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A numerical model for the three-dimensional starting jet flow in a channel with a static larynx-shaped
constriction is presented. Detailed resolution of this kind of jet flow is necessary in order to understand
the complex coupling between flow and acoustics in the process of human phonation. The numerical
model is based on the equation of continuity and the Navier–Stokes equations. The investigations are
done with the open source CFD package OpenFOAM. Numerical simulations are performed for a
square-sectioned channel geometry, which is constricted with a fixed shape conforming to the fully
opened human glottis. Time-dependent inflow boundary conditions are applied in order to model tran-
sient glottal flow rates. The setup of the numerical simulations corresponds to the configuration of a
model experiment in order to allow detailed validation. The numerical results are in good agreement
with the experimental data, when the near-wall region in the glottal gap is adequately resolved by the
numerical grid. The results illustrate the complex interactions between the jet flow and the surrounding
vortices.

� 2011 Published by Elsevier Ltd.
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Human voice is produced by the pulsating airflow generated
during the self-sustained oscillations of the vocal folds. Actually,
the physics of this phenomenon with emphasize on the interac-
tions between the vocal folds oscillation, the aerodynamics of the
airflow and the acoustics of the generated sound is a highly active
field of interdisciplinary research, see e.g. [1]. Fluid mechanics re-
search is done with experimental models or with numerical simu-
lations. Among others, some important effects which have been
studied in the past by means of computational fluid dynamics
(CFD) are flow separation in the glottis [2,3], Coanda effect [4,5],
intraglottal pressure distribution [3,4,6], glottal airflow rate
[1,3,7], pulsating air jet flows [8–10] and supraglottal jet turbu-
lence [5].

The nonacoustic fluid motion of the air in the glottis provides a
source of sound, with the monopole source associated to the pul-
sating air flow and dipole as well as quadrupole source terms
which arise from the mutual interactions of vortical structures
and the supraglottal jet with the walls. It is generally accepted that
flow separation in the glottis has a major effect on the pressure
field and the jet flow in the supraglottal region, see e.g. [2]. There
are several papers which investigate flow separation in the glottis
by means of numerical simulations with lower-dimensional
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for the correct prediction of flow separation. On the contrary the
transient three-dimensional supraglottal flow field consisting of
the jet and the induced vortex structures has been studied only
experimentally so far [11–13]. Previous numerical studies of the
three-dimensional supraglottal flow have been focused on the lar-
yngeal jet during aspiration, e.g. [14,15].

In the paper, we investigate the starting glottal jet downstream
of a rigid glottis-shaped constriction. The flow is similar but not
identical to the well-known starting round jet flow, which kine-
matics and dynamics has been investigated in detail in the past
years [16–21]. Gharib and coworkers [16–18,20] introduced the
formation number of a vortex ring which is generated through
an impulsively starting jet. The formation number characterizes
the separation of the vorticity field of the leading vortex from the
trailing jet [16]. The formation number of a starting jet flow can
be varied by the modification of jet acceleration scenario or the ori-
fice shape [19]. By the inspection of the vortex dynamics, Krueger
and Gharib [20] found that impulse transfer from the starting
round jet to the surrounding fluid is maximized at the formation
number. Due to the symmetry of the problem, it is also possible
to describe the pinch-off process of the leading vortex from the
jet by analytical models [18,21].

Our paper presents a fully three-dimensional numerical model
of the starting glottal jet flow in order to study the transient flow
downstream of the glottis-shaped constriction in detail. Numerical
simulations are carried out for a square-sectioned channel with a
glottis-shaped constriction.
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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Table 1
Characteristic parameters of the glottal constriction in the
numerical model according to Triep et al. [11].

Parameter Value

a 45�
b 80�
wmax 8 mm
H 60 mm
W 60 mm

Fig. 2. Geometry of the computational domain.

2 R. Schwarze et al. / Computers & Fluids xxx (2011) xxx–xxx

CAF 1585 No. of Pages 17, Model 5G

16 April 2011
The geometry of the numerical model follows the setup of the
experimental model of Triep et al [11]. The numerical model is
implemented in the open CFD library OpenFOAM. A detailed
description of the numerical model is given. The numerical simula-
tions are done in the absence of fluid-structure interactions. A
comparison of the numerical results with corresponding flow data
is given.

The scope of the paper is to resolve details of the kinematics and
dynamics of the starting glottal jet. Therefore the basic mecha-
nisms of the transient development, i.e. flow separation, formation
of the leading vortex and interactions between the leading vortex
and the trailing jet are investigated.

The paper presents a status report of an ongoing research pro-
ject. Systematic investigations of oscillating airflows in a glottis-
shaped channel will be given in a separate paper.

2. Numerical model

2.1. Glottal channel

The geometry parameters of the numerical model corresponds
to a water model experiment of the flow in a square-sectioned
channel with a glottis-shaped constriction in order to allow valida-
tion by comparison with corresponding flow data. Photographs
which show the setup of the water model are given in Fig. 1.

The experimental setup is in principle a U-shaped channel com-
posed of a test section with a vertical liquid column at each end,
see Fig. 1a. All channel components are made of Perspex in order
to have full optical accessibility into the transparent liquid med-
ium. Included into the test section is the non-transparent glottis-
shaped constriction, Fig. 1b. The glottis geometry is replicated by
two cams, which model the upper and the lower vocal fold. Each
of the cams is pivoted in a wedge, then covered with a silicone
membrane and arranged vis-a-vis in the test section of the channel.
The geometric data for the glottis is given in Table 1.

Note that this cam model is a 3:1 scale-up of a typical human
glottis. Flow is induced by imposing a pressure head across the
model glottis through a difference in the up- and downstream li-
quid column heights. According to the fluid dynamical similarity
laws and considering water as the working medium, the pressure
head in the model is of half the value compared to the value in nat-
ural phonation and velocities are of the order of 1 m/s. This fluid
dynamical time scale allows a better way to visualize the glottal
jet in the experiment and to extract velocity data of the flow field
by means of Particle-Image Velocimetry. More details of the water
model experiment are given by Triep et al. [11].

Fig. 2 gives the geometry of computational domain, which is
used in the numerical simulations. The computational domain
encompasses the test section of the water model. It is expected,
that the homogeneous flow upstream of the glottis has little influ-
Fig. 1. Water model of the glottal chann

Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
(2011), doi:10.1016/j.compfluid.2011.03.016
ence on the structure of the supraglottal flow. Hence, the subglottal
flow region is reduced to a short inflow neck on the left-hand side
of the glottal constriction. The global dimensions of the computa-
tional domain are L � H �W = 200 mm � 60 mm � 60 mm (due
to the 3:1 upscaling). The boundaries of the computational domain
correspond to the inner contour of the test section (upper, lower,
front and back walls) with additional inlet (left) and outlet (right)
boundary.

Details of the computational domain with the channel and the
glottal constriction are sketched in Fig. 3. The characteristic param-
eters of the constriction are the angles a and b, the maximum
opening width wmax of the glottis and finally the height H and
width W of the supraglottal channel. The dimensions of these
parameters which are implemented in the computational grids
are given in Table 1. With H and W, the hydraulic equivalent diam-
eter D of the channel becomes 60 mm.

The characteristic parameters of the glottal constriction corre-
spond identically to the parameters of the water model experiment
of Triep et al. [11]. A discussion of the similarity of the flow in the
experiment and the numerical simulations with the real flow in the
human glottis is also given by Triep et al. [11]. In summary, the
flows in the numerical simulations meet Reynolds and Strouhal
similarity to the real laryngeal flows. Since the Mach number is less
than 0.1, the flow can be treated as incompressible. Therefore sig-
nificant structures of the laryngeal flow can be resolved by incom-
pressible flows in a water model experiment or a corresponding
numerical simulation, respectively.
el with glottis-shaped constriction.

ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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2.2. Measurements of the starting flow

In the experiments, the starting jet flow is generated by a jump-
like opening of a valve in the pressure chamber connected to the
subglottal channel. The pressure head is realized by a difference
of the sub- and supraglottal water level heights, which is hold by
a magnetic valve above the subglottal water level. The flow is
started by the opening of the magnetic valve. Then, the flow rate
Q starts from zero and reaches the maximum value after a period
s = 700 ms because the sub- and supraglottal water level heights
are balanced by the flow.

In the water model experiment, the time-dependent behavior of
Q is recorded. PIV measurements have been carried out in the ma-
jor and minor planes indicated in Fig. 3. The major plane reaches
from (x,z) = (0.2 D, �0.5 D) (lower left corner) to (x,z) = (1.2 D,0.5
D) (upper right corner). The minor plane reaches from
(x,y) = (0,�0.5 D) (lower left corner) to (x,y) = (1.0 D,0.5 D) (upper
right corner).

The measurements have been repeated in order to obtain an
ensemble of 10 realizations of the starting flow. From these mea-
surements, ensemble averaged flow data are available. Later, vor-
ticity fields from the experiment and the simulations are
compared in the major and minor plane. Additionally, velocity pro-
files are compared along baselines P1 (x-axis), P2 (x = 0.2 D,z = 0)
and P3 (x = 0.5 D,y = 0).

2.3. Governing equations and model assumptions

The incompressible flow in the glottal channel will exhibit a
transitional behavior. Starting with completely laminar flow condi-
tions, the flow becomes super-critical in the glottal region after
some acceleration. Then transition to turbulence is observed
downstream of the glottal constriction. The CFD model which
should describe both the laminar and the turbulent flow regime
is based on the Navier–Stokes equations for incompressible, viscid
flows

@uj

@xj
¼ 0 ð1Þ

@ui

@t
þ uj

@ui

@xj
¼ � 1

q
@p
@xi
þ m

@u2
i

@x2
j

ð2Þ

in combination with high-order numerical discretisation schemes.
In Eqs. (1) and (2) u is the flow velocity and p is the pressure. The
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
(2011), doi:10.1016/j.compfluid.2011.03.016
material parameters of water are density q = 103 kg/m3 and kine-
matic viscosity m = 10�6 m2/s. The numerical schemes are described
in detail in the next sections.

The numerical setup is assumed to provide a blending be-
tween a direct computation of the laminar flow regions and an
implicit Large-Eddy Simulation (ILES) [22,23] for the transitional
and the turbulent flow regions. ILES has been successfully applied
in numerical simulations of transitional square jet flows [24] and
decaying vortex flows [25]. In these studies, the behavior of large
coherent structures around non-circular jets and energy transfer
from the large coherent to the turbulent structures have been re-
solved in good agreement with experimental observations and di-
rect numerical simulations, respectively. These effects dominate
the flow downstream of the glottal constriction, too. Therefore
the ILES approach is assumed to work well in the present
problem.
2.4. Numerical scenario and boundary conditions

As discussed above, the focus of the numerical investigations is
the correct description of the developing supraglottal flow struc-
tures, namely the starting supraglottal jet, the vortex structures
and their interactions. Because fluid-structure interactions in the
glottis are neglected in this first approach, the glottal opening is
kept fixed throughout the simulations. Therefore, the numerical
scenario is based on a time-dependent behavior of the flow rate
Q(t) in the channel, which has been measured in the water model
experiment.

A velocity inlet condition uin = (uin(t),0,0) for the numerical sim-
ulations is derived from Q(t). The velocity inlet drives the global
flow in the laryngeal channel. The time-dependent velocity func-
tion uin(t) is shown in Fig. 4. The Reynolds number Re based on
the hydraulic equivalent diameter d = 8.7 mm of the glottis gap is
also given in the figure, with a maximum value around
Re � 8800. A pressure outlet with a gauge pressure pout = 0 Pa with
respect to the static pressure head of the downstream liquid
column is applied at the outflow of the channel. Finally, the no-slip
condition uwall = 0 m/s is applied at the rigid walls of the domain.

From the experiments, it is found that the turbulence intensity
in the subglottal domain upstream of the glottal constriction is far
below 1%. Therefore an explicit velocity fluctuation is not
prescribed at the inlet boundary. The transition of the flow occurs
downstream of the glottis.
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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Fig. 5. Computational grids: near-wall treatment in the glottis.
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2.5. Computational grid

A block-structured approach is employed in order to mesh the
computational domain in Fig. 2. Here, attention has been paid to
a regular resolution of the overall flow domain, which is discret-
ized into grids with three different grid resolutions, Fig. 5. The first
grid (fine mesh with wall resolution – FMWR) consists of about
5,000,000 grid cells and special attention has been paid for a fine
resolution of the near-wall cells in the glottal gap, Fig. 5a.

Here, the dimensionsless wall distance of the wall-nearest node
is y+ = O(1) almost everywhere in the glottal opening. In order to
achieve y+ = O(1), the values of y+ in the wall-adjacent cells in the
glottis have been checked after test calculations. If necessary, the
near-wall grid has been re-arranged until y+ = O(1) is fulfilled
throughout the complete simulation period.

The second grid (fine mesh without wall resolution – FM) con-
sists of 3.000.000 grid cells. In the glottis, it has approximately the
same grid resolution in the core flow region as grid FMWR, but there
is no near-wall grid refinement in the glottal gap, Fig. 5b. The third
grid (coarse mesh with wall resolution – WR) consists of only
1,000,000 grid cells, with a similar near-wall grid resolution than
in grid FMWR but a less dense spacing in the core flow region, Fig. 5c.

With the near-wall grid refinement in grids FMWR and WR, we
assume that two important structures of the flow are sufficiently
resolved:

1. the flow separation line at the diverging part of the glottal
constriction,

2. the velocity distribution in the separating laminar boundary
layers, which determine the velocity distribution in the free
shear layers of the jet.

Special attention has been paid to the meshing of the glottal
constriction. Here geometric singularities result from the touching
of the two curved faces of the lower and the upper vocal fold, see
Fig. 6b. Meshing of this part is crucial but high mesh quality has to
be maintained due to the developing shear layers in this region.
Therefore the geometry is slightly modified at the region of touch-
ing faces. A tiny closed splice of 0.1 mm height and 6 mm length is
introduced in the outer part of the glottal gap, Fig. 6b. The location
of the closed splice is indicated in Fig. 3. With the closed splice,
block-structured meshing is possible in this region.
299

300

301

302

303

304
2.6. Numerics

Eqs. (1) and (2) are integrated with the CFD library OpenFOAM
[26]. OpenFOAM uses the finite-volume method in cell-centered
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
(2011), doi:10.1016/j.compfluid.2011.03.016
formulation in order to solve systems of partial differential equa-
tions on 3D block-structured or unstructured meshes. OpenFOAM
has been already successfully employed in the context of both lam-
inar and ILES flow computations [25,28].

A TVD scheme with a flux limiter function w(r) = max[0,min(2 �
r,1)] [27] is employed for interpolation of the convective flux terms
in the simulations. The smoothness parameter r is defined by the
ratio of consecutive gradients. The choice of the TVD scheme is
in line with the findings of Grinstein et al. [29], who note that
TVD schemes with local constraints should be preferred in the con-
text of ILES.

The 2nd order central differencing scheme (CDS) is used for the
discretization of the diffusive fluxes. Two different schemes are em-
ployed for time integration of Eqs. (1) and (2): a first order scheme
(annotation CNE in the figures in Section 3) which blends the Crank-
Nicolson scheme with a weighting factor of 0.8 and the Euler impli-
cit scheme with a weighting factor of 0.2 and the second-order
three-level backward differencing scheme (annotation BW). Four
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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Fig. 6. Computational grid near the vocal folds (coarsed illustration of the grid in the flow region).
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different time-step sizes D t1 = 20 ls,Dt2 = 10 ls,Dt3 = 5 ls and
Dt4 = 2.5 ls are employed in the simulations.

The blending has been introduced because the combination of
the TVD, CDS and pure Crank-Nicolson schemes was found to be
only marginally stable in the simulations. During the transition
to turbulence, increasing high-frequency nonlinearities have led
to diverging solution behavior. Typically artificial dissipation
should be increased in the convective terms in order to circumvent
these problems. However this would influence the effect of the
TVD scheme and therefore the performance of the ILES approach.
Therefore we employ the blended time integration scheme in order
to stabilize the solution behavior. Due to the small time-step, the
1st order CNE scheme should be acceptable, which will be proven
by comparison with results from the BW simulations.

Mass conservation is enforced with the transient PISO algo-
rithm [30] with a collocated arrangement of pressure and velocity.
The formulation of the algorithm is in line with the Rhie and Chow
correction [31] in order to avoid non-physical oscillations in the
flow variables.

The pressure equation is solved with an algebraic multi-grid
solver with line Gauss-Seidel smoothing. The solver operates in
the sawtooth cycle with a summation operator for restriction and
an injection operator for prolongation. The momentum equations
are solved with the biconjugate gradient algorithm of Fletcher
[32], where incomplete LU decomposition is used for precondition-
ing the system.

The residual errors per time-step are of the order 10�7 for the
momentum equation and of the order of 10�8 for the pressure
equation.

The simulations have been carried out on the high performance
computers SGI Altix 4700 (featured with 1024 dual-core Intel Ita-
nium processors) and PC farm Deimos (724 heterogeneous com-
pute nodes featured with 1, 2 or 4 AMD Opteron Dual Core CPUs)
at the Center for Information Services and High Performance Com-
puting (ZIH) of the TU Dresden. For parallel computing, the grids
have been divided into 64, 96 or 128 partitions due to the METIS
method [33,34], respectively.
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3. Results

3.1. Transient flow structure

The development of the elliptic jet in the supraglottal channel
can be visualized by regions of concentrated vorticity X =r� u.
Fig. 7 gives characteristic snapshots from the emsemble-averaged
PIV measurements and the CFD simulations. The subfigures show
the major plane where important structures of the flow field are
indicated by the amplitude kXykof the y component of X. The loca-
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
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tions of the major and the minor plane are indicated in Fig. 3,
respectively. The scale of kXykis given in sub Fig. 7c. The jet flow
direction is indicated by the arrow (a).

It can be seen that the leading vortex ring, which is intersected
by the major plane in (b), penetrates the quiescent fluid in the
supraglottal region. The stretched regions of large vorticity ampli-
tudes (c) are expected to represent the shear layers of the develop-
ing supraglottal jet flow, whereas compact regions of large
vorticity should correspond to cross sections through vortex tubes.

Figs. 8 and 9 show the development of the supraglottal jet flow
which is observed in the PIV measurements and in the numerical
simulations on grid FMWR. Fig. 8 displays the major plane with
the amplitude of the y component, Fig. 9 displays the minor plane
with the amplitude of the z component of X.

As a dominating effect, axis switching is observed in the exper-
iment as well as in the numerical simulation: In the developing jet,
the jet width wz in the major plane decreases strongly downstream
of the constriction, Fig. 8a and c, whereas the jet width wy in the
minor plane is slightly increased, Fig. 9a and b. These observations
are in agreement with the findings of Hussain and Husain [35,36]
for developing elliptic jets.

In the ensemble-averaged data from the PIV measurements, the
flow structures are obviously blurred. We assume that the jet shear
layers in the experiment are excited by some small-scale distur-
bances in the glottal region due to small background noise in the
experiments. Additionally small displacements between the indi-
vidual realizations of the ensemble may be responsible for the
blurring of the PIV data.

However, besides the small differences the overall development
of the starting elliptic jet agrees well in experiment and numerical
simulation.

The effects of the near-wall grid refinement is visualized in Figs.
10 and 11, where the jet development in the minor (Fig. 10) and
the major plane (Fig. 11) are compared for the three grids (i)
FMWR, (ii) FM and (iii) WR. It is evident, that the jet shape, the axis
switching (with the increase and the decrease of the jet minor and
major axis) and the transition to turbulence are similar resolved on
the two grids FMWR and WR with wall refinement.

On the contrary, these phenomena are resolved in different
mode on grid FM without wall refinement. Especially, the increase
and the decrease of the jet minor and major axis are strongly over-
estimated in comparison with the experimental findings in Figs. 8
and 9. Consequently, the stronger deceleration of the mean flow of
the elliptic jet induces a higher turbulence intensity downstream
of the trailing edge of the jet.

The influence of the time discretization on the flow resolution is
visualized in Fig. 12. Here, simulation results which are obtained
with different time integration schemes (CNE and BW) as well as
different time-step sizes (Dt2 and Dt3) are compared. Obviously
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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Fig. 8. Jet development in the major plane, indicated by k Xykwith the scale in Fig. 7c.
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the influence of the time discretization on a specific grid is much
smaller than the previously discussed impact of the grid on the
quality of flow resolution.

3.2. Velocity profiles

For a more quantitative comparison between the different
numerical results and the experimental measurements, profiles
of the velocity in x-direction u(x/H) along the baselines P1, P2
and P3, see Fig. 3, are inspected.

Fig. 13 shows an exemple of the velocity profile from the
numerical simulation with grid FMWR at flow time t = 450 ms. In
the velocity profile, two different regions can be identified. Region
(i) gives the nearly constant velocity in the developed core of the
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
(2011), doi:10.1016/j.compfluid.2011.03.016
elliptic jet. Region (ii) is dominated by the large coherent vortex
structures, which have been developed from the jet shear layers.
The coherent structures reach the jet centerline around x/H = 0.6
where the two shear layers come close to each other. Downstream
of this point, they induce an acceleration and deceleration of the jet
axial velocity similar to a wave train.

Fig. 14 compares the numerical (FMWR, FM, WR) and experi-
mental (PIV) velocity profiles at baseline P1 for four different flow
times t. The experimental velocity profile gives the ensemble-aver-
aged PIV data. Here error bars indicate the uncertainty in the re-
ported measurements.

In all subfigures, the numerical simulations on grids FMWR and
WR fit reasonably to the experimental measurements for x 6 0.6.
Downstream of this point, there are larger differences between
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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Fig. 9. Jet development in the minor plane, indicated by k Xzkwith the scale in Fig. 7c.

Fig. 10. Flow resolution in major plane with the CFD model on different numerical grids, indicated by kXyk with the scale in Fig. 7c.
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Fig. 11. Flow resolution in minor plane with the CFD model on different numerical grids, indicated by kXzk with the scale in Fig. 7c.

Fig. 12. Influence of time integration scheme and time-step width on the flow resolution in major plane on grid WR, indicated by kXyk with the scale in Fig. 7c, first row:
t = 300 ms, second row: t = 600 ms.
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the numerical results of FMWR and WR, and both data sets differ
noticeably to the PIV measurements. Obviously, the results on grid
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
(2011), doi:10.1016/j.compfluid.2011.03.016
FMWR and WR are not in phase, whereas the amplitudes and
lengths of the wave trains are similar on both grids.
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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On the contrary, the numerical results of grid FM exhibit more
pronounced differences in both the phases and the amplitudes
with respect to the numerical data of the other grids and the PIV
measurements. Especially the jet core velocity is underpredicted
immediately downstream of the glottis, which is a consequence
of the stronger deceleration of the jet flow in this region, see Fig. 9.

Fig. 15 also correlates the numerical and experimental velocity
profiles at baseline P1, but here the numerical simulations are car-
ried out with four different time-step sizes (Dt1. . . Dt4) and two
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Fig. 14. Development of u(x/H) along along baseline P1 (x-axis), comparison of P
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different integration schemes (CNE, BW) on the same grid (WR).
Obviously, the results of case WR, CNE in Fig. 15a show convergent
behavior for decreasing time-step width. The differences between
Dt2,Dt3 and D t4 are only marginal at the end of the simulation per-
iod at t = 600 ms. Here only the results of the simulation with the
largest time-step width Dt1 differ noticeable in phase and magni-
tude. The results of case WR, BW in Fig. 15b show the same ten-
dency, but here velocity profiles in the simulations with Dt1 and
Dt2 differ from the corresponding profiles for Dt3 and Dt4.

Fig. 16 shows the influence of the grid and the time integration
scheme on the simulation results. Obviously, there is a good agree-
ment of the profiles on grid WR for simulations with BW (D t3,Dt4)
and CNE (Dt2,Dt3,D t4), see Fig. 16a. On the other hand, the differ-
ences between the two grids FMWR and WR for simulations with a
fixed time integration scheme are nearly independent from the
time-step size of the simulation, see Fig. 16b. Therefore, we con-
clude that convergence of the results from different grids cannot
be achieved, whereas the influence of the time integration scheme
is of minor importance for the simulation results.

Nevertheless we assume that the characteristic change of the
velocity profile for x/H > 0.6 is primarily due to the transitional
and nonlinear behavior, whereas the numerical resolution has only
a minor impact on the characteristic shape of the profile. The tran-
sition is introduced to the flow by the two touching shear layers at
x/H ’ 0.6 and small numerical fluctuations are strongly amplified
downstream of this point. Because these numerical fluctuations
are different on grids FMWR and WR, distinct specific amplitudes
are observed on these grids. In the experiments, a corresponding
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transition is indicated by the increasing rms values for x/H ’ 0.6,
see e. g. sub Figs. 14c and d.

Fig. 17 gives an estimation of the mean-square error, which re-
sults from amplification of the small numerical disparities. Here,
the averaged results from the numerical simulations (SIM) from
eight different cases (grids FMWR and WR with integration
schemes CNE and BW for time-step sizes Dt2 and Dt3, respectively)
with their mean deviations are compared with the ensemble-aver-
aged PIV measurements. Obviously the spreading of the numerical
results, which is observed only for x/H P 0.6, increases with time.
Again, the overall agreement between SIM and PIV is acceptable.
However we admit that the numerical data set is not really an
ensemble in a physical sense, therefore the interpretation of
Fig. 17 must be done carefully.

Fig. 18 compares the numerical and experimental velocity pro-
files u(y/H) at baseline P2 near to the glottis for two different flow
times t. Note that spurious leakage currents have been observed in
the experiment near the upper and lower wall which are due to
non-perfect contact of the ceiling. The figures show typical jet pro-
files with the high velocity jet core region around y/H = 0, steep jet
shear layers approximately at y/H ’ ± 0.1 and the ambient fluid at
rest. The numerical simulations on grids FMWR and WR fit again
well to the experimental measurements in both subfigures. Here
the numerical simulation on grid FM clearly underpredicts the jet
core velocity, whereas the width of the jet is drastically
overpredicted.
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
(2011), doi:10.1016/j.compfluid.2011.03.016
Fig. 19 compares the numerical and experimental velocity pro-
files u(z/H) at baseline P3 for two different flow times t. Again,
leakage currents are observed in the experiment. The figures show
again typical features of jet profiles, the high velocity jet core re-
gion around z/H = 0 and steep jet shear layers approximately at
z/H ’ ± 0.1. As in Fig. 18, the numerical simulations on grids FMWR
and WR fit well to the experimental measurements in both subfig-
ures. Here the numerical simulation on grid FM gives a good reso-
lution of the jet profile for t = 150 ms, but at t = 600 ms, the jet core
velocity and the width of the jet are again underpredicted.

In summary, we expect, that our numerical model with proper
chosen time discretization will give a resonable description of the
dynamics of large coherent structures in the developing flow.
Velocity amplitudes and characteristic length scales of the struc-
tures should be sufficiently resolved in order to understand the ba-
sic features of the vortex kinematics and dynamics. However, a
more detailed inspection of the fine scale interactions in the inter-
mediate vortex field would demand a refined numerical model.

3.3. Near glottis flow

3.3.1. Glottal boundary layer
When the flow is accelerated through the glottis, laminar

boundary layers develop at the vocal folds. Fig. 20 gives details of
the boundary layers at x = 0,z = 0, where profiles of u/umax(y+) are
given along the minor (y) axis of the glottis. Here y+ is determined
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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with the instantaneous local wall shear stresses sW at the glottis
and u/umax is referred to the instantaneous maximum velocity umax

which is observed in the glottis.
Obviously, shear layer profiles are resolved nearly identically on

both grids FMWR and WR (starting at yþmin ’ 2 in the center of the
wall-nearest cell). PIV measurements are not possible in this region
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
(2011), doi:10.1016/j.compfluid.2011.03.016
of the experiment, therefore a comparison with experimental data
cannot be given.

In Fig. 20, the linear profile (u/umax)lin = 0.0764 y+ is also indi-
cated as a dashed line starting at y+ = 0. The comparison of the lin-
ear and the FS profile reveals a point of inflexion near y+ ’ 2, which
suggests that the flow downstream of the glottis will become crit-
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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ical for separation, because d(u/umax)/dy+ ? 0 for y+ = 0. Addition-
ally, the separated free shear layer is prone to transitional behavior
due to the point of inflexion.

Although we have no possibility to give a validation by compar-
ison with experimental data, we are convinced that the boundary
layer is sufficiently resolved by the numerical grids FMWR and
WR. The important scale, i.e. the boundary layer thickness is simi-
lar on both grids. The slight deviation between the profile slopes
seems to be due to the different resolution of the jet core regions,
which have to be matched at the outer boundary layers.

On the contrary, the resolution of the shear layer profile on grid
FM is inappropriate (it starts with yþmin ¼ 12 in the center of the
wall-nearest cell). Therefore, results from grid FM are no longer
discussed in the paper.
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3.3.2. Flow separation
At some distance downstream of the smallest cross section, the

boundary layers separate from the vocal folds. The separation line
on the lower vocal fold is investigated in Fig. 21. Due to the accel-
eration of the boundary layer, the location of the separation line is
determined using the MRS criterion for the streamwise velocity us,
i.e. @us/@n = 0 at us = 0 [38].

The resolution of the separation line on grids WR and FMWR is
nearly identical, only small differences (below 1% with repect to D)
are observed, see Fig. 21. At the touching vocal folds, the boundary
layers separate immediately from the contour, whereas in the cen-
ter line of the vocal fold, the separation occurs further downstream
at x/H ’ 0.05. The profile shows two additional bumps in the vicin-
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
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ity of the touching vocal folds at z/D = ± 0.04, which indicate a
localized shifting of the separation. This shifting originates from
the inward directed displacement of the flow due to the touching
vocal folds, which adds momentum to the boundary layer at these
points.

The time integration scheme and the time-step width have no
observable influence of the resolution of the separation line on a
specific grid, see Fig. 21b. Here, the results from simulations with
CNE and BW with Dt3 and Dt4 show only negligible differences.

3.4. Glottal Jet

3.4.1. Leading vortex
Similar to starting round jets, the starting jet flow which devel-

ops downstream of the glottis consists of a leading vortex and a
trailing jet, see Fig. 7. We apply the method described in [16,17]
in order to study the formation of the leading vortex in more detail.
The leading vortex is detected by the inspection of the isocontours
in the vorticity fields in the major, see Fig. 22. The leading vortex
and the trailing shear layers are indicated by high values of vortic-
ity, but these structures are separated by a region of lower vortic-
ity, which is clipped in the figure.

The total circulation Ctot is calculated by integrating the vortic-
ity in the entire major plane. The circulation of the leading vortex
Clv is estimated by integrating the vorticity inside an isocontour of
vorticity that includes the leading vortex. Although this procedure
is carried out to the best of our judgement, the evaluation of the
vortex circulation is more subjective, especially before a clear
pinch-off can be observed.

Fig. 23 shows Ctot and Clv which is found in the major plane.
Both simulations on grids FMWR and WR give nearly the same
slopes of Ctot and Clv. Ctot increases nearly uniformly due to the
continuous entrainment of the separated boundary layers as free
shear layers into the flow domain. Contrary Clv is found to be con-
stant for 9 6 t⁄ 6 15. Then, a slight increase of C is observed for
t⁄ > 15, but there is also an increasing uncertainty in these values.
Due to the increasing complexity of the structure of the leading
vortex, the determination of C becomes more and more difficult.
Finally, we cannot specify reliable values for C for t⁄ > 20.

According to Gharib et al. [16], the separation of the leading
vortex is determined by extrapolation from the curve of Clv. The
separation of the leading vortex from the trailing jet is expected
at a dimensionsless formation time or formation number
t⁄ = Um � t/djet � 5 with UmðtÞ ¼ 1=t

R t
0 uinðtÞdt. A similar investi-

gation of Ctot and Clv in the minor planes confirms this result,
which is also in agreement with the findings of Gharib et al. [16]
for round jets.
ree-dimensional channel with larynx-shaped constriction. Comput Fluids
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Fig. 22. Detection of the leading vortex: vorticity field in the major plane on grid
FMWR, colored are regions with vorticity k XzkP 200 s�1, blue colors indicate low
values, red colors indicate high values of the vorticity, flow direction is from bottom
to top. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 23. Circulation C in the major plane as a function of dimensionless formation
time Um � t/djet on grids FMWR and FM, black symbols give the total circulation,
open symbols give the circulation of the leading vortex, Um � t/djet = 10 corresponds
to flow time t = 95 ms.

Fig. 24. Vortical flow structures of the starting supraglottal jet, visualized by the Q
criterion with isosurfaces Q = 104. Isosurfaces are color-coded with relative pressure
p (blue is p = �200 Pa, red is p = 0 Pa) with respect to ambient pressure.(For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

R. Schwarze et al. / Computers & Fluids xxx (2011) xxx–xxx 13

CAF 1585 No. of Pages 17, Model 5G

16 April 2011
3.4.2. Vortex kinematics and dynamics
The development of the vortex field in the starting glottal jet

flow is illustrated in Fig. 24. In the figures characteristic vortex
structures in the transient flow are visualized by the Q criterion
[37]. Here, isosurfaces with Q = 104 are colored with the local rela-
tive pressure, which is given with respect to ambient pressure.
Obviously the leading vortex induces a marked pressure drop in
the flow, Fig. 24a, whereas the secondary vortices which develop
in the shear layers of the trailing jet do not exhibit a noticeable
underpressure. During the transient development, the vortices
Please cite this article in press as: Schwarze R et al. Starting jet flows in a three-dimensional channel with larynx-shaped constriction. Comput Fluids
(2011), doi:10.1016/j.compfluid.2011.03.016
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Fig. 25. Vortical flow structures of the starting supraglottal jet, visualized by the Q criterion with isosurfaces Q = 104. Isosurfaces are color-coded with magnitude of helicity
density kh k (blue is khk = 0, red is kh k = 100 m/s2) or with magnitude of source kShk of h (blue is kShk = 0, red is kShk = 5 � 104 m/s3), respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 26. Volume integrals [X2u2]V, [h2]V and [l2]V as a function of t.
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interact strongly, Fig. 24b and c, whereby the pressure drop in the
flow is somewhat smoothed.

The dynamics of the developing glottal jet and the interactions
between the jet and the leading vortex can be analyzed in more de-
tail by the investigation of the helicity density h = X � u. We use h
as an indicator for the relationship between the directions of flow
and rotation. We expect that a change of h will be a sign of the
interaction between vortices. In the incompressible flow, h obeys
[39,40]

@h
@t
¼ @

@xi
�h ui þ

u2
j

2
� p

q

 !
Xi þ m

@h
@xi

" #
� 2m

@uj

@xi

@Xj

@xi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sh

ð3Þ

We have investigated both h and its source terms Sh, i.e. the right-
hand side of Eq. (3) in the flow. As an example, Fig. 25 shows the
organized vortex structures in the near-glottis region transient flow,
which are again resolved by the Q criterion. Here, the isosurfaces of
Q are colored with k hk and kShk, respectively. Clearly, high values of
k Shk are observed in the regions, where the leading vortex interacts
with secondary vortices, which develop from the shear layers of the
trailing jet. Some of these localized regions are indicated by I in Figs.
25b, d and f. Consequently, the total amount of helicity density in-
creases due to the positive source terms, as it is observed in Figs.
25a, c and e.

The helicity density together with the Lamb vector l = X � u
give a local orthogonal decomposition of u with respect to X. Both
h and l are related to the product of twice the specific kinetic en-
ergy u2/2 and the enstrophy X2 by

X2u2 ¼ jhj2 þ jlj2 ð4ÞZ
V

X2u2 dV|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
½X2u2 �V

¼
Z

V
jhj2 dV|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
½h2 �V

þ
Z

V
jlj2 dV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
½l2 �V

ð5Þ

Fig. 26 gives the development of [X2u2]V, [h2]V and [l2]V for the
accelerating phase in the entire flow volume downstream of the
glottis. It is found that X2u2 is divided with a ratio of approximately
1:4 between h and l . This underlines that the dynamics of the start-
ing glottal jet has a three-dimensional nature. The helicity density,
which is zero in two-dimensional and axisymmetric flow fields
seems to play an important role in the physics of the glottal jet.

Fig. 27 underlines this conclusion. Here, the absolute helicity,
i.e. the volume integral of the helicity magnitude Ha ¼

R
V jhj dV

and L ¼
R

V jlj dV are given. Based on the findings of Moffatt [41],
see also [42], Ha is a measure for the knotness of the vorticity lines
in a flow region V. Therefore the increase of Ha should indicate an
increase of the strengths and the winding numbers of the vortex
structures in the flow. In Fig. 27, H�a and L⁄ are given in dimension-
less form based on Um and djet. Again, the important increase of H�a
demonstrates that the three-dimensional vortex interactions in-
duce an increase of the streamwise-oriented vorticity. The scaling
which was found from the empirical fit of the data is H�a � t� and
L⁄ � (t⁄)0.8, the corresponding curves are also indicated in Fig. 27.

4. Summary and outlook

A numerical model of starting supraglottal jet flows is pre-
sented. The model is based on the equation of continuity and the
Navier–Stokes equations for incompressible flows. Transient simu-
lations of the starting jet flows in the supraglottal channel are car-
ried out. The geometry, boundary conditions and initial values of
the flow fit to a corresponding model experiment which is dis-
cussed elsewhere.

The numerical model is implemented into the open source code
OpenFOAM. As discretization schemes, the combination of a
Please cite this article in press as: Schwarze R et al. Starting jet flows in a th
(2011), doi:10.1016/j.compfluid.2011.03.016
second-order TVD scheme and a blended Crank–Nicolson and Euler
implicit scheme are employed for flux interpolation and time inte-
gration, respectively. The numerical setup is assumed to realize a
blending between a direct computation of the laminar flow regions
and an implicit Large-Eddy Simulation for the transitional and the
turbulent flow regions.

Qualitative and quantitative comparison of numerical and
experimental data show, that the numerical model is able to re-
solve the flow field correctly. A grid variant study shows, that the
near-wall grid resolution should be fine enough in order to resolve
the flow separation and the corresponding jet development
adequately.

The simulations give detailed insight into the structure of the
developing flow field, which is composed of the glottal region,
the leading vortex and the trailing jet flow. Boundary layer profiles
of the flow in the glottis, the separation line on the vocal folds,
velocity profiles of the jet flow and the jet flow region are analyzed.

The boundary layers in the glottal flow region are similar to the
boundary layers of the flow through a wedge nozzle. The separa-
tion line of the jet flow from the diverging vocal folds remains
nearly constant throughout the transient development of the flow.

The large coherent vortex structures of the trailing jet interact
strongly with the leading vortex, which is indicated by a marked
rise of helicity density during the jet development. Both the Lamb
vector integral and the helicity in the supraglottal flow region are
found to increase nearly constantly over the complete starting per-
iod of the jet flow.

Future studies should be focused on the following topics:

	 Realistic flow rate functions should be applied. The focus of the
present study is to develop a suitable numerical model for
three-dimensional simulations of supraglottal jet flows and to
resolve basic structures and transition processes in these flows.
Therefore, long-term simulations with oscillating flow rates
should be an interesting continuation of our work. In this con-
text, dynamic grids should be implemented which model the
oscillating movement of the vocal folds.
	 The development of the Lamb vector and the helicity should be

analyzed in more detail because of the importance of the Lamb
vector for the acoustics of the glottal jet.
	 The flow simulations should be coupled to calculations of the

acoustic field in order to analyze the process of sound genera-
tion in more detail. Here, as a first step, the acoustic source
terms must be deduced from the flow data.
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