 0

0 −1 1 0

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 0 0 −1

117N

(6, 54)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 −1 0

−1 0 1 0

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 0 0 −1

118N

(6, 50)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

−1 0 −1 0

1 0 0 −1

119N

(6, 52)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

−1 1 −1 0

1 0 0 −1

120N

(6, 56)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

0 1 0 −1

1 0 −1 0

121N

(6, 58)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

1 0 0 −1

1 0 −1 0

122N

(6, 56)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

1 0 −1 0

0 0 1 −1

123N

(7, 49)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 −1

0 0 −1 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

124N

(8, 44)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

Table 7: List of the lattice vertices of ∆◦, for each of the 124 smooth toric ambient spaces. The subscripts

P and N indicate a product of projective spaces and a non-simple space, respectively. Each pair of integers

below the space numbers denotes the two hodge numbers h1,1 and h2,1 of the Calabi-Yau hypersurface.
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no. Ambient space A no. Ambient space A no. Ambient space A

1P

(1, 101)

P4
2P

(2, 86)

P1 × P3
7P

(2, 83)

P2 × P2

17

(3, 75)

P2 × dP1

26P

(3, 75)

P1 × P1 × P2
40P

(4, 68)

P1 × P1 × P1 × P1

69

(4, 68)

dP1 × dP1

75

(4, 67)

P2 × dP2

78

(4, 68)

P1 × P1 × dP1

86

(5, 61)

P1 × P1 × dP2

104

(5, 61)

dP1 × dP2

108N

(5, 59)

P2 × dP3

113

(6, 55)

dP2 × dP2

114N

(6, 54)

P1 × P1 × dP3

116N

(6, 54)

dP1 × dP3

123N

(7, 49)

dP2 × dP3

124N

(8, 44)

dP3 × dP3

Table 8: List of the ambient spaces A which are products of del Pezzo surfaces and projective spaces. Note

that only three del Pezzo surfaces dPk=1,2,3 are toric 2-folds, and that we indeed have all the possible 17

combinations within the database of the 124. The subscripts P and N indicate a product of projective spaces

and a non-simple space, respectively. Each pair of integers below the space numbers denotes the two hodge

numbers h1,1 and h2,1 of the Calabi-Yau hypersurface.
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