IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Solomon, J. A., May, K. A. & Tyler, C. W. (2016). Inefficiency of orientation
averaging: evidence for hybrid serial/parallel temporal integration. Journal of Vision, 16(1),
13. doi: 10.1167/16.1.13

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13014/

Link to published version: https://doi.org/10.1167/16.1.13

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Journal of Vision (2016) 16(1):13, 1-7

Inefficiency of orientation averaging: Evidence for hybrid
serial/parallel temporal integration

Joshua A. Solomon
Keith A. May

Christopher W. Tyler

Intuition suggests that increased viewing time should
allow for the accumulation of more visual information, but
scant support for this idea has been found in studies of
voluntary averaging, where observers are asked to make
decisions based on perceived average size. In this paper
we examine the dynamics of information accrual in an
orientation-averaging task. With orientation (unlike
intensive dimensions such as size), it is relatively safe to
use an item’s physical value as an approximation for its
average perceived value. We displayed arrays containing
eight iso-eccentric Gabor patterns, and asked six trained
psychophysical observers to compare their average
orientation with that of probe stimuli that were visible
before, during, or only after the presentation of the Gabor
array. From the relationship between orientation variance
and human performance, we obtained estimates of
effective set size, i.e., the number of items that an ideal
observer would need to assess in order to estimate
average orientation as well as our human observers did.
We found that display duration had only a modest
influence on effective set size. It rose from an average of
~2 for 0.1-s displays to an average of ~3 for 3.3-s displays.
These results suggest that the visual computation is
neither purely serial nor purely parallel. Computations of
this nature can be made with a hybrid process that takes a
series of subsamples of a few elements at a time.

Attneave (1954) noted, “When some portion of the
visual field contains a quantity of information grossly
in excess of the observer’s perceptual capacity, he treats
those components of information ... as a statistician
treats ‘error variance,” averaging out particulars and
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abstracting certain statistical homogeneities” (p. 188).
The goal of our research has been a better under-
standing of how visual statistics such as this are utilized
in visual estimation, regardless of whether perceptual
capacity is exceeded.

In this paper, we focus on “voluntary averaging”
(Dakin, Bex, Cass, & Watt, 2009), a statistical
summary of visual input that is distinct from crowding,
in which the computation of textural statistics may be
compulsory (Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001). Specifically, we ask whether observers
have access to textural or quasi-textural mechanisms
that can process the feature content of multiple items in
parallel, or whether observers must cognitively com-
bine serial estimates from individual items in order to
attain an estimate for the desired statistic (in our case,
the average orientation in an array of Gabor patterns).

To quantify how well summary statistics like average
orientation are calculated, we have adopted an
Equivalent Noise (Nagaraja, 1964; Pelli, 1990; Dakin,
2001) framework for collecting and analyzing psycho-
physical data. Within this framework, there are two
distinct limits on visual performance. The first is
inefficiency, whereby observers do not utilize informa-
tion relevant to their task. The second is internal noise,
which decreases the fidelity with which stimuli are
represented in the visual system. With an appropriate
distribution, the addition of external noise (i.e., random
perturbations of stimulus parameters) can mimic the
effects of internal noise. For that reason, such external
noise is known as “equivalent” noise when its variance
matches that of the internal noise. Without any
external noise, it is impossible to know whether
performance is limited by inefficiency or internal noise.
However, when the external noise is much greater than
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Experiment Paradigm Display duration Set size Effective set size
Dakin (2001) Classification w.r.t. vertical 0.10 s 4<N<1024 M~+N

Dakin et al. (2009) “Baseline” Classification w.r.t. vertical 0.15s N=6 3<M<L4

Solomon (2010) Experiments 2 and 4 2-temporal-interval forced-choice  0.15 s, witha 1.5-sISI 1< N < 8 M=min{N,x}, 1 < x <3
Allard & Cavanagh (2012) Classification w.r.t. vertical 0.20 s N=24 15<M<28

Tibber et al. (2015) Healthy control subjects  Classification w.r.t. vertical 0.40 s N = 100 M = 2, on average

Table 1. Voluntary averaging of orientation.

the internal noise, the internal noise has a negligible
effect, and efficiency can be computed from the ratio of
human performance to that of an ideal observer.'
Efficiency can be denoted M/N, where N represents the
number of items on display and M represents the
effective set size, i.e., the number of these items an
otherwise-ideal observer would need to examine in
order to perform as well as a human observer in high
levels of external noise. The relationship between
external noise, internal noise, effective set size, and
performance is described by the noisy, inefficient
observer model, a mathematical expression for which is
provided at the beginning of the Results section.

Of course, the issue of parallel versus serial
processing has been explored ad nauseam in the
literature on visual search. After several decades and
hundreds of papers, the field is now confident that some
parallel processing is possible, but some tasks also
require a serial deployment of attention from one
group of items to another (e.g., Wolfe & Horowitz,
2004). If those parallel processes had fixed efficiencies,
then it might be possible to infer the dynamics of
attention from conventional measures, such as reaction
time versus set size. However, there really is no reason
to think that efficiency (or the effective set size) remains
invariant with the number of items in a typical search
display.”

Equivalent-noise analysis is a particularly useful tool
with which to segregate the possibilities of parallel and
serial mechanisms because it provides mathematical
constraints on efficiency. Quite simply, if voluntary
averaging were mediated by a purely serial process, i.e.,
one that estimates the orientations of individual items,
one at a time, then (a) the effective set size should grow
with the time available for processing the stimulus, and
(b) it should be possible to prevent the serial process
from having sufficient time to estimate the properties of
more than one item in the array. The opposite of a
purely serial process is a purely parallel process, which
can estimate the orientations of multiple items, all at
the same time. If voluntary averaging were mediated by
such a process, then effective set size should remain
constant with duration.

In this paper, we concentrate on orientation aver-
aging, but the literature contains plenty of papers
discussing the efficiencies of psychophysical decisions
about such disparate visual features as luminance (e.g.,

Pelli, 1990), motion direction (Dakin, Mareschal, &
Bex, 2005), and dot-matrix regularity (Morgan, Mar-
eschal, Chubb, & Solomon, 2012). With some percep-
tual dimensions, there is a nonlinear mapping from the
stimulus to the internal representation, and this needs
to be modeled by a nonlinear transducer in the noisy,
inefficient observer model; an incorrect form of
transducer can lead to incorrect measures of efficiency.
The advantage of using orientation in the present study
is that, although we may not know exactly how
apparent orientation is related to physical orientation,
we can nonetheless expect that physically vertical things
appear close to vertical and physically horizontal things
appear close to horizontal. Thus, the psychophysical
function for orientation may stray a little from the
identity function (i.e., mapping every physical orienta-
tion to the identical apparent orientation), but it cannot
stray too far.

With Table 1, we have attempted to compile a
comprehensive list of the literature on voluntary
averaging of orientation, from which estimates of
effective set size are available. Dakin (2001) deserves
credit for the popularity of this quantity, which he
measured using both small and large arrays of Gabor
patterns. His results contain a fair degree of scatter, but
en masse, they suggested a relationship of the form M=
NP, where 0.5 < p < 0.6. Later studies using small set
sizes (N < 8) seem to have produced results consistent
with Dakin’s (M =~ 2-3), but the one later study that
used N =100 did not. Thus, Dakin’s original study
remains unique in its finding of large effective set sizes
(M > 4) for the voluntary averaging of orientation.

Marc Tibber (personal communication, December 4,
2014) suggested that practice might be necessary for
high efficiency in voluntary averaging tasks. Support
for this suggestion comes from comparing the methods
of Dakin (2001), in which each observer performed
more than 17,000 trials,’ to those of Tibber et al.
(2015), in which each observer completed a mere 150
orientation-averaging trials. We must stress, however,
that practice does not seem to be a sufficient criterion
for high efficiency, because Solomon (2010) describes
one professional psychophysicist who competed 2,000
trials, yet achieved an effective set size no greater than
1.

It seemed plausible that performance in Solomon’s
(2010) task may have been hampered by the two-
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Figure 1. Stimulus layout. Observers were shown eight Gabor
patterns of 3 cycles per degree in a ring of 1.7° radius around
fixation, with orientations drawn from a Wrapped Normal
distribution. The mean of the orientation distribution was
random, and its standard deviation was either 0 or 16°. The
central orientation probe was 6 cycles per degree.

interval forced-choice paradigm. In order to perform
above chance levels, observers had to remember the
average orientation of a briefly flashed Gabor array for
1.5 s, until the next Gabor array was flashed. In all of
the other experiments summarized in Table 1, observers
merely had to classify the average as clockwise or
anticlockwise of vertical. It has already been estab-
lished that the fidelity of memory for orientation decays
faster than that for texture, Vernier alignment,
contrast, spatial frequency, and the direction of motion
(Pasternak & Greenlee, 2005). If Solomon’s 1.5-s
interstimulus interval (IST) affected the precision with
which individual orientations could be remembered, it
also might have affected the efficiency of orientation
averaging.

Consequently, we decided to manipulate memory
load as well as display duration in our experiment. We
had observers compare an array of Gabor patterns (see
Figure 1) with the orientation of a different “probe”
Gabor at fixation, presented at different times relative
to the Gabor array in order to vary the memory load.
Observers reported whether the probe was clockwise or
anticlockwise of the mean across the circular array. The
dependent variable was the just-classifiable angle (as
clockwise or anticlockwise) between the array’s ex-
pected orientation and the probe. The independent
variables were the array’s exposure duration, and
whether the probe was displayed before, at the same
time, or after the array.

Hypotheses regarding the effect of stimulus duration
on efficiency were outlined previously. If voluntary
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averaging were mediated by a purely serial process,
then (a) efficiency should grow with the time available
for processing the stimulus, and (b) it might be possible
to prevent the serial process from having sufficient time
to estimate the properties of more than one item in the
array. The efficiency of a purely parallel process, on the
other hand, should remain constant with duration. As
for the other independent variable, we expected a
general facilitation of performance when probes were
exposed before the Gabor array (no memory load) and
a general reduction in performance when probes were
exposed after it (high memory load).

This experiment was approved by City University
London’s Senate Ethics panel, in conjunction with the
EPSRC project “The Efficiency of Visual Statistics”
(see Acknowledgments). All six observers (including
authors JAS and KAM) had extensive experience with
psychophysics. They were recruited from the Centre for
Applied Vision Research, and provided written consent
to participate in a noninvasive psychophysical experi-
ment.

Stimuli were generated and responses were collected
on a MacBook Pro computer. No attempt was made to
correct for its native gamma function. The Psychtool-
box (Brainard, 1997; Pelli, 1997) was used for stimulus
generation. Psychophysica (Watson & Solomon, 1997)
was used for data analysis. Both codes are available
upon request. Head positions were not restrained, but
observers were asked to maintain a comfortable
viewing distance (~0.65 m) for the duration of the
experiment.

Stimulus arrays were composed of eight items,
evenly distributed around an iso-eccentric circle (see
Figure 1). At the viewing distance of 0.65 m, the radius
of this circle subtended a visual angle of £=1.7 degrees
(making the center-to-center separation of Gabors 0.77
E) and there were 48 pixels per degree. Each item in the
array was a Gabor pattern. It was the product of a
sinusoidal luminance grating and a Gaussian blob. The
grating had a spatial frequency of 3 cycles per degree
and random spatial phase. The blob had a space
constant (i.e., standard deviation o) of 0.25 degree of
visual angle. Both grating and blob had maximum
contrast. Spatial orientations were selected at random
from a Wrapped Normal distribution with standard
deviation, og, either zero or 16°. The mean of this
distribution (henceforth referred to as the “expected
orientation”) was selected at random from a Uniform
distribution over all orientations.

Equivalent noise analyses require a minimum of two
measurements: performance in high levels of external
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Figure 2. Panel a shows equivalent noise (o¢) and panel b shows efficiency (M/N) versus display duration. Thin coloured lines illustrate
results from individual observers. Thick colored lines illustrate mean values across observers. The black line in panel b illustrates the
mean across observers and memory conditions. Error bars contain two standard errors of this mean.

noise and performance in low levels of (or zero)
external noise. The value of 16° was selected because it
promised to be larger than the standard deviation of
internal noise, yet small enough to avoid the problem
of orientation “wraparound” (Solomon, 2010).

The Gabor arrays remained visible for 0.1 s, 1.7 s, or
3.3 s. The probe Gabor appeared at the center of the
circular array, where the observers were fixating. Its
space constant was identical to that of the Gabors in
the eight-item array, but its spatial frequency was twice
as high. This choice was designed to discourage it from
perceptually grouping with the array. Observers
reported whether the probe was clockwise or anti-
clockwise of the array’s mean. The probe could appear
1.5 s before the array, it could appear at the same time
as the array, or it could appear 1.5 s after the array had
disappeared. It remained visible until the observer
responded.

The angle (Ju|) between the probe and the expected
orientation of the eight-item array was controlled by
a QUEST staircase (Watson & Pelli, 1983) that was
unique to each particular combination of display
duration (0.1 s, 1.7 s, or 3.3 s), memory condition
(probe before, at the same time as, or after the array),
and level of external noise (6 =0 or oG = 16°).* The
probe was clockwise or anticlockwise with equal
probability (the observer’s task was to decide which),
and never greater than 37° from the array’s expected
mean. The staircases converged to 81%-correct
thresholds. Different levels of external noise were
interleaved within each block of trials, but display
duration and memory condition were fixed, so as not
to unduly handicap observers with uncertainty
regarding stimulus dynamics. Each observer com-
pleted a minimum of either two blocks of 132 trials or
three blocks of 88 trials in each of the nine
conditions. (JAS and KAM completed a few more.
QUEST was re-initialized at the beginning of each

block.) Consequently, Figure 2 summarizes more
than 14,256 trials.

Our primary interest was in the efficiencies with
which observers could discriminate clockwise from
anticlockwise probes. To estimate those efficiencies we
fit a simplified version of the noisy, inefficient observer
model containing only early noise (Dakin, 2001;
Solomon, 2010). Efficiency estimates from an alter-
native version, containing only late noise, would have
been identical.” Specifically, we found the values of o
and M that maximized the joint likelihood of
responses when the probability with which an
observer responds “anticlockwise” is given by the
formula:

Pr(“ACW”) =9+ (1 —y—9)®

U
(o + aé)/M] ’
(1)
where ® denotes the standard normal cumulative
distribution function. We assumed that lapse rates
with anticlockwise and clockwise probes would be
similar, and adopted equal values of y and o for each
observer, derived from the “easy” trials described in
Footnote 4. Specifically, these values were 0.01 for
observers JAS, JH, and TMP; and 0.04 for observers
KAM, AJ, and CDC.

Remember that M represents the effective set size,
1.e., the number of items an ideal observer would need
to measure in order to estimate average orientations as
well as our human observers. Consequently M < N,
where N denotes the number of items in each set. The
only further constraint placed on the model was that M
> 1. When range effects, finger errors, invisible (or
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unattended) stimuli, and perverse response strategies
are eliminated, discrimination must be based on at least
one item.

The threshold from each block of trials is illustrated
in Supplementary Figure S1. To determine whether
there was any effect of practice, thresholds were
subjected to a two-way analysis of variance. There were
108 levels of the first factor, one for each unique
combination of observer, display duration, memory
condition, and external noise. The second factor was
block number. Unsurprisingly, the main effect of the
first factor was huge. It yielded an F ratio of F(1, 107)=
66.6, p < 107?°. The main effect of block number was
nonsignificant, (1, 3) =0.4, p > 0.75. In other words,
we found no effect of practice in our experiment.
Maximum-likelihood fits of the noisy, inefficient
observer model (Equation 1) appear in Figure 2. Mean
values across observers (thick lines) indicate that
equivalent noise decreases and effective set size
increases as the array duration increases.

First, we confirmed that there were significant
individual differences between observers. This was
achieved by comparing a pair of nested models using
the generalized likelihood ratio test. The model with the
fewest parameters had 55 free parameters: 54 of these
set the early noise o for each combination of six
observers, three display durations, and three memory
conditions, and there was a further free parameter that
set the same effective set size M for each observer and
condition. Against this model, we compared the fit of a
60-parameter model, which again had 54 og parameters
but now had six M parameters, one for each observer.
Because they are nested, the model with more
parameters will always fit at least as well as the more-
restricted model. To determine whether the fit is
significantly better, we calculate the statistic, D, given

by
= 2In (Z) (2)

where L, is the likelihood of the best-fitting model with
more parameters, and L is the likelihood of the more
restricted model. If the model with more parameters is
no better (i.e., the null hypothesis i Is true), then D is
distributed approx1mately as the »* distribution with
degrees of freedom given by the difference between the
numbers of parameters in the two models (Mood,
Graybill, & Boes, 1974, pp. 440-441). Therefore, a y*
test indicates whether the less-restricted model is
significantly better. For the comparison between the
two models described previously, we have Xé) =12.5,p
= 0.0001, indicating that the six observers were not all
equally efficient. Graphically, this can be appreciated
by the scatter of thin lines in Figure 2b.

Taking the significantly better, 60-parameter, model
as our baseline, we then tested whether display
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duration or memory condition had a significant effect
by adding extra parameters to allow the efficiency to
vary with these conditions. The first of these less-
restricted models had 18 M parameters, one for each
combination of observer and display duration (giving
72 parameters in total) This model fit the data
significantly better (i 12) = 17.1, p =0.0006), indicating
that efficiency did in t(act increase with display duration
(black line in Figure 2b). The second of the less-
restricted models had 18 M parameters, one for each
combination of observer and memory condition (again
giving 72 parameters in total). This model did not fit
signiﬁcantly better than the 60-parameter baseline

(/ 12) = = 9.2, p=0.2), indicating that memory condition
did not mgmﬁcantly affect efficiency.

In the test of the effect of memory condition just
described, we forced efficiency to be constant with
respect to display duration for each observer. In a
further test of the effect of memory condition, we
allowed efficiency to vary with both observer and
display duration. The more-restricted model had 72
parameters (54 o parameters and 18 M parameters,
one for each combination of observer and display
condition), and the less-restricted model had 108
parameters (54 gg parameters and 54 M parameters,
i.e., each combination of observer, display duration
and memory condition had its own parameter for
noise and efficiency). The less-restricted model did
not fit significantly better (X (36) = =178, p=0. 999) Fits
of the 108-parameter model are 111ustrated in
Supplementary Figure S1. Constraints on the effec-
tive set-sizes are illustrated in Supplementary Figure
S2.

The results did not support the hypothesis of reduced
efficiency with increased memory load. At first glance,
this null result may seem hard to reconcile with
experiments on visual working memory (VWM,; e.g.,
Sims, Jacobs, & Knill, 2012), which utilize similar
stimuli. However, capacity limits typically become
manifest when VWM tasks require multiple display
items to be encoded. Even in our “high memory load”
condition, on the other hand, all observers needed to
remember was a single statistic: the average orientation.
Perhaps this is why we found that memory load did not
affect our estimates of efficiency.

The results did support serial and, to a limited
degree, parallel processes for orientation averaging. A
serial process is supported because efficiency increased
with stimulus duration. A parallel process is consistent
with effective set sizes greater than 1 at the shortest
duration, but there were no poststimulus masks in this
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experiment. It is conceivable, therefore, that 0.125 s
plus the duration of iconic memory (Sperling, 1960)
provided enough time for a serial mechanism to utilize
two items.

To appreciate how the visual system might compute
average orientation in a manner that is neither purely
serial nor purely parallel, consider the “Markovian
subsampler” described by Gorea, Belkoura, and
Solomon (2014). When information appears, at time ¢
=0, a subsample of maximum size m is selected and its
average value, the baseline fi;, is computed efficiently
but noisily. We assume that the value of each item in
the subsample is independently perturbed by the same
stochastic process. This process manifests as early
noise in fits of the noisy, inefficient observer model.
Size m is said to be a maximum because there may be
fewer items available in the display. Some 7 seconds
later, another subsample is selected, and its mean u is
computed with the same precision. A new baseline is
then formed from the sum i, = (1 — p>)ii; + pon. The
baseline continues to be updated every 7t seconds with
newly selected subsamples until, at time 7 = T, the
information disappears. For notational convenience
we define S to be the total number of selected
subsamples, i.e., S = |7/z|. The final value of the
baseline fi, = (1 — py)fi;_1 + psis 1s then perturbed by
another stochastic process, which manifests as late
noise in fits of the NIO.

If m =1, this Markovian subsampler will compute
average orientation in a purely serial manner. Purely
parallel computations require that m > 1 and all
subsamples must be identical. Regardless of the
manner in which subsamples are selected, the baseline
will be continually updated. Consequently a decrease in
the total equivalent noise is consistent with serial,
parallel, and hybrid versions of the Markovian
subsampler.

Although the finding of an effective set size of 2
allows us to be confident that the orientations of more
than one Gabor are considered in voluntary averaging,
it does not tell us how those orientations are measured
by the visual system. Parallel measurement of multiple
orientations may involve the same computations
thought to underlie local estimates of Gabor orienta-
tion (e.g., Graf, Kohn, Jazayeri, & Movshon, 2011).
However, it is conceivable that those computations can
be bypassed altogether by parallel-processing mecha-
nisms with input from multiple items.

There is some evidence that local orientation
estimates are combined under crowded conditions
(Parkes et al., 2001), but previous results suggest that
the efficiency of orientation averaging does not vary
with Gabor separation (Solomon, 2010). Why not? One
possibility is that the same mechanism is responsible for
computing the average orientation of crowded and
uncrowded Gabors. Averaging of crowded orientation
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signals may be compulsory (Parkes et al., 2001), simply
because input to this mechanism cannot be restricted to
arbitrarily small regions of the visual field. Regardless
whether orientation averaging is compulsory or vol-
untary, the current results strongly indicate that it is
not very efficient.

Keywords: orientation, efficiency, averaging
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efficiency are indeed less tenuous when these methods
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that uncued items are unprocessed only when the
separation is sufficient to eliminate crowding. This
precaution is rarely taken in studies of visual search.
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