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Abstract 

Life insurance companies deal with two fundamental types of risks when issuing 

annuity contracts: financial risk and demographic risk. As regards the latter, recent 

work has focused on modelling the trend in mortality as a stochastic process. A 

popular method for modelling death rates is the Lee-Carter model. This methodology 

has become widely used and there have been various extensions and modifications 

proposed to obtain a broader interpretation and to capture the main features of the 

dynamics of mortality rates. In order to improve the measurement of uncertainty in 

survival probability estimates, in particular for older ages, the paper proposes an 

extension based on simulation procedures and on the bootstrap methodology. It aims 

to obtain more reliable and accurate mortality projections, based on the idea of 

obtaining an acceptable accuracy of the estimate by means of variance reducing 

techniques. In this way, the forecasting procedure becomes more efficient. The 

longevity question constitutes a critical element in the solvency appraisal of pension 

annuities. The demographic models used for the cash flow distributions in a portfolio 

impact on the mathematical reserve and surplus calculations and affect the risk 

management choices for a pension plan. The paper extends the investigation of the 

impact of survival uncertainty for life annuity portfolios and for a guaranteed annuity 

option in the case where interest rates are stochastic. In a framework in which 

insurance companies need to use internal models for risk management purposes and 

for determining their Solvency Capital Requirement, the authors consider the surplus 

value, calculated as the ratio between the market value of the projected assets to that 

of the liabilities, as a meaningful measure of the company’s financial 

position, expressing the degree to which the liabilities are covered by the assets. 

 

Keywords: life annuity, longevity risk, stochastic mortality, stochastic interest rates, 

cash flow analysis, bootstrap, Variance Reducing Techniques, Guaranteed Annuity 

Option. 

 

§1. Longevity and disturbing effects on the risk management of annuity 

contracts. 

Life expectancy depends on several factors, the most important of which are 

age, gender, geographical region, and social class. Although some commentators 
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propose hypotheses for a long term change to the upward trend in life expectancy, due 

to causes such as obesity and worsening environmental conditions (as discussed by 

Loladze 2002 and Olshansky et al. 2005), it seems to the authors that life expectancies 

are following, and are likely to continue to follow, an increasing trend. Less clear is 

the shape of this trend, particularly in light of two noteworthy elements which emerge 

from empirical observations: life expectancies have increased at a faster rate than 

anticipated and the uncertainty in the projections of life expectancy increases as the 

time horizon increases. These ingredients are a source of concern to the financial 

institutions which provide financial products to the elderly such as pension annuities. 

If these trends are not considered, this type of contract will last longer than expected, 

bringing higher costs to these institutions. The situation can be summarized by saying 

that contracts like pension annuities are seriously exposed to longevity risk, and this 

exposure needs to be understood and managed. 

Working out the risk quantification elements plays an important rule in the 

Solvency II assessment. As stated in the E.U. Directive Draft (On the taking-up and 

pursuit of the business of insurance and reinsurance: Solvency II, amended February 

2008) insurers can use (or the supervisor can require the use of) internal models in 

order to determine their Solvency Capital Required (SCR), rather than a standard 

formula. As the International Association of Insurance Supervisors (IAIS) defines in 

the Groupe Consultatif CEA Glossary “an internal model is a risk measurement 

system developed by an insurer to analyse the overall risk position, to quantify the 

risks and to determine the economic capital required to meet those risks”. Thus, IAIS 

(2008) states that an insurer’s internal model is effective in risk and capital 

management only if it is “fully embedded into the risk strategy and operational 

processes of the insurer”. An internal model conceived for risk assessment purposes 

provides a more realistic output for the insurer in the SCR framework.  Further, it is 

well known that insurers generally use their internal models when major business 

decisions are to be made; for example pricing, product development and business 

planning all require the use of a pre-specified internal model. This means that internal 

models play a central role in current actuarial practice. 

As Solvency II advocates, insurance companies usually make their valuations 

by means of present values of projected cash flows, measured in terms of their market 

value. Cash flow modelling is a crucial component of suitable internal models and the 

proper evaluation of the influence of the risk drivers on the cash flows is a key issue. 

From a strict risk analysis viewpoint, the different risk aspects connected with 

the forecasting of future lifetimes arise from both accidental and systematic deviations 

of the actual data from their expected values. The longevity risk component is due to 

the systematic deviations of the deaths from the anticipated values, while the 

accidental variability in mortality causes a risk strongly influenced by the portfolio 

size, in the sense that large portfolios benefit from the well-known pooling effect, as 

shown by Coppola et al. (2000). If we work with a portfolio large enough to absorb 

the accidental demographic uncertainty, the demographic risk can be considered as 

constituting the systematic component and this is the main element that interacts with 

the risk arising from the variability in financial markets, the financial risk. The effect 

of both of these risks may be significant if we are referring to portfolios of life 

contracts of long duration such as pension annuities, which are characterized also by a 

multiplicity of payments. 

The consideration of the systematic aspect of the demographic risk is 

deepened in this paper by our focusing on the evolution over time of mortality rates. 

As in Howse (2009), we observe that the longevity phenomenon originates from the 
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continuing improvement in adult age mortality and in particular, during the most 

recent 30 years, this decreasing trend has been accelerating. Potential discontinuities 

in longevity trends have been taken into account by some demographers and 

modellers but most forecasters seem to think that discontinuities or jumps with respect 

to recent trends are to be considered extremely unlikely.  

The Lee-Carter model (Lee & Carter, 1992) has become a popular method for 

modelling and forecasting the trends over time in death rates: the main reasons are 

that it outperforms other models with respect to its prediction errors (e.g., Koissi et al., 

2006; Melnikov & Romaniuk, 2006) and that it is easy to implement. This 

methodology has become widely used and there have been various extensions and 

modifications proposed in order to attain a broader interpretation and to capture the 

main features of the dynamics of mortality rates, e.g. the log-bilinear Poisson version 

of the Lee-Carter model as in Brouhns et al (2002) and Renshaw & Haberman (2003a, 

b, c). Further, in order to improve the survival probability outputs from the point of 

view of measuring uncertainty and hence longevity risk, recent approaches have used 

simulation procedures applied to the Lee-Carter family of models (Brouhns et al 2005, 

Renshaw & Haberman 2008, D’Amato et al 2010). These studies provide prediction 

intervals for the forecasted quantities that are derived by using simulation techniques: 

this is an important feature because of the non-linear nature of the quantities under 

consideration. The approaches are based on the bootstrap methodology for obtaining 

more reliable and accurate mortality projections and utilise the semi parametric 

bootstrap based on the Poisson distribution. More specifically, D’Amato et al (2010) 

adopt the idea of obtaining an acceptable accuracy of the estimate by solving the 

problem of reducing the variance estimator by means of one of the VRTs (Variance 

Reducing Techniques): the so-called Stratified Sampling technique.  

The usual implementation of the Stratified Sampling is designed for Monte 

Carlo simulation. Instead, we propose to use it in the bootstrap context, in the light of 

a comparative study (Renshaw & Haberman 2008) of the simulation strategies applied 

to the Lee-Carter (LC) model, in which the authors show that the Monte Carlo 

simulation approach should not be used for risk measurement in LC modelling, since 

different choices of the parameter constraints in the model result in widely different 

simulated confidence and prediction intervals. 

Furthermore, by nesting the original Poisson LC within the bootstrap with 

stratified sampling, we seek to reduce the approximation error for the statistics of 

interest. A sampling variance reduction approach for bootstrap mortality estimation is 

developed and analysed in comparison with the bootstrap procedure as in Brouhns et 

al., 2005 (referred to herein as the Standard Procedure or SP). 

In this framework, the aim of the paper is to perform a new approach for 

describing the survival phenomenon by means of an experimental simulation 

approach applied to the LC model: the Stratified Sampling Bootstrap (SSP). The 

approach provides good results compared with the Standard Bootstrap and the 

Iterative Procedure (IP) proposed by Renshaw & Haberman (2003c) in respect of the 

Italian population, as section 4 shows. The good performance leads us to prefer this 

procedure with respect to the SP and IP for the majority of cases (D’Amato et al. 

2009b). 

The longevity question is a critical element in the solvency appraisal of 

pension annuities, as a wide literature explains (see for example Hari et al. 2008, 

Olivieri & Pitacco 2003, Fornero & Luciano 2004, Pitacco et al. 2009). The 

demographic system for modelling a portfolio cash flow distribution impacts on key 

quantities such as technical reserves, surplus and funding ratios and it affects some of 
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the choices in the management of pension plans (Coppola et al. 2007, D’Amato et al. 

2009a). 

The current paper focuses on the funding ratio, defined as the ratio between 

the market value of the assets and that of the liabilities at a certain time, and is chosen 

as a measure of the solvency of the insurance portfolio at that time. In particular, the 

purpose is to study the financial implications of the improvement over time in 

mortality rates on the funding ratio, considering the results as measures of the cost of 

increased longevity. In this analysis, the financial risk is stochastically modelled and 

interacts with the demographic risk. Although recent econometric researchers 

highlight that a certain degree of correlation between these two sources of risk may 

exist, the risks are assumed to be independent in both the classic actuarial context of 

pricing and reserving in life insurance and in the Solvency 2 framework. We will 

make the assumption in this work. 

In this paper, valuations are performed at the time of issue on the basis of the 

financial and demographic information flow at that time and are highly sensitive to 

the strength of the longevity phenomenon. Survival modelling is required, from the 

pension plan point of view, for the estimation of the premiums expected to be 

received during the accumulation period up to retirement age, and of the benefits 

expected to be paid during the period from retirement age until the death of the 

policyholder. Both premiums and benefits depend on the demographic factor in terms 

of their size and the number of payments to be paid or received. 

In the numerical examples, we will discuss the funding ratio values using the 

SSP and compare them with those that result from the other two techniques under 

consideration: SP and IP, in a context in which interest rates are stochastically 

modelled. The analysis is completed with the calculation of the risk arising from the 

uncertainty in the choice of the simulation approach: this is allowed for by assigning 

probabilities to the choice of each of the three different approaches, in light of the 

subjective degree of reliability that the insurer attaches to each method. 

 

§2. The funding ratio in living benefit products 

We focus on the funding ratio tF  at time t, defined as the ratio between At, the market 

value of assets and Lt, the market value of liabilities, projected from time 0 and valued 

at time t: 

 



Ft 
At

Lt

          (1) 

 

Formula (1) can be extended to a portfolio of identical policies, with benefits due in 

the case of survival to persons belonging to an initial group of c individuals aged x. 

We let w(t,j) be the value at time t of one monetary unit due at time j and Xj and Yj be 

the stochastic cash flows respectively of assets coming into the portfolio and liabilities 

going out of it, both valued at time t on the basis of the information flow at the issue 

time. In particular, this leads to: 

 



At  N j X j
j

 w t, j          (2) 

 

and 
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

Lt  N jY j
j

 w t, j          (3) 

 

with 



w t, j  v
sign t j 

, 



v  being the present value of 1 monetary unit due at time j 

and Nj being the number of survivors at time j. 

The funding ratio at time t, as is clear in equation 1, may be usefully 

interpreted as the amount of assets for each unit of liability and, in this sense, it can be 

considered to be a useful solvency measure. It sums up, at time t, the full future cash 

inflow and outflow patterns and contains the longevity and financial information of 

the contract over future time periods. 

 

§3. The Poisson Lee Carter simulation approach for mortality projections 

Mortality improvements force those responsible for the planning of public retirement 

systems and private life annuity business to forecast carefully future mortality rates. A 

variety of alternative methodologies for projecting mortality have been proposed in 

the literature. Considering a wide range of criteria, mainly based on the accuracy in 

representing the survival phenomenon, the Lee-Carter model, proposed in 1992, 

appears to be one of the most effective methods, for example, its use has been 

recommended by the US Social Security Technical Advisory Panel (Booth 2006; 

Booth& Tickle 2008). 

According to Brillinger (1986) and Alho (2000), the assumption that the 

number of deaths has a Poisson distribution is plausible. In particular, the Poisson log-

bilinear variant of the Lee Carter model overcomes the problems associated with the 

ordinary least squares method of fitting. In many cases, the Poisson version, based on 

heteroskedastic Poisson error structures, is consistently more accurate than the 

alternatives (as shown in Renshaw & Haberman 2003c). 

The Lee Carter model in the Poisson setting is characterized by the following 

expressions: 

 

 
txxtxt EPoissonD         (4) 

 

in which 

 



xt  exp x xkt         (5) 

 

and Ext represents the exposures to the risk of death (in other words the number of 

person years from which xtD occurs) and where the parameters are subjected to the 

constraints: 

 

0
t

tk   1
x

x
 

 

The force of mortality is thus assumed to have the log-bilinear form: 

 

  xtxxt k  ln  

 

Because of the nonlinear nature of the quantities of interest, an analytical 

approach to the parameter estimation and the calculation of prediction intervals is not 
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tractable and hence we resort to a simulation approach, as advocated by Brouhns et al. 

(2005). With regard to the Poisson Lee Carter model, the objective of the simulation 

is represented by the sample estimate of the model parameter vector  txx k,,  , 

which is needed for the mortality projections. 

The usefulness of the vector estimate is related to the variance of the estimator 

itself in the sense that a smaller estimator variance corresponds to a better estimate. 

As to the smaller variance, there are a variety of different methods which one can 

utilise for reducing the variance of the simulation estimate: the so-called variance 

reduction techniques (from herein VRTs). In general, the techniques use one or more 

of the following strategies for reducing variances: induce positive correlation, induce 

negative correlation; control randomness. 

The most popular techniques include: Antithetic Variates, Control Variates, 

Stratified Sampling and Importance Sampling (Ross 2002).  

All simulation studies use finite simulation runs and lengths and, as a 

consequence, the effectiveness of VRTs under finite simulation conditions needs to be 

investigated. In particular, the Stratified Sampling Procedure is concerned with the 

matrix of historical log mortality rates, which is naturally stratified on the basis of a 

homogeneity criterion for age groups or single ages. Our principal set of data relates 

to the Italian male population with annual age specific death counts from ages 0:100 

ranging over the period 1950 to 2006. There are various ways of modelling the 

mortality trend, both at the aggregate level and at the level of individual age-sex 

groups. The level of individual age groups gives us another perspective on the 

mortality decline. It allows for recovering some information about infant, young and 

older ages, collecting data belonging the same age as in distinct categories. In this 

sense, the population dataset embraces a number of distinct categories, so that the 

sampling frame can be ordered by these categories into separate strata, by using 

stratified sampling. However, if we consider the dataset by single ages, the 

correlations between the residuals for adjacent age groups tend to be high (as noted in 

Denton et al 2005). This suggests that we are dealing with a certain class of dependent 

process. On the other hand, the stratified sampling technique treats each stratum as an 

independent population or cluster: this provides an indication for future research.  

The deaths count variable X represents the observations and is split into 

K populations, the so-called strata. Let us consider kiX as the observations of the 

variable of interest, k  indicating the single ages and i  the time period. The variables 

kiX  and kjX , i j , are independent within the k th  population, but they are 

dependent in the general population.  Each stratum is then sampled as an independent 

sub-population (Hall 1986). There are several potential benefits to this approach. 

Dividing the population into distinct, independent strata can enable us to draw 

inferences about specific subgroups that may be lost in a more generalized random 

sample. Furthermore, it is sometimes the case that data are more readily available for 

individual, pre-existing strata within a population than for the overall population. In a 

certain sense, the same belief can be found in the stratification of female and male 

genders, which is widely used in the actuarial field particularly to analyze mortality 

rates and forecast the trends.  Also, in this case, dependent data are treated as 

independent populations as in stratified sampling.  

  In particular, in our case, we single out the main features by bootstrapping 

from each stratum, referring to the perspective of single ages.  
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We recall that stratification is the process of grouping observations of the 

population into relatively homogeneous subgroups, the sub-populations, before 

sampling. The strata are mutually exclusive: each element belonging to the population 

is assigned to only one stratum. The strata are also collectively exhaustive: no 

population element is excluded. 

Thus, in the Stratified Sampling technique, the region of interest is split into 

K  disjoint subset, the so-called strata: 

 

ZZ
K

k

k 



1

         (6) 

 

where Z is the whole region corresponding to the population and 



K  is the number of 

the strata. Moreover, on the basis of the stratification criterion, i.e. the age group or 

the single age category, each sub-population (stratum) comprises kN observations (the 

size of the thk stratum), where the size of the global population N is given by the 

following expression: 

 





K

k

KNN
1

 . 

 

The next step is to draw a random sample from each stratum. Samples are selected 

independently from each stratum. Generally, when the sample is a simple random 

sample, it is referred to as stratified random sampling. Instead, we propose for each 

stratum a bootstrap simulation algorithm. The bootstrap method provides answers to a 

large class of statistical inference problems without making stringent structural 

assumptions on the underlying random process generating the data. From a theoretical 

standpoint, since its introduction by Efron and Tibshirani (1979), the bootstrap has 

been applied to a number of statistical problems, including many standard ones, where 

it has outperformed the existing methodology, as well as to many complex problems 

where conventional approaches have failed to provide satisfactory answers. 

Furthermore, we note that the basic bootstrap does not apply equally effectively to 

every type of random process. 

 Firstly the question is to determine the bootstrap sample size from the 
thk stratum kn , where 

 





K

k

k nn
1

 

and n  is the total sample size. There are a number of different allocation schemes that 

can be used, as for instance the equal allocation, the proportional allocation, the 

optimal allocation (Hess et al. 1966). We adopt proportional allocation, where the size 

of the bootstrap samples drawn from each stratum is taken in proportion to the stratum 

size. In other words, the following expression defines the thk  stratum weight as  

 

 
n

n

N

N
W kK

k  . 
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According to the proportional allocation scheme, the sample is allocated 

proportionally to the stratum weights, so that 

 



Wk 
Nk

N
 

        

and using kW , the size of the sample from thk stratum is the following: 

 



nk Wkn 

 

and combining the previous formulae, we have: 
 



nk

n


Nk

N
. 

 

Consider a rectangular mortality data array (xi,dx,t) comprising the numbers of 

deaths, dx,t, modelled as independent Poisson responses in combination with the log-

bilinear Lee Carter structure. 

We consider the “natural” stratification of the dataset: strata per single ages 

are considered. 

From each cell within each k-th stratum, we independently generate samples 

with size nk from the Poisson distribution.  For each stratum, B bootstrap frames are 

generated, drawing from the samples obtained in the previous step. We fit the log-

bilinear structure for obtaining the model parameter vector 



b  x
b

,x
b

,kt
b


 


 for each 

frames and then the kt ‘s are then projected on the basis of the re-estimated ARIMA 

model (D’Amato et al. 2010). Note that we do not select a new ARIMA model, 

instead we retain the model that was selected on the basis of the original data.                  

The estimate for the total sample mean E(yss) is defined using the stratified 

formula as follows: 

 



E yss  Wk y k
k1

K

         (7) 

 

where ky  is the sample mean of  the thk stratum. Its variance is given by: 

 



Var y SS  W
k
2Var

k1

K

 y k        (8) 

 

 The stratified sampling method is mainly used to reduce population 

heterogeneity. In particular, stratification means division into groups or strata, where 

the strata should be formed so that each stratum is as homogeneous as possible. The 

number of groups (strata) to be considered is determined by the characteristics of the 

population, for example we can consider strata per age groups. In this way, by 

splitting the population into homogeneous strata, the procedure under consideration 

ensures greater accuracy, because of the decrease in the sample variance (D’Amato et 

al. 2010).  

Stratification will achieve greater precision provided that the strata have been 

chosen so that members of the same stratum are as similar as possible in respect of the 



 9 

characteristic of interest.  Thus, the bigger the differences between the strata, the 

greater the gain in precision. 

Furthermore, the results from each stratum may be of intrinsic interest and can 

be analysed separately. The proposed technique applied to Poisson Lee Carter 

simulations allows us to obtain more reliable mortality projections, as shown in 

D’Amato et al. (2009b). 

 

§4. Residuals analysis comparison. 

For the validation problem of our proposed SSP method, we have used the 

classical tools adopted in actuarial science. Dealing with an approach for projecting 

future mortality trends, we refer to the prevailing literature in this field (Pitacco et al. 

2009). In particular, in order to assess the effectiveness of a demographic model, 

detailed residual analyses have been conducted, pointing out that none of the models 

considered in the main literature performs well in all sets of tests, and no model 

performs consistently better than the others (Dowd et al. 2010). 

In our case, at the model fitting stage, diagnostic checks on the quality of the 

fit are accomplished as regards the three different IP, SP, SSP methods. 

The goodness of fit is checked by computing and monitoring the residuals: 

 

xt

xtxt

d

dd

ˆ

ˆ

 
 

where 

 

 txxxtxt ked  ˆˆexpˆ 
 

 

In the following three figures we show the results of the graphical analysis of 

the residuals based on the dataset referred to the Italian male population death rates 

collected in the period 1950-2006  

 

Figure 1. Residuals for Italian male, IP method, age x=0,1,…,100 
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Figure 2. Residuals for Italian male, SP method, age x=0,1,…,100 
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Figure 3. Residuals for Italian male, SSP method, age x=0,1,…,100 
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In particular, the residuals are displayed with the help of these so-called “heat” 

maps, as a function of both age and calendar time. Looking at the graphical findings, 

we discover no systematic structure in terms of the residuals in the first and third 

maps, which ensures that the time trends have been appropriately captured by the IP 

and the SSP. On the other hand, the second map indicates a pattern in the residuals 

around the age interval 20-40 between years 1990 and 1998. In particular, a clustering 

of negative residuals is shown around this interval. Further, we note, in each figure a 

moderate cohort effect for different generations. We also note that the residuals are 

less dispersed in the SSP case.   

 

§5. Numerical Examples. 

5.1 The case of a pension annuity portfolio. 

The first numerical application that we propose concerns the funding ratio values 

calculated as in formula (1) for a portfolio of deferred annuity contracts under specific 

demographic and financial assumptions, with particular attention to the values 

emerging in the case of the SSP. 

This application refers to a portfolio of c=1000 deferred annuity contracts 

issued at age x=30 with anticipated premiums paid during the accumulation period, 

extending from the issue time to age 65, and anticipated constant instalments R=100 

paid from age 65 until the insured dies. As regards the demographic scenario, the 

Poisson Lee Carter model is considered according to the three different approaches 

for forecasting mortality rates: the Iterative Procedure (IP) proposed by Renshaw & 

Haberman (2003c) to optimise the Poisson likelihood through the associated 

0.44705 
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0.33880 

0.27152 

-0.29779 

-0.73114 

-0.83183 

0.01104 

0.04253 

0.02626 
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0.03461 

0.05425 

0.00869 
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deviance; the semi-parametric bootstrap (Brouhns et al. 2005) which we will refer to 

as the Standard Procedure (SP) and the Stratified Sampling Bootstrap (SSP), as 

proposed in §3. 

The dataset that we refer to for estimating the survival probabilities is the 

Italian male population death rates collected in the period 1950-2006. 

For the financial markets assumptions, we adopt the interest rate structure 

based on the Heath, Jarrow and Morton model (HJM, from here on – Heath et al. 

1992). The HJM model describes the dynamics of instantaneous forward-rates which 

are wholly specified through their instantaneous volatility structures modelled as 

follows: 

 



df t,T  t,T , f t,T  dt t,T , f t,T  dW t ,

f 0,T  f W 0,T 

     (9) 

  

where: 

 



f W 0,T  is the instantaneous-forward curve observed at time 0t  in the market 

 

 NWWWW ,...,, 21  is an N-dimensional Brownian motion 

 

        TtTtTtTt N ,,...,,,,, 21    is a vector of adapted processes for 



 t,T  . 
 

In particular, the simulation experiment has been based on a panel data set 

referring to EURIBOR and EURIRS over the period January 2002 - March 2009 

related to different maturities  (0-year, 1 year, 3-year, 5-year, 10-year). For each of 

these, the corresponding implicit forward rates curves are calculated. In the rich 

family of HJM term structure models, where the choice of the volatility structure 

specifies a particular model, it is important to select a model that best describes the 

particular data set.  

On the basis of the principal components analysis (PCA), as in Jarrow (1996), 

Rebonato (1998), Willmott (1998) and James and Weber (2000), the primary sources 

of randomness in the forward-rate curve are random changes in the slope of the curve 

followed by random twists in the curve and the curvature of the yield curve. When 

these forward rates are discretized by an Euler scheme, the forward rate equation for a 

three-factor HJM model is as follows: 

 

             ijiji

j

jiiiii tWtWTtttTtTtfTtf
~~

,,,
~

,
~

1

3

1

11  



 

                             
Ni ,...,1,0  

 

where 



˜ f ti ,T  is the value of the approximation of 



f ti ,T  at the discretization time ti. 

At time ti the drift and the volatility functions of the forward rate are 



 ti ,T  and 



 ti ,T , respectively. Under the equivalent martingale measure 



˜ W j ti  is a Wiener 

process. 
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The resulting model can then be used by practitioners, in their calibration 

procedures. Among the different methods for estimating the volatility parameters, the 

maximum likelihood estimator has favourable asymptotic properties as shown in Bhar 

et al. (2002). Under the selected three-factor HJM models, for the different maturities 

under consideration, the forward rates are simulated. In particular, we perform 10,000 

Monte Carlo simulations, by using the previously selected model, with the starting 

values being the estimated volatilities. The results from the procedure are explained in 

5.2. 

In this framework, for the specific age at issue x=30, the funding ratio has 

been calculated at five different times of valuation (t=5, 20, 35, 40, 45) with the aim 

of providing funding ratio values during the accumulation period (0<t<35), exactly at 

the retirement date (t=35) and during the annuitization period (t>35). 

Table 1 shows the premium amounts for the different mortality forecasting 

methods, calculated using a constant interest rate of 4%: 

 

 
Table 1. Premium amounts: x=30, fixed rate 4%. 

Survival Approach Premium 

SP 35.83861 

IP 36.18761 

SSP 37.35852 

 

In Table 2 and in Figure 4, we present the funding ratios calculated according 

to the three different approaches to modelling survival rates and valued at the five 

selected times, respectively reported in terms of their numerical values and as 

histograms. 

 

 
Table 2. Funding Ratio: x=30, interest rates HJM 

Funding Ratio 
Survival Approach Valuation Time 

 t=5 t=20 t=35 t=40 t=45 

SP 1.1347 1.2757 1.4515 1.6330 1.7936 

IP 1.2214 1.3993 1.5538 1.6540 1.8182 

SSP 1.2330 1.3879 1.5775 1.6646 1.8616 
 

 

The values in Table 2 follow an increasing trend when the time of valuation 

increases, for each survival modelling approach. For each time of valuation, the 

funding ratio takes higher values as we move from the Standard Procedure to the 

Iterative one and finally to the Stratified Sampling Bootstrap. 

In Table 3, we report the changes in the funding ratios with respect to the 

Standard Procedure in percentage terms. 

 
Table 3. % change in funding ratio at time t relative to the SP approach 

Survival approach t=5 t=20 t=35 t=40 t=45 

IP 7.64 9.69 7.05 1.29 1.37 

SSP 8.66 8.80 8.68 1.94 3.79 
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Figure 4. Funding Ratio: x=30, Poisson Lee Carter with three  

different forecasting method, t=5, 20, 35, 40, 45 

 
 

The plots reported in Figures 5 and 6 represent an example of the values of the 

assets and liabilities calculated at the retirement age x=65 corresponding to the 

valuation time t=35: 

 

 

 

 

 

 

 

 

 

 
Figure 5. Asset in t=35, Poisson Lee Carter with three different forecasting method 

 
 

  
                   Figure 6. Liabilities in t=35, Poisson Lee Carter with three different forecasting method 
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Figures 5 and 6 clearly show how the SSP produces higher values for assets and 

liabilities with respect to the other two methods. 

 We next extend the analysis by considering the model risk arising from the 

choice of the survival function in the financial valuations. As in Di Lorenzo & Sibillo 

(2002), we measure the effect of this risk component arising from the choice of the 

“right model” to be used as a random variable assuming different forms (in this case 

three: IP, SP, SSP) with probabilities based on the subjective reliability that the 

insurer assigns to each of them on the basis of their own individual performance. We 

calculate the Demographic Model Risk Measure (DMRM) quantifying the impact of 

the demographic model risk on the value Ft of the funding ratio in t, by means of the 

following equation (Coppola et al. 2007): 

 



DMRM  Var E Ft |Kt   
 

in which the entity in square brackets is conditioned on the choice of the survival 

model. The DMRM value is to be interpreted as a standard deviation estimated in a 

framework of stochastic interest rates, whose effects have been averaged out. 

As an example of its application, the DMRM values are now calculated in the 

case of the funding ratios of the portfolio of pension annuities under consideration. 

Thus, based on the insurer’s experience, we propose (taking also into account the 

results of the validation test carried out on the three procedures) assigning the 

following set of three probabilities 0.6, 0.3 and 0.1 to the choice of respectively SSP, 

IP and SP and proceed to the calculation of the DMRM at the five valuation times 

(Table 4). 

 

 
     Table 4. DMRM: an example of application with probabilities 0.6, 0.3 and 0.1 

    to choose respectively SSP, IP and SP. 
t=5 t=20 t=35 t=40 t=45 

4.7% 5.3% 6% 3% 2.5% 

 

Table 4 shows that the magnitude of the risk connected to the choice of the 

demographic model (measured relative to the funding ratios) increases up to age 65 

(t=35) and then decreases, reaching lower values for higher values of t (see Di 

Lorenzo & Sibillo (2002) for a discussion on the trend in this risk measure as a 

function of valuation time and age at issue). 

 

5.2 The case of a Guaranteed Annuity Option 

€ 0,90 € 0,95 € 1,00 € 1,05 € 1,10 

SP 

IP 

SSP 

Liabilities in millions 
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In this section, we extend the analysis using the different survival approaches to more 

complex annuity contracts, involving embedded options. 

There are several common types of pension contracts in the market, that offer 

a convenient way to convert part or all of an individual’s pension savings into a 

regular income stream in retirement. Here, we consider an example of a complex 

contract which has become very popular in Europe and US, the so-called guaranteed 

annuity option (GAO). The GAO standard contract is designed as follows: at time 

0t  the policyholder agrees to pay a single premium GAOU  for an insurance policy 

maturing at T . The single premium payment assures a guaranteed benefit TB  at a 

specified age reached at T, which, in this application, is the retirement age 65. The 

guaranteed benefit may be: 

-  a cash payment, corresponding to the value of the fund at time T which arises from 

investing a part of the premium received at time 0 in a money market or other type of 

account; or 

- an annuity at a guaranteed rate g  payable throughout the policyholder’s remaining 

lifetime.  

At time T, a rational policyholder will exercise the option if this is profitable in 

terms of the annuity rates prevailing in the market at that time. This means that the 

choice will be made after a comparison between the market annuity rates and the 

guaranteed rate g. 

The literature concerning the GAO pricing has developed in several directions. 

For an overview of the GAO valuation methodology that has been proposed, see 

Bacinello & Ortu (1993), Bacinello (2001), Bacinello & Persson (2002), Ballotta & 

Haberman (2003, 2006) and Grasselli & Silla (2009).  

As this wide literature shows, the valuation of the GAO is crucial. Its 

underestimation has caused many solvency problems to life insurance companies (e.g. 

the failure of Equitable Life in the U.K.): the reductions in market interest rates and 

the unanticipated decreasing trend in mortality rates have increased the value of the 

guarantee relative to the cash benefit. 

As with other long-term products, GAO’s are significantly exposed to 

unanticipated changes over time in the mortality rates of the reference population and 

in interest rates. In this respect, the assessment of the fair value of the GAO depends 

on having available suitable models for longevity risk and for the dynamics of the 

term structure of interest rates. 

In this section, we calculate the funding ratio values as in formula (1) for a 

GAO contract. The application is referred to a policy issued at age x=30 with a single 

premium GAOU  paid at 0t and anticipated constant instalments R=100 paid from 

age x=65 until the insured dies, if the insured buys the annuity, or otherwise the 

market value of the fund accumulated from time 0 to time 35, paid at age 65. As 

regards the demographic scenario, we consider the Poisson Lee Carter model 

according to the three abovementioned approaches. 

The strong dependency of the value of the option at time T on the comparison 

between the market interest rates at that time and the guaranteed annuity rate means 

that it is particularly interesting to study the funding ratios in more than one interest 

rate stochastic scenario. The application developed in this section provides for three 

different hypotheses for describing the evolution in time of the term structure of 

interest rates. We will consider the Vasicek model, the Heath, Jarrow and Morton 

model (HJM) and the Hull and White model (HW). This approach will allow us to 

observe the differences in the funding ratio behaviour arising from the use of a model 
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that is not arbitrage free (Vasicek), in comparison with the arbitrage free ones (HJM 

and HW), with all calibrated to the current structure of interest rates. 

In the ensuing paragraphs, we briefly recall the stochastic differential 

equations underpinning the three interest rate models, leaving the reader to refer to the 

literature for an in-depth analysis. 

The Vasicek model is one of the most widely used models for bond pricing, 

the SDE being the following: 

 

                      (10) 

 

 

where  tW  is a standard Wiener process and   , and  are positive constants. In 

particular,  represents the force bringing the process back towards its long term 

mean   and 
2  is the constant instantaneous variance, which determines fluctuations 

around the level  . In this application the Vasicek rates are obtained from a Monte 

Carlo simulation.  

The HW version implemented in the paper is governed by the following SDE: 

 

  dr t ar dt dz                   (11) 

 

where  t  is chosen to match the current term structure of interest rates and z is a 

Wiener process. Although for the HW model in equation (11), analytical solutions for 

discount bonds and plain-vanilla options exist, here the model has been implemented 

on the basis of simulation algorithms. In fact, it is sometimes necessary to represent 

term structure models by numerical approximations. This is the case if we have to 

deal with path-dependency or more complex payoff functions. In particular, a tree-

building procedure is computationally effective for the type of HW model (Hull & 

White 1994a, 1994b) represented in equation (11). For the numerical procedures we 

refer to the efficient methods proposed by Kijima & Nagayama (1994). The HJM 

model has been introduced in section 5.1. 

The simulation algorithms have been implemented on the basis of a panel of 

EURIBOR and EURIRS as at December 2009. The following figures show the 

evolution of implicit forward rates on the basis of the term structure of spot interest 

rates: 
 

 

Figure 7.  The forward curve of interest rates, Euribor and Eurirs 2009 
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Figures 8, 9 and 10 show the projected evolution of the interest rates by means of 

simulation algorithms applied to the three models being considered. 
 

 

Figure 8. Simulated HJM interest rate curve 
Evolution of forward rates, HJM
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In particular, in figure 8, we can visualize the forward curves related to 

different forward periods (0-year forward that corresponds to the initial forward 

curve, 1 year forward, 3-year forward, 5-year forward, 10-year forward). 

Figures 9 and 10 show the evolution of the yield curves respectively for the 

HW  and the Vasicek models. 
  

 

     Figure 9. Simulated HW interest rates curve 
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  Figure 10. Simulated Vasicek interest rates curve 
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The above figures 8, 9 and 10 refer to the evolution of forward rates as regards the 

different interest rate models, and we have decided to represent the obtained forward 

curves in respect of the same future time horizon: 3 years. The time-step length is a 

user-configurable run-time parameter that remains constant throughout the simulation 

model run. Unfortunately, as is well known, the parameter estimates obtained are 

rather unstable, when changing the time-step length.  

As previously mentioned, the actuarial premium collected at time 0 by the 

insurer is the amount involved in the accumulation process for constituting the fund at 

the maturity date T. 

In this respect, we consider the results for the different GAO prices obtained 

on the basis of the different stochastic models for interest rates and different 

approaches to estimating the survival probabilities: these are shown in Table 5. In this 

application, we have assumed that the amount accumulated for 35 years is a part of 

the premium UGAO that corresponds to the actuarial premium of the life annuity 

provided by the contract.  

  
Table 5. Price of the GAO 

 SP IP SSP 

HJM 89.58 105.88 167.75 

HW 86.00 132.29 88.55 

Vasicek 43.27 52.59 92.48 

 

 

We observe a regular increasing trend of the prices in Table 5 when the projection 

level of the survival scenario increases, confirming the behaviour shown in Ballotta & 

Haberman (2003), except for the cell HW - IP. The values obtained when assuming a 

Vasicek model for interest rates are markedly lower than those one coming from the 

two market consistent models, HW and HJM, except for the case where the survival 

assumption is not the strongest one (SSP).  

As in the case of the traditional deferred annuity treated in section 5.1, here we 

calculate the funding ratios in the GAO case. The times of valuation are chosen to be 

in the interval preceding the option maturity T. Tables 6, 7, 8 show the funding ratios 

calculated at time t=5, 20, 30 and 35, all belonging to the accumulation period and 

preceding the option time.  

 
 

                 Table 6. Funding Ratio: x=30, HJM interest rates 

 Valuation Time 

Survival Approach t=5 t=20 t=30 t=35 

IP 0,7858 1,2777 1,0616 0,8968 

SP 0,7930 1,2992 1,0772 0,9097 

SSP 0,7940 1,2218 1,0091 0,8521 
 

 

 

Table 7. Funding Ratio: x=30, HW interest rates 

 Valuation Time 

Survival Approach t=5 t=20 t=30 t=35 

IP 0,2929 0,7015 0,7319 0,7501 

SP 0,3021 0,8149 0,9884 1,1578 

SSP 0,3702 0,8945 1,0160 1,8663 
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                 Table 8. Funding Ratio: x=30, Vasicek interest rates 

 Valuation Time 

Survival Approach t=5 t=20 t=30 t=35 

IP 0,3182 0,6473 0,5700 0,7129 

SP 0,7878 0,9254 0,7407 0,7018 

SSP 0,8891 1,1475 0,9601 1,1489 

 

 

Tables 6, 7 and 8 show that the funding ratio is more sensitive to the choice of 

interest rate model, than to the choice of survival model, this being particularly 

notbale for the Vasicek case. This feature is confirmed by the DMRM calculated in 

the case of the GAO in Table 9 where we have fixed the interest rate model and varied 

the survival model. In this case, as in the preceding example, we assign probabilities 

0.6, 0.3 and 0.1 for choosing respectively the SSP, the IP or the SP procedure.  

 
Table 9. DMRM on Funding Ratio: x=30 

 Valuation Time 

Interest rate model t=5 t=20 t=30 t=35 

HJM 0.37% 3.06% 2.8% 2.37% 

HW 3.68% 8.64% 12.86% 50.93% 

Vasicek 25.67% 22.43% 17.65% 21.50% 

 

 

The demographic model risk is seen to be higher in the Vasicek case and the 

lowest values are connected to the HJM model for interest rates. The behaviour of the 

DMRM is generally less regular than for the pension annuity example of section 5.1. 

The regular increasing trend is apparent in the HW case, with a very high value 

corresponding to t=35, and less so in the HJM case. 

 

 

Conclusions 

The paper deals with the accuracy in mortality projection procedures based on 

the Lee Carter model. With this aim in mind, we have described the survival 

dynamics taking into account three different approaches, namely the Iterative 

Procedure proposed by Renshaw and Haberman, the semi-parametric bootstrap to 

which we have referred as Standard Procedure, proposed by Brouhns et al. and the 

proposed procedure named Stratified Sampling Bootstrap. We emphasize that the 

bootstrap that we propose is quite different from the first version introduced by Efron 

and Tibshirani (1979). From its genesis until now, different types of bootstrap 

methods have been applied effectively and we should look at those situations where 

these methods have run into problems and point out possible remedies, if there is one 

that is known. The basic principle underlying the bootstrap method in its various 

settings and different forms is the following: it attempts to recreate the relation 

between the  population and the sample, by considering the sample as an epitome of 

the underlying population and by re-sampling from it to generate the bootstrap 

sample. 
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Noting that there is no unique way of re-sampling, we are looking, in terms of 

future work, at the further development of our algorithm based on the block bootstrap 

in the context of dependency (Kunsch 1989).  

In order to investigate the SSP performance in comparison with the other two 

methods, we have used the classical tools adopted in actuarial science.  The validation 

test proposed in the paper has shown the good performance of the SSP approach. 

Ongoing studies are focused on setting out a framework for evaluating the adequacy 

of the proposed method, with the initial tests suggesting that the SSP performs better 

than the other methods.  Further in-depth analyses will constitute the subject of a 

future paper. We have used the three procedures in order to quantify the impact of 

each of them on the funding ratio index, which we have chosen as it is a good 

indicator of the financial solvency of an insurance portfolio. The funding ratio 

indicates the degree to which pension liabilities are covered by assets, in other words 

it measures the relative size of the pension assets compared to the pension liabilities. 

If the funding ratio is greater than 100%, then the pension fund is overfunded, 

otherwise it is underfunded or exactly fully funded if it is respectively less than or 

equal to 100%. It follows that, within the context of an internal model setting, the 

information from the values of the funding ratio is very valuable for an insurance 

company seeking to measure its financial strength. 

The effect that different survival projection approaches have on the funding 

ratio values is studied in the applications proposed in the last section of the paper. In 

interpreting the results, we note that the projected survival rates simultaneously affect 

the values of the assets and the liabilities. Each of these values sums up the future 

cash flows underpinning the assets and liabilities, as evaluated at the selected time. 

The first illustrative numerical example considers a homogeneous portfolio of 

traditional pension annuities with anticipated premiums paid during the accumulation 

period, extending from the issue time to the retirement age, and anticipated constant 

instalments, paid from the date of retirement until the time of the policyholder’s death. 

The financial scenario is described by the HJM interest rate model.  

Making use of forecasting procedures taking into account the longevity trend, 

i.e. the SP, IP and SSP, we note that the funding ratios are bigger than 1, showing an 

overfunding situation in the case in study, which improves as time increases. 

The Demographic Model Risk Measure shows that the funding ratio is more 

sensitive to the randomness of the choice of the survival model during the 

accumulation period, reaching its highest sensitivity at ages around age 65, 

confirming the results obtained in Di Lorenzo & Sibillo (2002). The DMRM values 

appear less sensitive to the model choice at older ages. 

The second example is related to the Guaranteed Annuity Contract (GAO). In 

this case, the option at time T strongly depends on the interest rate model chosen to 

describe the behaviour of the financial framework. We study the funding ratios in 

three different financial hypotheses: the Hull and White model, the HJM model and 

the Vasicek model. Here, the situation is different from the first example, involving 

the traditional pension annuity. In the HJM case, the funding ratio increases until 

t=20, that is insured’s age 40, and then decreases, taking values smaller than 1 at the 

option maturity date. In the HW case, the funding ratio is almost always smaller than 

1, assuming highest values at the maturity date, where in some cases (SP and SSP) is 

bigger than 1. The trend in the Vasicek case is less clear. It is evident that, in the HJM 

case, the funding ratios are not so sensitive to the choice of the survival projection 

procedure, but the behaviour of the funding ratio is different in the HW case and 

particularly in the Vasicek case. The numbers obtained for the DMRM confirm these 
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observations, showing the highest values in the Vasicek case and the lowest in the 

HJM case. 
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