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Abstract

Fault–tolerant architectures for software–based systems have been used in various practical

applications, including flight control systems for commercial airliners (e.g. AIRBUS A340,

A310) as part of an aircraft’s so–called fly–by–wire flight control system [1], the control

systems for autonomous spacecrafts (e.g. Cassini–Huygens Saturn orbiter and probe) [2],

rail interlocking systems [3] and nuclear reactor safety systems [4, 5]. The use of diverse,

independently developed, functionally equivalent software modules in a fault–tolerant con-

figuration has been advocated as a means of achieving highly reliable systems from relatively

less reliable system components [6, 7, 8, 9]. In this regard it had been postulated that [6]

“The independence of programming efforts will greatly reduce the probability of

identical software faults occurring in two or more versions of the program.”

Experimental evaluation demonstrated that despite the independent creation of such versions

positive failure correlation between the versions can be expected in practice [10, 11]. The

conceptual models of Eckhardt et al [12] and Littlewood et al [13], referred to as the EL

model and LM model respectively, were instrumental in pointing out sources of uncertainty

that determine both the size and sign of such failure correlation. In particular, there are two

important sources of uncertainty:

• The process of developing software: given sufficiently complex system requirements,

the particular software version that will be produced from such a process is not known

with certainty. Consequently, complete knowledge of what the failure behaviour of the

software will be is also unknown;

• The occurrence of demands during system operation: during system operation it may

not be certain which demand a system will receive next from the environment.

To explain failure correlation between multiple software versions the EL model introduced

the notion of difficulty : that is, given a demand that could occur during system operation

there is a chance that a given software development team will develop a software component

that fails when handling such a demand as part of the system. A demand with an associated

high probability of developed software failing to handle it correctly is considered to be a

“difficult” demand for a development team; a low probability of failure would suggest an

“easy” demand. In the EL model different development teams, even when isolated from

each other, are identical in how likely they are to make mistakes while developing their

respective software versions. Consequently, despite the teams possibly creating software

versions that fail on different demands, in developing their respective versions the teams

find the same demands easy, and the same demands difficult. The implication of this is the

versions developed by the teams do not fail independently; if one observes the failure of one

team’s version this could indicate that the version failed on a difficult demand, thus increasing

11
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one’s expectation that the second team’s version will also fail on that demand. Succinctly

put, due to correlated “difficulties” between the teams across the demands, “independently

developed software cannot be expected to fail independently”. The LM model takes this

idea a step further by illustrating, under rather general practical conditions, that negative

failure correlation is also possible; possible, because the teams may be sufficiently diverse in

which demands they find “difficult”. This in turn implies better reliability than would be

expected under naive assumptions of failure independence between software modules built

by the respective teams.

Although these models provide such insight they also pose questions yet to be answered.

Firstly, the thesis scrutinizes the related assumptions of independence and perfect isola-

tion, both of which lie at the heart of the models. In the models multiple software versions

are assumed to be developed by individual, perfectly isolated development teams result-

ing in the (probabilistic) conditionally independent development of the software. Both the

implications of these assumptions and the consequences of their relaxation are considered.

Certainly, the possibility of achieving “independence during software development” and the

effects thereof are important practical considerations. Indeed, the independent development

of the channels in a fault-tolerant, software–based system by perfectly isolated develop-

ment teams has been advocated as an ideal to strive for. Justification for this point of view

is that if the teams are perfectly isolated then they are independent in the decisions that

they make during development. Surely, this should have a positive effect on the joint failure

behaviour of the software modules that are ultimately developed, since there is no apparent

reason for the teams to necessarily make similar mistakes? In this sense isolation would

appear to be an ideal to strive for. However, the models point out a flaw in this reasoning

by demonstrating that the software modules could still exhibit significant positive failure

correlation. Nevertheless, despite the apparent inevitability of such failure correlation, is

perfect isolation still an ideal in some sense that can be formalised? We show that there

are situations where this is indeed the case (see Chapter 3). Also, if perfect isolation is not

achievable in practice can some meaningful approximation of it be attained? We present

generalisations of the model that achieve such an approximation by using an interplay of

isolation and interaction between the development processes of the software versions (see

Chapters 3 and 6).

This thesis explores the generality of the results from the conceptual models, extending

the models where appropriate. Upon first inspection it might appear that the assumptions

of “perfect isolation” and “independence” are fairly strong and, therefore, restrict the ap-

plicability of the models’ results. To what extent is this true? By considering practical

scenarios that appear to violate some of the models’ assumptions the thesis demonstrates

how the models are, nevertheless, relevant for these scenarios in at least two ways: in some

cases these apparent violations of the model assumptions are not violations at all and, in

some other cases where these are actual violations, the models may be modified to take them

into account (see Chapters 3 and 6). We demonstrate both of these cases in the thesis. In

addition, for practical scenarios that escape the range of applicability of the models, the

thesis considers model extensions to cater for such scenarios (see Chapter 6). The result of

this is further understanding, under more general conditions, of the implications of activities

during the development of a fault–tolerant, software–based system on the expected system

reliability.
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“Independence” is important for another, computationally relevant reason. Perfect team

isolation is used to justify probabilistic independence in the models1. However, justifying

“perfect isolation”, and therefore probabilistic independence, may be difficult to accomplish

in practice. Additionally, there are situations where team interaction is desirable. The thesis

explores extensions to the models that relax the “perfect isolation” assumption and yet still

maintain computational convenience as much as possible. This is particularly useful for

expressions involving the expected pfd (see Chapter 3).

Measures of reliability such as pfd, and other probabilities of interest used in the models

presented here, can be difficult to estimate in practice. Not only can they require significant

effort and resource investment to estimate, there is a need for the estimates obtained to

be “consistent”. Consistent in the sense that there are defined mathematical relationships

between the probabilities which must hold in practice. There are 2 ways in which the models,

and their generalisations, can assist with these estimation issues: the models provide both

conservative estimates for unknown reliability measures and consistency checks for reliability

estimates.

• Conservative estimates are useful since only some estimates of the pfds may be readily

available in practice. Using available estimates the models allow for the specification

of attainable bounds on other probabilities of interest. As a result extreme values for

these probabilities can be used to inform conservative analysis, motivated by questions

of the kind “What is the worst pfd value I can expect for a fault–tolerant system, given

that I have estimates for the pfds of the system’s component software?”. This thesis,

by analysing extensions of the models, specifies a number of attainable extreme values

for expected pfds under various practical scenarios (see Chapters 4 and 5).

• Consistency checks are useful when estimates for all of the probabilities of interest are

available. The estimates may have been obtained from different sources or via diverse

means. Therefore, it is imperative to check whether these estimates are consistent

with each other. If it is theoretically impossible for one measure to be larger than

another then estimates of these probabilities should exhibit the same relationship.

Myriad consistency checks in the form of inequalities may be defined from the models.

This thesis elaborates on this theme using generalisations of the models to state useful

relationships between expected pfds (see Chapter 5).

Decisions about how best to organise a development process may be informed by knowl-

edge of how activities in the process ultimately affect the expected system pfd. In this regard

the models developed in this thesis are again useful. They state mathematical relationships

between pfds under specified practical conditions. Consequently, identifying when these

conditions hold in practice is sufficient to guarantee some relevant ordering of the expected

pfds. This is the case despite not knowing the precise values of the probabilities involved in

practice; the mathematical results describe relationships between the probabilities, whatever

their actual values may be. So, by simply using the results of the generalised models, jus-

tification can be given to prefer some action, or decision, concerning software development

over another (see Chapters 3, 4 and 5).

1Probabilistic independence is a mathematically convenient property: it justifies substituting joint prob-
abilities with the product of marginal probabilities. Consequently, this has practical implications. For a
fault–tolerant system may be constructed from constituent Commercial off–the shelf (COTS) Software.
Probabilistic independence would then justify the expected Probability of Failure on Demand (pfd) for
the system being the product of the expected pfds for the constituent software



ABSTRACT 14

While most of the extensions in the thesis address the aforementioned concerns directly

some of the extensions concern the application of alternative, largely visual descriptions

applied to the probabilistic models of diversity (see Chapters 2, 3, 4 and 5). This recasting

of the models, from probabilistic to both graph-based and geometric terms, brings with it

increased insight into the relationships between the modelled entities. These alternative

representations also act as formal “vehicles” for the mathematical proofs that justify the

practically relevant theorems stated in this thesis. While other representations could be

used for the proofs, the advantages of using the descriptions we have chosen are: the proofs

become “natural” consequences of well known mathematical methods, manipulations and

results; better understanding of the relationships between “measures of interest” in the

problem domain (such as expected system pfd and “variation of difficulty over the demands”);

scenario representations which are both suggestive, and indicative of how to approach proofs;

and various, equivalent scenario representations which may be used in proofs.



Chapter 1

The Introduction

1.1 Reliability via Fault-Tolerance

A defence against design faults in all kinds of systems is redundancy with diversity. In its

simplest form this means that a system is built out of a set of subsystems (known as versions,

channels, lanes1) which perform the same or equivalent functions in possibly different ways

and are connected in a “parallel redundant” (1-out-of-N) or a voted scheme2. The rationale

for such designs is as follows. A fault-tolerant design that uses multiple, identical copies

of a subsystem will contain identical design faults in each of the copies: any circumstances

in which one of them were to fail (ultimately due to these design faults) would tend to

cause the other copies to fail as well possibly with results that, despite being incorrect, may

be plausible, consistent and thus cannot be recognised as failures. Diversity eliminates the

certainty of design faults being reproduced identically in all channels of the redundant system.

One can hope that any faults (rare, given good quality development) will be unlikely to be

similar between channels, causing them not to fail identically in exactly the same situations.

A low probability of common faults can be sought by seeking “independence” between the

developments of the multiple versions. For instance,

• for custom–developed components development teams work separately within the con-

straints of the specifications and general project management directives, making their

separate design choices (and possible mistakes). These directives may also be specif-

ically geared at “forcing” more diversity, e.g. mandating different architectures or

different development methods [8, 14, 15];

• when re-using pre-existing components for the diverse channels one can seek assurance

that the developments were indeed separate and, for instance, did not rely on common

1Special attention will be paid to a scenario of diversity between software versions since most previous
literature in computing refers to this scenario; however, the method in this thesis can be applied more
generally.

2A parallel redundant (1-out-of-N) system is one in which correct system functioning is assured, provided
at least one channel functions correctly. For a majority voted system correct system functioning is assured
if a majority of channels function correctly. Many other architectures are possible, however these are the
simplest, practical scenarios where evaluation problems arise.

15
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component libraries or designs.

How effective is diversity as a function of how it is obtained? Answering this question

will help in deciding when to use diverse designs and how to manage their development.

Controlled experiments have been conducted that investigate the impact of naturally oc-

curring diversity in multiversion software on system reliability [10]. However, experimental

results can be hard to generalise, especially to high-reliability systems, and such questions

have generated lively debates in which positions have been mostly supported by appealing

to experience and individual judgment. In this thesis a rigorous, probabilistic description of

the issues involved is presented. The aim is to clarify the assumptions used in this debate,

separating questions that require an empirical answer from those that can be answered by

deduction, while providing useful insight.

There is little one can say, a priori, about the probability of common failure for a specific

pair of versions. Some pairs may have no faults that lead to failures on the same demand.

In some other pairs every time one version fails the other one will fail as well. But can we at

least predict something about the average results of applying diversity in a certain system?

One of the early questions was thus: will the average pair of versions behave like a pair of two

average versions failing independently3? The famous experiment by Knight and Leveson [10]

refuted this conjecture: this “independence on average” property did not apply to the specific

population of versions that their subject programmers developed, hence cannot be assumed

to hold in general. On average, a pair of versions failed together with far higher probability

than the square of the average probability of failure on demand (or pfd, for short. See 2.2)

of individual versions (though far less frequently than the average individual version). This

leads to the conjecture that the general law in diverse systems may be, unfortunately, one

of positive correlation – on average – between version failures. Experimental evidence was

not enough to support or refute such general claims. Probabilistic modeling offered a way

of understanding what may be going on in diverse development. The breakthrough was due

to Eckhardt and Lee [12]. The bases of their approach were:

• from the viewpoint of reliability, a program can be completely described by its be-

haviour – success or failure – on every possible demand. Only “on–demand” or

“demand–based” systems are considered, as opposed to continuous time systems such

as control systems. An on–demand system receives a discrete demand from the en-

vironment and the result of processing it is either a success (a correct response) or a

failure (an incorrect response) by the system;

• the process of developing a program is itself subject to variation. So, one cannot know

in advance (or even, in practice, after delivery) exactly which program will result from

it and, crucially, which faults it contains. This development process can be modelled

as a process of random sampling which selects one program from the population of all

3This is often seen as a computationally ideal condition. It would allow us to gain assurance of very
high reliability of the redundant system at relatively low cost. For instance, we could trust that a 3-version
parallel system has a probability–of–failure–on–demand (pfd) of no more than 10−6 at the rather affordable
cost of demonstrating that each version has a pfd of no more than 10−2. An even better scenario would be
one in which common failures never happen, of course.
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possible programs. The visible properties of the development (system specifications,

methods used, choice of developers) do not determine exactly which program is created,

but they determine the probabilities of it being any specific one;

• the operational environment within which a program is expected to function is such that

there may be uncertainty concerning which input – or demand – will be processed by

the program next. This uncertainty is adequately modelled as a probability distribution

over the space of possible inputs/demands that may occur during operation;

• some demands are more difficult for the developers to treat correctly than others.

One can formally model this “difficulty” (see 2.2) of each particular demand via the

probability of a program, “randomly” chosen by the development process, failing on

that specific demand.

In this modeling framework the reputedly ideal condition of complete isolation between

the developments of the various versions is represented by the assumption that each program

version is selected (sampled) independently of the selection of any other. This is made more

precise in chapter 2. Eckhardt and Lee [12] then showed that if all versions are produced

independently by identical development processes then “positive correlation on average” is

inevitable unless (implausibly) all the demands have identical difficulty. Later, Littlewood

and Miller [13] pointed out that each version may be developed by a different process: this

is indeed the purpose of “forcing diversity”. With this less restrictive assumption the

“correlation on average” between failures of the versions could even be negative resulting in

a probability of failure for the system that is better than if the channels were expected to

fail independently. There is even the extreme possibility of a zero system failure probabil-

ity, despite the development processes of the system’s constituent software channels being

such that they have a non-negligible probability of producing programs that fail on some

demands4. These two models (called EL model and LM model in what follows) both bring

important insights:

• perfect isolation –and thus independence – between the developments of the versions

does not guarantee independence between their failures. Independent developments

guarantee that, given a specific demand, two – independently “sampled” – versions

will fail independently on that demand, and yet this in turn implies non-independence

for a randomly chosen demand.

• Diverse redundancy is always beneficial. For a 1–out–of–N system built out of indepen-

dently developed COTS software the expected pfd of the system is guaranteed never

to be worse than the expected pfds of its constituent software channels. Such a re-

sult, which is not always possible in the context of the generalised models of diversity

presented in this thesis, is useful in deciding whether fault–tolerance can be expected

4There will always be some difference between the development processes of different versions, so the
Littlewood-Miller assumptions always apply when the development processes of the individual versions are
independent. On the other hand, it is difficult (actually, there is no obvious method) to quantify how far the
true conditions of development are from the Eckhardt-Lee, worst-case assumptions. So, if an assessor wishes
to err on the side of conservatism, the Eckhardt-Lee assumptions are more appropriate.
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to bring reliability improvements over single–version systems. In this regard the use

of a 1–out–of–N system architecture does not guarantee improved system reliability, in

general. This will be demonstrated for the 1–out–of–2 case in Chapter 2.

• Various bounds under different scenarios can be stated between expected system pfds

resulting from forcing diversity, and expected system pfds resulting from letting diver-

sity occur naturally (that is, as a consequence of the development teams being isolated

from one another). More generally, there are a number of reliability related measures

used in the modeling for which myriad bounds may be stated under different conditions.

• A clear, formal description of conditions that increase failure dependence, and thus of

which goals we should pursue when we try to “force” diversity.

These implications have been explored in many other applications of the same modeling

approach, e.g. to the choice of fault removal methods [16, 17], to security [18] and to

human–machine systems [19].

What are the consequences of dependence between software development processes? In

the EL and LM models this issue does not arise: perfectly isolated development teams

develop the programs for a multiple-version system. Consequently, the teams are probabilis-

tically independent in how they develop their respective versions. For brevity, call this the

“independent sampling assumption” (ISA) . The ISA has two useful properties: it is

mathematically simple enough to allow elegant theorems like the EL model’s implication of

“positive correlation on average”, and it models perfect separation between the developments

of the versions5. But there are many reasons for doubting that it will normally be realised

in practice. For instance, doubters point out that:

• some communication will tend to occur between the version development teams, at

least indirectly;

• developers often share common education background or use the same reference books,

etc.;

• the management of a multiple-version development will exert common influences on

the development teams, e.g. by distributing clarifications and amendments to the

specifications.

These scenarios prompt several questions: do they violate the ISA? If they do, do they inval-

idate the message from the Eckhardt and Lee breakthrough: that is, is failure independence

more likely than the EL model suggests, and is it prudent to assume positive correlation?

And do they invalidate any other practical guidance drawn from these models? In conclusion,

what are the practical implications of possible statistical dependencies between the develop-

ment (sampling) of versions? Answering these questions forms a major part of the current

5Actually, the ISA is a necessary consequence of perfect team isolation, but not a sufficient condition since
it can be used in cases where certain information is shared between the development processes (see Chapter
6 : Section 6.1 for details).
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work. This requires clarifying how relevant aspects of real-world processes are mapped into

modeling assumptions.

In the process of this analysis, a further important question arises: “is ‘perfectly isolated

development teams’ really an ‘extreme optimistic’ assumption for the EL special case?”,

which is what gives the EL result its value as a warning: “even under the most optimistic

assumptions – perfect isolation in development – still you should expect identical processes

to produce positive correlation of failures”. So far, authors who recommend separation of

version developments have plausibly argued that this would prevent the propagation of mis-

takes between the teams developing the different versions (so called “fault leaks” phenomena)

[6, 7, 20, ]. It is plausible that this propagation may occur, via either the direct imitation of

erroneous solutions or the sharing of similar viewpoints and strategies (e.g. high-level archi-

tectural decisions) which frame the development problems similarly for the different teams,

creating similar “blind spots” or error-prone subtasks. This could lead to a significant in-

crease in the probability of the teams making sufficiently similar mistakes and thus increased

failure correlation between the teams’ software. In effect the teams’ respective softwares are

expected to have increased failure diversity and reduced individual reliabilities. However,

doubters of this line of reasoning point out that there are also benefits from teams being

allowed to interact. For example, the opportunity for erroneous viewpoints to be corrected

and the bringing together of various problem–solving ideas could lead to improvements in the

software being developed. So the teams’ respective software are expected to have increased

individual reliabilities and reduced failure diversity. Both viewpoints appear plausible. In

order to answer the question of which of these is to be preferred extensions to the LM and

EL models that relax “perfect isolation” are explored. Additionally, what if “perfect isola-

tion” turns out not to be a best case assumption? What changes when one relaxes it? In

particular, does the pessimistic warning from the EL model become invalid?

Forcing diversity can lead to substantial reliability gains: the LM model predicts the

possibility of negative failure correlation. In general, however, forcing diversity does not

guarantee that the probability the resulting system fails in operation will be no larger than

what would be the case if diversity were allowed to occur naturally. Nevertheless, there are

cases where such an ordering is guaranteed and some of these are pointed out by the LM

model. Indeed, the model provides the possibility for stating several “tight” bounds on the

expected pfd for a 1–out–of–2 system under various conditions, including requirements on

expected single–version pfds and the degree to which relevant probability distributions are

known. Following in this spirit the current work explores such bounds more generally. These

bounds are useful both to justify using certain expected pfd values in conservative analysis

and to provide a set of consistency checks for the reliability measures.

1.2 Layout of the Thesis

The thesis presents work with two main focal points. Chapters 2 and 3 focus on developing

and generalising the LM model to cater for dependence during the development, and use, of

multiversion software. Chapters 4 and 5 focus on developing and using a geometric model
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of software diversity to define attainable bounds on system reliability. In total the thesis

contains 6 more chapters, which we detail as follows:

Chapter 2 presents a detailed development of the EL and LM models that significantly

expands their original formulation. The extra detail is useful and necessary in modeling

more general scenarios considered later in the thesis. Also, consequences suggested by the

models are discussed, with some new results that have not been stated previously.

Chapter 3 develops and explores generalisations of the EL/LM models that relax the as-

sumption of independently developed software versions.

Chapter 4 is a treatise on a geometric formulation of the LM model. This geometric model

increases the insight into various relationships between the probabilities used in the EL/LM

models. In addition, the geometry provides a natural framework for solving the reliability

optimisation problems of Chapter 5.

Chapter 6 discusses and summarizes the main contributions of the work presented in this

thesis, with future work suggested in Chapter 7.

In addition to these chapters, the thesis also contains Appendices. Appendix A is a re-

view of “finite–dimensional inner–product spaces” – the mathematical formalism used in

Chapter 5 to obtain extremal values for the expected system pfd resulting from forcing

diversity. Appendix B discusses the well–known Knight and Leveson diversity experiment

[10], providing a conceptual model to explain why the only negatively correlated pairs of

versions developed are those that exhibit no coincident failure. And finally, Appendix C is

a discussion of ways in which the LM model may be applied in practice.



Chapter 2

Models of Coincident Failure in

Multiversion Software

In this chapter we develop the models of “Eckhardt and Lee” (EL, for short), and “Littlewood

and Miller” (LM, for short) in more detail than they have been developed historically [12, 13].

The approach presented here in developing the models draws liberally from the modern

approach to probability theory which, itself, uses the framework of measure theory1. As

much as possible an appeal to intuition, as well as some rigour, is made. The intention

here is not to give a rigorous treatise on probability theory but, instead, to give a rigorous

development of the EL and LM models. Many excellent references, on both probability and

measure theory, exist [21, 22, 23, 24, 25, 26, 27]. The historical lack of this extra level of

mathematical detail in the development of the EL/LM models is related to the assumption of

“perfectly isolated” development teams. To appreciate this first consider that the respective

software development processes of isolated development teams each contain activities that

do not have predetermined outcomes (e.g. software testing). For our purposes a software

development process is a set of activities, methods, practices, and transformations used by

people to develop software [28]. Now, as a consequence of the isolation these development

processes can be argued to be independent. Consequently, any uncertainty in the activities

thereof may be “averaged over” in a way that preserves independence and results in the

outcomes of individual activities being “hidden” in the models’ probability distributions:

only the final versions that are developed by the teams are explicitly modelled (see Section

2.3 and Eq. (2.4) for further detail). Despite this simplification the activities still have a

visible effect in the models as they affect the probability of which software is ultimately

produced by the teams. So, perfect isolation simplifies the models in ways that keep the

model relevant and make the extra rigour unnecessary. There are, however, two reasons why

more detailed modelling is required in an attempt to generalise the models:

1. The relaxation of the “perfectly isolated” teams assumption requires the models to ac-

1Measure theory is an important part of the field of mathematical analysis and is the basis for defining
a theory of integration that can cater for discontinuous functions. Henri Lebesgue, in his seminal work in
1902 entitled “Intègrale, longueur, aire”, was a significant driving force in the development of the theory.

21
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count for teams interacting in ways that ultimately affect the reliabilities and diversity

of the software they develop. Naturally, such interaction could take place before and

during software development. Hence, activities before and during software development

should be explicitly modelled;

2. The relaxation of model assumptions affects aspects of the probabilistic models in ways

that require extra detail to appreciate. For instance, due to the “perfectly isolated”

teams assumption, conditional independence lies at the heart of EL/LM models: condi-

tional independence is essential for the covariation in the models that captures notions

of diversity. In Chapter 3 we argue that only an interplay of isolation and interac-

tion between the development teams can justify using conditional independence in a

generalised model of diversity.

In the course of the development of the EL/LM models presented here there will be a

number of concepts that we shall generalise and make more precise. We also state a number

of results and viewpoints not previously stated in the original development of these models.

These include

• demonstrating that forcing diversity does not, in general, guarantee better reliability

than if diversity were allowed to occur naturally (Section 2.5);

• showing that there are at least two senses in which the use of fault–tolerance results

in system reliability that is no worse than the reliability of a single version system

(Section 2.5). This result, however, is not necessarily true in more general settings

than those of the EL/LM models and we show this in Chapters 3 and 6;

• demonstrating that the assumption of “perfectly isolated” development teams justifies

the use of a product probability space as the appropriate probability space that mod-

els the development of a 1–out–of–2 system by perfectly isolated development teams

(These concepts are defined in Sections 2.2 and 2.4). This is the basis for why the as-

sumption justifies probabilistic independence in how the teams develop their respective

versions;

• developing visual representations of the models that facilitate the analyses of the models

(Section 2.6). These are a Graph–based representation that depicts the consequences

of conditional independence relationships in the models, and a Geometric representa-

tion that facilitates maximizing and minimizing reliability measures such as expected

probability of failure on demand.

We develop the models as follows. First of all a reference scenario will be described to set

the scene for the modelling. Then two models are developed and combined: a model of the

occurrence of demands during system operation and a model of the development of a 1–out–

of–2 system under the assumption of perfectly isolated development teams. The combination

of these is the LM model, which contains the EL model as a special case.
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2.1 Reference Scenario and Terminology

The reference scenario is a system that may be implemented either as a single version or as a

diverse 2–channel, 1–out–of–2 system such as a nuclear power plant safety protection system

which is conceptually depicted in Fig. 2.1. Despite being very simple this scenario has

practical applications (in safety systems) and presents the essential difficulties of evaluating

a probability of common failure. The term “versions” (or “program versions”) is used in

Figure 2.1: Our reference system is an abstraction of a plant safety protection system (e.g. for a
nuclear power plant) with two redundant, diverse channels: a simple 1-out-of-2 system. Given that a
demand (a potentially hazardous state of the plant) is submitted to the system during its operation
the system has to recognise the demand and respond correctly. The successful response to a demand
is for the system to initiate a plant shut-down procedure. The demands of interest here are the ones
for which the correct response is a plant shutdown. In general, a protection system needs to decide
whether a system input is hazardous or not, and then issue the correct response. So, both false–

positives and false–negatives are potential failure modes. However, in a situation where incorrectly
handling demands that require a system shut down can have catastrophic consequences, compared
with benign consequences related to incorrectly handling other types of demands, a probability of
interest might be the probability of a false–negative as we investigate here. Thus, the output of
each channel and of the whole system is logically a boolean variable.

the sense of diverse, equivalent implementations of the system functions. Following common

usage, when there is no risk of ambiguity, “version” will also be called a “channel” of the

two–version system. The other common meaning of the term “versions” to designate the

results of successive changes to a program, or “releases” will be avoided.

Reference is made to the following simple picture of multiple–version development: sepa-

rate “version development teams”, each producing one version (and possibly further divided

into sub-teams for design, coding, inspection, testing, etc). One “project management team”

or “manager” defines the requirement specifications that the development teams must im-

plement and the constraints under which they have to work, handles specification updates

and decides on final acceptance of the developed versions. Each version is developed in a

version development process : a sequence of activities with uncertain outcomes that culmi-

nate in the development of a version. Similarly, a system or joint development process is

the combination of the development processes for the two or more versions in a system, plus
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the way they are co-ordinated. When the development of a single version system is under

consideration the terms may be used interchangeably.

There are aspects of version development processes – such as the individuals that make

up a development team, or the technologies, resources and algorithms used in developing

the versions, or the various activities that or indeed the activities/stages in the development

process – that are potentially controllable and may differ from one development process

to another. For our purposes, given a collection of such aspects, a methodology is an

instantiation of such a collection. For example, the programming language used may differ

from one process to another, so the use of the C++ programming language (as opposed

to Java, C#, Pascal, Visual Basic, e.t.c.) in a given development process forms part of

the methodology employed for that development process. Other examples of parts of a

methodology include a choice of integrated development environment to use (Visual Studio,

Netbeans, Eclipse, e.t.c) and a choice of various combinations of Verification and Validation

approaches (e.g. software testing, proof of correctness or requirements tracing [29]). Note

that a methodology in this context not only requires a choice of a software development

framework/approach (such as enhanced waterfall models, the Spiral model, or Agile methods

[30, 31, 32]), but also a determination of how these approaches will be carried out, who will

be involved in the development and what resources, technologies, solutions and methods will

be employed. In this sense we may speak of the development of a program according to some

methodology.

Attention is given solely to an “on demand” system. It receives a demand from the

environment and the result of processing it is either a success (a correct response) or a

failure (an incorrect response) by the system2. The notions of system demands and inputs

will be used interchangeably3. For while the models capture the behaviour of systems on

demands the results are also applicable in terms of system inputs.

2.2 Modelling System Failure

The dependability measure of interest is the probability of failure on demand (pfd).

This is the probability that a given version or system fails on a random demand. In order

to evaluate this it is important to know what the behaviour of the system on each demand

is. For current purposes the nature of the required response to a demand – e.g., whether

it is turning on an alarm signal or controlling complex mechanical actuators – is irrelevant.

We need only distinguish between two types of response to a demand – success, i.e. correct

2We will deal exclusively with software that can be analysed in terms of discrete demands. A demand can
be as simple as a single invocation of a re-entrant procedure, or as complex as the complete sequence of inputs
to a flight control system from the moment it is turned on before take-off to when it is turned off again after
landing. So, both discrete event systems and continuously operating systems have been adequately modelled
using discrete notions of demand. While it is possible to describe probability of failure as a function of a
continuous notion of demand the added model complexity is not worth introducing for the purpose of this
discussion [33, 34].

3The set of system demands may be viewed either as a subset of the set of system inputs (e.g. for the
protection system of a nuclear power plant particular ranges of the system input – temperature – that should
cause a protection system to shut down a plant) or a set of subsets of the system inputs (e.g. for an airplane
any sequence of system inputs – pilot actions or environmental events – from the time a plane takes off that
can potentially lead to a plane crash). The models cater for both of these viewpoints.
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behaviour, and failure. Also, consideration is given exclusively to failures due to design

faults, i.e. failures not covered by the usual analysis methods for “systematic” failures.

When executing the software there is uncertainty about which demand it will next re-

ceive from its environment. This suggests that the occurrence of the “next demand” may be

adequately modelled as a probability distribution. Defining a probabilistic model is equiv-

alent to defining a model of an experiment whose outcome is unknown beforehand. The

convention is to define 3 related, relevant constructs:

1. The set of all of the possible outcomes of conducting the experiment, called a sample

space. For example, the numbers 1,2,...,6 will make up the six possible outcomes of

the experiment “a fair dice is rolled and only one side of the dice, the “top” side with

its respective number, is noted afterwards”.

2. The set of unique “answers” to all relevant questions that can be asked of the experi-

ment outcomes, called an event space. The “answers” are realised as subsets of the

sample space called events. This event space is required to be non-empty and closed

under both complementation (the complement of an event is also an event) and count-

able unions (the union of a countable number of events is an event). Formally, the event

space is referred to as a sigma-algebra of events and it is usual, but not necessary, for

this to be the so–called Power set of the sample space: the set of all subsets of the

sample space. For example, in the “dice rolling” experiment given previously, we may

want to know whether the visible number seen on the “top” side is an even number.

Three outcomes – the numbers 2,4 and 6 – constitute the event “The number observed

is an even number”. The complement of this subset of outcomes – the numbers 1,3

and 5 – is also an event, and both of these events are defined by the question “Is an

even number observed?”. These are just some of the possible events in the space of

relevant events related to this experiment.

3. A bounded, non–negative, countably additive, real–valued function defined on the

event space. This so–called probability measure captures the notion of uncertainty

concerning the occurrence of events. The value of the probability measure associated

with a given event is the probability of the occurrence of that event. For instance,

for the “dice rolling” experiment the probability of the event “the visible number is

even” is
1

2
. This is the value, associated with the event, of some relevant probability

measure.

So, in order to define an adequate probabilistic model of how demands occur during system

operation, we only need to define 3 constructs, say (X,ΣX,PX (·)). This triple, called a

Probability Space, is comprised of a sample space, an event space and a probability measure

respectively. For our purposes the sample space of demands or demand space, X, is the

discrete, countable set of all of the demands that are possible in a given practical scenario.

The event space, ΣX, is the set of all of the answers to the relevant questions that may

be asked about demands that occur in practice. We are interested in questions like “will

the next demand that occurs in practice cause a particular software version to fail?”. The
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affirmative answer to this question, the set of all of the demands that cause a particular

version to fail, is a subset of X and is a member of ΣX. It will be convenient to assume

that each demand is an atomic event: that is, each demand is contained in ΣX. Henceforth,

we shall assume a similar requirement for all of the sample space and event space pairs we

shall use throughout the thesis. Finally, the probability of various events related to the

random occurrence of demands is given by the probability measure PX (·).4 The X in the

subscript is intentional: it is a random variable5 defined over X. By “restricting” PX (·)
to the demands we define the demand profile, i.e. an assignment of probabilities to every

possible demand, x ∈ X. The demand profile summarises and depends on the circumstances

in which the system is used (and will generally be known with some degree of imprecision6).

That is, the demand profile is a model of the environmental conditions under which the

system operates. Technically, PX (x) is a probability mass function (pmf ) defined over X

and with respect to X . The phrase “a randomly chosen demand” means the occurrence of

a demand according to this probability rule. We follow the convention of using uppercase

letters (e.g. X) for random variables and lowercase letters (e.g. x) for the values (numbers or

vectors or names) which they can take. For practical reasons we shall assume that only those

demands that can occur in the practical scenario of interest are modelled; there may exist

demands in this application domain that may be possible in other scenarios but not the one

currently modelled. To this end, we require that every demand has a non-zero probability of

occurrence7; that is, PX (x) > 0 for all x ∈ X. This requirement will be useful in Chapter

4 when defining an invertible transformation between a pair of bases in a finite–dimensional

vector space.

Each version may contain faults determined by the uncertain and variable process of

software development. The consequence of such faults is that they result in the version

4This measure induces a discrete probability distribution function. Only discrete probability distributions
are used in the current work. There are applications for which continuous distributions are more suitable.
However, many of the fundamental notions developed using discrete distributions carry over almost seamlessly
to the continuous case. Also, currently it is not clear that added insight comes with the added complexity
of the continuous case.

5Random variables are functions between measurable spaces (e.g. probability spaces) such that the pre–
image of events in one space are events in another space. Consequently, random variables are useful for
picking out events from the event space whose probabilities are of interest. This is most apparent when the
random variables are indicator/score functions: given a sample space Ω, an event space Σ and an event
E ∈ Σ an indicator/score function, ωE , defined with respect to E is a real–valued function ωE : Ω → R such
that

ωE(w) :=

{
0, if w /∈ E
1, if w ∈ E

So, the indicator function maps the event {1} (related to the real line) to the event E = ω−1
E (1) =

{w ∈ Ω : ωE (w) = 1} ∈ Σ. Use will be made of such random variables in this thesis to describe the failure
behaviour of software.

6Admittedly, the degree of imprecision alluded to here might be significant, so that one might question
using such a model of demand occurrence. However, the problem of having to use partial knowledge of a
probabilistic law which governs some process is not unique to our current task. Indeed, various fields in
Science and Engineering use observations of past process realisations to “infer” the probability of the process
evolving in a given way (e.g. weather patterns, the rise and fall of stock-market options, and the dynamics
of disease spreading). In any case, because many of the results presented in this work are invariant (that is,
still hold true) with respect to different demand profiles, knowledge of actual demand profiles is not required
to use the results in practice.

7This is the requirement that the set X contains no null demands. This mathematically convenient
requirement is justified for our needs since we are considering only practical scenarios for which the demand
space is discrete, not continuous.
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failing, with certainty, when certain demands are submitted to the version in operation. In

practice, it is possible for a software version to not exhibit this determinism, and sometimes

fail or succeed when handling the same input from its operational environment. However,

such lack of determinism may be explained by changes in the internal state of the version:

different internal states result in the version responding differently to the same environmental

input8. So, by defining the demands to include both stimulus from the environment and the

internal states of all the software versions that may be deployed in the system, it is possible

to recover the determinism we require. Please see Fig. 2.2 for an example of a demand space

definition that accomplishes this. This is not the only appealing definition of demands.

There is an alternative definition that also reconciles the possibly different internal states

of the programs with our desire for the programs to fail or succeed deterministically on

each demand. To appreciate this consider the following. Given initial states for component

software, the internal states of the software after a period of operation is a deterministic

consequence of the software handling a sequence of stimuli from the environment. For 1–out–

of–N systems, each environmental stimulus is required to be handled by all of the components

in parallel. We may choose to define a demand as a possible sequence of such environmental

stimuli. This means that the same demand – a given a sequence of environmental stimuli

– is submitted to all the software components in the fault–tolerant configuration, resulting

in the components having possibly different internal states due to how each software carries

out its response to the stimuli. Consequently, given a demand, each software component

is in some “knowable”9 state and either fails or succeeds with certainty. Again, we have

recovered determinism given the possible non–determinism that may arise from programs

being in different states.

However, without appealing to these alternative definitions for demands, the programs

modeled in this thesis have deterministic failure behaviour by the following requirement: each

program is set to some agreed initial state whenever the program needs to handle stimulus

from its operational environment. Therefore, in summary, we have discussed multiple ways

to ensure the following postulate holds.

8In practice, it is common for a program input to sometimes cause the program to fail and at other
times succeed, depending on the internal state of the program. This behaviour is typified by so–called
Heisenbugs: software failures that are not always reproducible (in particular, when attempts are made to
study the failure). However, in a number of such cases, uncertainty about whether a given Heisenbug causes
failure or not has been shown to have both epistemic (uncertainty due to a lack of knowledge) and aleatory
(uncertainty in the real world that does not decrease with knowledge) qualities.

1. Epistemic Uncertainty : This uncertainty reduces when knowledge is gained about the conditions
under which the internal state of a program and its operational environment interact to result in
failure. Consequently, by defining the demands (as we have suggested) to include both the possible
internal states of programs and external (environmental) conditions under which the programs operate
each program will always give the same response to the same demand;

2. Aleatory Uncertainty : Here, the environmental conditions under which a Heisenbug results in failure
may be known, but the occurrence of these conditions is governed by uncertainty from the environment.
So, unless there was some way in which the distribution for this “real world” uncertainty visibly
approached certainty (e.g. a Bernoulli distribution with relatively very small mass for one point, in
which case a score function is arguably an adequate approximation) there is no obvious method, or
reason for using such a program in practice.

9knowable, in the sense that it is a deterministic consequence of the algorithm implemented in the software,
the initial state of the software, and the sequence of environmental stimuli handled by the software.
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Figure 2.2: A depiction of a demand space where each demand is a triplet: an input from the
environment, and a pair of internal states for software versions A and B. Such a demand space
definition would be adequate if only versions A or B could make up the system. In general, the
internal states of all versions that could potentially make up the system should form part of such
a definition of demands. Consequently, if n − 1 possible versions could form part of the system,
then an adequate demand space would contain demands that are n–tuples: an input from the
environment, and n − 1 possible states (one potential state per potential version). An example
of a demand resulting from such a definition is the following. Let the n − 1 software versions
π1, . . . , πn−1 have associated possible internal states s1, . . . , sn−1. Then, together with a stimulus x
from the operational environment of the system, the n–tuple (x, π1, . . . , πn−1) is a system demand.
Alternatively, many systems have the desirable property (desirable, from a modeling standpoint)
that they assume some given initial state when handling input from the environment, in which case
there is no need to cater for possibly different system states in our modeling.

Postulate 2.2.1. Each program/version behaves deterministically – it either always fails or

always succeeds – on each demand submitted to it in operation.

The claim here is that contained in each demand, therefore, is complete information about the

conditions (both internal and external to the program) under which a given set of programs

have to respond to some input. Consequently, due to faults, a version fails deterministically

on certain demands. This defines the versions failure set : the set of all demands upon which

the version fails. The sum of the probabilities of all these demands is the pfd of that version.

That is, the demand profile associates the failure set of a version with a specific value of

pfd. Referring to Fig. 2.3, a version fails when subjected to a demand that is part of its

“failure set”, a failure set that itself is determined by mistakes made during the versions

development. Independence between the failures of two versions would mean that the pfd

associated with the intersection of the two versions’ failure sets is exactly equal to the product

of the probabilities associated to each of the two failures sets. There is no obvious reason

why this should be so. Furthermore, the same pair of versions could be employed under

different demand profiles. It would seem extraordinary that all possible demand profiles

maintained an invariant of failure independence. As an extreme case for a pair of versions

the two failure sets might be disjoint, giving zero common pfd, or they might be identical,

or one contained in the other.

We can formalise these concepts further. Given a program that behaves deterministically,

i.e. for each demand it either deterministically processes it correctly or deterministically fails
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Figure 2.3: Example of overlaps between the failure regions of two diverse software versions. The
horizontal, rectangular surfaces each represent the complete set of system demands. The projection
on the highest surface depicts those demands on which version 1 fails. The projection on the second
highest surface depicts those demands on which version 2 fails. The overlaps of these projections,
depicted in the lowest surface, shows those set of demands for which a 1-out-of-2 system, built from
versions 1 and 2, will fail in operation.

to process it correctly, we can define a boolean score function , ω(π, x). This is defined for

each pair of demand, x, and program/system, π, as:

ω(π, x) :=

{
0, if π processes x correctly

1, if π fails on x

This function models complete knowledge about the failure behaviour of every program of

interest on any demand of interest. In practice, given a program and demand pair, it is

possible to determine whether the program responds correctly, or not, to the demand10.

Therefore, the value of the score function on a given program–demand pair can be defined.

However, due to limited resource, it may be impractical to obtain the value of the score

function for all program–demand pairs of interest. For example, the demand space might

be too large and the complexity of making exhaustive testing infeasible. As a result, the

complete score function of a program or system is usually unknown. Nevertheless, the

score function is a useful device for reliability modelling. Successful correction of faults

can be modelled as changes in the score function for some demands from 1 to 0. If we

choose a demand X at random (according to the given demand profile) and look at the

score function of a particular program, π, on this demand, ω(π,X), then ω(π,X) is itself

a random variable. This random variable, ω(π,X) : X → R, allows us to define the failure

region of the version π, which is the event “the set of all demands which cause π to fail”.

That is, {x ∈ X : ω (π, x) = 1} ∈ ΣX. Consequently, the pfd for π is the probability of this

10This determination may occur “by reason of use” in the sense that an erroneous response to a demand
by a program is determined to be such only after the program has been deployed and is in operation.
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event, given as11

PX ({x ∈ X : ω (π, x) = 1}) =
∑

x∈X:ω(π,x)=1

PX (x) =
∑
x∈X

ω(π, x) PX (x).

But this is merely the expected value of the random variable ω(π,X). This property – being

able to write probability statements as expectations – is not an accident, and shall be used

frequently in the current work. The “trick” to evaluating the probability of an event is to

define an appropriate random variable from a score function, and then take its expectation.

Therefore,

pfd := P (π fails on X) = EX(ω(π,X)) =
∑
x∈X

ω(π, x) PX (x), (2.1)

where the notation E
X
(ω(π,X)) designates the expected value, or mean, of the random vari-

able ω(π,X), with respect to the distribution of the random variable X .

Furthermore, we may consider a two-version 1–out–of–2 system, its score function given

by the product of the score functions of the two program versions that make up the system.

Indeed, the system score is 1 (failure) if and only if both versions’ scores are also 1 (both

fail). Let two specific program versions in a system be π1 and π2. Then, the pfd of the

system they form is:

P (π1 and π2 both fail on X ) = E
X
(ω(π1, X)ω(π2, X)) =

∑
x∈X

ω(π1, x)ω(π2, x) PX (x)

= pfd1pfd2 +Cov
X

(ω(π1, X), ω(π2, X)), (2.2)

where the sign of the covariance term captures the nature (positive or negative) of the failure

correlation between the program versions π1 and π2. A negative covariance term implies that

whenever one version fails the other version is less likely to fail than it would be if the versions

failed independently. Equation (2.2) demonstrates that there are 3 main contributions to

the system pfd – the pfds of the single versions and their failure covariation. Clearly, a very

reliable system may be obtained with single versions that are very reliable or are significantly

diverse. There is a trade–off possible here. For processes that produce highly reliable versions

the benefits of diversity may be undermined by the versions not being significantly diverse.

We are more precise about this trade–off later on, in the context of diversity experiments,

where versions produced that fail together exhibit positive correlation (see Appendix B on

page 207).

2.3 Modelling the Development of a Program

In this section several probabilistic models will be derived all of which model the development

process but with varying levels of uncertainty about what is known of both the circumstances

11Because it is a probability measure the first equality here is justified by a certain additivity property of
PX over disjoint events. The event {x ∈ X : ω (π, x) = 1} is the union of disjoint events, each of which is a
unique demand that causes π to fail.
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surrounding the process and the outcomes of activities within the process. It is because of

these varying levels of uncertainty that conditional probability distributions, conditional

mass functions or conditional measures will be used frequently. The aim is to build the LM

model using a “bottom up” approach: we define probabilistic models of atomic stages in the

development of a single program and build these up into a model for the entire process. In

the next section we use this to define a model for the development of a 1–out–of–2 system

built by perfectly isolated teams. This approach both elaborates on the original description

of the models in [12, 13], and introduces entities that are necessary for discussing subtleties

involved in generalising the models.

For a sufficiently complex program its development process is variable and uncertain. To

see this appreciate that a typical development process has an associated methodology and,

therefore, consists of a sequence of activities, possibly beginning with activities such as

“specification development, system design and team selection” and ultimately ending with

the final activity: the deployment of a software program. Some of these activities may have

deterministic outcomes (e.g. the choice of which development platform to use may already

be known from the start) and others may not (e.g there may be a number of possible and

plausible system designs to choose from). Each activity with an uncertain outcome in the

process may be modelled probabilistically, in much the same way as the occurrence of de-

mands in the previous section. For the sake of illustration suppose a development process

implements an iterative waterfall approach. Activities in the process – such as requirements

definition, program design, implementation, and validation – do not have predetermined out-

comes. The so–called deliverables or milestones associated with each stage/activity in the

process will constitute the activity outcomes. More generally, outcomes of activities may also

include the observable actions and interactions of team members. In fact, any observable

that results from the performance of an activity is an activity outcome. Suppose

there are n, ordered, development process activities labelled d1, . . . , dn, each of which has

uncertain/variable outcomes. With each activity, say di, we associate a random variable,

Di. A realisation of Di will be written as di, not to be confused with the activity label di.

For instance, the testing and debugging of some software is a development process activity

– labelled di say – the result of which is some software – a realisation di of some random

variable Di – with failure behaviour that is not completely known, in general. Note that the

initial software version upon which the debugging is carried out is itself the random outcome

of activities in the development process prior to testing, such as coding, system design and

specification writing. The uncertainty in knowing which software version results from de-

bugging is dependent on the initial software to be debugged. This is an example of a more

general principle; the outcomes of activities in the development process determine

the uncertainty in the outcomes of subsequent activities. Formally, for the activity

di and associated random variable Di we define a collection/family of probabilistic models,

where each probabilistic model is indexed by the outcomes of prior activities in the develop-

ment process. A member of the collection would be
(
Ωdi

,Σdi
,PDi (·|d(i − 1), . . . , d1)

)
, where

d(i−1), . . . , d1 are the respective outcomes/instances of the random variablesD(i−1), . . . , D1

associated with the respective activities di−1, . . . , d1. The terms are similar to the terms in
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the “demand occurrence” model outlined earlier (see page 25): Ωdi
and Σdi

are, respectively,

a discrete sample space and event space for the di activity. The random variable, Di, models

the outcome of the activity and, consequently, must take on values from the sample space

Ωdi
. To this end, we write di ∈ Ωdi

as a realisation of Di. In this thesis, as a first–pass

approximation, we model activities as discrete probability spaces with possibly very large,

but finite sample spaces.

The last member of the model is PDi (·|d(i− 1), . . . , d1), a conditional probability mea-

sure conditional on the realisations of the random variables D(i− 1), . . . , D1. This measure

assigns probabilities to events that occur in the dith activity, given the outcomes of all of

the previous activities in the development process. This is the notion that what has already

transpired during the development process should impact later stages in the process. Figure

2.4 is an example of a typical development process with related activities. This graphical

depiction of a development process with nodes representing the random outcomes of the

activities is intended to be suggestive; the development process may be represented by a

Bayesian Belief Network with a topology as depicted.

Figure 2.4: An example of a simple model of the development process for a version. The pro-
cess consists of three activities, d1, d2 and d3. The results of the activities are random and are
adequately modelled by associated random variables (i.e. D1, D2 and Π) and probabilistic models
–
(
Ωd1 ,Σd1 ,PD1(·)

)
,
(
Ωd2 ,Σd2 ,PD2 (·|d1)

)
and (P,ΣP,PΠ (·|d2, d1)). Special attention is given to

activity d3 whose outcome is the final version that is deployed. The probabilistic model for d3 is
(P,ΣP,PΠ (·|d2, d1)) where the random variable Π can take on any value from the space of programs
P, e.g. π, with probability determined by PΠ (·|d2, d1), e.g. PΠ (π|d2, d1).

Special attention is given to the final activity in the development process. This activity

determines the actual program that is deployed for operation; this is the ultimate result of

the development process. Conceptually, we model this activity as the random selection of a

program from the population of all programs that (at least hypothetically) can be written

to the same requirement12. Here, by requirement we are appealing to a notion of correct

12It is possible to define the space of programs in different ways depending on how these conceptual models
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functioning for the program to be built. This notion is not to be confused with the existence

of a formal, functional specification document which might have errors in it. Instead, the fact

that errors in a formal specification can be detected, even if it is after the software has been

developed or deployed or observed to have failed, is evidence that a notion of correct func-

tioning can exist and can be appealed to. Therefore, we need to define a probabilistic model,(
P,ΣP,PΠ (·|d(n− 1), . . . , d1)

)
, with a sample space, P, of all possible program versions

that could be developed to the same requirements; an event space ΣP; a random variable Π

defined over P and a conditional probability mass function (pmf ), PΠ(π|d(n − 1), . . . , d1),

where π ∈ P. We can reasonably assume that P is finite: any program must fit in some

form of computer memory whose size is always finite irrespective of advances in computer

engineering. So, given a maximum feasible memory size, L, that is to be used in the devel-

opment process we can assume as the set of all possible programs the set of all possible series

of L zeros and ones. Of course, many of these “programs” will have zero probability of being

produced. The population of programs, P, will contain programs with all sorts of failure

behaviour, ranging from succeeding on all demands to failing on all demands. A realisation

of the random variable, Π, is a single version. The pmf, PΠ(π|d(n−1), . . . , d1) for π ∈ P, de-

fines the relevant probability distribution for the random variable Π. This distribution gives

the probability of events of the kind {Π = π}, i.e. the probability that the final program that

is deployed is π. We call a distribution such as PΠ (π|d(n− 1), . . . , d1) a version–sampling

distribution. It is dependent on the circumstances surrounding the development process

and the outcomes of the activities thereof – e.g. the software specification, the members of

the development team, the methods used in developing the software (including the verifica-

tion and validation policy), the schedule and budget constraints, etc. An illustration of this

is given by the example in Fig. 2.4 where PΠ (π|d2, d1) is dependent on the realisations of

the random variables D1 and D2. Furthermore, PΠ (π|D(n− 1), . . . , D1) is itself a random

variable since it is a measurable function of the random variables D(n − 1), . . . , D1 and,

consequently, its expectation may be taken to give another probability measure. That is,

PΠ (π) = E
D(n−1),..., D1

[PΠ (π|D(n− 1), . . . , D1)] is the probability that for a random set of

development process circumstances/activities the final version deployed is π. This allows us

to define yet another probabilistic model
(
P,ΣP,PΠ ()

)
. This is the probabilistic model to

use when all of the activities in the development process have as yet undetermined outcomes.

For instance, before the development process has begun.

So far we have defined models for the individual activities in the process. In order to

define a model for the process as a whole we require a joint probability distribution that

retains all of the information contained in the distributions defined so far. So, we require a

model such as (
Ωd1

× . . .× Ωdn−1
× P, ΣΩd1

×...×Ωdn−1
×P , P

D1,...,D(n−1),Π

)
. (2.3)

are used. Indeed, the space of programs can be defined as the space of all possible programs or, given a fixed
amount of memory to be used in the development process, the space of all programs with binaries that can
fit in such memory. However, there are implications for the definitions of other entities in the model (such
as the score function and the demand space) whenever a particular definition of the program space is used.
This is discussed in more detail in Chapter 6.
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Each term has significance:

• Ωd1
× . . . × Ωdn−1

× P, a cartesian product of the activities’ sample spaces, is the

sample space for the model of the development process. Each member of this set is

an n–dimensional vector (or n–tuple) whose components are ordered outcomes of the

activities in the development process. For example, if the outcomes of the four activ-

ities “specification writing”, “coding”, “debugging”, and “program deployment” are

“a particular specification”, “a specific initial program version”, “a specific subsequent

program version” and “a specific deployed program” then this quadruplet of outcomes

will form a member of the sample space. So, each member of the sample space rep-

resents a unique set of actions, decisions and artefacts that result from activities in

the development of a program. That is, this is the set of all of the ways in which the

process can evolve.

• ΣΩd1
×...×Ωdn−1

×P is the set of all of the development process events. For instance, the

event “the development process results in the development of program π” is contained

in this set and will be the collection of all of the elements of Ωd1
× . . .×Ωdn−1

×P that

contain π in their nth component.

• P
D1,...,D(n−1),Π

is the probability measure that assigns probabilities to events. This

defines the joint distribution of the random outcomes of each activity in the process.

This distribution contains all of the information contained in each marginal distribution

associated with an activity: it is possible to write the joint distribution as a product of

the marginal distributions associated with the activities. Because of this relationship

we have

PΠ(π) = E
D(n−1),...,D1

[PΠ (π|D(n− 1), . . . , D1)]

=
∑

Ωd1
×...×Ωdn−1

PΠ

(
π|d1, . . . , dn−1

)
P

D1,...,D(n−1)

(
d1, . . . , dn−1

)

=
∑

Ωd1
×...×Ωdn−1

P
D1,...,D(n−1),Π

(
d1, . . . , dn−1, π

)
(2.4)

a version–sampling distribution is obtained from the probability measure by summing

over all of the activities’ outcomes, except the final activity. Using any of the models

of single–version development this “trick” of obtaining version–sampling distributions

from probability measures can always be achieved by taking analogous expectations to

the one in Eq. (2.4). This is a useful place to point out that, in the original formulation

of both the EL and LM models, each channel development process is modeled by a

probability space such as (P,ΣP,PΠ (·)), where PΠ (·) is a probability measure defined

by the version–sampling distribution PΠ (π). This probability space does not explicitly

model the activities of the channel development process. However, the effect of the

activities are taken into account since they are used in Eq. (2.4) to obtain PΠ (π). So,
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the activities’ outcomes are “hidden” in the probability distribution. This is adequate

as long as such activities do not create dependence between the channels’ development

processes. In Chapter 3 we consider scenarios where activities create dependence and,

consequently, need to be explicitly modelled.

This simplified13 probabilistic model matches what we know about the variability of the

outcome of a software development process. Although the process is closely controlled we

know that its result – the software produced including the faults it contains – is not strictly

determined by it. For instance, an assessor who is given all the documentation about the

software development (usually showing, among other things, no evidence of residual faults in

the delivered software) still does not know on which demands, if any, the software may fail

due to unknown faults although he/she may have an approximate idea of the quality to be

expected from the software. We can expect different “values” of the circumstances of develop-

ment to induce different joint distributions of the random variables, {D1, . . . , D(n− 1),Π}.
Given a particular development scenario (with its particular circumstances) and thus a joint

distribution of {D1, . . . , D(n− 1),Π}, ω (π, x) then represents the score function of a spe-

cific program version, π, on demand x. So, developing a program under given circumstances

can indeed be described as running this stochastic production process once, or equivalently

“extracting, at random, a sequence of actions and decisions resulting in a program” from

a population of many different ways in which the development process could have evolved,

with their associated probabilities.

Various related version–sampling distributions, such as PΠ(π) and each PΠ

(
π|d1, . . . , dn−1

)
in Eq. (2.4), can be defined. These distributions are conditional, and they may differ on the

random variables being conditioned on. The relevant version–sampling distribution, indeed

which probabilistic model to use, is determined by how much is certain, or assumed to be

known, about the outcomes of development process activities. In fact, it is possible to de-

scribe a whole range of version–sampling distributions – from those conditional on “complete

uncertainty” about the outcomes of all the modelled activities in the development process

(i.e. PΠ (π)) to those conditional on “complete certainty” about all of the activity outcomes

except the last one
(
i.e. PΠ(π|d(n−1), . . . , d1)

)
. All of these distributions describe the “act”

of selecting a program at random from P. In any of these contexts I will use phrases like “a

randomly selected program [version]” to mean: the program may have been delivered but it

is still unknown in that its score function is unknown.

From the foregoing discussion if the development process is conducted multiple times it

may yield different versions with different failure regions. As a consequence given a particular

demand the process may sometimes result in a version that fails on that demand and at other

times the resulting version will succeed. If a process is more likely to result in a version that

fails on the demand as opposed to one that succeeds on it then this could be indicative of some

unwanted situation during development. For example, it could mean there is an ambiguity

in the initial software specification with the effect that the development team has a tendency

to make certain kinds of mistakes and insert certain faults into the version, or it could be a

13The sense in which this model is a simplification is discussed in Chapter 6.
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problem with the software development tools used making certain mistakes more likely, or

it could be a debugging phase that is grossly inadequate and has limited coverage, and so

on. Each of these situations may affect the probabilities of individual failure regions being

present in the software being developed. Ultimately, this affects the probabilities of individual

demands being failure points during system operation. To formalise this each demand has

an associated probability that a randomly selected program fails on the demand. We call

difficulty function (a term introduced in [13] to name a concept initially formulated by

Eckhardt and Lee [12]) the function defined on the demand space, X, whose value on each

demand is the associated probability of failure on the respective demand. This is a function

θ : X → [0, 1]. Recall that each possible version, π, has an associated score function, ω(π, x),

defined on the space of demands, X. So, given “complete uncertainty” about the outcomes

of activities in the development process (and thus the probabilistic model
(
P,ΣP,PΠ(·)

)
),

the difficulty function on a particular demand, x, is then:

θ (x) := E
Π
(ω(Π, x)) =

∑
π∈P

ω (π, x) PΠ (π). (2.5)

This can be generalised further. If there is certainty concerning some of the activities but

not all, for instance some of the activities in the development process have already occurred

and their outcomes are known, then the relevant probabilistic model will have a conditional

version–sampling distribution, conditional on these known outcomes. Suppose the condi-

tional values are (d1, . . . , di) ∈ Ωd1
× . . . × Ωdi

. Then, the relevant probabilistic model

is

(
Ωdi+1

× . . .× Ωdn−1
× P, ΣΩdi+1

×...×Ωdn−1
×P, P

D(i+1),...,D(n−1),Π
(·|d1, . . . , di) )

and the probability that the development process results in a version that fails on the demand

x is

θ (x|d1, . . . , di)

:= E
D(i+1),...,D(n−1),Π

(
ω (Π, x) |d1, . . . , di)

=
∑

Ωdi+1
×...×Ωdn−1

×P

ω (π, x) P
D(i+1),...,D(n−1),Π

(d(i+ 1), . . . , d(n− 1), π|d1, . . . , di)

=
∑
P

ω (π, x)PΠ (π|d1, . . . , di)

= E
Π

(
ω (Π, x) |d1, . . . , di) (2.6)

which is also a difficulty function. Further still, any average of this difficulty function with

respect to any marginal distribution obtained from the joint distribution of the random

variables D1, . . . , Di is also a difficulty function.
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The difficulty function – a function yielding difficulties (probability of failure on each

demand) – is a characterisation of how some demands may be more “difficult” to develop

for than others. The difficulties arise for various reasons related to the uncertainty in the

development process. Examples include an inherent intellectual/conceptual difficulty of the

problem being solved, the experience of the development team members, the complexity

of an algorithm being implemented, the availability of certain tools and resources for the

development process and the conditions under which the development process occurs. The

result of any of these examples is to affect the probabilities of the programs that can be

created and, consequently, for each demand how likely it is to develop a program that fails

on the demand. For some demands the likelihood of the development process resulting in

a version that fails on the demand may be high. For other demands it may be very likely

that the version produced will succeed in appropriately handling the demand. So, there may

be variation in difficulties across the demands. Later on this chapter when discussing the

case for the development of a 1–out–of–2 system we shall demonstrate that this variation in

difficulty is integral in reasoning about the independent failure of the channels (see Section

2.5).

We round up this section by demonstrating how to evaluate the expected single–version

pfd. This is the probability that the development process results in a program that fails in

operation. To illustrate this a combination of two models is required: a model of demand

occurrence in operation,
(
X,ΣX,PX(·)), and a model of single–version development14, such

as
(
P,ΣP,PΠ(·)

)
. Equation (2.1) shows how to evaluate single–version pfd, given a version,

π. So, the expected pfd is given by taking the averaging over all single–version pfds. That

is, the probability that a randomly selected version, Π, fails on a random demand, X , in

operation is

P
(
Π fails on a random X

)
= E

Π

[
E
X
[ω(Π, X)]

]
= E

X

[
E
Π
[ω(Π, X)]

]
= E

X

[
θ(X)

]
.

So, the expected pfd is the expectation of the difficulty function. Generalising this only re-

quires using a different single–version development model to perform analogous expectations.

2.4 Modelling the Development of a 1–out–of–2 System

We turn our attention to model a 1–out–of–2 system development process. We assume that

each channel of the system is developed by a unique development team. Furthermore, we

assume that the teams are perfectly isolated from each other: no form of communication

between the teams – neither direct nor indirect communication – can occur. This effectively

means that during the development process the teams cannot affect each other15. This is an

important point which we formalise in the following observability criterion.

Observability Criterion 2.4.1. An observer embedded in the development process of a

14Any model of single–version development like the ones discussed so far can be used
15Ideally, perfect isolation would mean each team would think they are the only team producing software.

Nevertheless, were the teams to be aware of the existence of other teams without communicating with them
the effect on the form of the model will still be the same.
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perfectly isolated development team should not be able to confirm, or refute, the existence of

any other development process by observing activity outcomes in the process she is embedded

in.

As a consequence of this criterion the probabilistic model of the 1–out–of–2 system is precisely

the product probability space obtained from the pair of probabilistic models that model each

channels development process. Suppose one channel is labelled “A” and the other “B”. Let(
ΩA,ΣA,PA

)
model the development of channel A. Similarly, let

(
ΩB,ΣB,PB

)
model the

development of channel B. For simplicity we shall assume that the development processes

have corresponding activities: for each activity related to channel A development there is a

corresponding activity related to the development of channel B, and vice–versa, and these

corresponding activities have identical, related sample spaces16 Also, we assume that the

outcome of each development process activity is not known beforehand: there is uncertainty

in each development process activity. Then, consequently, the processes necessarily have

the same number of modelled activities and the same form of probabilistic model. This

simplification does not come at a price concerning the main results of the model. The form

of the probabilistic model for each process is given in Eq. (2.3) because each of the channels

are developed in isolation. So, for instance, we could have written the sample space ΩA

more verbosely as ΩA
d1

× . . . × ΩA
dn−1

× P where we have indicated that this is relevant for

channel A by adding superscript As. Note that there is no superscript on P as it is the

same for the development of both channels A and B: both development teams are randomly

choosing their respective versions from the same population of versions. Also, we could

have written the event space, ΣA, as ΣΩA
d1
×...×ΩA

dn−1
×P

and the probability measure, PA, as

P
D1A,...,D(n−1)A,ΠA

. Consequently, we may define the probabilistic model of the development

of the 1–out–of–2 system as

(
ΩA × ΩB, ΣA × ΣB, PA × PB

)
. (2.7)

Technically, this is the product probability space obtained from the models

(
ΩA,ΣA,PA

)
and

(
ΩB,ΣB,PB

)
.

While this space can always be defined as a mathematical construct it is not the model of

joint system development in general. Its use here is justified purely by perfect isolation.

Keeping in mind that we are dealing with finite, discrete probability distributions there are

some noteworthy points to make:

• Perfect isolation justifies the sample space of the model being the cartesian product

of the marginal processes, ΩA × ΩB. This is because, under perfect isolation, if one

were to place an observer in one of the development processes for a channel it would be

impossible for the observer to prove that another process either exists or not. As far

16This assumption is made purely to reduce the need for extra notation; other than extra notation there is
not a significant amount of added model complexity in considering a more general case. Indeed, developing
models for the case where the channels’ respective development processes have different types of activities
between them follows an analogous treatment to the simpler case presented here.
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as an observer is concerned his/her development process exhibits no difference between

developing a single-version system and developing a channel for a 1–out–of–2 system.

This is an important point that will be useful later when comparisons need to be

made between the reliability of single–version systems and the reliability of related

Fault–tolerant systems.

• the event space, ΣA×ΣB, is the smallest event space that can be constructed containing

sets of the kind SA × SB, where SA ∈ ΣA and SB ∈ ΣB.
17 This standard notation is

not the cartesian product of the event spaces for the marginal processes.

• The product of the probability measures, PA × PB, is also justified by isolation. In

this situation, given the state of the world (such as the educational backgrounds of the

team members, or the hardware on which the teams carry out their software devel-

opment), there is no reason for the teams to be correlated in how they develop their

respective versions: knowledge of one team’s choices during software development tells

you nothing about the other team’s choices18. In effect, the teams are independent in

their selection of versions from P. Consequently, the probability measure for events

of the combined process factors into a product of the marginal probability measures.

Note that PA × PB is not a cartesian product but is instead a product of functions.

That is,

(PA × PB)
(
d1A, . . . , d(n− 1)A, πA, d1B, . . . , d(n− 1)B, πB

)
= PA

(
d1A, . . . , d(n− 1)A, πA

)
PB

(
d1B, . . . , d(n− 1)B, πB

)
, (2.8)

where (d1A, . . . , d(n− 1)A, πA) ∈ ΩA and (d1B, . . . , d(n− 1)B, πB) ∈ ΩB.

In summary, isolation justifies probabilistic independence of program selection :

that is, because the isolated teams make “independent” decisions, their joint distribution

of developing a pair of versions factors into the product of their respective distributions

of developing single versions. So, isolation is a very convenient property to check when

trying to decide whether a given practical scenario is adequately modeled as exhibiting

(probabilistically) independently developed versions. This prompts the following question.

Are there other forms of justification for probabilistic independence of program selection

that may be used in practice? To prove that other forms of justification exist, one need only

construct a suitable example scenario: a scenario for which team isolation does not hold in

a practically meaningful way, and yet the scenario is adequately modelled by probabilistic

independence in a non–trivial way19. However, constructing such a scenario is problematic,

in general. One problem lies in trying to define the sample space as the cartesian product of

17Technically, ΣA ×ΣB is the sigma–algebra generated by sets of the form SA × SB , where SA ∈ ΣA and
SB ∈ ΣB

18In Chapter 3 we shall demonstrate that certain sources of randomness, such as a shared educational
background of the team members, induces dependence between the teams in how they develop their versions.

19Here we are excluding the following trivial case, and variations thereof: X and Y are conditionally
independent random variables, conditional on the random vector X,Y . Trivial cases of this kind are not
useful since the conditional probabilities are deterministic functions of the conditioning random variables.
Consequently, this amounts to multiplying joint probabilities by 1, an operation that brings no benefit in
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a pair of sample spaces: that is, defining a sample space for which members are ordered pairs

of marginal sample spaces, where these ordered pairs make sense in the context of a joint

development process with communicating/dependent teams. By their very nature cartesian

products, such as ΩA ×ΩB, encapsulate notions of “independence” or “perpendicularity” so

that

any a ∈ ΩA may be paired with any b ∈ ΩB to form a valid ordered pair

(a, b) ∈ ΩA × ΩB.

However, for software development with interacting development teams, only certain ordered

pairs will make sense: that is, ordered pairs that agree on the results of team interaction

(for instance, the discussions that occurred between the teams or the test suites used by

both teams if they share test suites). This inability of being able to ensure all members of

the cartesian product make sense suggests that such a cartesian product does not make a

well defined state space for an experiment with dependence. Indeed, only when the teams

are isolated does the experiment sample space always make sense as a cartesian product.

Given a cartesian product as a sample space for interacting teams, one might attempt to

make nonsensical ordered pairs irrelevant by assigning zero probability to their occurrence.

Certainly, doing so requires assigning zero probability to the occurrence of at least one of the

members of each nonsensical ordered pair. However, note that a nonsensical ordered pair

of outcomes is comprised of perfectly legitimate marginal outcomes, where these marginal

outcomes might necessarily have non–zero marginal probabilities of occurrence (e.g. note

that a ∈ ΩA, from the ordered pair (a, b), is a member of the sample space associated with

the probabilistic model
(
ΩA,ΣA,PA

)
). Consequently, in general, it may not be possible to

assign zero probability events for the product probability space without contradicting the

probability of occurrence some legitimate outcome in at least one of the marginal probability

spaces. So, given these difficulties in constructing a suitable example, it is unclear what other

forms of justification (if any) exist for a scenario to be modeled by independent version–

sampling distributions20.

If team isolation was shown to be “necessary and sufficient” in the less than rigorous

sense we have just outlined, then any of our models exhibiting probabilistic independence

can immediately be asserted to describe a process of isolated software development. This has

further implications for the scope and applicability of the EL and LM models. In any case,

some generalisations of the models presented in Chapter 3 use an interplay of both activities

common to the teams’ development processes, and team isolation, to achieve models that

relax the assumption of “perfectly isolated” teams.

The model stated in (2.7) is the relevant model when there is “complete uncertainty”

concerning the development process. However, similar to the single–version development

process models, it is possible and sometimes necessary to instantiate models at varying

levels of uncertainty about the “combined” development process. So, given the values

understanding the possible dependence between X and Y . That is,

P (X, Y ) = P (X, Y )P (X|X, Y )P (Y |X,Y ) = P (X, Y ) · 1 · 1,
since P (X|X,Y ) = P (Y |X, Y ) = 1.

20A more detailed discussion of the nature of this independence is given in Chapter 3.
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(d1A, . . . , diA) ∈ ΩA
d1

× . . .× ΩA
di

and (d1B, . . . , djB) ∈ ΩB
d1

× . . . × ΩB
dj
, the relevant proba-

bilistic model is⎛
⎜⎜⎜⎜⎝

ΩA
di+1

× . . .× ΩA
dn−1

× P×
ΩB

dj+1
× . . .× ΩB

dn−1
× P

,Σ
ΩA

di+1
×...×ΩA

dn−1
×P×

ΩB
dj+1

×...×ΩB
dn−1

×P

,

⎛
⎜⎝ P

D(i+1)A,...,ΠA

×
P

D(j+1)B ,...,ΠB

⎞
⎟⎠
(
·
∣∣∣∣∣ d1A, . . . , diA,d1B , . . . , djB

)⎞⎟⎟⎟⎟⎠ .

(2.9)

In particular, note that like Eq. (2.8) the model still exhibits probabilistic independence.

For we have

(
P

D(i+1)A,...,D(n−1)A,πA

× P
D(j+1)B ,...,D(n−1)B ,πB

)(
d(i+ 1)A, . . . ,ΠA,

d(j + 1)B , . . . ,ΠB

∣∣∣∣∣ d1A, . . . , diA,d1B , . . . , djB

)

= P
D(i+1)A,...,ΠA

(
d(i+ 1)A, . . . ,ΠA |d1A, . . . , diA

)
P

D(j+1)B ,...,ΠB

(
d(j + 1)B , . . . , πB |d1B , . . . , djB

)
,

(2.10)

where (d(i + 1)A, . . . , πA) ∈ ΩA
di+1

× . . .× P, and (d(j + 1)B, . . . , πB) ∈ ΩB
di+1

× . . .× P. In

fact, no matter how much uncertainty is eliminated from the models isolation will always

imply independence of the version–sampling distributions. It is this property that we refer

to as the Independent Sampling Assumption (ISA). We explore this consequence of

“perfectly isolated” development teams further in Chapter 3.

The notion of difficulty function extends to the case of a 1–out–of–2 system development.

Consider the case when there is “complete uncertainty” concerning the development process

activities. Then the relevant probabilistic model is given by (2.7) and the probability that

the development process results in a pair of versions that fail on a given demand, x, is

θAB(x)

:= E

D1A,...,D(n−1)A,ΠA,

D1B ,...,D(n−1)B ,ΠB

(
ω (ΠA, x)ω (ΠB , x)

)

=
∑

ΩA×ΩB

(
ω (πA, x)ω (πB, x)

)
PA

(
d1A, . . . , d(n− 1)A, πA

)
PB

(
d1B, . . . , d(n− 1)B, πB

)

=
∑
P×P

(
ω (πA, x)ω (πB, x)

)
PΠA

(
πA

)
PΠB

(
πB

)

=

(∑
P

ω
(
πA, x

)
PΠA

(
πA

))(∑
P

ω
(
πB, x

)
PΠB

(
πB

))
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= E
ΠA

[
ω (ΠA, x)

]
E
ΠB

[
ω (ΠB , x)

]

= θA(x)θB(x) (2.11)

The third equality above is justified by using the relationship in Eq. (2.4).21 We can now

see yet another dramatic consequence of the “perfect isolation” assumption; the probability

that the development produces a pair of versions that fail on the demand is equal to the

product of the probabilities of each marginal process producing a version that fails on the

demand. That is, “perfect isolation” implies conditional failure independence, conditional on

a demand.

It is unsurprising that this can be generalised further since the precise meaning of the

difficulty function depends on what the underlying probabilistic model being used is. If, for

instance, the model in Eq. (2.9) is used then, given the values d1A, . . . , diA ∈ ΩA
d1
× . . .×ΩA

di

and d1B, . . . , djB ∈ ΩB
d1

× . . .× ΩB
dj

the probability that the development process results in

a pair of versions that fails on a demand, x, is

θAB

(
x

∣∣∣∣∣ d1A, . . . , diA,

d1B, . . . , djB

)

:= E

D(i+1)A,...,D(n−1)A,ΠA

D(j+1)A,...,D(n−1)B ,ΠB

(
ω (ΠA, x)ω (ΠB , x)

∣∣∣∣∣ d1A, . . . , diA,

d1B, . . . , djB

)

= E
ΠA

(
ω (ΠA, x) |d1A, . . . , diA

)
E
ΠB

(
ω (ΠB, x) |d1B, . . . , djB

)

= θA
(
x|d1A, . . . , diA

)
θB
(
x|d1B, . . . , djB

)
. (2.12)

So, conditional failure independence is preserved for the form of the difficulty function.

2.5 EL and LM Model Results

Suppose a model of a 1–out–of–2 system development process with perfectly isolated develop-

ment teams, say
(
Ω1×Ω2,Σ1×Σ2,P1×P2

)
, has been defined from the models,

(
Ω1,Σ1,P1

)
and

(
Ω2,Σ2,P2

)
, of the development of constituent channels. Further, suppose that a model

21Also, Fubini’s theorem was used to justify the factoring of the sums.
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of “demand occurrence”, say (X,ΣX,PX), is independently defined. The LM model is the

combined pair of probabilistic models,

{(
Ω1 × Ω2,Σ1 × Σ2,P1 × P2

)
, (X,ΣX,PX)

}
.

If, in particular,
(
Ω1,Σ1,P1

)
and

(
Ω2,Σ2,P2

)
have identical distributions then this is the

EL model. Identical distributions would mean both channels are developed using identical

methodologies: in essence, the teams develop their respective channels under similar cir-

cumstances and using similar resources. An immediate consequence of these definitions is as

follows. Recall, as was demonstrated in Eq. (2.4), that models of single–version development

such as
(
Ω1,Σ1,P1

)
have related version–sampling distributions. Because difficulty functions

are expectations of score functions with respect to the version–sampling distributions ( for

instance, see Eq.s (2.5),(2.6) ) the difficulty functions for the channels are necessarily identi-

cal in the EL model but not in the LM model. So, given a demand the teams have identical

probabilities of producing versions that fail on that demand in the EL model; this need not

be the case for the LM model.

We can now derive the first result of the EL and LM models: for two software versions,

independently developed by two teams, it is inappropriate to estimate their joint pfd by

multiplying their individual pfd estimates. To illustrate this suppose we have a practical

scenario with a level of uncertainty so that it is adequately modelled by Eq. (2.7); however,

note that any EL and LM model can be used to illustrate the result. The EL model assumes

that despite the teams being separated the same constraints (circumstances of development

imposed on the development teams) cause the teams to develop their versions roughly “in

the same way”; that is, the teams are equally likely to make the same mistakes during the

development of their respective software. In effect the teams have identical version–sampling

distributions – that is, PΠ1
(π) = PΠ2

(π) for π ∈ P – and, consequently, identical difficulty

functions – that is, θ1(x) = θ2(x) = θ(x) for each demand x. What is the expected system

pfd under these conditions? This is the probability that the development process results in

a pair of versions that fail together in operation. It is given by taking the expectation of the

system pfd ( given by Eq. (2.2) ) with respect to the distribution of version pairs, given by

Eq. (2.7). Intuitively, we are summing the probabilities of all the unique ways in which a

pair of versions is developed, deployed and subsequently fails in operation. Therefore, upon

submitting a randomly chosen demand to a randomly chosen pair of versions the probability

of both failing is:

P (Π1,Π2 both fail on X)

= E
Π1,Π2

[
E
X
[ω(Π1, X)ω(Π2, X)]

]
= E

X

[
θ12(X)

]
= E

X

[
θ1(X)θ2(X)

]
= E

X

[
θ1(X)

]
E
X

[
θ2(X)

]
+Cov

X

(
θ1(X), θ2(X)

)
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= E
X

[
E
Π1

[ω(Π1, X)]
]
E
X

[
E
Π2

[ω(Π2, X)]
]
+Var

X

(
θ(X)

)
= E

Π1

[
E
X
[ω(Π1, X)]

]
E
Π2

[
E
X
[ω(Π2, X)]

]
+Var

X

(
θ(X)

)
= P (Π1 fails on X)P (Π2 fails on X) + Var

X

(
θ(X)

)
= (P (Π1 fails on X))

2
+Var

X

(
θ(X)

)
(2.13)

where Var
X

(
θ(X)

)
designates the variance of the difficulty function, θ(X). Since the variance

of any random variable is non-negative (2.13) shows that the average system pfd will generally

be worse than the value of the product term, (P (Π1 fails on X))
2
. This product is the value

of the expected system pfd if the versions were expected to fail independently. That is, the

independently produced versions cannot be expected to fail independently. Intuitively, the

teams are similar in how they produce their respective versions, despite being isolated from

one another. Consequently, the teams have identical difficulty functions. This means that

demands that are difficult for one team are also difficult for the other team. So, if one team

produces a version that fails in operation then the probability that the other team produces

a version that fails on the same demand that caused the first failure is more likely than it

would be under a naive assumption of failure independence between the system channels.

That is,

P (Π1 fails on X |Π2 fails on X) =
P (Π1,Π2 both fail on X)

P (Π2 fails on X)

=
(P (Π1 fails on X))2 +Var

X

(
θ(X)

)
P (Π1 fails on X)

= P (Π1 fails on X) +
Var
X

(
θ(X)

)
P (Π1 fails on X)

≥ P (Π1 fails on X) , (2.14)

since P (Π1 fails on X) = P (Π2 fails on X), Var
X

(
θ(X)

) ≥ 0, and it is reasonable to assume

P (Π1 fails on X) > 0. Note, since any version pair the teams produce must handle the

same demand in operation there is an inevitable, non-negative failure correlation between

the channels described by Var
X

(
θ(X)

)
.

This inevitability of failure correlation also holds in the more general context of the

LM model. Like the EL case, independently produced versions cannot be expected to fail

independently. However, unlike the EL model, the LM model recognises that constraints

on the teams and the circumstances surrounding the versions development processes are

unlikely to be identical. This is equivalent to requiring that
(
Ω1,Σ1,P1

)
and

(
Ω2,Σ2,P2

)
need not have the same distributions. Therefore, the teams are not likely to have identical

difficulty functions: in general, θ1(x) �= θ2(x) for some x. So, unlike the EL situation,

P (Π1,Π2 both fail on X)

= P (Π1 fails on X)P (Π2 fails on X) + Cov
X

(
θ1(X), θ2(X)

)
, (2.15)
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where we have a covariance instead of a variance, and different expected single–version pfds.

Possibly, the covariance could be negative: the average system pfd could be better than

P (ΠA fails on X)P (ΠB fails on X).

So, the lower bound for the mean system pfd is no longer this product term. Negative

covariation would mean that if one team produces a version that fails in operation then the

other team is less likely to also produce a version that fails than it would be if the channels

were expected to fail independently. That is, using an argument similar to the one used in

Eq. (2.14), we can show that

P (Π1 fails on X |Π2 fails on X) ≤ P (Π1 fails on X),

whenever Cov
X

(
θ1(X), θ2(X)

) ≤ 0. Such covariation could be the consequence of “forced

diversity” – that is, the imposition of different constraints, on the channels’ developments

and their respective developers, by the management team. The point is where failure di-

versity occurs “naturally” in the EL model (that is, purely as a consequence of the random

decisions made by the teams) under “forced diversity” the teams are “encouraged” to come

to their decisions from different viewpoints, under different circumstances and in different

ways. In effect the teams are diverse in how they develop their versions (i.e. they sam-

ple from P with different version–sampling distributions). The aim is for this diversity to

ultimately translate into failure diversity, on average.

Given two particular versions, π1 and π2, it is always true that the probability of the

versions failing together in operation is always less than, or equal to, each versions probability

of failing in operation. This is because for each demand, x, it is always the case that

ω (π1, x)ω (π2, x) ≤ ω (π1, x) or ω (π2, x) and, consequently,

E
X
[ω (π1, X)ω (π2, X)] ≤ E

X
[ω (π1, X)] or E

X
[ω (π2, X)] . (2.16)

This result is valid for a pair of versions and it indicates that in this context “fault–tolerance

is always good”. However, when there is uncertainty about which versions make up the

channels of the system this result does not always hold. This is particularly important in

the situation where the system has not been built yet. Is the expected reliability of a single

version system worse, in general, than that of a 1–out–of–2 system? The LM and EL models

allow such comparisons of expected single–version pfd with expected system pfd. This is

because

the “perfectly isolated teams” assumption22 implies that the probability a channel (of a 1–

out–of–2 system) that fails in operation is developed is identical to the probability a single–

version system that fails in operation is developed.

These probabilities are, in general, different as they are related to different experiments.

22see Criterion 2.4.1, page 38.
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The former probability is related to the experiment where a pair of versions are created by

isolated development teams and the latter probability is related to the experiment where

only a single version is created. Consequently, the LM model shows that in this context

fault–tolerance is always good since

P
(
Π1 fails on X

)
= E

X

[
θ1 (X)

] ≥ E
X

[
θ1 (X) θ2 (X)

]
= P

(
Π1,Π2 both fail on X

)
. (2.17)

The point is that the probability on the far left of Eq. (2.17) is the probability that a single–

version system that fails in operation is developed while on the far right is the probability

that a 1–out–of–2 system that fails in operation is developed. While such comparisons and

conclusions are possible under LM this is not always feasible in more general settings explored

later. In general, fault–tolerance is not guaranteed to improve expected reliability. It is worth

pointing out that a comparison of marginal and joint probabilities is always possible so that

Eq. (2.17) is always true: the probabilities of marginal events are, in general, larger than

the probabilities of related joint events. In this sense the veracity of Eq. (2.17) is not a

consequence of the LM model. However, this is not the sense in which Eq. (2.17) is being

used.

Forcing diversity does not always result in expected system pfd that is smaller than it

would be if diversity were allowed to occur naturally. As an example consider two ways

in which the development of a version may be organised, labelled “A” and “B” say. We

have defined these as development process methodologies. Recall that methodologies will

involve the specification of stages in the development process, the activities to be carried out,

the technologies used and the definition of tasks and responsibilities within the development

team, among other things. The effect of a choice of methodology for a development process is

to affect the way the software is developed and, consequently, to determine the probabilistic

law which describes how the respective team develops a program from the population of

programs, P. So, suppose that use of methodology “A” results in the applicable probabilistic

model being
(
ΩA,ΣA,PA

)
, and similarly for “B”. In Chapter 3 we shall generalise this effect

by showing that in addition to methodologies there are also other sources of randomness

that ultimately influence the version–sampling distributions. Note that the notation for the

probabilistic models used here has a different meaning from its use previously; here the labels

indicate which methodology is used in the development process and not which channel is

being developed. Given a choice between two development methodologies, “A” and “B”,

there are three ways in which a joint system development process may be organised: the

channels are both developed using methodology “A”, the channels are both developed using

methodology “B”, or the channels’ development processes employ different methodologies.

So, there are two EL models and one LM model possible. Finally, suppose the methodologies

are such that for each demand, x, use of methodology “A” ensures a smaller probability of

producing a version that fails on x compared to the related probability when “B” is used.

That is, the difficulty functions are ordered so that θA
(
x
) ≤ θB

(
x
)
, for each x ∈ X. If the
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related expected system pfds for the three scenarios are qAA, qBB and qAB then

qAA ≤ qAB ≤ qBB, that is

E
X

[
θ2A(X)

] ≤ E
X

[
θA(X)θB(X)

] ≤ E
X

[
θ2B(X)

]
So, in general, forcing diversity does not guarantee better expected reliability than if diver-

sity were allowed to occur naturally. There are, however, cases for which forcing diversity

produces the smallest reliability estimate, compared with if diversity were allowed to occur

naturally. For instance, as was shown in [13],

if qAA = qBB then qAB ≤ qAA, qBB. (2.18)

qAB is a lower bound for the three expected reliabilities. This is a consequence of the geo-

metric properties of difficulty functions; a proof of this using the Cauchy-Schwarz inequality

is given later on (see Chapter 5). This inequality is not only useful for aiding intuition con-

cerning relationships between pfds; it suggests a practical preference. For suppose that an

assessor of a 1–out–of–2 systems development has no actual estimates of the expected pfds

qAA, qBB and qAB. However, suppose further that the assessor has evidence to justify that

using methodology “A” to develop both channels will result, on average, in the same reliabil-

ity that would result if methodology “B” alone were used instead. Then, if the assessor had

estimates for qAA and qBB she would have to be indifferent between these expected pfds.

Consequently, inequality (2.18) must hold, and a clear preference on this basis is presented;

diversity should be forced23.

Here we sound a note of caution. These results, like most of the results presented in

this work, involve comparisons between averages. Therefore, care must be taken when inter-

preting and using these results in practice. For there is uncertainty about the actual pairs

of versions that will be developed and deployed in the system, and it is in the face of such

uncertainty that these results are most useful. However, if questions are asked about the

pfd of a system made up of a specified pair of versions, the results presented here should

not be applied directly. Indeed, it is quite possible that the system, when built, possesses

a pfd significantly different from the expected system pfd. One can appreciate the context

in which the results presented here apply, and when they do not, by treating the system

pfd as a random variable. This random variable has realisations given by Eq. (2.2), and an

expectation – the expected system pfd – given by either Eq. (2.13) when diversity is allowed

to occur naturally, or Eq.(2.15) when diversity is forced. Now, the results presented here are

comparisons between the means of such random variables. Unsurprisingly, therefore, a pair

of such distributions may exhibit the property that one of the distributions has a smaller

mean, and yet realisations from these distributions are not restricted to emulate this order-

ing. In summary, when the results indicate forcing diversity to be potentially beneficial, this

is a reasonable course of action given uncertainty about the actual pfd of the system when

23Of course, a more complete decision process will take into account other factors, such as the economic
costs of implementing the various alternatives. The preference results presented here should be viewed as
forming part of a wider strategy for decision making.
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built.

With this caveat in mind, one more condition under which forcing diversity is a preference

can be stated. Again, we consider the 3 scenarios that lead to the expected system pfds

qAA, qBB and qAB. However, suppose a hypothetical assessor is indifferent between using

the “A” methodology to develop both channels and using the “B”methodology to develop

both channels. There are two situations under which this would be the case:

1. The assessor has an equal balance of “pros and cons”. For example, while the use of

the “A” methodology is expected to result in better reliability the “B” methodology is

more affordable and it is debatable whether the reliability gains of using “A” are worth

the extra cost. In this case, despite qAA ≤ qBB the assessor is unwilling to make a clear

choice between the two: any one will do;

2. The assessor does not have sufficient evidence to indicate an ordering between the

expected pfds qAA and qBB, despite the assessor believing that it is unlikely these pfds

are identical and, consequently, some ordering must exist.

In either of these cases the assessor’s indifference between the two methodologies can be

modelled as the assessor being equally likely to pick one over the other. In addition, sup-

pose the cost of forcing diversity is not significantly different from the cost of using a single

methodology for developing both channels of the system. This would mean a decision about

whether or not to force diversity will depend on the sizes of the expected pfds. Should the

assessor advocate forcing diversity, or should the system be built by using the same method-

ology to develop both channels? Even without having actual estimates for the expected pfds

the assessor can claim

qAB ≤ qAA + qBB

2
, (2.19)

whatever the (possibly unknowable) expected system pfd values may be.

Proof. This follows naturally because24

0 ≤ E
X

[
θA
(
X
)− θB

(
X
)]2

= E
X

[
θ2A
(
X
)
+ θ2B

(
X
)− 2θA

(
X
)
θB
(
X
)]

= qAA + qBB − 2qAB.�

In Chapter 5 we present a generalisation of this result for 1–out–of–N systems.

2.6 Visual Representations of the EL and LM models

Modelling coincident failure can be a task filled with subtlety and nuance. To facilitate proofs

as well as aid understanding this section outlines two forms of representing the EL and LM

models. These visual representations of the models will be used extensively in subsequent

chapters. One representation uses Graphical models and the other representation uses vector

space geometry. The graphical models will be useful in discussions about relaxing the “perfect

24There is a more general proof using Holder’s inequality, and the relationship between the arithmetic–
mean and the geometric–mean of a collection of non-negative real numbers. This generalisation is presented
later on in Chapter 5, Section 5.2.
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isolation” assumption in the models while the geometrical models will be useful for proving

bounds that are a consequence of the models.

2.6.1 The EL/LM Model as a BBN

The conclusions of the EL and LM models are consequences of the conditional independence

relations between the random events in these models. Therefore, we may describe the EL

and LM models via Bayesian belief networks (BBNs), as in Fig. 2.5. BBNs are useful

because:

• they can be used as visual representations of conditional independence relations (and

therefore, joint distributions) between Random events;

• they can be analyzed, by using transformations on the topology of the BBN, to elicit

the consequences of conditional independence relations between sets of Random events.

These transformations, justified by the property of d–separation which we discuss

shortly, represent marginalisations of joint probability distributions. The result is that

quite complex, and seemingly different, graph topologies are simplified into the same

canonical form. We demonstrate these canonical topologies in Chapter 3.

For a discussion on Graphical Models (of which our BBNs are a particular case), marginali-

sation, d–separation and conditional independence models please see [35, 36, 37].
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Figure 2.5: A Bayesian network for the EL and LM models. The two versions are chosen indepen-
dently (ISA) which is represented by the absence of common parent nodes for ΠA and ΠB . Also,
they fail independently conditionally on the randomly chosen demand X, as shown by the presence
of the single common ancestor X for the two nodes “ΠA fails”, “ΠB fails”.

For the BBN in Fig. 2.5 each node is a random variable. The nodes without common

parents are mutually independent random variables. The nodes with common parents are

conditionally independent, conditional on the values of all of the common, parent nodes. For

each node a conditional probability distribution is defined: the distribution of the random

variable associated with that node, conditional on all the values of the random variables

associated with the parents of the node. More generally, 2 random variables in a BBN, say

X and Y , are conditionally independent, conditional on some set of random variables Z, if
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every path (consecutive sequence of edges and nodes) between X and Y is blocked by Z. In

this case we say that Z d–separates X and Y . A path, p, is said to be blocked by Z if and

only if

• p contains a chain i → m → j or a fork i ← m → j such that m ∈ Z, or;

• p contains an inverted fork (or collider) i → m ← j such that m /∈ Z and no descendant

of m is in Z.

If Z does not d–separate X and Y and all the nodes/elements of Z are ancestors of Y ,

say, then it is possible to marginalise (calculate an average of) the joint distribution of Y

and Z to obtain the distribution of Y . This is an important transformation. It allows

many, seemingly different, BBN topologies of development processes to be transformed into

a form that focuses on sources of dependence in the development and operation of fault-

tolerant software. In Fig. 2.5 the node “Demand X” d–separates “ΠA fails” and “ΠB fails”,

thus implying that “ΠA fails” and “ΠB fails” are conditionally independent, conditional on

“Demand X”. This is the same conditional failure independence that is demonstrated in

Eq. (2.11) as a consequence of the “perfect isolation” assumption. In terms of difficulty

functions this is the result that for each demand, x, we have

P (ΠA, ΠB both fail on x) = θAB(x) = θA(x)θB(x) = P (ΠA fails on x)P (ΠB fails on x) .

In summary, the conditional independence relationships in the EL/LM models may be repre-

sented by the BBN in Fig. 2.5. Furthermore, conditional independence relationships between

random variables can be determined by using the property of d–separation between the nodes

of some suitable BBN topology. This will be useful in Chapter 3, as we demonstrate in the

following section.

2.6.2 Conditional Independence and BBN Transformations

In Chapter 3, by using conditional independence to model dependent software development,

we present a variety of probabilistic models. In many respects these models represent different

possible configurations of the software development process. For instance, the models may

describe the actions of different teams using different tools to develop systems that perform

different actions. These differences, in turn, may result in BBNs with different topologies.

Nevertheless, despite these differences, there is one important way in which these models

may be “similar”. It turns out that the BBNs may satisfy analogous conditional indepen-

dence relationships between analogous sets of random variables. Consequently, by averaging

over random variables that do not have analogues in this sense, we transform seemingly

different BBN topologies into a topology that captures all of the conditional independence

relationships “shared” by all of the BBNs. That is, different BBNs may possess marginal

distributions which have “similar” conditional independence relationships, despite being ob-

tained from models of seemingly different development scenarios. We may demonstrate this

similarity by averaging joint distributions over unimportant random variables. This gives us

a recipe for proving some results about how best to organise the development of a system.
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If a result is a consequence of certain conditional independence relationships, believed to

hold in a particular representative BBN, then we can argue that this result also holds for

any scenario with an associated BBN that, itself, contains a marginal distribution with “the

same” conditional independence relationships as the representative BBN. Further still, as

an alternative to proving this “similarity” between BBNs by averaging over unimportant

random variables, the previously defined property of d–separation can be used to prove that

“similar” conditional independence relationships hold across the BBNs.

We now show, by way of example, what is meant by a collection of BBNs having “simi-

lar” or “the same” conditional independence relationships. Suppose an extension of the LM

model results from modeling a development process, and in this extended model the condi-

tional independence relationships depicted in Fig. 2.6 hold. If we are also presented with

the BBN depicted in Fig. 2.7 we may convince ourselves that each conditional independence

relationship in Fig. 2.7 also holds in Fig. 2.6 by averaging over random variables. For

Figure 2.6: The model depicted is representative of BBN topologies resulting from extending the
LM model, extensions which we discuss in more detail in Chapter 3. Here, note the similarity
between this model and the LM model (depicted in Fig. 2.5) in terms of the network of random
variables ΠA, ΠB, Demand X, ΠA fails, ΠB fails and System fails.

Figure 2.7: This BBN topology results from taking the expectation – with respect to the random
variables F and G – of the joint distribution depicted in Fig. 2.6. Hence, this is a marginal
distribution of the joint distribution in Fig. 2.6. All of the conditional independence relationships
indicated in this BBN also hold for Fig. 2.6.
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instance, to show that in either BBN the random variables C and D are conditionally inde-

pendent – conditional on the pair of random variables E1, and E2 – we can use mathematical

expectation to prove the following factorisation:

P (C,D|E1, E2) = P (C|E1, E2)P (D|E1, E2) . (2.20)

Proof. Let’s begin with the BBN in Fig. 2.6. Assume that all the random variables depicted

are discrete and finite. Also, for the sake of simplifying notation, we define the random

vector Z as follows.

Z := (ΠA, ΠB, Demand x, ΠA fails, ΠB fails, System fails) .

Then, upon taking an expectation of the joint probability distribution indicated by Fig.

2.6, using both “the law of total probability” and conditional independence relationships

suggested by Fig. 2.6, we see that:

P (C, D |E1, E2) =
∑
z, f, g

P (z, f, g, C, D |E1, E2)

=
∑
z, f, g

P (z | f, g, C, D, E1, E2)P (f, g, C, D |E1, E2)

=
∑
f, g

∑
z

P (z | f, g, C, D, E1, E2)P (f, g, C, D |E1, E2)

=
∑
f, g

P (f, g, C, D, |E1, E2)

=
∑
f, g

P (C, D, | f, g, E1, E2)P (f, g, |E1, E2)

=
∑
f, g

P (C | f, g, E1, E2)P (D | f, g, E1, E2)P (f, g, |E1, E2)

=
∑
f, g

P (C | f, g, E1, E2)P (D | f, g, E1, E2)P (f |E1, E2)P (g |E1, E2)

=
∑
f, g

P (C | f, E1, E2)P (D | g, E1, E2)P (f |E1, E2)P (g |E1, E2)

=
∑
f, g

P (C, f |E1, E2)P (D, g |E1, E2)

=
∑
f

P (C, f |E1, E2)
∑
g

P (D, g |E1, E2)

= P (C |E1, E2)P (D |E1, E2) ,

where we have used
∑
z

P (z | f, g, C, D, E1, E2) = 1. Thus, Eq. (2.20) holds for Fig. 2.6.

“Similarly”, an analogous development based on the BBN in Fig. 2.7 gives:

P (C, D |E1, E2) =
∑
z

P (z, C, D |E1, E2)
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=
∑
z

P (z |C, D, E1, E2)P (C, D |E1, E2)

= P (C, D, |E1, E2)

= P (C, |E1, E2)P (D, |E1, E2) ,

so that Eq. (2.20) holds again, but this time for Fig. 2.7. �

Alternatively, however, we could have proved that both BBNs satisfy Eq. (2.20) by using

d–separation: that is, by noting that both BBNs have the property that each path between

the pair of random variables C and D is blocked by the pair of random variables E1 and

E2. We demonstrate this for the BBN in Fig. 2.6 alone, since an almost identical treatment

shows how the other BBN satisfies the property. In Fig. 2.6 there are 4 paths between

the random variables C and D, with each path blocked by the set consisting of the random

variables E1 and E2 as follows:

1. The path, C ← F ← E1 → G → D, is blocked, since it includes the chain F ← E1 → G

containing E1

2. The path, C → ΠA ← E2 → ΠB ← D, is blocked, since it includes the chain ΠA ←
E2 → ΠB (containing E2)

3. The path, C → ΠA → ΠA fails ← Demand X → ΠB fails ← ΠB ← D, is blocked

since it contains the chain ΠA → ΠA fails ← Demand X (where neither E1 nor E2 is a

descendant of “ΠA fails”)

4. The path, C → ΠA → ΠA fails → System failure ← ΠB fails ← ΠB ← D, is blocked

since it contains the chain ΠA fails → System failure ← ΠB fails (where neither E1

nor E2 is a descendant of “System fails”).

In summary, this pair of proofs allow us to assert the same result: taking the expectation

of the joint distribution in Fig. 2.6 – with respect to the random variables F and G – gives

the marginal distribution in Fig.2.7, and this is a transformation of a BBN that preserves

the conditional independence relationship stated as Eq. (2.20). In fact, all of the condi-

tional independence relationships in Fig.2.7 are preserved from Fig.2.6. In this way, we use

marginalisations to justify why different BBNs share a common canonical form, in Chapter

3.

2.6.3 Difficulty Functions as Vectors

As a precursor of a more complete and general treatment given in Chapter (4) we shall

briefly discuss the depiction of difficulty functions as vectors in some n-dimensional vector

space. Consider an LM model,
{(

ΩA × ΩB,ΣA × ΣB,PA × PB

)
, (X,ΣX,PX)

}
, where X and

ΩA × ΩB are both finite. Recall that the difficulty functions for the developments of the

channels are bounded, real–valued functions of the demands. So, for a finite number of

demands we can specify each of these difficulty functions as a vector whose components are

the values of the difficulty function on each of the demands. For instance, suppose there are

n demands. Then, given some ordering/numbering of the demands the difficulty function,

θA(x), can be written as
(
θA1, . . . , θAn

)
where θAi is the difficulty associated with the ith



CHAPTER 2. MODELS OF COINCIDENT FAILURE 54

demand. In lower dimensions such n–dimensional vectors or n–tuples can be depicted, as in

Fig. 2.8. Here, difficulty functions defined on a demand space with 3 demands are depicted

Figure 2.8: The difficulty functions, θA =
(
θA1, θA2, θA3

)
and θB =

(
θB1, θB2, θB3

)
, are drawn as

3–dimensional vectors. The demand space is defined as X := {x1, x2, x3}. The arrows representing
the difficulty functions must lie within the closed region defined by the unit hypercube which is the
hyperrectangle that has the vector D̄ = (̄1, 1, 1)̄ as its diagonal. This is because each component of
the difficulty vector is a probability and, consequently, must lie in the interval [0, 1].

as lying on, or within, the unit cube. Such a 3–dimensional diagram may also be used to

depict vectors in higher dimensions if the diagram is viewed as an embedding diagram: that

is, the axes represent multi–dimensional sub–spaces25 that are orthogonal26 to each other.

Admittedly, it is difficult to visualise vectors in more than three dimensions. However,

diagrams of this kind are useful in illustrating concepts, relationships, properties and results

that are true for any finite dimensional vector space and, therefore, true for difficulties

defined on any finite demand space. Also, simple diagrams like this can be suggestive and

aid intuition in proofs.

2.7 Summary

Historically, the EL/LM models have been used to clarify the implications of achieving high–

reliability systems by employing diversity. At the heart of these models is the assumption that

“perfectly isolated” development teams each develop a software version. This assumption

eliminates a number of possible dependencies, that would have existed otherwise, between the

teams. For instance, under the LM model, teams do not collaborate in a number of activities

such as coding, debugging and testing. Consequently, activities that could be possible sources

of dependence are not explicitly modelled in the original formulation of the EL/LM models.

Instead, each software development process is modelled as the random selection of a version

from a population of possible versions that could be written. However, it is precisely these

kind of activities that should be modelled when considering possible sources of dependence

25A vector space contained within a vector space.
26A generalisation of the notion of perpendicularity. A definition is given in Chapter 4.
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between the development of the versions. Therefore, in order to model situations where the

teams are not isolated from each other, it is necessary to develop the EL/LM models in more

detail than they have been developed previously. To this end, this chapter has presented a

detailed re–development of the LM model. This allowed us to re–derive previously known

results, point out new results, and offer new viewpoints. Some re–derived results include:

• defining the LM model as a combination of two probabilistic models: a model of the

occurrence of demands, and a model of the development of a pair of software versions

where each version is developed by an isolated development team. The activities in the

development process, which have not been explicitly modelled in the original formula-

tion of the LM model, are modelled in detail (see Section 2.5);

• defining the notions of difficulty, difficulty function and variation of difficulty. For each

demand this function gives the probability that a randomly chosen program fails on

the demand. This allows for formalizing notions of failure diversity between multiple

software versions (see Section 2.3);

• demonstrating that independently developed versions may not fail independently (see

Section 2.5, Eq. (2.13) and Eq. (2.15));

• showing that if a system assessor were indifferent between expected system pfds result-

ing from not forcing diversity, then forcing diversity results in expected system pfd that

is no worse, and may be better (see Section 2.5 and Eq. (2.18)).

Some new results and viewpoints include:

• stating observability criterion 2.4.1, which makes more explicit the consequence of “per-

fectly isolated development teams” assumption. The criterion stipulates that an ob-

server embedded in the development process of a perfectly isolated development team

should not be able to confirm, or refute, the existence of any other development process

by observing activity outcomes in the process she is embedded in;

• demonstrating that forcing diversity does not, in general, guarantee better expected

reliability than if diversity were allowed to occur naturally (see Section 2.5). In Chapter

5, Theorem 5.2.1, we give a necessary and sufficient condition on the sizes of a pair of

difficulty functions for forced diversity to not worsen expected reliability;

• showing that under the LM model there are at least two senses in which fault–tolerance

is guaranteed to result in reliability that is not worse than the reliability of a single

version system (see Section 2.5). A fault–tolerant configuration of any pair of versions

is guaranteed to have a pfd that is not larger than the pfds of each of the versions. Also,

the expected pfd of a 1–out–of–2 system, built by a pair of isolated development teams,

is no worse than the related expected pfds of single–version systems built in isolation.

In more general settings (see Chapters 3 and 6) than those of the EL/LM models we

show the second result is not necessarily true: in general, using fault–tolerance does not

guarantee the resulting expected system pfd can be no worse than otherwise;

• developing visual representations of the models that facilitate the analyses of the models

(Section 2.6). These are a Graph–based representation that depicts the consequences
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of conditional independence relationships in the models, and a Geometric representa-

tion that facilitates maximizing and minimizing reliability measures such as expected

probability of failure on demand.

In the following chapter we shall generalise the LM model by considering a model that uses

conditional independence to relax the assumption of perfect isolation between development

teams.



Chapter 3

Generalised Models of

Coincident Failure

The LM model does not appropriately model all forms of the development of a 1–out–of–N

system. The Independent Sampling Assumption (ISA) of the EL and LM models is a plau-

sible modelling consequence of the ideal of complete separation between the developments

of the two versions: with “perfect” separation there is no way that the development of one

version may influence the development of another one. As a consequence of the ISA there is

conditional independence, given a specific demand x, between the failures of the two versions.

That is, for any given demand the probability of that demand being a failure point for one

version does not depend on whether it is a failure point for the other version. This in turn

implies θAB(x) = θA(x)θB(x): the probability of building a two-version system that fails on

x is the product of the probabilities of each version development team building a version that

fails on x. Thus, the ISA allows one to derive Eq.’s (2.13) and (2.15). There are, however,

several reasons for studying scenarios in which the ISA is false:

• complete separation may be impossible for various practical reasons. So, we ought to

study the effects of the inevitable, though possibly small, departures from it;

• communication between the teams may in some cases be desirable either because:

– it causes positive correlation between failures on each demand but improves the

reliabilities of the individual versions so much that the net effect is improved system

dependability, OR;

– perhaps it can be engineered to cause negative correlation in such a way as to

improve system dependability.

• even without communication between the teams the management may wish to improve

the expected pfd of the diverse system by enforcing methods that plausibly violate

conditional independence. Examples are:

– the choice of algorithms to be implemented, allowing the teams to choose freely

but with the constraint that they use different algorithms for the same subset of

57
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the demand space. The hope is to produce negative correlation between the team’s

mistakes on the same demand;

– regarding quality assurance measures, mandating some common procedure which

may cause positive correlation. For instance, testing the two versions on the same

test cases may be a cost-effective way of improving the reliability of both versions

created. This, in turn, improves the reliability of the fault-tolerant system.

• more subtly, we will argue that the ISA is equivalent to assuming that the version

sampling distributions incorporate complete knowledge of dependencies, if any, during

system development. But to answer some important questions, we may need to model

scenarios in which the precise form of some dependencies are not known with certainty,

i.e. they are random variables. This turns out to violate the ISA. Examples of such

uncertain dependencies in development could be unforeseen deviations of the time and

funds available for specific tasks from the pre–set project calendar and budget.

So, in this chapter we explore generalisations of the LM model; presenting ways in which

dependent development processes may be modelled. Some models keep useful properties of

the LM model, such as being able to make meaningful comparisons between the development

of a single–version system and the development of a multi–version system. Other models are

so general that it becomes difficult to make such comparisons. Importantly, we shall see that

by using an interplay of activities that are common to both channels’ and team isolation we

obtain probabilistic models with dependence “built out of” atomic LM-like models. LM-like

in the sense that these models exhibit the ISA even if the channel development processes

are not perfectly isolated1. A consequence of being able to construct models out of LM-like

models in this way is that the LM model can be shown to have more general applicability

than just the case of complete isolation between the development teams. Also, the sense in

which the EL model is optimistic – that is, the claim that the independent development of

the channels optimizes system reliability – can be demonstrated. Finally, preference criteria

concerning how best to organise a development process given rather general conditions can

be stated and proven.

3.1 Modelling Dependence between Version Develop-

ments

A very general model of system development is given by

{(
ΩD ,ΣD ,PD

)
,
(
X,ΣX,PX

)}
,

1In a given system development process there may be activities, common to both processes, that have
already been realized so that the outcomes of these activities are already and remain fixed for the duration of
the development process. These outcomes result in certain information being shared between the processes,
and is a manifestation of the fact that the ISA is a necessary consequence of perfect team isolation, but not
a sufficient condition for it. That is, there exist situations where the ISA does not hold, and yet creation of
the pair of versions is modelled as the conditionally independently selecting a pair of versions from a space
of versions P.
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where ΩD is a sample space of all of the modelled outcomes of activities in the development

process, ΣD a set of related events, PD a probability measure over ΣD , and
(
X,ΣX,PX

)
is an

independent, probabilistic model of demand occurrence in operation. Here, the sample space

ΩD is not necessarily the cartesian product of the sample spaces for each development process

activity’s probabilistic model. Additionally, the probability measure PD is not necessarily

the product measure of the measures related to the probabilistic models of the channels’

development processes. While this model is general enough to model development processes

that have various forms of dependence its generality is also its shortcoming; it is too general

to be of practical use. In the LM model because the system model – a product probability

space – is completely determined by the models of each channel’s isolated development,

comparisons can be made between expected version pfds (where the relevant probabilistic

experiment here is one in which a single–version system is being developed in isolation) and

the expected system pfd (where the relevant probabilistic experiment here is one in which

a multi–version system is being developed by isolated teams). This is useful in discussing

how much of a benefit, if any, fault–tolerance brings over single version systems. In addition,

equations related to the LM model, such as Eq.’s (2.13), (2.15), have covariance terms that

manifestly capture the notion of dependent failure between the channels. These are intuitive

and appealing constructs that aid the understanding of diversity and its effects.

As an alternative to the general model it would be desirable to have a model that relaxes

the “complete isolation” assumption while retaining desirable properties of the LM model.

One possibility is a model that uses an interplay of “dependence inducing” activities with

isolated activities in the joint development process. The idea is to have some activities with

outcomes that are used by each of the channel development processes. However, apart from

these activities, no other activities are common to all of the channel development processes.

Practical examples of such a protocol include: a manager of a joint development process

who intermittently issues specification clarification updates to all of the, otherwise isolated,

development teams; or the versions produced by isolated development teams being subjected

to tests with the same test suite, the latter example being modelled in [38]. The result of

this is a process that is adequately described by a class of models that model dependence

via conditional independence. Let us construct an example member of this class of models.

Consider the example where a manager may issue a single specification clarification to all

of the development teams. The precise nature of the update is unknown before hand as

this will depend on the nature of errors/ambiguities found in the initial specification, if any.

Consequently, the act of issuing an update can be modelled probabilistically as a probability

distribution over all of the possible updates that may be issued. Let
(
ΩE ,ΣE ,PE (·) ) be

the model of this activity where, following usual convention, ΩE is the set of all possible

updates that can be issued, ΣE the set of all update classes of interest and PE (·) a prob-

ability measure defined over ΣE . Apart from these updates the teams are kept isolated

from each other. This means that after an update is issued the teams continue to develop

their respective versions oblivious to what the decisions of the other teams are. Therefore,

given that an update is issued, the joint development process is adequately modelled as the

product probability space of the marginal probabilistic models describing the development
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of each channel, just like in the LM model. Suppose an update e ∈ ΩE is issued to both

teams in the development of a 1–out–of–2 system. We have the pair of conditional prob-

abilistic models
(
Ω1,Σ1,P1 (·|e)

)
and

(
Ω2,Σ2,P2 (·|e)

)
, each conditional on the update e

and each modelling the development of a unique channel. Ω1 is the set of the outcomes of

all of the modelled actvities in the development of channel 1 except specification clarifica-

tions issued, Σ1 is the set of all events of interest and P1 (·|e) is a probability measure that

is conditional on the update e. So, for s1 ∈ Ω1 the probability that the activities in the

development of channel 1 have the outcome s1, given that clarification e has been issued

to the teams, is P1 (s1|e). Similarly, for the respective terms in channel 2’s model. Given

any particular “e”, each of these models is conceptually identical to the models of channel

development in the LM model (see Section 2.5). So, for each clarification e we may define

the LM model
{(

Ω1 × Ω2,Σ1 × Σ2,P1 (·|e)× P2 (·|e)
)
, (X,ΣX,PX)

}
, where the probabilis-

tic models for channels 1 and 2’s development are conditionally independent, conditional on

the specification updates. In fact, by doing this we are defining an entire family or class of

LM models “indexed” by the possible specification clarifications. So, for a randomly issued

update, this class of LM models and the probabilistic model of updates,
(
ΩE ,ΣE ,PE (·) ),

together define an appropriate model of our practical scenario. Models based primarily on

this kind of formulation can be said to model dependence via conditional independence. This

is captured by the following postulate .

Postulate 3.1.1. Via an interplay of non isolated and isolated development we can define

a probabilistic model which uses conditional independence to model dependent software de-

velopment between the teams.

Furthermore, such an interplay seems to be the only reasonable justification for such a model

to be valid in practice. This is explained in more detail later in this chapter (see Section

3.2.1). The rest of the chapter is concerned with analysing the sort of model illustrated

above. The example of this class of model given above – that is, the model of a joint de-

velopment process consisting of otherwise isolated channel developments that are dependent

on a possible clarification being issued – is one of the simplest examples of dependent devel-

opment processes; more exotic cases are certainly possible. The more exotic cases result in

probabilistic models that appear quite complex. Consequently, in order to ease the analysis

of such models Graphical models/BBN s, introduced in Section 2.6.1, will be used to describe

and analyse the probabilistic models.

3.2 Modelling Dependent Software Development Pro-

cesses

The possible sources of dependence between the teams in a development project, like many

other activities/circumstances in this process, can be modelled as random variables. We shall

refer to these dependencies as [random] influences. That is, they are activities/environmental

circumstances which affect the developments of both system channels and whose outcomes
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may not be known beforehand. The simpler interpretation of this “randomness” is as a

source of “uncertainty in the world”: we are trying to predict the effects of a process that

has yet to happen and is affected by random factors. However, it can just as naturally

represent “uncertainty in knowledge”: the development has taken place, but what we know

about it is limited; we still do not know the values of all these variables.

At this abstract level it does not matter whether an influence represents an event external

to the software development process (e.g. a change in the requirements on which both version

developments depend, flu epidemic affecting the health of team members, adverse weather

conditions that effect the availability of necessary resources) or generated internally (e.g. an

activity such as the selection of a single test suite to be used in testing all of the system

channels), or even interactions between the teams (e.g. the specific information exchanged

between the teams, represented as a random variable or set of random variables). The point

is any of these sources of uncertainty affect the way in which the software is developed. Con-

sequently, any version sampling distribution that models the development of the final version

deployed by a development team is dependent on these influences. If we accept that some of

these influences may be controllable (e.g. choosing team members or choosing programming

language to develop in) and some may not be (e.g. adverse weather conditions) then this

notion of influence generalizes the notion of methodology given in Chapter 2 (see Section

2.1). A methodology is a collection of potentially controllable influences. For example, the

development process for a channel ‘A’ may contain influences (which are actually activities)

such as “specification definition”, “program design”, and “implementation”. Additionally,

there could be influences such as “mutual code inspection” (where each team is required to

inspect the other team’s code) that affect both teams, or adverse weather conditions that

affect each team’s availability. Such influences are common to both team’s development

processes. To a large extent we will be interested in the effects of common influences: those

that affect the developments of both channels. We will show that such common influences

may indeed increase correlation between version failures, or they may reduce it.

Similar to Fig. 2.5 on page 49, which we reproduce in Fig. 3.1 for the readers convenience,

we can describe scenarios involving influences via Bayesian networks (or “Bayesian belief

networks”, BBNs), such as in Fig. 3.2. Such Bayesian networks depict system development

processes in which there may be multiple influences common to the two version development

processes, as well as some separate influences. We note that nodes that are ancestors of only

the ΠA or only the ΠB nodes do not represent common influences. Also, note that the BBNs

representing the EL and LM models (see Fig. 3.1) appear to contain only the part of the

BBNs in either Fig. 3.2 or Fig. 3.3 to the right of the final versions ΠA and ΠB . This is a

consequence of two facts:

1. the channels’ development processes being perfectly isolated implies that the influences

in a given process may be averaged over, independently of influences in the other process;

2. any common influences that exist between the channels’ development processes have

their values instantiated (e.g. the test suite to be used to test both versions has already

been determined) and, consequently, do not contribute as common sources of uncer-

tainty on which each channel’s development process is dependent. Since these are not
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Figure 3.1: This Bayesian network for the EL and LM models, reproduced here for the readers
convenience, was first introduced on page 49. The two versions are chosen independently (ISA)
which is represented by the absence of common parent nodes for ΠA and ΠB . Also, they fail
independently conditionally on the randomly chosen demand X, as shown by the presence of the
single common ancestor X for the two nodes “ΠA fails”, “ΠB fails”.
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Figure 3.2: This graph is a Bayesian network depicting a (two-version) system development process
affected by multiple influences, some of them common to the two versions. The nodes to the left of
ΠA and ΠB might represent, for instance, specific design artefacts, test techniques and test cases
selected, and influences on these various aspects of development like communication between the
teams and the project management. The influences may interact in complex ways, e.g. mistakes in
a specification document may affect choices of test cases and both affect which version is delivered.
Some influences affect only one process and not the other, such as nodes JA or IB. Other influences
affect both development processes, such as nodes E1, . . . , EN . We have added the large, rounded
rectangles to identify the three main subsets of the BBN corresponding to the two processes of
developing the two versions and of operating the system.
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Figure 3.3: Here we have represented some possible examples of common influences between the
developments of two versions. These influences affect various stages of the development processes
and invalidate the Independent Sampling Assumption. The nodes in the top and bottom row
represent artefacts at successive stages of production of the two versions. To avoid cluttering the
diagram, the names of the artefacts are listed above it instead of writing the node’s name inside the
circle. Under the diagrams we have named the activities that transform an artefact into the next
one. Each one is subject to some degree of randomness in its results, justifying the representation
of each artefact as a random variable, whose distribution is determined by the exact values of its
parent nodes: the artefact upstream/“to the left” of it, and in most stages a common influence as
well, represented by a node in the middle row.
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sources of randomness they are not depicted in the BBN; this is a common feature of all

of the BBNs. In any given BBN any influences with predetermined values are

not depicted and the distributions of the random variables that are depicted

are conditional, conditioned on the known values of these influences.

Like the EL and LM models there are conditions under which these BBNs are seen to

exhibit conditionally independent version sampling distributions. We characterise this in the

following theorem.

Theorem 3.2.1. If all common influences are given specific values rather than chosen ran-

domly OR if the version development processes have no common influences (they are isolated

from each other), then the two final versions are chosen independently.

Going to an extreme viewpoint, we could assume as known every detail of the two devel-

opments, down to the full behaviour of the two specific program versions created, say πA

and πB , on every point of the input space. Then, the difficulty functions θA(x) and θB(x)

collapse to the “score functions” ω(πA, x) and ω(πB , x), and independence conditional on

each demand is guaranteed by the fact that the score functions can only take the values 0 or

1. Therefore, as a consequence of Theorem 3.2.1 the ISA applies as well as its consequence:

“with identical version development processes, your expectation of the probability of joint

failures should be greater than the product of your expected pfds for the two versions.”
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Figure 3.4: The Bayesian network in Fig. 3.2, and all those we have examined that represent
interesting scenarios of development, can be transformed into a shape like this one in which the only
influences are direct “parent” nodes of ΠA and ΠB and are common to both version development
processes. The intermediate nodes through which the influences affect ΠA and ΠB have been
removed by marginalising the distributions in the BBN of Fig. 3.2 with respect to the non-common
influences. This is justified by applying d–separation (see page 49 for a definition) to Fig. 3.2 to
first determine conditionally independent sets and, subsequently, marginalising where appropriate
(see text, and pages 49,50). Thus, all these scenarios can be described by the same form of equation
that applies to this figure. We study this form of equation in this chapter.

We can transform Fig. 3.2 or Fig. 3.3 into a form “without” activities in the development
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process that do not represent common influences, such as Fig. 3.4. As already stated in

sections 2.6, 2.6.1, and 2.6.2 (see pages 49 and 50) this transformation is accomplished by

averaging (marginalising) over those nodes (random variables) in Fig. 3.2 that do not appear

in Fig. 3.4. This transformation preserves the meaning of the original BBN – Fig. 3.2 or

Fig. 3.3 – in an important sense: it implies no conditional independence assumptions that

were not already implied by the original BBN; and all the joint distributions between the

nodes in Fig. 3.4 are unchanged from those between the homologous nodes in the original

BBNs [35]. However, Fig. 3.4 omits the details of how the non-common influences affect the

development process (e.g. which phase of development they affected).

So, scenarios with quite different common influences, even if these influences affect dif-

ferent phases of development (e.g., errors in specification vs choices of the same system test

cases for both version development processes), can be reduced to a common mathematical

form from the viewpoint of dependence relations. We can therefore formulate a set of theo-

rems that depend only on the presence of common influences. All scenarios of dependence

in system development that uses an interplay of isolation and interaction, some resulting in

more complex BBNs than Fig. 3.2, can be transformed in this way. The result of this is the

same theorems are applicable to seemingly different scenarios. In the following sections we

discuss further justification for, and the implications of, these models.

3.2.1 Justifying Conditional Independence in Practical Situations

In this chapter we are interested in practical situations which may be modelled by BBNs that,

via marginalisation (see Section 2.6.1), simplify to the canonical form Fig. 3.4. Therefore,

in order to use the results of this Chapter in a given practical scenario, one must seek

justification for why the conditional independence relationships in a representative BBN

hold in the practical scenario. This is a non–trivial task. What characteristics of practical

situations can be used to justify a given BBN as adequately capturing all of the conditional

independence relationships required? It seems reasonable to give the following as an example

of a scenario that can be argued to satisfy a BBN topology similar to Fig. 3.4.

Consider a practical scenario as shown in Fig. 3.3. This depicts a system development

process in which periods of isolated development are interspaced/alternated with mutually

independent periods of dependent development. Each channel’s development process has

two types of activities that are conducted by the respective teams: those with outcomes

that affect the development of all of the channels and those with outcomes that affect only

the respective development processes that the activities are part of. The effect of these two

kinds of activities is that the teams make “independent” decisions about their respective

development processes, given the outcomes of any dependence creating activities that have

occurred. In order to use this argument, the pair of activities that need to be identified in

practice are:

1. Dependence Creating Activities : These have outcomes that are shared amongst the

channel development processes. These uncertain outcomes are random variables (indi-

cated as nodes located in the middle of the BBN) such as “Specification wording and
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errors” which would be an outcome of an activity of specification writing for the system,

or “System test Demands” which would be the suite of demands that are to be used in

system testing. In the present example scenario these activities have the property that

their outcomes are relevant for all of the channels. Also, these activities are mutually

independent so that the outcome of any common activity does not affect any other

common activity. For instance, in the example of Fig. 3.3 the generation of a test suite

does not require knowledge of any specification clarifications that may have been issued

to the teams. This mutual independence is not necessary and certainly does not hold

in general: for instance, there are cases where specification clarifications may inform

the decision of which demands are representative, and therefore should form part of a

test suite.

2. Independent Activities : Contrastingly, there are also activities whose outcomes are rele-

vant only for the respective process in which the activity is found. Again, the uncertain

outcomes of the activities are random variables, depicted as labels of nodes. So, for

each development process there is a relevant activity of designing the software with the

outcome “a High–level design is produced for the channel” (represented by the node

labelled “High–level design”), or the activity of an initial period of coding with the out-

come “some initial version code is produced” (represented by the node labelled “initial

version code”). In this example such activities are conducted by the teams in isola-

tion. That is, each team’s actions while conducting these activities, and the outcomes

thereof, do not influence any other development team, and the effect of events outside

of the teams’ development processes that could affect all of the teams (such as civil

unrest, accidental fires or flu epidemics) are mitigated as much as possible (such as re-

mote access to work files, contingency plans and redundancy in team member expertise).

Are there other types of practical scenarios that may be identified as satisfying conditional

independence relationships similar to the canonical form? Such a practical scenario does not

use the aforementioned interplay of isolation and dependence, and yet is justifiably

described by a non–trivial model that exhibits conditional probabilistic independence,

conditional on the outcomes of common activities. Put another way, the task is to

construct an example scenario in which the teams are not isolated from each other, and yet

observable characteristics of the development of the channels justify modeling this as the

conditionally independent selection of a pair of programs, conditional on the outcomes of all

common influences. However, constructing such an example can be problematic, as we show

by way of example.

Let us try to construct a simple example based on a system development process consist-

ing of a single common influence. First we will write out the necessary form of conditional

independence, and then think about what observable characteristics of the development

process (other than perfect team isolation) may justify such a form as holding in prac-

tice. For simplicity, let the set of possible programs that may be developed for the system

channels be P := {π1, π2}. Perhaps the space of possible versions is so small because the

common influence excludes the possibility of all other potential pairs of versions (e.g. there
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are only two simple algorithms that the teams may choose to implement). In any case,

this simplification is not a hindrance since we expect useful observable characteristics to

be independent of the sizes, as well as the number, of common influences. Now, for any

given value of the common influence (e.g. the value e), the three conditional probabilities

{P (π1, π1|e) , P (π2, π2|e) , P (π1, π2|e)} define the probability of producing a pair of ver-

sions. Then, if conditional independence holds, the marginal probabilities P (π1|e) , P (π2|e)
should be such that:

P (π1, π1|e) = P (π1|e)P (π1|e)
P (π2, π2|e) = P (π2|e)P (π2|e)
P (π1, π2|e) = P (π1|e)P (π2|e)

Viewing this as a system of three equations in the two unknown marginal probabilities, so-

lutions are not always guaranteed. In fact, a solution exists if and only if the probabilities

{P (π1, π1|e) , P (π1, π2|e) , P (π2, π2|e)} are in geometric progression, a property that is

not expected to hold generally in practice. Hence, we seek observable characteristics of the

development process that justify the joint probabilities of program pairs being in geometric

progression. It is not clear what such observable characteristics might be, other than iso-

lated development processes. In general, there are other hurdles to overcome in justifying

conditional independence in practice2. This problem is common to any engineering process

that may be modeled using conditionally independent random variables. To summarize, we

suggest the following postulate.

Postulate 3.2.2. Extensions to the LM model which model dependence via conditional in-

dependence can be used to represent development processes that utilise an interplay of periods

of team isolation with periods of dependence creating activity.

2In general, one might attempt to construct an example scenario in which a characteristic of the
development process justifies conditional independence. Consider a scenario with multiple common
influences. For each possible set of outcomes for the common influences, say e1, . . . , en, an observer
looking at the development of a channel (say channel i, where i = 1, 2) in such a scenario can model
this development process as

(
Ωi|e1,...,en ,Σi|e1,...,en ,Pi|e1,...,en

)
. Given the common activities’ outcomes

e1, . . . , en the sample space Ωi|e1,...,en will contain all of the possible ways in which the team developing
channel i conducts the development while interacting with the other team. From the perspective of
an observer studying development process i every possible sequence of observable actions, discussions,
decisions, or exchange of ideas that ultimately results in the development of a software version for
channel i will be represented as elements of Ωi|e1,...,en . Given such models for the marginal development
processes the model of the 1–out–of–2 system’s development process should be the product probability
space

(
Ω1|e1,...,en ×Ω2|e1,...,en ,Σ1|e1,...,en ×Σ2|e1 ,...,en ,P1|e1,...,en × P2|e1,...,en

)
, as was pointed out in

Chapter 2. However, it was also pointed out in Chapter 2 (Section 2.4, page 40) that it does not make
sense for a model of dependent version development processes to exhibit probabilistic independence. For,
Ω1|e1,...,en ×Ω2|e1,...,en does not form a sensible sample space for dependent system development since

any member of Ω1|e1,...,en may be paired with any member of Ω2|e1,...,en .

This implies that the sample space contains outcomes that do not reflect agreement on the interactions that
occur between the teams: potentially there could be disagreement, between an arbitrary ordered pair of
marginal outcomes, concerning what the value of a realized dependence is. One might attempt to overcome
this by defining such nonsensical outcomes as zero probability events. However, to do so requires defining
legitimate non–zero probability marginal events as zero probability events. In summary, difficulties arise when
attempting to construct an example of dependent software development which is modeled using conditional
independence, where such conditional independence is not justified by development team isolation.
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3.2.2 Effect of a single common influence

For the sake of simplicity consider two version development processes sharing a single com-

mon influence, E, as in Fig. 3.5. If we first consider a specific instantiation of the two

processes (including the specific value – say e – taken by E) then, like the LM model, the

two version sampling distributions (represented by the nodes ΠA and ΠB) are conditionally

independent, conditional on the value e. Alternatively, consider if only the distribution of E

is known rather than its actual value. That is, we do not know how the factor E manifests

itself during the specific development project considered but only the a priori constraints

on the development process. This violates the ISA as can be seen from Fig. 3.5 where the

nodes that represent the single version difficulty functions, ΠA fails and ΠB fails, have the

common ancestor node E. That is, E induces covariation between the difficulty functions of

the version development processes.
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Figure 3.5: Bayesian network for a system with one common influence between the development
processes. For example, the same test suite is used to test both versions.

So, there are different possible viewpoints on the same process depending on which com-

mon influences, among the potentially variable common influences during development, we

assume as fixed (that is, either as fully known or as fully determined by events that have

“already happened”). Therefore, the fact that some viewpoints imply the ISA and some do

not is just an interesting mathematical curiosity, with an aspect of mathematical convenience

when the ISA does apply. If we refer back to the “fault leak links” between version devel-

opments discussed in [8] we can now see that some of them could usefully be represented

in the difficulty function without violating the ISA, and others could not, but this depends

to some extent on the observation point that we choose. Upon considering the effects of a

common influence with uncertain value we will usually need to assume the ISA is violated.
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If, on the other hand, we are considering the effects of a particular value of the influence then

the ISA is not violated. For instance, consider the concern that two development teams are

likely to have had similar technical education and, thus, share some preferred solutions for

typical problems, leading to similar “typical” errors which may tend to cause failures on the

same demands. If we are considering two specific, existing, isolated teams their educational

backgrounds are determined, their typical errors are described in their respective difficulty

functions, and thus the common influence “Educational background” is instantiated: it is

not a source of uncertainty. Consequently, the similarity of educational backgrounds does

not violate the ISA. The likelihood that it causes common failures is fully described by the

two difficulty functions through a contribution to their covariance over the space of demands

(see Eq. (2.15)). On the other hand suppose that the teams are yet to be selected. Each

possible team has its associated difficulty function. Upon choosing the teams, the way they

will develop their respective versions is certainly affected by a common, random factor –

“Educational background” – and, consequently, the ISA is violated and the teams’ difficulty

functions are dependent. This dependence could take the form of positive, zero or nega-

tive covariation between the teams’ version sampling distributions (and, consequently, the

teams’ difficulty functions). For a given pair of versions, πA and πB say, positive covariation

would mean that the probability of one team producing version πA, given that the other

team has produced version πB , is more likely than it would be if the teams independently

produced their respective versions. The increased conditional probability is due to the teams

developing their versions in similar ways due to their shared background: the teams develop

their respective versions, πA and πB , using similar technical approaches, techniques and so-

lutions. This is analogous to the teams finding the same demands difficult to program for,

which is described by positive correlation between the teams’ difficulty functions. This is

no surprise since the common influence “demand” is conceptually the same as the common

influence “Educational background”. In Chapter 6 : Section 6.2 this conceptual equality will

be used to generalise some optimisation results (applicable to the LM model and discussed

in Chapters 4 and 5) so that they apply to the generalised models given here.

3.2.3 The general case: multiple common influences

Consider multiple, mutually independent influences such as E1, ...EN in Fig. 3.2. In addition,

there are also the influences IA, JA and IB , JB, affecting development processes related to

teams A and B respectively. Since the nodes IA, JA and IB, JB are ancestors of only ΠA

and ΠB respectively then we may transform the BBN as previously discussed in section

2.6 by averaging over these nodes. The only ancestral nodes of the ΠA and ΠB nodes

will be the nodes E1, ...EN that model common influences between how the teams develop

their versions. Clearly, the teams are not independent and the ISA does not hold. As a

consequence the teams difficulties, represented by the nodes “ΠA fails” and “ΠB fails”, are

dependent conditionally on the values of the common influences E1, ...EN and the demand

X . So, for the system difficulty associated with the demand x, we have

θAB(x)
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= E[ω(ΠA, x)ω(ΠB , x)]

= E[θAB;E1,...,EN
(x)]

= E[θA;E1,...,EN
(x)θB;E1,...,EN

(x)]

= E[θA;E1,...,EN
]E[θB;E1,...,EN

] + Cov
E1,...,EN

(θA;E1,...,EN
, θB;E1,...,EN

)

= θA(x)θB(x) + Cov
E1,...,EN

(θA;E1,...,EN
, θB;E1,...,EN

), (3.1)

where θA;e1,...,eN ≡ θA;e1,...,eN (x) (and similarly for θB;e1,...,eN (x)) is the difficulty for team A

given the values e1, . . . , eN and x for the common influences and demand respectively3. Also,

we used the fact that θAB;e1,...,eN (x) = θA;e1,...,eN (x)θB;e1,...,eN (x), where θAB;e1,...,eN (x) is

the difficulty for the system given a demand, x, and values for all of the common influences.

So, the equality in the preceding sentence states that θAB;e1,...,eN (x) exhibits conditional in-

dependence, conditional on e1, . . . , eN and x. This property can be seen graphically since the

canonical form Fig. 3.4 reduces to a BBN with only the three rightmost nodes present when

the values e1, . . . , eN and x are given. However, in contrast, equation (3.1) suggests that

the system difficulty function, θAB(x) = E[θAB;E1,...,EN
(x)], does not exhibit conditional

independence, conditional on x. That is, θAB(x) �= θA(x)θB(x) in general. This lack of

dependence is a direct consequence of the violation of the ISA (similar to the single common

influence case) and is due to uncertainty arising from the common influences. This uncer-

tainty induces covariation between the teams’ corresponding difficulties. This covariation is

captured by the Cov
E1,...,EN

(θA;E1,...,EN
, θA;E1,...,EN

) term in Eq. (3.1). Again, from Fig. 3.4,

we can appreciate this graphically since even if x is given the three rightmost nodes in the

BBN still have the nodes E1, . . . , EN as common parent nodes; the BBN cannot be further

simplified in a useful way. To illustrate the intuitive meaning of this covariation consider

the case when the covariance is positive. Then, upon observing that a version produced by

one team fails on a given demand x, we suspect that the values of the common influences

E1, . . . , EN were such that under these conditions the team found demand x difficult to

program/develop/cater for. Therefore, since both teams are exposed to these conditions, we

might expect that the other team would also find demand x difficult to program for.

3.2.4 Implications and interesting special cases

In this section we will focus on specific scenarios in which the equations introduced above

imply a clear preference between alternative policies for the development of a diverse system.

That is, we single out sets of sufficient conditions under which a policy should be preferred

to an alternative one. Our focus is on selecting cases in which the equations would actually

help in decision making: conditions that one may recognise as approximately satisfied in the

3The transformation of our BBNs into the canonical form represented by Fig. 3.4 ultimately implies that
as far as difficulty functions (the nodes “ΠA fails” and “ΠB fails” in the BBNs) are concerned the demands
are not conceptually different from the outcomes of common influences during the development process: all
are points with respect to which failure correlation can occur. So, an alternative notation for the difficulty
functions could be θA(e1, . . . , eN , x). However, we will not use this notation as we wish to remind ourselves
of the special property of the demands being “outside” of the development process in the notation. Also,
relatedly, we want to remind ourselves of the special place the demands have in the LM model as being the
only common point of failure correlation.
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real world scenario in which one is called to make a decision.

Mirrored version development processes

An interesting special case is that of two version development processes being (stochastically)

mirrored, by which we mean the subnetworks that describe the developments of channel A

and channel B (see in Fig. 3.3 and Fig. 3.4) are identically distributed. In other words

the two processes are probabilistically isomorphic, as in the EL model. Additionally, the

processes may have some common influence. In such a case it may be possible to “decouple”

the processes with respect to the common influence.

Decoupling involves replacing a common influence with a pair of probabilistically

independent influences, one for each channel development process. The common

influence and the related pair of influences are required to be identically distributed.

An example of this is a generation procedure for randomly generating test cases to be used in

testing the versions developed. As a common influence such a procedure is used to generate

test cases which are then used for testing in each channel development process. As a result

the same test cases are used to test all of the versions under development. Alternatively, if

within each channel development process the procedure is used to generate a possibly unique

set of test cases then this would be the decoupled equivalent. Note, the common influence

and its associated pair of influences have identical probability models: that is, they have

probabilistic models with identical sample spaces and identical probability values assigned

to the same events. In particular, the need for identical sample spaces provides an essential

characteristic of practical scenarios for which decoupling is possible.

Observability Criterion 3.2.3. For a practical scenario in which decoupling is possible

an observer, embedded in a channel’s development process, cannot confirm or refute whether

an activity is a common influence by observing the outcomes of activities in the development

process she is embedded in.

For example, a scenario in which the development teams necessarily confer with each other

before implementing software solutions is one which violates this criterion; members of the

teams (i.e. observers embedded in this experiment) know that their period of interaction

is a common influence. The observability property here is similar, but not the same as the

observability property of the LM model, highlighted in Criterion 2.4.1 on page 38. There a

lack of information prevented an observer from determining whether a development process

involves the creation of either a single version by a single team, or a pair of versions by a pair

of (perfectly isolated) development teams. However, in the current context a lack of infor-

mation prevents an observer, who might be aware of the existence of another development

team, from determining whether an influence is common to both teams or not. Logically, if

an observer cannot determine whether another team exists or not then the observer cannot

determine whether an influence is common or not. This means that a practical scenario in
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which Criterion 2.4.1 holds (itself a consequence of the “perfectly isolated teams” assumption

of the LM model) is a scenario in which Criterion 3.2.3 above holds.

Graphically, decoupling transforms a graph, such as in Fig. 3.5, into another graph, such

as in Fig. 3.6 where E,EA and EB are identically distributed. A special case of decoupling

was discussed in [38]: the example of replacing a single test suite generation procedure,

used to generate test suites applied to the testing of both software versions, with a pair

of independent test suite generation procedures, one for each development process. Does

decoupling make the system better or worse from the point of view of the expected system

pfd? From equation (3.1) we may obtain the expected system pfd by averaging θAB(x) over

all possible system demands. However, this is simply an iterated sum over the difficulties

θAB;e1,...,eN . So, given some ordering in (3.1) of the common influences from innermost sum

to outermost sum (say, E1 to EN ), it is instructive to see what happens when the innermost

sum is evaluated while leaving all of the other sums the same. We obtain

θAB(x) =
∑

eN ,...,e1

θAB;e1,...,eN
(x)PE1

(e1) . . .PEN
(eN )

=
∑

eN ,...,e2

E[θAB;E1,e2,...,eN
]PE2

(e2) . . .PEN
(eN ). (3.2)

We have chosen this form of the equation to demonstrate the effect of decoupling with respect

to E1. This effect can be seen upon scrutiny of the E[θAB;E1,e2,...,eN
] term. Note that Eq. (3.2)

is invariant under a permutation of the common influences due to their mutual independence.

So, the choice of the innermost sum being with respect to E1 is without loss of generality.

Also, for mirrored version development processes, θA;e1,e2,...,eN
(x) = θB;e1,e2,...,eN

(x), for all

e1, . . . , eN , x . That is, the difficulty functions are equal. Therefore,

E[θAB;E1,e2,...,eN
] = E[θ2

A;E1,e2,...,eN
] =

(
E[θA;E1,e2,...,eN

]
)2

+ Var
E1

[
θA;E1,e2...eN (x)

]
, (3.3)

where VarE1

[
θA;E1,e2...eN (x)

]
≥ 0 always, since it is a variance. So, E1 induces a vari-

ance term which would not exist if the development processes were decoupled. So, the

expected system pfd, viewed as an expectation of the expression “
(
E[θA;E1,e2,...,eN

]
)2

+

Var
E1

[
θA;E1,e2...eN (x)

]
” in Eq. (3.3), is smaller when the system is decoupled with respect to

E1. We can state the following general rule.

Preference Criterion 3.2.4. : Decoupling of mirrored version development pro-

cesses. Given a finite number of independent, common influences between two mirrored

development processes substituting a common influence with two independent influences (one

for each process) with the same distribution as the removed influence yields either an un-

changing or better expected system pfd.
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Figure 3.6: Here, the system development process is as in Fig. 3.5, except for the fact that the
two teams choose their test suites independently. The version sampling distributions and difficulty
functions for the two channels are the same as in Fig. 3.5, but the process in this figure produces
better system pfd (equal pfd as a limiting case). The random selection of demands is the only source
of uncertainty in common between the channels.

Notice that this result suggests that the system development process with the smallest

reliability value is one for which there are no common influences, or all of the common influ-

ences are predetermined. In other words, the best case scenario is a model that exhibits the

ISA where the version sampling distributions are identical, just like in the EL model. Now,

advocates of team isolation have argued that such a policy is beneficial in minimizing the

occurrence of so–called “fault leaks” between the teams, all in a bid to achieve failure inde-

pendence between the channels [6, 7, 20, ]. By isolating the teams such a policy removes (or

predetermines) all of the common influences from the system development process, resulting

in the best case reliability given by an EL-like model. It is now clear that, in the context of

decoupling a system development process consisting of mirrored version development pro-

cesses, the EL model is a best case scenario. However, isolation does not take care of the

common influence “a demand is submitted to the system in operation”, which lies “outside”

of the the system development process and cannot be removed by isolation. Consequently,

as was pointed out in the original EL formulation [12], independent channel failures cannot

be achieved, in general. Additionally, note that:

• after applying this “decoupling” the resulting processes are still mirrored and, therefore,

this criterion still applies: “decoupling” with respect to any finite number of common

influences is an improvement;

• In [38] similar results were obtained for a more restricted class of common influence

(common test suite generation for both channels’ development processes) than the com-

mon influence classes presented here. Furthermore, while the version sampling distribu-

tions used in [38] were conditionally independent with respect to common influences the

scenarios modelled all satisfied observability criterion 3.2.3 and decoupling was always



CHAPTER 3. GENERALISED MODELS OF COINCIDENT FAILURE 74

possible. However, observability criterion 3.2.3 is not necessary for preference criterion

3.2.8 below to hold;

• simply removing a common influence does not guarantee improvement. For instance,

one way of removing the common influence in the example of common test suite gen-

eration is to eliminate testing altogether. This would change the two version sampling

distributions, presumably for the worse and, therefore, may worsen the expected system

pfd. Instead, “decoupling” as defined above is beneficial because it does not change the

two version sampling distributions but only (and for the better) their joint distribution.

Non-mirrored version development processes

For the case of development processes that are not mirrored what are the implications of

decoupling, if any? Non-mirrored, version development processes are not identically dis-

tributed. So, there exist e1, . . . , eN , x for which θA;e1,e2,...,eN
(x) �= θB;e1,e2,...,eN

(x). Thus,

instead of (3.3), we have

E
E1

[θAB;E1,e2,...,eN
] = E

E1

[θA;E1,e2,...,eN
θB;E1,e2,...,eN

]

= E
E1

[θA;E1,e2,...,eN
] E
E1

[θB;E1,e2,...,eN
]

+ Cov
E1

[θA;E1,e2,...,eN
, θB;E1,e2,...,eN

].

(3.4)

Comparing this with (3.3) we see that E1 induces covariation, instead of variation, between

the development teams’ corresponding difficulties (that is, Cov
E1

[θA;E1,e2,...,eN
, θB;E1,e2,...,eN

]).

In general, covariances may be negative, positive or zero so there appears to be the potential

for decoupling to result in increasing, reducing or not changing the expected system pfd.

Decoupling would be beneficial if the covariance term in (3.4) was positive for all possible

outcomes e2, . . . , eN , x. For, in this case, the expected system pfd for systems built without

decoupling is obtained by taking the expectation of Eq. (3.4) with respect to E2, . . . , EN , X

as:

pfdno decoupling = E [θAB (X)]

= E
E2,...,EN ,X

[
E
E1

[
θAB;E1,E2,...,EN

(X)
]]

= E
E2,...,EN ,X

[
E
E1

[
θA;E1,E2,...,EN

(X) θB;E1,E2,...,EN
(X)

]]

= E
E2,...,EN ,X

[
E
E1

[
θA;E1,E2,...,EN

]
E
E1

[
θB;E1,E2,...,EN

]
+ Cov

E1

[
θA;E1,E2,...,EN

, θB;E1,E2,...,EN

] ]

= E
E2,...,EN ,X

[
E
E1

[
θA;E1,E2,...,EN

]]
E

E2,...,EN ,X

[
E
E1

[
θB;E1,E2,...,EN

]]

+ Cov
E2,...,EN ,X

[
E
E1

[
θA;E1,E2,...,EN

]
, E
E1

[
θB;E1,E2,...,EN

]]
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+ E
E2,...,EN ,X

[
Cov
E1

[
θA;E1,E2,...,EN

, θB;E1,E2,...,EN

]]
, (3.5)

while the expected system pfd for systems built by decoupled channel development processes

is:

pfddecoupling = E [θAB (X)]

= E
E2,...,EN ,X

[
E
E1

[
θA;E1,E2,...,EN

]
E
E1

[
θB;E1,E2,...,EN

] ]

= E
E2,...,EN ,X

[
E
E1

[
θA;E1,E2,...,EN

]]
E

E2,...,EN ,X

[
E
E1

[
θB;E1,E2,...,EN

]]

+ Cov
E2,...,EN ,X

[
E
E1

[
θA;E1,E2,...,EN

]
, E
E1

[
θB;E1,E2,...,EN

]]
. (3.6)

The difference between Eq. (3.5) and Eq. (3.6) is the term

E
E2,...,EN ,X

[
Cov
E1

[
θA;E1,E2,...,EN

, θB;E1,E2,...,EN

]]
.

So, under conditions that ensure this term is non–negative,

pfddecoupling ≤ pfdno decoupling . (3.7)

Indeed, we now proceed to show that non-negative covariation is guaranteed in the following

special case: when corresponding difficulty functions,

for instance θA;e1,e2,...,eN
(x) and θB;e1,e2,...,eN

(x) ,

are monotonic functions (both non-increasing or both non-decreasing) of e1, given any set

of values e2, . . . , eN , x. We prove this by a corollary to the following lemma.

Lemma 3.2.5. Let f and g be functions of the Random Variable Y . Let there exist a point

y = ȳ, such that {
f(y) ≥ EY (f(Y )) : y ≤ ȳ,

f(y) ≤ EY (f(Y )) : y > ȳ

so that
∫
y≤ȳ (f(y)− EY (f(Y ))) dFY (y) ≥ 0 (The integral here is the measure-theoretic

Lebesgue integral taken with respect to FY (y), the cumulative distribution function of Y,

viewed as a probability measure) and let g be a monotonically decreasing, real-valued func-

tion of y. That is, g is a real-valued function such that g(x1) ≤ g(x2) whenever x1 ≥ x2.

Then

Cov
Y

(f(Y ), g(Y )) ≥ 0
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Proof. Consider that

0 =

∫
y

(
f(y)− E

Y
(f(Y ))

)
dFY (y)

=

∫
y>ȳ

(
f(y)− E

Y
(f(Y ))

)
dFY (y) +

∫
y≤ȳ

(
f(y)− E

Y
(f(Y ))

)
dFY (y)

⇒ −
∫
y≤ȳ

(
f(y)− E

Y
(f(Y ))

)
dFY (y) =

∫
y>ȳ

(
f(y)− E

Y
(f(Y ))

)
dFY (y)

The first equality was deduced from the definition of expectation of Random variable while

the second equality is a consequence of the additive property of Lebesgue integrals. Using this

result, the requirements

{
f(y) ≥ EY (f(Y )) : y ≤ ȳ,

f(y) ≤ EY (f(Y )) : y > ȳ
and g, a monotonically decreasing

function of y, we see that∫
y>ȳ

(
f(y)− E

Y
(f(Y ))

)
g(y)dFY (y) ≥ g(ȳ)

∫
y>ȳ

(
f(y)− E

Y
(f(Y ))

)
dFY (y)

= −g(ȳ)

∫
y≤ȳ

(
f(y)− E

Y
(f(Y ))

)
dFY (y) ≥ −

∫
y≤ȳ

(
f(y)− E

Y
(f(Y ))

)
g(y)dFY (y)

⇒
∫
y

(
f(y)− E

Y
(f(Y ))

)
g(y)dFY (y) ≥ 0

Recall: We may always write Cov
Y

(f(Y ), g(Y )) =

∫
y

(
f(y)− E

Y
(f(Y ))

)
g(y)dFY (y). Conse-

quently, using this above gives the required result,

Cov
Y

(f(Y ), g(Y )) ≥ 0 . �

Corollary 3.2.6.

E
E2,...,EN ,X

[
Cov
E1

[θA;E1,E2,...,EN
(X), θB;E1,E2,...,EN

(X)]

]
≥ 0

whenever the difficulty functions, θA;e1,e2,...,eN
(x), and θB;e1,e2,...,eN

(x), are monotonically de-

creasing functions of the influence E1, for all realisations e2, . . . , eN , x of the random vari-

ables E2, . . . , EN , X .

Proof. For every demand x and any common influences e2, . . . , eN , suppose θA;e1,e2,...,eN
(x),

θB;e1,e2,...,eN
(x) and the random variable E1 have the properties of f , g and Y respectively,

from the last Lemma. Then, for each demand x, and influences e2, . . . , eN , we have

Cov
E1

[θA;E1,e2,...,eN
(x), θB;E1,e2,...,eN

(x)] ≥ 0 .



CHAPTER 3. GENERALISED MODELS OF COINCIDENT FAILURE 77

Therefore,

E
E2,...,EN ,X

[
Cov
E1

[θA;E1,E2,...,EN
(X), θB;E1,E2,...,EN

(X)]

]
≥ 0 . �

We have just proved the following preference criterion.

Preference Criterion 3.2.7. : Decoupling of diverse version development pro-

cesses. If two version development processes with a finite number of independent, common

influences possess difficulty functions that are positively correlated with respect to some com-

mon influence E (for any values of the other common influences and the demand), then

substituting E with two independent influences (one for each process) with the same distri-

bution as the removed influence yields either an unchanging or better expected system pfd.

As an example consider this scenario: Our two-version system is to control a new model

of some kind of equipment. Part of its planned V&V process will be system testing in

the equipment prototype. A certain time budget has been allocated for this system testing

phase but the actual time available may vary depending on when the prototype is actually

ready. Both teams are thus exposed to the same random variation: “time available for

testing on the prototype” is a common influence4. It is reasonable to expect an increase in

the time available for testing to improve the “difficulty” (i.e. reduce the numerical value of

the difficulty function) for every demand given fixed values for all other influences, and a

decrease in time would make the difficulties worse. Therefore, the teams’ difficulty functions

can be viewed as monotonically decreasing functions of the common influence “time”. This

is sufficient for the covariance term in (3.4) to be positive. So, uncertainty about the actual

time available for testing adds to the probability of common failure of the average pair of

versions developed, as compared to what would be calculated by just assuming the average

effect of the time influence. Although one may never be able to calculate these expected

pfds from the equations in practice this is not a purely theoretical result. It tells us that

if we had a choice between purchasing versions that had been originally affected by such

a common influence (but without knowing its value: how much system testing time was

actually available) and others that were developed independently – the development processes

being otherwise statistically equal in the two scenarios – we should expect better system pfd

from the latter.

Of course, a dual theorem applies for negative covariance. Substituting two non–common,

identically distributed influences with an identically distributed common one such that the

covariance with respect to it is negative will improve the expected system pfd. Creating forms

of negative covariance this way – that is, introducing random influences that whenever they

happen to hamper one version development team on some demands, help the other team on

the same demands – is useful in software development. By doing this we achieve increased

4Actually, the concept of time used here is not necessarily the number of hours spent on testing, say. For
instance, it may be more useful to consider “time” as the number of test cases considered.
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levels of reliability at the cost of producing a single random influence. This generalizes a

“more reliability at no extra economic cost” result that was first discussed in [38]. There it

was noted that in the case of testing it is hard to imagine strategies giving such negative

covariance.

It is possible, given a joint process with mirrored development processes and common

influences, to mandate that some activity be independently carried out in different ways by

the individual teams resulting in diverse channel development processes. A peculiarity of

this is a form of irreversibility. Once we alter two mirrored version development processes

by “diversifying” some part of them, and thus turning variance terms in our equations into

covariance terms, adding a common influence will not undo the diversification, in the sense

that it will not reintroduce variance terms into the expression for the average system pfd.

That is, adding this additional “coupling” may make the system less reliable, on average, but

will not produce a variance term in the equations; we have shown such variance terms are a

sufficient condition for decreased reliability. Mathematically, once two version development

processes are stochastically “diverse” (i.e., non-mirrored), adding common influences cannot

make them “non-diverse” again.

Mirrored versus non–mirrored version development processes

Finally, again we turn to the case of mirrored, version development processes with a common

influence, E, and consider how this compares with a related case of non–mirrored version de-

velopment processes. In [13] it was shown that, under LM model assumptions, if the expected

system pfds of two 1–out–of–2 systems built with different methodologies are identical, then

forcing diversity in the development of a 1–out–of–2 system cannot result in worse reliability.

Indeed, forcing diversity can result in better reliability. We discussed this result in Section

2.5 (see Eq. (2.18)), and prove the result in Section 5.2. In this section we show that this

result still holds upon relaxing the LM model assumption of perfectly isolated teams?

A plausible way of “increasing diversity” is to require one of the two development teams

to change its process in some aspect (change the probability distributions associated to some

node in the BBN for the channel development process) so as to obtain a process that is

intuitively different but promises to be no worse than the previous process. The difference

between the two processes might be in the technology used, or the testing methods, or in

the algorithms implemented. Let us indicate the two processes as α and β. Given that the

development of the channels of a 1–out–of–2 system are conditionally independent, condi-

tional on some common influence, is it better to build the channels using the same process

for each channel’s development (in effect having homogeneous development processes), or is

forcing diversity preferable? We proceed to show that under indifference we expect forcing

diversity to result in a system that is no worse than if homogeneous development processes

were used.

First, let us label the channels of the system as A and B. Each channel may be developed

using either process α, or process β. The development of a channel, as before, is modelled

as the random selection of a software version from a population of software. If a channel, A

say, is developed using a process, α say, then the random variable that models the channel’s
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development is written as ΠAα. So, all 4 combinations ΠAα, ΠAβ , ΠBα, ΠBβ are meaningful.

Further, recall from earlier in the chapter (see the discussion surrounding Eq. (3.1) on page

69) that the channels’ development processes may share a common influence. We model

this influence as the random variable E and, given an outcome of E, the channels are

assumed to be developed independently. Suppose a single process, say α, is used to develop

each channel. Then, given a realisation of E, the development process is modelled as the

independent, identically distributed, random selection of a pair of versions, ΠAα and ΠBα.

If, however, a unique process is used in developing each channel, α for channel A and β for

channel B say, we model this using the diverse pair of conditionally independent random

variables ΠAα and ΠBβ , conditional on E. The implication of this conditional independence

is that given a system demand, x, and common influence realisation, e, the channels are

expected to fail independently. In terms of expectations, this is the equation

E
[
ω(ΠAα, x) ω(ΠBβ , x) |x, e

]
= E

[
ω(ΠAα, x)|x, e

]
E
[
ω(ΠBβ , x)|x, e

]
. (3.8)

Suppose that α and β are equivalent in that they satisfy the “indifference” condition intro-

duced in [13]: a system made of two versions, ΠAα and ΠBα, produced by α has the same

expected pfd as one of two versions, ΠAβ and ΠBβ , produced by β:

EX,ΠAα,ΠBα,E

[
ω(ΠAα, X)ω(ΠBα, X)

]
= EX,ΠAβ ,ΠBβ ,E

[
ω(ΠAβ , X)ω(ΠBβ , X)

]
,

where EX,ΠAα,ΠBα,E

[
ω(ΠAα, X)ω(ΠBα, X)

]
and EX,ΠAβ ,ΠBβ ,E

[
ω(ΠAβ , X)ω(ΠBβ, X)

]
are

the average pfds for the α and β based systems respectively. In summary, using

• each pair of conditionally independent random variables, (ΠAα,ΠBβ), (ΠAα,ΠBα) and

(ΠAβ ,ΠBβ);

• the Cauchy–Schwarz inequality5;

• each pair of identically distributed random variables, (ΠAα,ΠBα) and (ΠAβ ,ΠBβ);

• and indifference;

as follows:

EX,ΠAα,ΠBβ ,E

[
ω(ΠAα, X) ω(ΠBβ, X)

]

= E

[
E
[
ω(ΠAα, X) ω(ΠBβ, X) |X,E

]]

= E

[
E
[
ω(ΠAα, X)|X,E

]
E
[
ω(ΠBβ, X)|X,E

]]

≤
√

E

[
E
[
ω(ΠAα, X)|X,E

]
E
[
ω(ΠAα, X)|X,E

]]×
√

E

[
E
[
ω(ΠBβ, X)|X,E

]
E
[
ω(ΠBβ, X)|X,E

]]

≤
√

E

[
E
[
ω(ΠAα, X)|X,E

]
E
[
ω(ΠBα, X)|X,E

]]×
√

E

[
E
[
ω(ΠAβ, X)|X,E

]
E
[
ω(ΠBβ, X)|X,E

]]
5Let f(x) and g(x) by any two real, integrable functions and X a random variable. The Cauchy-Schwarz

inequality holds: E[f(X)g(X)] ≤ (E[f(X)2]E[g(X)2])1/2. The inequality is a necessary consequence of the
properties of inner–products which are explored in greater detail in Chapter 4
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=
√

EX,ΠAα,ΠBα,E

[
ω(ΠAα, X) ω(ΠBα, X)

]×√EX,ΠAβ,ΠBβ,E

[
ω(ΠAβ, X) ω(ΠBβ, X)

]

= EX,ΠAβ,ΠBβ ,E

[
ω(ΠAβ, X) ω(ΠBβ, X)

]
, (3.9)

we conclude that

EX,ΠAα,ΠBβ,E

[
ω(ΠAα, X) ω(ΠBβ, X)

] ≤ EX,ΠAβ,ΠBβ ,E

[
ω(ΠAβ, X) ω(ΠBβ, X)

]
. (3.10)

In a natural way this result may be extended to version development processes with a finite

number of common influences: the result is still valid if the common influence E is replaced

by a set of common influences E1, . . . , EN that, collectively, exhibit the properties of E. This

result justifies the following preference criterion.

Preference Criterion 3.2.8. : Diversification between version developments. If

using either a process α exclusively, or a process β exclusively to develop a pair of versions

for a 1–out–of–2 system results in the same expected system pfd value, then using process α

for one version and process β for the other yields expected system pfd which is at least as

good or better.

In particular, this generalizes a similar result in [13] obtained under the ISA. The difference

in the present case is that the teams are no longer necessarily isolated; ISA may not hold

and the system development processes are ones for which version sampling distributions are

conditionally independent, conditional on common influences.

3.3 Summary

In this chapter we have explored models that generalise the LM model. These models, to

various degrees, relax the assumption of “perfectly isolated” development teams. We have

focused on modelling practical scenarios that preserve essential properties of the LM model

while still allowing the teams to be dependent. We have been particularly interested in

practical situations in which dependent software development can be adequately modelled

by version sampling distributions that exhibit conditional independence, conditional on out-

comes of activities common to both channels’ development processes (see Sections 3.1 and

3.2). For example, those practical scenarios in which there is an alternating of dependence

creating influences with isolated channel development (see Section 3.2.1). In such scenarios

it may be possible to transform the system development process into one that obeys the In-

dependent Sampling Assumption (ISA). This is accomplished by either predetermining the

outcomes of influences common to both channels’ development processes, or/and decoupling

the system development process. Decoupling is the act of replacing a given common influence

with a pair of independent, identically distributed influences (one for each channel develop-

ment process) that share the same distribution as the common influence. In particular, a

consequence of being able to decouple a system development process is that preferences, in
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terms of system reliability, can be stated between a system development process without

decoupling and one with decoupling. We demonstrated that

• for a system built by employing the same methodology for each channels’ development

process (we term this a mirrored development process), introducing dependence between

the development processes in such a way that the processes are, otherwise, isolated from

each other cannot improve the resulting system reliability. This preference demonstrates

the sense in which the EL model is optimistic. A common influence added to the

homogeneous system development process of the EL model in such a way that the teams

are, otherwise, isolated from each other cannot improve system reliability. The best

situation for a homogeneous system development process is one in which the development

teams are isolated;

• for a non-mirrored development process such that the channels have positive failure

correlation with respect to some common influence (for all values of the other influences),

decoupling with respect to this influence cannot worsen the resulting system reliability

and might improve it.

Also, we generalised a result first stated in [13] and rederived in Chapter 2, Section 2.5.

This result stated an indifference condition under which forcing diversity6 is expected to

result in system reliability that cannot be worse (and might be better) than if diversity

were not forced. There, the teams were assumed to be “perfectly isolated”. This has been

weakened to the case where the teams have dependence creating influences between them

and, otherwise, remain isolated. The generalised result is as follows. Given two development

process methodologies, “A” and “B”, an assessor who has reason to believe that the expected

system pfd for an “AA” system is the same as the expected system pfd for a “BB” system

(that is, the assessor is indifferent between these pfds) should also believe that the expected

system pfd for an “AB” system cannot be worse than either of the other two expected pfds

(see Preference Criterion 3.2.8). In fact, using the geometric arguments of Chapter 4 we

shall show that the expected system pfd for an “AB” system is likely to be strictly better,

since the practical conditions under which these expected system pfds are equal are unlikely;

under this sense of indifference only pairs of identical difficulty functions can achieve such

an equality. In practice we expect differences, even if they are subtle ones, between the

difficulty functions associated with the channels’ development processes.

Decoupling is possible only if observability Criterion 3.2.3 is satisfied. This criterion

requires that an observer embedded in the development process for a channel should not

be able to confirm, or refute, whether an activity is common to the channels’ development

processes by observing the outcomes of activities in the development process in which she is

embedded. This is similar to, but not the same as, the observability Criterion 2.4.1 in Chapter

2. That criterion stipulates that an observer embedded in a channel’s development process

should not be able to confirm, or refute, the existence of another channel’s development

process by observing the outcomes of activities within the development process in which she is

embedded. However, it is the case that a system development process in which Criterion 2.4.1

holds is necessarily one for which Criterion 3.2.3 also holds (see Section 3.2); Criterion 2.4.1

6Recall, forcing diversity is the requirement that the channels be developed using different methodologies
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could still hold even if there were activities with outcomes that impact on each channel’s

development process, but cannot hold if such outcomes were informative about whether

common influences exist or not (since this would imply the existence of multiple development

teams).



Chapter 4

Geometric Models of Coincident

Failure

In Chapter 3 we stated criteria that indicate preferable ways of organising the development

of multi–version software. The criteria are appealing for the following reason: knowledge of

expected system pfds are not required for using the criteria in practice. Instead, a manager

of a development process only needs to justify that her development process satisfies the

characteristics for the criteria to be applied. This is useful since, in practice, expected

system pfds may be either unknowable or difficult to estimate. However, a shortcoming of

this is that the criteria give little indication about the limits placed on the expected system

pfd by process diversity. That is, the preference criteria specify an ordering between expected

system pfds, but without giving information about “how big” such an ordering might be.

For instance, the criteria may indicate that forcing diversity should be pursued (since the

resulting expected system pfd can be no worse, and may be better, than if diversity was

allowed to occur naturally). But, is the expected system pfd strictly better and, if so, by

how much? What are the limits on expected reliability when forcing diversity?

In answering these and other related questions, we propose the use of attainable bounds

on expected system pfds. Such bounds specify the limits on expected system reliability,

given estimates for other probabilities that characterise the practical scenario. For instance,

a typical bound would be the maximum expected pfd of a 1–out–of–2 system built by forcing

diversity, given estimates of the expected pfds for the system channels. In obtaining such

bounds the following terminology will be used. We refer to the measure whose value is

to be bounded — in this case the expected system pfd – as an objective function. The

available knowledge and conditions under which a bound should be attainable are called the

constraints. And, the problem of deriving an attainable bound for an objective function,

subject to constraints, is referred to as an extremisation problem.

So, given these bounds, how much benefit can forcing diversity bring? That depends

on if one is interested in potential gains to expected system pfd, or potential shortcomings.

Optimistically, comparing the attainable lower bound on expected system pfd with expected

83
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channel pfd gives the best expected reliability improvement possible due to diversity. How-

ever, while this may be nice to know, it is not prudent. A more cautious consideration would

be to see how bad things can get. So, a similar comparison – but using the attainable upper

bound instead – indicates the least benefit from forcing diversity. And, from such compar-

isons, we may even state cases when forcing diversity is preferred: these are cases where the

largest possible expected system pfd, resulting from forcing diversity, is significantly lower

than the related expected system pfds when diversity is not forced.

4.1 Requirements for an Approach to Extremising PFDs

Our aim, therefore, is to perform the constrained extremisation of the expected system pfd.

This can be a non-trivial task because:

• some of the pfds are quadratic in form, which can make their use as constraints or

objective functions result in difficult extremisation problems.

• the nature of the extremisation problems themselves can make the use of conventional

methods – such as multivariable calculus – unhelpful. In particular, calculus can have

limited use in those extremisation problems where the shape of the region of potential

solutions implies that stationary points do not determine the extremes of interest.

• purely algebraic approaches1 to extremisation can fall short in adequately describing the

relationship between linear constraints and quadratic objective functions. The problem

here is intuitive relationships can be difficult to state, making the extremisation problem

unnecessarily difficult.

• a purely probabilistic approach can have the following shortcoming: functions of proba-

bilities may not have any obvious probabilistic interpretation, where such functions arise

naturally from the problem being solved. An example of such a function would be a

ratio of expected pfd and the square–root of a related expected system pfd2.

So, upon taking these concerns into account, we have the following 3 sets of requirements

for a suitable approach to our extremisation problems.

1. The models being analysed should:

• explicitly take into account how diversity may be forced during the system develop-

ment processes.

• allow comparisons between expected system pfds resulting from different develop-

ment processes.

2. The analysis approach should be sufficiently flexible to handle the following types of

constraints, preferably in a consistent and intuitive manner.

• Expected pfds (for either the channels or the system)

• Demand profiles

1Purely algebraic, in the sense that these approaches do not appeal to geometric relationships and notions
like angles, projections, rotations and lengths.

2In Section 4.6, page 102, we show that such a ratio completely describes the angle between a difficulty
function and the demand profile, and is a very useful notion in maximising the variation of difficulty.
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• Activities during the system development process

• Difficulty functions

3. The analysis should derive:

• attainable bounds on the expected system pfd resulting from forcing diversity.

• orderings between expected system pfds resulting from different development pro-

cesses.

All of these requirements are satisfied by approaching the extremisation problems using

geometry. Our proposed geometric approach takes into account all of the aforementioned

constraint types, and describes intuitive relationships between objective functions and con-

straints. As a bonus, a number of relationships between difficulty functions, or between diffi-

culty functions and the demand profile, can be stated. This expands both the understanding

and lexicon of the models of diversity. To this end, this chapter casts the probabilistic mod-

els defined so far in the framework of vector–spaces. In doing so, insight into relationships

between various constructs, such as difficulty functions and expected pfds, is gained. Also,

extremisation problems concerning such entities benefit from the mathematical methods in

a geometric context. For, while such extremisation problems may be approached using other

methods, there are several cases in which geometric characterisations of these problems re-

duce them to relatively simple corollaries of well–known vector manipulations in appropriate

finite–dimensional vector–spaces.

To aid with the proofs of various extreme pfd values, the development of vector–space

methods presented here follows so–called “coordinate–free” or “coordinate– independent”

formulations. The central idea is that many geometric properties/rules can be stated without

appealing to particular coordinate systems for representing the vectors3. In fact, a number of

the theorems in the model we develop will not use particular coordinates in their statement.

Instead, these theorems are stated using the inner–product ; a notion of vector lengths and

angles between vectors, defined in a manner independent of a choice of coordinate system.

While these theorems can be expressed in terms of coordinate systems, doing so would

obscure the ubiquity of the theorems. This coordinate system invariance is particularly

useful when solving optimisation problems, since a convenient coordinate system – one in

which the problem being solved is made relatively simple – can be used to prove a result that

is guaranteed to be true irrespective of the coordinate system used in its proof. If we chose not

to use coordinate–independent formulations, then we would have to justify why a theorem

proved in one coordinate system is also true in another; an unnecessary complication. In

summary, there are geometric theorems that can be stated without appealing to

particular coordinate systems, and theorems involving expected system pfds can

be recast as such coordinate–independent geometric theorems. Such a recasting

is achieved by making two observations. Firstly, by noting that a number of theorems in

the LM model concern the expected (system) pfd which, being the probability of an event,

is a real number. Consequently, the expected system pfd can be regarded as a so–called

3In Appendix A, from page 190, we show that choosing a coordinate system is equivalent to choosing a
basis: that is, equivalent to choosing a minimal set of vectors that completely describe the vector–space of
interest
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scalar4. Secondly, note that the invariant geometric theorems of interest are precisely those

that state relationships between scalars (such as lengths or angles). So, by constructing a

geometric model such that theorems about expected system pfds are equivalent to theorems

about lengths and angles, these theorems are coordinate–system invariant and we may prove

them using any coordinates of our choosing. This application of coordinate–free geometry

to modelling coincident software failure is novel, and inspired by similar approaches used in

Mathematical physics5.

This chapter focuses on presenting a geometric formulation of the LM model, and thereby

applying vector–space methods to extremisation problems involving difficulty funtions and

expected pfds. The work presented here relies heavily on vector–space methods. Appendix

A is a review of vector–spaces and linear algebra. The reader who is unfamiliar with vector–

space methods may refer to the appendix. Some texts that provide an excellent introduction

and comprehensive treatment of some of the material presented here include [40, 41, 42, 43,

44]. A brief outline of the sections that make up this chapter is as follows:

4.2 A Geometric Approach to Extremising PFDs : A description of the steps involved in

extremising pfds by appealing to geometry;

4.3 The Geometry of the LM Model : Develops geometric forms of EL/LM model concepts

including representing difficulty functions as vectors, failure sets as vectors, expectations

as inner–products and expected single–version pfds as the magnitudes of projections of

difficulty functions onto the demand profile;

4.4 Transformation between Bases : Discusses a transformation that casts the inner–product

suggested by the EL/LM model into its canonical form. The canonical form of the inner–

product is the preferable form to perform extremisations in. This is because in canonical

form calculations to determine angles and vector lengths simplify, almost becoming as

simple as similar calculations performed in a high–school level course on (Euclidean)

geometry. For instance, consider the generalized Pythagoras theorem for the lengths of

the sides of a right–angled triangle. The canonical form simplifies the general form of

the theorem into a relationship between sums of squares of numbers, just like the simple

2–dimensional version of the theorem. Consequently, intuition gained in reasoning about

2, or 3–dimensional geometry can be drawn upon in higher dimensional settings.

4.5 A Brief Clarification on Notation: A brief discussion of the notation used in this thesis

when discussing the geometric formulation of the LM model;

4.6 Extremisation via Angles, Magnitudes and Planes : Develops and proves theorems that

relate difficulty functions, their variation, their size, the angles they make with the

demand profile, and their expectations. Also, we demonstrate that software versions

4Here we make a comment about some of those entities that are modelled as scalars, and those modelled
as vectors within this thesis. On the one hand a pfd has a geometric correspondence as a scalar and not a
vector: it has magnitude, but no preferred way in which it can be said to have a direction. On the other
hand, if one considered a random variable whose realisations are pfds, then vector representations of such
a random variable are possible. In summary, for our purposes in this thesis, the probability of an event is
modelled as a scalar, and random variables as vectors.

5For example, in modern formulations of Albert Einstein’s “General Theory of Relativity”, vector–space
methods are used in such a way that they conform to Einstein’s principle of general covariance: that is,
“the laws of physics must be of such a nature that they apply to systems of reference in any kind of motion”
[39]. In particular, the geometric formulation of physical laws are coordinate–invariant.
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or failure regions (i.e. difficulty functions with only 1’s and 0’s as values) have special

properties. For instance, these are the only difficulty functions such that the cosines of

the angles they make with the demand profile are their magnitudes. This means that it

is impossible for any difficulty function that is not a version to have this property and,

as a consequence, this property will be useful in defining attainable upper and lower

bounds for such difficulty functions;

4.7 Preliminary Results of Geometry–based Extremisation: Various extremisation problems

and their solutions that will be useful in extremisation problems explored in Chapter 5.

These include determining the largest and smallest angles a difficulty function can make

with the demand profile. Also, determining the largest difficulty function in the set of

all difficulty functions with the same predefined mean.

4.2 A Geometric Approach to Extremising PFDs

Figure 4.1: A depiction of the 5 steps in extremising expected system pfd : 1) A practical scenario
is modeled using the LM model, or any suitable extension thereof (see Chapter 3 for more detail);
2) This, in turn, defines an equivalent vector–space representation; 3) Regions of possible solutions
within this vector–space are determined by the constraints of the problem; 4) Computations to
derive the bound are simplified by a change in how the vectors are represented (a so–called change

of basis vectors); 5) The bound is obtained and the solution is recast from being in terms of the
vector–space, into an equivalent form under the LM model (extension).

Given constraints and an objective function, our geometric approach involves the following

5 steps, illustrated in Fig. 4.1:

1: Extensions to the LM model : We start with a model of coincident failure in multi–

version software: either the LM model, or any of its extensions that have the canonical
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form discussed in Chapter 3. Which of these models we use will depend on whether the

system channels are developed in an independent, or dependent manner.

2: Geometric representation of the LM model extensions : The aforementioned model of

coincident failure is used to define an equivalent vector–space representation: a finite–

dimensional, real, inner–product space in a given basis. The number of dimensions for

this vector–space is either the number of demands (in the case where one starts with the

LM model), or the number of possible ways of realising the random vector consisting of

all common–influences and a randomly chosen demand (in the case where an LM model

extension is used instead). Also, in this vector–space, Difficulty functions define vectors

with non–negative components and a length less than 1. Demand profiles also define

certain vectors, and regions in the vector–space. And finally, expected pfds define an

inner–product. In–so–doing, angles and lengths in this vector–space are defined.

3: Constraints and Change–of–Basis : The problem constraints define the region of the

vector–space with all of the potential solutions. Also, to make the problem easier to

solve, by a change of basis we can simplify the formulae for calculating angles and

lengths.

4: Transformation of vectors : The extremisation is accomplished by transforming the vec-

tors contained in the region of potential solutions, in a bid to to obtain a vector (or a

collection of vectors) which achieve the extreme. Typical transformations include pro-

jections, rotations and scalings. The transformations which solve a given problem will,

in general, be different from the transformations which solve some other problem.

5: Solutions in the LM model : We reinterpret the geometric solutions obtained, casting

them in terms of the LM model extensions we began with. This usually means that from

the geometric solution we specify a pair of difficulty functions and a demand profile that

achieve a given bound.

For the sake of simplicity we shall consider only those practical situations which are ad-

equately modeled by the LM model. However, those situations modeled by LM model

extensions follow an analogous development. The primary difference is that a random vec-

tor (consisting of all the common–influences and a randomly chosen demand) is considered,

instead of just a randomly chosen demand as we do in what follows. So in what follows, by

essentially “relabeling” the demands as vectors of both demands and common–influences, we

also cover those scenarios modeled by any of the LM model extensions discussed in Chapter

3.

4.3 The Geometry of the LM Model

In this section we use the LM model to define an equivalent geometric model. This continues

the discussion started in Section 2.6.3 on page 53, where difficulty functions were viewed as

vectors in a finite–dimensional vector–space. We proceed by making educated guesses about

what geometric interpretations to give to such concepts as difficulty functions, and expected

pfds. These interpretations will guide us in formally defining the LM model geometrically.
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To this end, consider an LM model,

{(
ΩA × ΩB,ΣA × ΣB,PA × PB

)
, (X,ΣX,PX)

}
,

where X is finite and assumed to contain n demands, and ΩA × ΩB is finite. We are free

to choose some ordering of the demands from 1 to n, so that X := {x1, . . . , xn}. A related

difficulty function, say θ∗A(x) for each x ∈ X, is a bounded, real–valued function of the

demands6; that is, θ∗A : X → [0, 1]. By considering the value of the difficulty function on each

demand, we may write the difficulty function as an n–tuple (θ∗A1, θ
∗
A2, . . . , θ

∗
A(n− 1), θ∗An),

where for notational convenience we have written

θ∗A (xi) as θ∗Ai

for i = 1, . . . , n. Clearly, such an n–tuple can be viewed as the components of an n–

dimensional vector with respect to some basis. We denote this vector as θ∗A to remind

ourselves that the components of the vector in a given basis is equivalent to the difficulty

function θ∗A (x). The particular basis relevant here will be defined later in the chapter

(see page 91). Observe that there are n unique demands in the definition of the difficulty

function, and n unique basis vectors in the definition of the components, so we expect

some correspondence between the demands and the basis. Given the basis, we can depict a

difficulty function as an arrow in R
n, where the so–called usual basis in R

n represents our yet

to be defined basis7. The difficulty function’s “arrow–head” lies at the point specified by the

components of the difficulty function, and the “arrow–tail” is hinged at the origin. Now, by

definition, difficulties are probabilities. In particular, they take on values in the closed unit

interval – the inclusive interval from 0 to 1 on the real number line. This means the arrows

representing difficulty functions must lie in the positive, n–dimensional unit hyperrectangle.

This is the hyperrectangle formed by the related usual basis in R
n and, consequently, has

a diagonal vector with all of its components equal to 1. This restriction means that the

sum or difference of two difficulty functions is not necessarily a difficulty function, since

such operations could result in vectors that lie outside the hyperrectangle. So, difficulty

functions do not form a vector–space. Restrictions on how to approach certain extremisation

problems involving difficulty functions occur as a result of this. In particular, constrained

extremisation such as the kind involving a fixed demand space model (X,ΣX,PX) cannot

rely simply on the bounds determined by rather general inequalities such as the Cauchy–

6A note on notation. In the LM model the symbol θA(x) has referred to a difficulty function related to
either a channel A or a methodology A. However, when performing vector calculations later in the thesis
there will be a need to use this symbol for another purpose (see Section 4.5). Therefore, in the geometric
model, the traditional LM difficulty function associated with A is denoted instead by θ∗A(x).

7It is always possible to relate a basis in a finite–dimensional, inner–product space with the usual basis
in Rn (see Appendix A, pages 195 and 201). However, care must be taken in using diagrams resulting

from such a correspondence since this correspondence says nothing about what the lengths of, and

angles between, vectors are. Lengths and angles are defined by an inner–product, and unless the basis is
orthonormal – where such orthogonality is defined according to a given inner–product – the representation
of basis vectors as the usual basis in some R

n can be misleading. For instance, a basis vector of an n–
dimensional inner–product space may have a length “5”. However, when depicted as one of the usual basis
vectors in R

n, the length of the vector is “5” despite the usual basis vectors having a length “1” according
to the usual inner–product in R

n.
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Schwarz inequality. Later on, beginning with Section 4.6 on page 102, we show how such

problems may be approached.

So far we have suggested that difficulty functions may be depicted as vectors in a suitable

R
n. However, we have said nothing about notions of vector lengths, or angles between

vectors. To properly define such notions we need to define a relevant inner–product (see

Appendix A, page 201, for a definition of inner–product). The reader is encouraged not to

assume that because we are depicting vectors in R
n the relevant inner–product is the usual

inner–product8 in R
n. Instead, the relevant inner–product is the one suggested by the LM

model. That is, suggested by the expected system pfd, which is an expectation of a product

of difficulty functions. This is because such an expectation can be viewed as a bilinear,

real–valued function of vectors that satisfies the properties of inner–products. We prove this

as follows:

Proof. We have shown that difficulty functions, such as θ∗A (X) , θ∗B (X) and θ∗ (X), are both

random variables and vectors. This is true of any bounded, real–valued function of the

demands: these form a vector–space. Furthermore, the measure–theoretic mathematical

expectation can be viewed as a real–valued function defined on this vector–space. So, for

real numbers a, b we have

Linearity:

E
X
[(aθ∗A (X) + bθ∗A (X)) θ∗ (X)] =

n∑
i=1

(aθ∗A (xi) + bθ∗A (xi)) θ
∗ (xi) PX (xi)

= a

n∑
i=1

θ∗A (xi) θ
∗ (xi) PX (xi) + b

n∑
i=1

θ∗B (xi) θ
∗ (xi) PX (xi)

= aE
X
[θ∗A (X) θ∗ (X)] + bE

X
[θ∗B (X) θ∗ (X)] .

Symmetry:

E
X
[θ∗A (X) θ∗B (X)] =

n∑
i=1

θ∗A (xi) θ
∗
B (xi) PX (xi)

=

n∑
i=1

θ∗B (xi) θ
∗
A (xi) PX (xi)

= E
X
[θ∗B (X) θ∗A (X)] .

Positive–definiteness :

E
X
[θ∗A (X) θ∗A (X)] = E

X

[
(θ∗A (X))

2
]
=

n∑
i=1

(θ∗A (xi))
2
PX (xi) ,

which as a finite sum of nonnegative numbers is non-negative. In particular, the sum will

8Given an arbitrary pair of vectors (a1, . . . , an) and (b1, . . . , bn) in Rn, where a1, . . . , an, b1, . . . , bn ∈ R,

the usual inner–product has the computational form
n∑

i=1

aibi.
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equal zero if, and only if, θ∗A (x) = 0 whenever PX (x) �= 0. This is the requirement that the

difficulty function has the value zero almost everywhere: the set of demands on which the

difficulty takes on non-zero values has probability zero. Recall, for our purposes PX (x) > 0

for all x (see Section 2.2). Therefore, the expectation is equal to zero if, and only if, the

difficulty function has a zero value everywhere. �

So, based on this observation, we can write out the computational form of the relevant

inner–product. Before we do this we introduce the angular brackets notation,
〈
,
〉
, for the

inner–product. Given the vectors θ∗A and θ∗B, we write the inner–product of the vectors

as 〈θ∗A, θ∗B〉. So, the computational form of 〈θ∗A, θ∗B〉, in the basis where the components of

θ∗A and θ∗B are difficulties, is

〈θ∗A, θ∗B〉 = E
X
[θ∗A (X) θ∗B (X)] =

n∑
i=1

θ∗A (xi) θ
∗
B (xi) PX (xi) =

n∑
i=1

θ∗Aiθ
∗
BiPX (xi) . (4.1)

It is interesting to scrutinize the form of the sum

n∑
i=1

θ∗A (xi) θ
∗
B (xi) PX (xi) in Eq. (4.1)

above, question how such a form may arise and, thereby, define the basis in which vectors of

interest have difficulties as their components. If we denote the basis we wish to define as

S :=
{
P̄1, . . . , P̄n

}
, (4.2)

we require that each vector in the n–dimensional vector–space can be written as a unique

linear combination of the n, linearly independent vectors P̄1, . . . , P̄n. That is, for arbitrary

vector θ∗A we may write

θ∗A =

n∑
i=1

θ∗AiP̄i

Assume that S is an orthogonal basis so that, in particular,
〈
P̄i, P̄j

〉
= 0 for i �= j. Then,

from the properties of an inner–product, we require that

〈θ∗A, θ∗B〉 =
〈 n∑

i=1

θ∗AiP̄i,

n∑
i=1

θ∗BiP̄i

〉
=

n∑
i=1

θ∗Aiθ
∗
Bi
〈
P̄i, P̄i

〉
(4.3)

which is the same form as Eq. (4.1). This suggests that we identify each PX (xi) term with〈
P̄i, P̄i

〉
. At this point it is useful to note that the inner–product can be used to define the

magnitude of a vector (See Appendix Section A.2).

Definition 4.3.1. Given a vector, V̄ , the magnitude of the vector,
∥∥V̄ ∥∥, is defined as

∥∥V̄ ∥∥ :=
√〈

V̄ , V̄
〉
.
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So, for each P̄i, we have the relationship

∥∥P̄i

∥∥ =
√〈

P̄i, P̄i

〉
=
√
PX (xi) (4.4)

From the foregoing, we define the action of the inner–product on the basis vectors as

〈
P̄i, P̄j

〉
=

{
PX (xi) , if i = j

0, otherwise
(4.5)

for i, j = 1, . . . , n and i �= j. In this sense the magnitudes of the vectors are induced by the

demand profile: that is, specifying the demand profile is a specification of the sizes of these

basis vectors. Closely related to this basis is an orthonormal basis which we define as follows.

Via the inner–product each P̄i has an associated unit vector9, P̂i, such that P̄i =
∥∥P̄i

∥∥ P̂i.

Therefore, we define the orthonormal basis

Ŝ :=
{
P̂1, . . . , P̂n

}
. (4.6)

We are now in a position to define the family of vector–spaces, with associated inner–

products, that will be suitable to model relationships between difficulty functions and the

demand profile. This is captured in the following postulate.

Postulate 4.3.2. There exists a finite–dimensional vector–space, an inner–product defined

with respect to the vector–space and a basis for the vector–space such that

• each difficulty function defines the components, in the basis, of a unique vector in a

subset of the space;

• for a pair of vectors, labelled θ∗A and θ∗B, in the subset of the vector–space the following

definition holds.

〈
θ∗A, θ

∗
B

〉
= P

(
A randomly chosen program pair fails

on a randomly occurring demand

)
,

where the probability is computed using the corresponding difficulty functions and the

demand profile.

Any finite-dimensional vector–space with an associated inner–product that has the properties

of this postulate is sufficient for our modelling needs. Such a space contains vectors that

correspond, uniquely, to difficulty functions. That is, each difficulty function defines the

components of a unique vector. Accordingly, we refer to these vectors as difficulty

functions. The lengths of these vectors, which are scalars, are probabilities (expected

system pfds). In fact, these vectors and the geometric relationships between them (that

is, all the properties defined by the inner–product including angles and lengths) interact

non-trivially to give probabilities (expected system pfds). It turns out that, because of the

properties of the inner–product, the postulate implies that there is a unique inner–product

9Given any vector, V̄ say, we shall denote the unit vector in the same direction of V̄ as V̂ .
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defined on the vector–space that is suitable for our purposes. This is because once the

behaviour of the inner–product is defined for the subset of vectors that are “picked out” by

the difficulty functions, and the basis in the postulate is used, then the behaviour of the

inner–product on any vector in the vector–space is defined. If in addition one recalls that

for any given positive integer, n, all n–dimensional vector–spaces are equivalent (see Section

A.1), then we may take the view point that we are working with only one vector–space and

one associated inner–product. Thus, Postulate 4.3.2 defines a unique geometric model of

coincident failure in multi–version software.

Given a vector–space, such as one from the family of vector–spaces postulated in Postulate

4.3.2, we are free to choose different bases to represent vectors in the space as n–tuples.

However, each of these bases lie in the same vector–space. Consequently, while the n–

tuple representation of each vector in the space will change from basis to basis, the vectors

themselves are not changing: that is, there is an underlying vector–space that is fixed. In

this underlying vector–space, vectors of a given length remain the same length, and any

pair of vectors with a given angle between them should not be re–oriented as a consequence

of a change in basis. We expect, therefore, that any statement in terms of the inner–

product should be basis invariant. What does this mean in actual computations? One

way in which a basis is useful is it allows computations to be carried out with vectors (see

Sections A.1 and A.2). In fact, a choice of basis determines the computational form of

the inner–product. For instance, formulae for calculating expected system pfds in the LM

model are the computational form of an inner–product in a given basis (see Eq. (4.1)).

Other computational forms are possible given a different choice of basis vectors. To obtain

a particular computational form simply substitute the basis representations for an arbitrary

pair of vectors into the inner–product. For example, for an n–dimensional vector–space

V with defined inner–product
〈
,
〉
, basis choice

{
b̄1, . . . , b̄n

}
, and vectors U = (U1)b̄1 +

. . . + (Un)b̄n ∈ V and W = (W1)b̄1 + . . . + (Wn)b̄n ∈ V, the computational form of the

inner–product is given as

〈
U,W

〉
=
〈
(U1)b̄1 + . . . + (Un)b̄n , (W1)b̄1 + . . . + (Wn)b̄n

〉
=

n,n∑
i=1,j=1

(Ui)(Wj)
〈
b̄i, b̄j

〉
.

(4.7)

However, note that the inner–product does not change under a change of basis : its value on a

given pair of vectors (that is, the far left of Eq. (4.7)) is the same, irrespective of what basis

is used to describe the vectors in the space (and, consequently, change the computational

form on the far right of Eq. (4.7)). This makes sense since one of our requirements for the

inner–product is that it defines absolute notions of length and angles for a given vector–

space10.

Here are some examples of how reliability measures, defined in the LM model, are related

to their equivalent geometric expressions. Consider the vector P̄ which is defined as follows:

P̄ := P̄1 + . . . + P̄n

10For a more detailed discussion of the relationship between inner–products, lengths and angles please see
Appendix Section A.2.
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=
∥∥P̄1

∥∥ P̂1 + . . . +
∥∥P̄n

∥∥ P̂n

=
√
PX (x1)P̂1 + . . . +

√
PX (xn)P̂n,

where we have used the relationship between the bases S and Ŝ, and we also used Eq.

(4.4). This demonstrates that the vector P̄ , with respect to the basis Ŝ, has components(√
PX (x1), . . . ,

√
PX (xn)

)
. But, this is an n–tuple that is completely defined by the de-

mand profile (X,ΣX,PX). Consequently, we refer to the vector P̄ as the demand

profile, to emphasize the point that in the basis Ŝ this vector has components that

are completely defined by the demand profile. Then, the expected single–version pfd,

qA, is given by

〈
θ∗A, P̄

〉
=

〈
n∑

i=1

θ∗AiP̄i,

n∑
j=1

P̄j

〉
=

n∑
i=1

θ∗Ai
〈
P̄i, P̄i

〉
= E [θ∗A(X)] = qA. (4.8)

Observe that P̄ is a unit vector, since the magnitude of the vector is 1. That is,

∥∥P̄∥∥2 =
〈
P̄ , P̄

〉
=

n∑
i=1

PX (xi) = 1. (4.9)

Consequently, the following theorem holds.

Theorem 4.3.3. The expected single–version pfd is the magnitude of the projection of the

relevant difficulty function onto the demand profile.

We shall explore this relationship further when discussing planes. Similarly, the expected

system pfd, qAA, is given by

〈θ∗A, θ∗A〉 =

〈
n∑

i=1

θ∗AiP̄i,
n∑

j=1

θ∗AjP̄j

〉
=

n∑
i=1

(θ∗Ai)
2 〈P̄i, P̄i

〉
= E

[
θ∗A(X)2

]
= qAA.

(4.10)

In a natural way, from this result we may define the “size of a given difficulty function”, say

θ∗A, to be ‖θ∗A‖ =
√〈θ∗A, θ∗A〉 =

√
qAA.

Let us briefly recap what has been done so far. In this section we began making a

connection between vector–space mathematics and the LM model, by defining difficulty

functions as n–dimensional vectors. These vectors lie in an appropriately bounded region

of the non-negative region in R
n. In the same breadth we also defined the inner–product,

induced by the demand profile, that is relevant for the difficulty functions. These are the

first steps to having a framework for the extremisation of difficulty functions. However,

the basis S suggested by the LM model is orthogonal but not orthonormal. As a result,

the computational form of the inner–product is not a canonical form: it still has weighting

terms contained within it. For example, in Eq. (4.1) or Eq. (4.3), there are terms such as

PX(xi) or
〈
P̄i, P̄i

〉
. For our purposes canonical forms are the preferred forms to perform

calculations in. In order to achieve a canonical form we need to perform a change of basis;



CHAPTER 4. GEOMETRIC MODELS OF COINCIDENT FAILURE 95

from our current basis to one that has orthogonal, unit vectors. This is the focus of the

following section.

4.4 Transformation between Bases

Upon using the orthogonal basis S, the inner–product suggested by the LM model has a

computational form11 which contains weighting terms that are the probabilities of demands

submitted to the system in operation. In this sense this computational form can be said to be

induced by the demand profile. We can transform this into a canonical12 computational form

by a change from an orthogonal basis into one that is orthonormal (see Section A.3). Since

the current basis S is already an orthogonal one13, in order to define a related orthonormal

basis Ŝ we only need to use the unit vectors in the same directions as the basis vectors. In this

section we define an invertible linear transformation that accomplishes this change of basis –

converting components expressed in terms of the orthogonal basis S to components in terms

of the orthonormal basis Ŝ. The change of basis transformation is simple to define since, by

definition, we can relate the basis vectors to their associated unit vectors by P̄i =
∥∥P̄i

∥∥ P̂i.

From the definition of a basis an arbitrary vector, say θ∗A, may be written as a unique linear

combination of the basis vectors. Recall this defines the components of θ∗A with respect to

S. From this we can obtain a similar, unique14, linear combination of the unit vectors as

follows:

θ∗A =

n∑
i=1

θ∗AiP̄i =

n∑
i=1

θ∗Ai
(∥∥P̄i

∥∥ P̂i

)
=

n∑
i=1

(
θ∗Ai

∥∥P̄i

∥∥) P̂i =

n∑
i=1

θAiP̂i,

where θAi = θ∗Ai
∥∥P̄i

∥∥. This defines the components of θ∗A in terms of the basis Ŝ. Even

though this change of basis transforms the computational form of the inner–product it does

not change the inner–product since, by definition, the inner–product imbues the vector–space

with an invariant notion of length. In terms of vector components, there is a relationship

between the change of basis we are discussing and the demand profile. To make this rela-

tionship apparent, recall that for each i = 1, . . . , n we have
∥∥P̄i

∥∥ =
〈
P̄i, P̂i

〉
=
√〈

P̄i, P̄i

〉
=√

PX (xi). If we use the shorthand Pi := PX (xi), then

θAi = θ∗Ai
√
Pi. (4.11)

To illustrate the consequences of the basis change, observe two depictions of the same

vector–space in Fig. 4.2 and Fig. 4.3. In this example we have defined difficulty functions

on a space of 3 demands. Consequently, both depictions of the vector–space contain 3 axes;

each axis associated with a given demand. The only difference between the two diagrams is

11That is, the sum on the far right–hand–side in Eq. (4.1), which is a result of using the orthogonal basis
S in the inner–product of Postulate 4.3.2

12“Canonical” in the sense that the computational form of the inner–product is the same as the usual
Euclidean inner–product.

13One consequence of this is no cross terms appear in the computational form of the inner–product.
14Uniqueness follows from Ŝ being a basis and, therefore, having linearly independent vectors.
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the choice of basis used to describe the vector–space: Fig. 4.2 uses the basis S to describe the

basis Ŝ, while the relationship is reversed in Fig. 4.3. Recall, in the basis S, vectors of interest

have components that are the difficulty functions defined in the EL and LMmodels. However,

Figure 4.2: A depiction of the basis Ŝ, in terms of the basis S. The components and “lengths” in
the diagram are defined with respect to S. For instance, each basis vector in S is depicted as a dark
coloured arrow with relative length “1” since no basis vectors other than itself completely defines
it. The basis vectors in Ŝ are depicted as light coloured arrows and also lie on the axes, but are
relatively larger than the corresponding vectors in S. With respect to the basis S the coordinates of

the vectors in Ŝ are

(
1√
P1

, 0, 0

)
,

(
0,

1√
P2

, 0

)
, and

(
0, 0,

1√
P3

)
.

this choice of basis is such that with respect to the inner–product the basis vectors do not have

unit length. Consequently, even though the basis vectors are represented as arrows parallel

to the axes whose “arrow heads” touch the unit marks, these vectors are drawn having

different lengths. Contrastingly, the orthonormal basis Ŝ consists of unit vectors (unit, with

respect to the inner–product) which do not touch the unit marks on the axes. Instead, they

are seemingly “longer” with coordinates

(
1√
P1

, 0, 0

)
,

(
0,

1√
P2

, 0

)
, and

(
0, 0,

1√
P3

)
. The

situation is changed in Fig. 4.3 where the basis Ŝ, consisting of unit vectors with respect to

the inner-product, is used to describe the basis S. Consequently, the basis vectors in S now

have coordinates
(√

P1, 0, 0
)
,
(
0,
√
P2, 0

)
, and

(
0, 0,

√
P3

)
.

In a sense, the use of the inner–product in canonical form requires the use of transformed

difficulty functions. For, via the transformation in Eq. (4.11), the difficulty function in the

LM model, θ∗A(x), becomes the “difficulty function” θA(x). As an illustration consider the

“worst” possible difficulty function. This arises when for each demand a randomly chosen

program is guaranteed to fail. This can also be viewed as the failure region for a version that

fails on every demand; that is, the worst possible version is guaranteed to be produced by the

development teams for deployment. If we stick with the case of 3 demands then this difficulty

function has components (1, 1, 1). This is the vector P̄ and is depicted in Fig. 4.4. Here,

the orthogonal basis vectors S are used. These have coordinates (1, 0, 0) , (0, 1, 0) , (0, 0, 1),

despite not being of equal lengths defined by the inner–product. Observe that these are the

coordinates of “single versions” (this will be the phrase we use to refer to an equivalence
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Figure 4.3: The vector–space depicted in Fig. 4.2, but depicted here with respect to the basis Ŝ.
The components of the vectors in S are

(√
P1, 0, 0

)
,
(
0,
√
P2, 0
)
, and

(
0, 0,

√
P3

)
.

class of programs that have the same failure regions) with failure regions consisting of single

demands x1, x2 and x3 respectively. More generally, in the basis S, we shall call a single

version any vector with each of its components equal to either 1 or 0. By using orthonormal

Figure 4.4: “Worst” version, P̄ , depicted in terms of the orthogonal basis S. The vector P̄ is a
unit vector since its magnitude is 1 (see Eq. (4.9)).

basis Ŝ instead we obtain Fig. 4.5. Under this transformation the “single versions” now reflect

their proper sizes; versions that are more likely to fail appear longer.

The change of basis is a linear transformation; this follows from two facts. The compo-

nents of a sum of vectors, under the change of basis, is equal to the sum of the components

of each vector, under the change of basis. Also, the components of a scaled vector, under

the change of basis, are equal to a scaling by the same amount of the components of the

unscaled vector, under the change of basis. Therefore, the example in Fig.s 4.4 and 4.5
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Figure 4.5: “Worst” version, P̄ , depicted in terms of orthonormal basis Ŝ.

illustrate the effect of the invertible, linear transformation T : Rn → R
n such that for each(

θ∗B1, θ
∗
B2, . . . , θ

∗
Bn

) ∈ R
n the image under T of this vector is given by the matrix product

⎛
⎜⎜⎜⎜⎝

√
P1 0 . . . 0

0
√
P2 . . . 0

...
. . . . . .

...

0 0 . . .
√
Pn

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
θ∗B1

θ∗B2
...

θ∗Bn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
θB1

θB2
...

θBn

⎞
⎟⎟⎟⎟⎠ ∈ R

n,

where the matrix above is an invertible15 matrix uniquely representing T. Under this trans-

formation the constraints on the difficulty functions – requiring each component of a difficulty

to lie inclusively between 0 and 1 – are preserved.16

0 ≤
0 ≤
...

0 ≤
0 ≤

⎛
⎜⎜⎜⎜⎜⎜⎝

θ∗B1

θ∗B2

. . .

θ∗B(n− 1)

θ∗Bn

⎞
⎟⎟⎟⎟⎟⎟⎠

≤ 1

≤ 1
...

≤ 1

≤ 1

≡

0 ≤
0 ≤
...

0 ≤
0 ≤

⎛
⎜⎜⎜⎜⎜⎜⎝

θB1

θB2

. . .

θB(n− 1)

θBn

⎞
⎟⎟⎟⎟⎟⎟⎠

≤ √
P1

≤ √
P2

...

≤√
Pn−1

≤ √
Pn

Because T is invertible there exists a related linear, inverse transformation for which similar

relationships hold. So, T−1 : Rn → R
n is an invertible, linear transformation such that for

each
(
θB1, θB2, . . . , θBn

) ∈ R
n the image under T−1 of this vector is given by the matrix

15The matrix is guaranteed to have an inverse since there are no null demands and, as such, PX(x) > 0
for all demands x.

16As a “side note” the matrix representation of this linear transformation is in canonical form – eigenvalues
are the diagonal elements and all other entries are zero – and the basis vectors are eigenvectors. Consequently,
a proof of its invertibility is given by observing that there are no zero eigenvalues and, therefore, the Kernel of
this transformation contains only the zero vector, 0̄. Equivalently, the determinant of the matrix is non–zero.
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product

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
P1

0 . . . 0

0
1√
P2

. . . 0

...
. . . . . .

...

0 0 . . .
1√
Pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
θB1

θB2
...

θBn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
θ∗B1

θ∗B2
...

θ∗Bn

⎞
⎟⎟⎟⎟⎠ ∈ R

n,

where the matrix is an invertible matrix uniquely representing T−1.

We have demonstrated that the inner–product of an arbitrary pair of vectors does not

change under transformation T . Therefore, angles and lengths are preserved. This means

that any statement about lengths and angles are independent of the basis used: the state-

ments involve only the invariant inner–product, and thus are independent of coordinate

system. Now, since difficulty functions are modelled as vectors and expected pfds are the

lengths of appropriate vectors, we propose the following steps for approaching extremisation

problems involving difficulty functions and expected pfd ’s:

1. Transform vector components, from being in terms of S to Ŝ, using T so that the com-

putational form of the inner–product is the “nice” canonical one. In doing so, angles

and vector lengths will appear correct and consistent when depicted. In addition, the

extremisations are easier to carry out since all of the information pertaining to lengths

and angles is contained in the vector components;

2. Perform extremisation on difficulty functions. This is achieved via geometric manipu-

lations/operations, and results in the extreme value for some objective function. This

extreme value will be in terms of either difficulty function components with respect to

Ŝ or invariant angles/lengths;

3. If necessary transform vector components back, from Ŝ to S, using T−1.

The diagonal vector, P̄ , defines the bounding region for the difficulty functions. There

are two interpretations of P̄ , depending on whether the basis S or Ŝ is being used, that will

be useful in discussion:

1. the components of P̄ , in the basis S, can be viewed as the failure set for the “worst”

software version (or the “worst” difficulty function possible); the version that fails on

all n demands. In a similar spirit, each axis represents the failure set for a version

that fails only on a unique demand. Each diagonal formed by 2 of these “axis” single

versions represents a version that fails exclusively on a related pair of unique demands.

Further still, each diagonal formed by a unique triplet of “axis” single versions is a

single version that fails exclusively on a related triplet of unique demands. This “game”

can continue to be played until one arrives at the “worst” version, P̄ . We note briefly

that the origin, 0̄, is the perfect version: the version that does not fail on any demand.

Naturally, therefore, an imperfect single version is a single version that is not the

perfect version.

2. “correct” depictions of vector lengths and angles (that is, “correct” according to some
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Figure 4.6: For a demand space of size 3 there are 23 possible “single versions”/“failure regions”,
all of which are depicted in this figure. 3 vectors, each of which lie parallel to some unique axes,
represent failures on single demands. 3 vectors that are parallel to the diagonals in 2-dimensional
planes (sides of the hyperrectangle) represent failures on pairs of demands. 1 vector parallel to
the diagonal of the hyperrectangle represents failure on all 3 demands and the origin represents no
failure on any demand.

inner–product) can be made by using the basis Ŝ. For, in this basis, the “importance”

placed on each demand by the demand profile is reflected by the length of vectors: bad

difficulty functions appear long (the longest of these is P̄ ) and “good” difficulty functions

appear short (the shortest of these being the origin, 0̄). In particular, in the basis Ŝ, P̄ ’s

components are completely defined by the demand profile. Therefore, as shown in Eq.

(4.9), the size of P̄ is 1; the largest possible size for a difficulty function.

Figure 4.7: Given a demand profile the cuboid depicted above represents the region in the 3-
dimensional space where each possible difficulty function has a unique vectorial representation. All
difficulty functions must lie within this region. The diagonal of the cuboid is completely defined by
the demand profile and has coordinates

(√
P1,
√
P2,
√
P3

)
.

In both viewpoints the bounding region for the difficulty functions is defined by P̄ : any

vector lying on, or within, this bounding region is a difficulty function. Subspaces may be
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formed by choosing a collection of difficulty functions and, subsequently, forming a set of

all possible linear combinations of these vectors. For example, each single version spans a

subspace and, in particular, each imperfect single version spans a one–dimensional subspace.

This behaviour is mimicked in higher-dimensions so that each pair of distinct, imperfect

single versions forms a 2–dimensional subspace, and each triplet of distinct, imperfect single

versions forms a 3–dimensional subspace, and so on. While the linear combination of any

collection of difficulty functions spans some subspace, the only vectors in that subspace

that will be of interest must lie within P̄ ’s bounding box. This requirement can bring added

complexity to the extremisation of difficulty functions, as such a task may necessarily require

analyses of various, intersecting higher-dimensional surfaces.

Furthermore, the imperfect single versions are the only difficulty functions with magni-

tudes equal to cosines of the angles they make with the “demand profile”, P̄ . Equivalently,

the imperfect single versions are the projections of the demand profile, P̄ , onto each of

the subspaces defined by linear combinations (using equal weights) of unit vectors parallel

to the axes. This point will be discussed in more detail later, as it is very important for

extremisation.

In this section we have successfully defined a change of basis that ensures the inner–

product of any pair of vectors be calculated as the sum of the product of respective vector

components. From now on we shall assume that, via T, we are working in the

transformed basis Ŝ and not the LM model basis S; whenever we need to we will

transform back to S via T−1. In the final section of this chapter we draw attention to

operational aspects of our geometric coincident failure model, detailing the kinds of vector

manipulations required for extremisation.

4.5 A Brief Clarification On Notation

The symbols θA and θ∗A are vectors. For this thesis these symbols refer to the same vector:

the vector that in the basis S =
{
P̄1, . . . , P̄n

}
has the difficulties (θ∗A1, . . . , θ

∗
An) as its

components (These are the difficulties from the LM model). Therefore, we may replace θ∗A
with θA, and vice–versa, anywhere in the geometric models. On the other hand θAi and

θ∗Ai are the ith components of a single vector (the vector denoted by either θA or θ∗A) with

respect to the bases Ŝ =
{
P̂1, . . . , P̂n

}
and S =

{
P̄1, . . . , P̄n

}
respectively. Consequently,

θAi �= θ∗Ai in general. Therefore, coordinate independent expressions (expressions in which

the components of a vector do not appear) can have θ∗A replaced by θA in them without

changing their meaning. For example, the notation for the inner–product
〈
,
〉
acting on a

pair of vectors, say θA and P̄ , does not involve coordinates. This means that

〈
θ∗A, P̄

〉 ≡ 〈
θA, P̄

〉
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is a perfectly legitimate tautology: it’s always true. Furthermore, because θ∗A ≡ θA the

following is also true.

θ∗A =

n∑
i=1

(θ∗Ai) P̄i =

n∑
j=1

(
θAj

)
P̂j = θA. (4.12)

Usually, when the basis S is used, the vector is denoted as θ∗A. If the basis Ŝ is used instead,

the vector is denoted as θA. The context will always be made clear concerning which choice

of basis is being used. However, Eq. (4.12) demonstrates that it is perfectly legitimate to

violate this rule when necessary.

4.6 Extremisation via Angles, Magnitudes and Planes

In this section we discuss relationships between vectors that will be useful for the proofs

on bounds in Chapter 5. These relationships are consequences of the inner–product being

defined as the signed magnitude of the projection of a vector. That is, for an arbitrary

vector θB, and an arbitrary non–zero vector θA with associated unit vector θ̂A,
〈
θB, θ̂A

〉
is

the “amount” of vector θB in the direction of θA. We can write this in a slightly alternative

form. Recall, for a given non-zero vector, θA, the relationship θA = ‖θA‖ θ̂A must hold.

Therefore,
〈
θB, θ̂A

〉
=

〈
θB,

θA
‖θA‖

〉
. The linear transformation

〈
,

θA
‖θA‖

〉
defines lengths

of projections on the subspace spanned by the θA difficulty. We can depict this using an

infinite collection of lines orthogonal to θA. The special case of θA being a basis vector, say

P̂i, results in a method for determining the ith component of an arbitrary vector θB since

〈
θB, P̂i

〉
=

〈
n∑

j=1

θBjP̂j , P̂i

〉
=

n∑
j=1

θBj
〈
P̂j , P̂i

〉
= θBi

〈
P̂i, P̂i

〉
= θBi. (4.13)

So, as expected, the magnitude of the projection of an arbitrary vector with respect to an

orthonormal basis vector is the component of the arbitrary vector with respect to the basis

vector. If, instead, we consider the inner–product with respect to the single versions that

fail on only one demand – the vectors S =
{
P̄1, . . . , P̄n

}
– we obtain

〈
θB, P̄i

〉
=

〈
n∑

j=1

θBjP̂j ,
∥∥P̄i

∥∥ P̂
i

〉
=

n∑
j=1

θBj
∥∥P̄i

∥∥〈P̂j , P̂i

〉

= θBi
∥∥P̄i

∥∥〈P̂i, P̂i

〉

= θBi
∥∥P̄i

∥∥ . (4.14)

Further still, we may consider projections with respect to single versions that fail on more

than one demand. These single versions can be expressed as sums of single versions in S.

Consequently, inner–products between arbitrary difficulty functions and single versions will



CHAPTER 4. GEOMETRIC MODELS OF COINCIDENT FAILURE 103

result in sums of terms like θBi
∥∥P̄i

∥∥ in above. In particular, for the “worst” single version

P̄ we have

〈
θB, P̄

〉
=

〈
n∑

j=1

θBjP̂j ,

n∑
i=1

∥∥P̄i

∥∥ P̂
i

〉
=

n∑
j=1,i=1

θBj
∥∥P̄i

∥∥〈P̂j , P̂i

〉

=
n∑

i=1

θBi
∥∥P̄i

∥∥〈P̂i, P̂i

〉

=

n∑
i=1

θBi
∥∥P̄i

∥∥ .
But, Eq. (4.8) on page 94 describes the magnitude of projections of difficulty functions onto

the demand profile, P̄ , as the expected single version pfd related to the difficulty. Therefore,

qB =
〈
θB, P̄

〉
=

n∑
i=1

θBi
∥∥P̄i

∥∥ =

n∑
i=1

θBi
√
Pi. (4.15)

These observations are depicted in Fig. 4.8. Now, appreciate that P̄ is a unit vector17.

Hence, the values of the linear transformation
〈
, P̄

〉
on the difficulty functions θA and θB

are the distances from the origin, qA and qB, in the direction of P̄ . These are the magnitudes

Figure 4.8: With respect to the demand profile, P̄ , the difficulty functions, θA and θB , have related
projections qAP̄ and qBP̄ respectively. The magnitudes of these projections are the expected pfds
related to the difficulties. These difficulty functions are not the only ones that result in these expected
pfd values. Consequently, any set of difficulty functions that touch a dashed line orthogonal to P̄

will have the same projection with respect to P̄ and, thus, will share the same expected pfd. This
figure also shows that the magnitude of a difficulty function is at least as large as the size of the
difficulty function’s projection in the direction of P̄ . That is, for an arbitrary difficulty function, θA
say, it is the case that

√
qAA = ‖θA‖ ≥

〈
θA, P̄
〉
= qA.

of the projections qAP̄ and qBP̄ , respectively. Later on we show that
〈
, P̄
〉
defines sets of

difficulty functions that share a common expected pfd. These are equivalence classes of

difficulty functions and, pictorially, they are subsets of planes in R
n orthogonal to P̄ .

The cosine between two unit vectors is given by the inner–product of the vectors18. So,

given an arbitrary difficulty function θB,
〈
θ̂B, P̄

〉
is the cosine of the angle between θB and

17Unsurprising, since P̄ is the demand profile and, consequently, has components that sum to 1.
18See Eq. (A.12) on page 204.
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P̄ . There is another useful form of the cosine. Let γB be the angle θB makes with P̄ . Then

cos γB =
〈
θ̂B, P̄

〉
=

〈
θB

‖θB‖ , P̄
〉

=
1

‖θB‖
〈
θB, P̄

〉
=

qB√
qBB

(4.16)

So, the cosine of the angle between a non–zero difficulty function19, say θB, and the

demand profile relates the expected single version pfd with the expected system pfd of a

homogeneous, 1–out–of–2 system. Note that the size of the cosine is inversely related to the

size of the angle γB: the larger the cosine the smaller the angle, and vice–versa. Therefore,

for difficulty functions θA and θB, we have cos−1

(
qB

‖θB‖
)

≤ cos−1

(
qA

‖θA‖
)

if, and only if,

qA
‖θA‖ ≤ qB

‖θB‖ . This is shown in Fig. 4.9.

Figure 4.9: Trigonometry justifies the definition of
qA

‖θA‖ as the cosine of the angle θA makes with

P̄ . The smaller the value of the cosine of the angle the larger the angle.

Notice that the smaller the value of the cosine, the larger qBB is relative to q2B. This

implies that the angle, γB, encodes part of the same information as the variance of the

difficulty function, Var
X

(
θB (X)

)
, since Var

X

(
θB (X)

)
= qBB − q2B. This relationship is

detailed in the following theorems that are a direct consequence of Eq. (4.16).

Theorem 4.6.1. In a set of non–zero difficulty functions with the same mean the larger the

angle a difficulty function makes with the demand profile the greater its variation.

Theorem 4.6.2. In a set of non–zero difficulty functions of the same size the larger the

angle a difficulty function makes with the demand profile the greater its variation.

For an arbitrary difficulty function, θB say, there is a vector, θB − qBP̄ , whose magnitude

adequately captures notions of how far away θB is from the demand profile. We call this

vector the variance vector.

19A non–zero difficulty function is any difficulty function other than the one modelled by the origin. That
is, any difficulty function with some non–zero components. An implication of this is the difficulty function
has a non–zero magnitude.
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Theorem 4.6.3. θB and P̄ define a vector, θB−qBP̄ , orthogonal to P̄ and with a magnitude

equal to the standard deviation of θB.

Proof. θB − qBP̄ is orthogonal to P̄ since

〈
θB − qBP̄ , P̄

〉
=

〈
θB, P̄

〉 − 〈
qBP̄ , P̄

〉
=

〈
θB, P̄

〉 − qB
〈
P̄ , P̄

〉
= qB − qB = 0

Also, the magnitude of θB − qBP̄ is Var
X

(
θB (X)

)
since

‖θB − qBP̄‖2 =
〈
θB − qBP̄ , θB − qBP̄

〉
= 〈θB , θB〉 − qB

2
〈
P̄ , P̄

〉
= ‖θB‖2 − qB

2

= Var
X

(
θB (X)

)
. �

Figure 4.10 shows the variance vector θB − qBP̄ . For a fixed expected pfd, qB, the length of

Figure 4.10: Variance vector

this vector is seen to increase/decrease depending on whether the angle θB makes with the

demand profile is increased/decreased.

There are special situations where knowing the cosine of the angle between a difficulty

function and the demand profile is sufficient for knowing the size of the difficulty function.

In fact, imperfect single versions are the only non–zero difficulty functions with the following

property.

Theorem 4.6.4. The magnitude of an imperfect single version is equal to the cosine of the

angle it makes with the demand profile. That is, for an imperfect single version, V̄ , and

demand profile, P̄ , we have
〈
V̄ , V̂

〉
=
〈
V̂ , P̄

〉
.

Proof. Let V̄ be an imperfect single version. Then, it is a sum of some unique vectors in

S, depending on which demands V̄ fails on. So, V̄ =

n∑
i=1

ω
(
V̄ , xi

)
P̄i, where ω

(
V̄ ,

)
is the
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score function for the version V̄ . Then,

〈
V̂ , P̄

〉
=

〈
V̄∥∥V̄ ∥∥ , P̄

〉
=

1∥∥V̄ ∥∥ 〈V̄ , P̄
〉
=

1∥∥V̄ ∥∥
〈

n∑
i=1

ω
(
V̄ , xi

)
P̄i,

n∑
j=1

P̄j

〉

=
1∥∥V̄ ∥∥

n∑
i=1,j=1

〈
ω
(
V̄ , xi

)
P̄i, P̄j

〉

=
1∥∥V̄ ∥∥

n∑
i=1

〈
ω
(
V̄ , xi

)
P̄i, P̄i

〉

=
1∥∥V̄ ∥∥

n∑
i=1

〈
ω
(
V̄ , xi

)
P̄i, ω

(
V̄ , xi

)
P̄i

〉

=
1∥∥V̄ ∥∥

〈
n∑

i=1

ω
(
V̄ , xi

)
P̄i,

n∑
j=1

ω
(
V̄ , xj

)
P̄j

〉

=
1∥∥V̄ ∥∥ 〈V̄ , V̄

〉
=

〈
V̄ , V̂

〉
. �

Conversely, if a non–zero difficulty function has a magnitude equal to its cosine, then the

Figure 4.11: The magnitude of the projection of P̄ in the direction of an arbitrary vector V̄ is
always larger than

∥∥V̄ ∥∥, the magnitude of V̄ . Also, for vectors that touch a line orthogonal to the
demand profile P̄ , the smaller the angle between the vector and P̄ the smaller the magnitude of the
vector.

difficulty function must be an imperfect single version. This is captured by the following

theorem.

Theorem 4.6.5. For an arbitrary non–zero difficulty function, θ, and demand profile, P̄ , if〈
θ, θ̂

〉
=
〈
θ̂, P̄

〉
then θ is an imperfect version.

Proof.

〈
θ, θ̂

〉
=

〈
θ̂, P̄

〉
⇔
〈

n∑
i=1

θiP̂i,

n∑
j=1

θ̂jP̂j

〉
=

〈
n∑

i=1

θ̂iP̂i,

n∑
j=1

∥∥P̄j

∥∥ P̂j

〉

⇔
n∑

i=1

θiθ̂i =
n∑

j=1

θ̂j
∥∥P̄j

∥∥
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⇔
n∑

i=1

θ̂i
(
θi− ∥∥P̄i

∥∥) = 0

Now, from the definition of difficulty functions and the change of basis transformation T ,

0 ≤ θi ≤ ∥∥P̄i

∥∥ and 0 ≤ θ̂i ≤ 1 for i = 1, . . . , n. Therefore,
n∑

i=1

θ̂i
(
θi − ∥∥P̄i

∥∥) = 0 implies that

θi = 0 or
∥∥P̄i

∥∥, for all i. So, since θ is a non–zero difficulty function it must be an imperfect

single–version. �

The combination of the last two theorems is the following.

Theorem 4.6.6. The only non–zero difficulty functions for which qBB = qB are the imper-

fect single versions.

Alternatively, Theorem 4.6.6 can be stated as follows.

Theorem 4.6.7. The imperfect single versions are the only non–zero difficulty functions

whose magnitudes are equal to the cosines of the angles they make with the demand profile.

It was previously indicated that
〈
, P̄

〉
can be used to define sets of difficulty functions

with common expected pfds. We explore this assertion further. In order to do this we require

the definition of a plane in R
n. Given a unit vector P̄ and a distance q from the origin along

P̄ a plane will consist of all vectors, orthogonal to P̄ , with tails at the “arrow head” of the

vector qP̄ (see Fig. 4.12). Therefore, if an arbitrary non–zero vector V̄ has an “arrow head”

Figure 4.12: A plane is defined by a normal, unit vector, say P̄ , and a preferred projection length
q, in the direction of P̄ , for any non–zero vector, V̄ , that touches the plane.

touching the plane then it must be the case that its projection in the direction of P̄ is qP̄ ,

and the vector V̄ − qP̄ must be orthogonal20 to P̄ . That is, the equation of the plane is

given by
〈
V̄ − qP̄ , P̄

〉
= 0. Consequently, it can be shown that

Theorem 4.6.8. The set of all vectors V̄ that touch a plane – where the plane has normal

20Such a plane is said to be orthogonal to P̄ since every vector contained in the plane is orthogonal to P̄ .
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vector P̄ and lies at a distance q from the origin in the direction of P̄ – must satisfy

q =
〈
V̄ , P̄

〉
=

n∑
i=1

(
V̄ i
)√

Pi.

Proof. Any vector V̄ that touches the plane must satisfy 0 =
〈
V̄ − qP̄ , P̄

〉
=

〈
V̄ , P̄

〉 −〈
qP̄ , P̄

〉
=
〈
V̄ , P̄

〉− q
〈
P̄ , P̄

〉
=
〈
V̄ , P̄

〉− q.

But,

〈
V̄ , P̄

〉
=

〈
n∑

i=1

V̄ iP̂i,

n∑
j=1

∥∥P̄j

∥∥ P̂j

〉
=

n∑
i=1

V̄ i
∥∥P̄i

∥∥〈P̂i, P̂i

〉

=

n∑
i=1

V̄ i
∥∥P̄i

∥∥
=

n∑
i=1

(
V̄ i
)√

Pi

and, consequently, q =
〈
V̄ , P̄

〉
=

n∑
i=1

(
V̄ i
)√

Pi is the equation of the plane. �

The form of the expected pfd, given in Eq. (4.15) on page 103, is very similar to the

equation of a plane induced by the mean qB. However, Eq. (4.15) is restricted to vectors

that are difficulty functions. So, in this case only a subset of the plane induced by qB is

of interest; the subset intersecting and lying within P̄ ’s bounding region. Vectors lying in

this region of the plane are variance vectors. For multiple expected pfds each pfd has an

associated plane with all of these planes being parallel (see Fig.s 4.13, 4.14).

Figure 4.13: The expectation of a difficulty function defines an equivalence class of difficulty
functions with a striking geometrical relationship; the difficulty functions all touch the same plane
which is perpendicular to the demand profile, P̄ , and lies at a distance from the origin determined
by the value of the expected pfd.
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Figure 4.14: Different values for the means of different difficulty functions are depicted as a
collection of parallel planes.

While we have chosen to use P̄ to illustrate the equation of planes, similar planes can be

defined with respect to a unit vector in the direction of an arbitrary difficulty function. So,

given the non–zero difficulty function θ, exactly the same development should be followed.

The linear transformation
〈
, θ̂
〉
is used to define planes with respect to θ. The equation of

the plane a distance t from the origin, in the direction of θ, is
〈
V̄ − tθ̂, θ̂

〉
= 0; where the

vector V̄ is any vector such that
〈
V̄ , θ̂

〉
= t.

So far we have expanded on the geometry related to the LM model, detailing relationships

between difficulty functions that will be useful for the extremisation problems in the current

work. As a precursor to the extremisation problems of Chapter 5, the next section details

solutions to simple extremisation problems that will prove useful later on.

4.7 Preliminary Results of Geometry–based Extremisa-

tion

We have established a relationship between the expected pfd, the magnitude of the difficulty

function and the angle the difficulty function makes with the demand profile. We shall now

consider various questions concerning the sizes of these quantities under weak constraints.

4.7.1 Angles with Demand Profile under Weak Constraints

Firstly, we consider the extremisation of the angle between a difficulty function and the

demand profile, P̄ . Let γB be such an angle for the difficulty function θB .

How small can γB get?

If γB = 0, then cos γB =
qB√
qBB

= 1 and θB is parallel to P̄ . Equivalently, this means that:
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• θB is parallel to P̄ . That is, like all constant difficulty functions, θB = qBP̄ . To see that

the components of this vector are indeed constant, use the transformation T−1 on the

components qBP̄ =
(
qB

√
P1, . . . , qB

√
Pn

)
to obtain

(
qB, . . . , qB

)
. This indicates that

θB has the constant value of qB.

• Var
X

(
θB (X)

)
= 0.

• the difficulty function is the smallest possible difficulty function with mean qB.

Alternatively, what is the largest possible angle some difficulty function θB can make with

P̄? It is the angle defined by any difficulty function that is parallel to the imperfect single

version with the smallest magnitude. Under the transformation T , this is the angle the single

version,
√
PiP̂i, makes with P̄ ; where Pi is the probability of the least likely demand (that

is, Pi := min {P1, . . . , Pn}).
Theorem 4.7.1. The largest possible angle a difficulty function can make with the demand

profile is the angle made by the smallest imperfect single version with the demand profile.

Proof. To prove this recall that all of the imperfect single versions have their magnitudes

equal to the cosines of their related angle with P̄ . Therefore, for imperfect single version V̄

the cosine of its related angle is

∥∥V̄ ∥∥ =

√√√√ n∑
j=1

ω
(
V̄ , xj

)
Pj ≥

√
Pi,

where Pi := min {P1, . . . , Pn}. Now,
√
Pi is the magnitude of the single version,

√
PiP̂i,

that fails only on the least likely demand, xi. This means this is the imperfect single version

furthest from P̄ . Any difficulty function parallel to this version will share the same cosine

value. For if θ is a difficulty function parallel to this version it will be such that it can be

expressed as some scaling of the basis vector P̂i, such as θiP̂i, where 0 ≤ θi ≤ √
Pi. Then,

the cosine of the angle it makes with P̄ is〈
θ, P̄

〉〈
θ, θ̂

〉 =
Pi√
Pi

=
√
Pi.

This demonstrates that all of the difficulty functions lying in the 1–dimensional subspace

spanned by P̂i share the same angle with P̄ . Now, it is impossible to define a 1–dimensional

subspace further away from P̄ but still contained in the bounding region defined by P̄ .

Hence, the result follows. �

4.7.2 Relationship between Magnitudes, Angles and Projections

There are three ways in which cos γB =
qB√
qBB

can be used in a certain form of constrained

extremisation problems. Typically, given P̄ , these problems will have one of the quantities

qB, qBB or cos γB fixed. Using the angle, γ, as a notion of “distance from the demand profile”

in what follows, the possibilities are
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• if qBB is kept constant, then an increase in cos γB (i.e. a decrease in γB) implies an

increase in qB, and vice-versa. The closer a difficulty function of a given size is to

the demand profile, the larger its mean. Geometrically, the surface of possibilities

described by this problem is some region on the surface of a sphere21 with radius qBB.

The region is contained within, or intersects with, the bounding box defined by P̄ ;

• if qB is kept constant, then a decrease in cos γB (i.e. an increase in γB) implies an

increase in qBB , and vice-versa. The further away a difficulty function with a

given mean is from the demand profile, the larger the difficulty function is.

Geometrically, the surface of interest is the region of a plane orthogonal to P̄ , at a

distance qB from the origin and intersecting with, or contained within, the bounding

region defined by P̄ (see Fig. 4.15);

Figure 4.15: For a fixed mean qB the sizes of the difficulty functions increases the further away the
difficulty functions are from the demand profile. Fixing the mean is the requirement that the only
relevant difficulty functions are the ones with arrowheads touching a plane which is both orthogonal
to P̄ , and lies at a distance qB from the origin. The dashed blue line lies in such a plane.

• if cos γB is kept constant, then an increase in qBB implies an increase in qB, and vice-

versa. For a difficulty function at a fixed distance from the demand profile,

the larger the difficulty function is, the larger its mean. This problem defines

a cone such that any distinct pair of difficulty functions, both parallel to the surface of

the cone, are at an equal angular distance γ from P̄ . As usual, only the surface of the

cone within, or on, the bounding region defined by P̄ is relevant.

These relationships are very useful in determining the consequences of carrying out geometric

operations, such as the rotation or scaling of vectors, in a bid to perform some extremisation.

4.7.3 Extremisation in Subspaces

We turn our attention to subspaces defined by the single versions, S, and the sizes of various

angles vectors in these subspaces make with the demand profile. These subspaces are impor-

tant because they define the “walls” of P̄ ’s bounding box. There are n single versions in S

so that there are 2n− 1 non-trivial subspaces possible, each of these spanned by some subset

of distinct vectors in S. Each of these subspaces has a unique diagonal and each imperfect

single version is parallel to a unique diagonal. For some concreteness consider k distinct,

21see Fig. 5.2 in Chapter 5 for an example of such a surface
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Figure 4.16: When the angle with the demand profile is fixed the set of difficulty functions of
interest form a higher dimensional cone, depicted here as a set of circles of increasing radius. Each
circle should be regarded as a sphere: in an n–dimensional vector–space each of these circles is
an (n − 1)–dimensional sphere with an (n − 2)–dimensional surface. The radius of each sphere is√

1− q2A
qAA

, and it is centered on the point (qA, . . . , qA︸ ︷︷ ︸
n times

) defined by the constant difficulty function

with mean qA. Given a fixed angle with the demand profile the size of a difficulty function and its
mean are directly proportional: an increase in size would imply a longer difficulty function on the
cone of interest (compare the shorter, orange difficulty functions with the longer, green difficulty
functions), which in turn implies a longer projection on the demand profile. Consequently, the mean
is also increased (i.e. qA ≤ qB).

single versions, V̄1, . . . , V̄k ∈ S, where 0 < k < n and the remaining n − k single versions,

W̄1, . . . , W̄n−k ∈ S, such that W̄1, . . . , W̄n−k �= V̄1, . . . , V̄k. Then these sets of versions form

orthogonal subspaces: each of the vectors in Span
({

V̄1, . . . , V̄k

})
, the subspace spanned

by
{
V̄1, . . . , V̄k

}
, is orthogonal to each of the vectors in Span

({
W̄1, . . . , W̄n−k

})
, the subspace

spanned by
{
W̄1, . . . , W̄n−k

}
. As a shorthand, we label the sets as Sk :=

{
V̄1, . . . , V̄k

}
and

Sn−k :=
{
W̄1, . . . , W̄n−k

}
. Note that because S is a basis then any non-empty subset of S is

a basis for the subspace spanned by that subset. Thus, Sk and Sn−k are bases. This means

an arbitrary vector, V̄ ∈ Sk for example, can be written as a unique linear combination,

V̄ =
(
V̄ 1

)
V̄1 + . . . +

(
V̄ n

)
V̄k, for some unique set of scalars

{
V̄ 1, . . . , V̄ n

}
. In particular,

an arbitrary difficulty function in this subspace has the same form, but with the restrictions

0 ≤ V̄ 1 ≤ 1, . . . , 0 ≤ V̄ n ≤ 1 on the components of V̄ . Recall, these constraints are simply

the requirement that a difficulty function must have components with magnitudes in the

unit interval. We shall give special attention to the single versions contained in a subspace.

Span(Sk) contains 2
k versions whose failure regions are subsets of the set of demands related

to the single versions Sk, these demands having probabilities of occurrence
∥∥V̄1

∥∥2, . . . , ∥∥V̄n

∥∥2.
Similar statements are true for vectors in Sn−k.

The “walls” or bounding surfaces of the region defined by P̄ consist of all those difficulty

functions with some of their components equal to zero. These are very important as many

extremisation problems are solved by difficulty functions that either touch, or are contained

in, regions parallel to one of such “walls”.
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Definition 4.7.2. Let P (S) be the power set of S, and consider the set P (S) /S. A “wall”

of P̄ ’s bounding box is a region of some subspace, Span(s), restricted to only difficulty func-

tions, where s ∈ P (S) /S.

In turn, a similar notion of “walls” may be defined for Span(Sk) and its related subspaces.

The version parallel to the diagonal of Span(Sk) – that is, parallel to V̄1 + . . . + V̄k – defines

a bounding box of difficulty functions in Span(Sk). Subspaces spanned by proper subsets

of Sk, and subsequently restricted to difficulty functions, form the “walls” of this bounding

box. So, we see a pattern here, where regions of subspaces form “walls” which are, in turn,

bounded by regions of subspaces.

Previously, we stated that the sum of two difficulty functions is not necessarily a difficulty

function, since the vector formed by such a sum may not lie in the bounding region defined

by the demand profile (see Section 4.3). However, if the difficulty functions lie in orthogonal

subspaces such as Span(Sk) and Span(Sn−k), then their sum is guaranteed to be a difficulty

function. This suggests the following theorem.

Theorem 4.7.3. Let S be the basis formed by all of the imperfect single versions that fail only

on single demands. So, given n demands, there will be n such versions. Let the sets Sn−k

and Sk be a partition of S. That is, Sn−k, Sk ⊂ S such that Sn−k ∩Sk = ∅ and Sn−k ∪Sk = S.

Then θ ∈ Span(S) if, and only if, there exist unique difficulty functions, V̄ ∈ Span(Sk) and

W̄ ∈ Span(Sn−k), such that

θ = V̄ + W̄ .

More is true since it is possible to define various partitions22 of S consisting of orthogonal

sets of imperfect single versions that fail on single demands. Any pair of orthogonal difficulty

functions must belong to a pair of orthogonal subspaces spanned by a pair of non–intersecting

orthogonal subsets of S. Consequently, any linear combination of vectors in S is a sum of

linear combinations of vectors in the orthogonal subspaces spanned by the partition sets.

Theorem 4.7.4. Any difficulty function can be written as the sum of orthogonal difficulty

functions.

This result will be useful later in Chapter 5 when discussing reliability gains due to forcing

diversity.

Given a subspace, such as Span(Sk), what is the smallest angle a difficulty function

within this subspace can make with the demand profile? It turns out that the imperfect

single version that fails only on every demand related to the subspace defines the smallest

angle.

Theorem 4.7.5. Given a subspace, Span(Sk), the smallest angle a difficulty function in the

subspace can make with the demand profile is the angle the main diagonal of Span(Sk) makes

22A partition of a set S is a collection of non–intersecting, proper subsets of S whose union is S.
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with the demand profile.

Proof. An arbitrary difficulty function, θ, in Span(Sk) has the form (θ1) V̄1 + . . . + (θk) V̄k

and the associated unit vector θ̂ =
θ

‖θ‖ =

k∑
i=1

(θi) V̄i√√√√ k∑
i=1

(θi)2
∥∥V̄i

∥∥2
. If γ is the angle θ makes with

P̄ we seek θ such that cos γ is maximised. That is, maximise

cos γ =

〈
P̄ ,

k∑
i=1

(θi) V̄i

√√√√√√
k∑

i=1

(θi)
2 ∥∥V̄i

∥∥2
〉

=

k∑
i=1

(θi)
∥∥V̄i

∥∥2
√√√√√√

k∑
i=1

(θi)
2 ∥∥V̄i

∥∥2
We know from the Cauchy–Schwarz inequality that

k∑
i=1

(θi)
∥∥V̄i

∥∥2
√√√√√√

k∑
i=1

(θi)
2 ∥∥V̄i

∥∥2
√√√√√√

k∑
i=1

∥∥V̄i

∥∥2 ≤ 1 ⇔ cos γ ≤
√√√√ k∑

i=1

∥∥V̄i

∥∥2,

where

√√√√ k∑
i=1

∥∥V̄i

∥∥2 is the magnitude of the version V̄ =

k∑
i=1

V̄i and, therefore, the cosine of

the angle it makes with P̄ . Since this is the largest possible value for cos γ, then V̄ makes

the smallest angle with P̄ . Additionally, any difficulty function parallel to V̄ – say xV̄ , for

some scalar x such that 0 < x ≤ 1 – shares the same angle with P̄ as V̄ , since the cosine of

its angle with P̄ is

〈
P̄ , xV̄∥∥xV̄ ∥∥

〉
=

〈
P̄ , xV̄

x
∥∥V̄ ∥∥

〉
=

〈
P̄ , V̄∥∥V̄ ∥∥

〉
=

〈
P̄ , V̄

〉∥∥V̄ ∥∥ =

k∑
i=1

∥∥V̄i

∥∥2
√√√√ k∑

i=1

∥∥V̄i

∥∥2
=

√√√√ k∑
i=1

∥∥V̄i

∥∥2,

which is the same as the cosine value for V̄ ’s angle with P̄ . Hence, any difficulty parallel to

V̄ shares the same angle with P̄ as V̄ . �

Alternatively, what is the largest angle a difficulty function within Span(Sk) can make with

the demand profile?

Theorem 4.7.6. Given a subspace Span(Sk) the largest angle a difficulty function within the

subspace can make with the demand profile is the angle made by the imperfect single version

that fails solely on the least likely demand related to Span(Sk). That is, the angle made by

the version in Sk with the smallest magnitude.
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Proof. Let Pi := min
{∥∥V̄1

∥∥2, . . . , ∥∥V̄k

∥∥2}. Then,
for an arbitrary difficulty function θ ∈ Sk with angle γ we have

Pi

k∑
j=1

(θj)
2 ∥∥V̄j

∥∥2 ≤
k∑

j=1

(θj)
2 ∥∥V̄j

∥∥4

≤
k∑

j=1

(θj)
2 ∥∥V̄j

∥∥4 + 2

k∑
i<j=1

θj
∥∥V̄j

∥∥∥∥V̄i

∥∥θi
=

⎛
⎝ k∑

j=i

θj
∥∥V̄j

∥∥2
⎞
⎠2

.

Therefore,

√
Pi ≤

k∑
j=i

θj
∥∥V̄j

∥∥2
√√√√ k∑

j=1

(θj)
2 ∥∥V̄j

∥∥2
= cos γ.

Now,
√
Pi is the magnitude of the version that fails only on demand xi. Consequently,

the cosine of the angle this version makes with the demand profile is also
√
Pi, and so this

version makes the largest angle with P̄ that is possible for any difficulty function in Span(Sk).

Furthermore, any difficulty function parallel to this version will make the same angle with

P̄ . �

So, given any subspace Span(Sk), we can determine the difficulty functions within the sub-

space that are either furthest from, or closest to, the demand profile. When Sk = S these

results reduce to results we have previously obtained: the version that fails on the least likely

demand is furthest from P̄ , and the version which fails on all demands (and is, therefore,

closest to P̄ ) is P̄ .

As an example of these considerations we reproduce Fig. 4.6 here, in Fig, 4.17. This is

the case with a demand space of 3 demands, {x1, x2, x3}, with 3 versions S :=
{
P̄1, P̄2, P̄3

}
,

each version failing solely on a corresponding demand and having magnitude

∥∥P̄i

∥∥ =
√
Pi =

√
P
X
(xi) .

Consider the subset of S, S2 =
{
P̄2, P̄3

}
. The 4 versions in the Span(S2) are 0̄, P̄2, P̄3

and P̄2 + P̄3. The version, P̄2 + P̄3, is parallel to the diagonal of Span(S2). The region of

Span(S2) that forms a “wall” of P̄ ’s bounding box is bounded by the versions P̄2 and P̄3. The

furthest difficulty from P̄ in Span(S2) is the version P̄2 with components
(
0,
√
P2, 0

)
, since∥∥P̄2

∥∥ =
√
P2 = min

{√
P2,

√
P3

}
. On the other hand, the difficulty function in Span(S2)

closest to P̄ is the version P̄2 + P̄3.
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Figure 4.17: For a demand space of size 3 there are 23 possible “single versions”/“failure regions”,
including the perfect version represented by the origin, all of which are depicted in this figure. These
versions, apart from the origin and P̄ , are parallel to diagonals in subspaces that define the “walls”
of P̄ ’s bounding box. The versions that fail on only one demand form 1–dimensional boundaries for
the “walls” of the bounding box. In the figure

√
P1 <

√
P2 <

√
P3.

Figure 4.18: The length of the projection of P̄ onto a subspace Span(θ), which is the span of an

arbitrary difficulty function θ, is at least as large as the magnitude of θ,
〈
θ, θ̂
〉
. This is equivalent

to qBB ≤ qB . The case of equality is precisely the case where θ is a version, such as P̄3.
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4.7.4 Largest Difficulty Function with Specified Mean

Finally, to close this section we consider the following problem. What is the largest expected

system pfd, qBB , given P̄ and qB? We know that the mean, qB, induces a plane orthogonal

to P̄ such that there exists a difficulty function touching this plane with a largest magnitude.

This will be a difficulty function that makes the largest possible angle with P̄ , given that

it touches the plane. We already know an upper bound for the magnitude of an arbitrary

difficulty function, θB, that touches the plane since

‖θB‖ =
√
qBB =

√
〈θB , θB〉 =

√√√√ n∑
i=1

(θBi)
2 ≤

√√√√ n∑
i=1

θBi =
√〈

θB, P̄
〉
=

√
qB.

This inequality could also be written as ‖θB‖ ≤ cos γB. From this bound it is easy to see

that

〈θB, θB〉 ≤ qB ⇔ 〈θB, θB〉 ≤
〈
θB, P̄

〉⇔ 〈θB, θB〉 −
〈
θB, P̄

〉 ≤ 0 ⇔ 〈
θB, θB − P̄

〉 ≤ 0.

Therefore,

for fixed P̄ , the magnitude of θB is maximised if, and only if, the vectors θB and P̄

are as close to perpendicular (that is, orthogonal where both vectors are non-zero)

as possible.

In particular, perpendicularity23 is guaranteed if, and only if, θB is a single version. We

proved this equivalence previously, and show the general idea in Fig. 4.18 which depicts

projections of P̄ , both with respect to an arbitrary unit vector θ̂ and with respect to the unit

vector P̂3 related to version P̄3. For the case where θB is not an imperfect single version, the

difficulty function closest to a suitable imperfect single version will be the difficulty function

with the largest magnitude. So, if we find the imperfect single versions that are closest to

the plane, then the largest difficulty functions will be in their “neighbourhoods”. Locating

the versions closest to a plane is not difficult, since the magnitudes of all of the versions

can be ordered. We illustrate the idea using a 2–dimensional example, depicted in Fig.

4.19. Here, we consider a case where the versions magnitudes are ordered as 0 ≤ ∥∥P̄1

∥∥ ≤∥∥P̄2

∥∥ ≤ ∥∥P̄1 + P̄2

∥∥ or, equivalently, 0 ≤ P1 ≤ P2 ≤ P1 + P2. Conceptually, the following

thought experiment is useful for carrying out the optimisation. Imagine that we start with

an expected version pfd value of 0, and then continuously24 increase the value of qB until it

reaches its maximum value of P1+P2 = 1. In so doing we can imagine a plane, perpendicular

to P̄ , that rises continuously from the origin as qB is increased until it reaches the “arrow

23Perpendicularity is the property
〈
θB , θB − P̄

〉
= 0, where θB �= 0̄.

24Here we are alluding and appealing to a form of mathematical continuity. Informally, we appeal to the
notion that difficulty functions that touch the boundary of a given plane –i.e. where the plane intersects P̄ ’s
bounding box – are arbitrarily close to “nearby” difficulty functions that touch the boundary of “nearby”
planes. The consequence of this is that magnitudes of such difficulty functions, and the angles they make
with P̄ , are also arbitrarily close.
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Figure 4.19: The plane induced by qB is a line perpendicular to P̄ . For
∥∥P̄1

∥∥ ≤ √P1 ≤ qBB ≤√
P2 ≤

∥∥P̄2

∥∥ the difficulty function with the largest qBB value should lie close to either version P̄1,
or P̄2. Thus, the difficulty function should either be parallel to P̄2, or as close to P̄1 as possible.

head” of P̄ . There are 3 cases that are relevant as the plane rises.

Case 1 0 ≤ qB ≤ P1: In this case the versions closest to the qB plane are 0̄ and P̄1. Accordingly,

the difficulty function with the largest qBB value must be the one parallel to P̄1 that

touches the plane which has the coordinates

(
qB√
P1

, 0

)
. In the LM coordinates, via the

transformation T−1, this has components

(
qB
P1

, 0

)
;

Case 2 P1 ≤ qB ≤ P2: Here, the versions P̄1 and P̄2 are closest to the qB plane. Therefore,

the difficulty function with largest qBB either has components

(√
P1,

(qB − P1)√
P2

)
or(

0,
qB√
P2

)
, respectively. Equivalently, in LM coordinates, these are

(
1,

(qB − p1)

P2

)
and(

0,
qB
P2

)
, respectively;

Case 3 P2 ≤ qB ≤ P1 + P2: In the final case the versions closest to the qB plane are P̄2 and

P̄1 + P̄2. Consequently, the form of the desired difficulty function is

(
(qB − P2)√

P1

,
√
P2

)
as this form is the closest difficulty function to either of the versions. Under T−1 the

difficulty function is

(
(qB − P2)

P1
, 1

)
, equivalently.

The forms of the difficulty function given above are obtained in the following manner. We

consider a difficulty function that touches a plane, and makes the smallest angle with a

version “lying just below” the plane. This difficulty function has components that are almost

identical to the components of the version, except the component associated with least likely

demand that the version succeeds on. For example, given P1 ≤ qB ≤ P2 we have the version

P̄1 lying below the qB plane. Therefore, the closest difficulty function, θB, that touches

the plane must be coincident with P̄1 on components that relate to demands on which P̄1
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fails. Therefore, it must be
(√

P1,
)
to begin with. There is only one remaining component

to define. If this difficulty function touches the qB plane, i.e. if
〈
θB, P̄

〉
= qB, then the

complete form of the difficulty must be

(√
P1,

(qB − P1)√
P2

)
. Alternatively, for a version

“lying above” a given plane, the difficulty function closest to this version should be identical

in terms of all of the components except the component associated with the least likely of

the demands on which the version fails. So, in the same example that has just been used, P̄2

lies “just above” the qB plane. Therefore, the form of the difficulty function should at least

be (0, ), and with the requirement that the difficulty function touch the qB plane the final

form must be

(
0,

qB√
P2

)
. After generalising this procedure, we shall discuss the motivation

for using the component related to the least likely demands in more detail (see page 120).

This optimisation procedure can be generalised in an unsurprising manner to higher

dimensions. The algorithm is as follows.

1. Order the versions in terms of their magnitudes or, equivalently, their angular distances

from the demand profile;

2. Find the versions closest to the qB plane from above and below;

3. Define the forms of difficulty functions, closest to these versions, that touch the bound-

ary of the qB plane. There are two possibilities. Each possibility ultimately requires

only a single component to be determined from the requirment that the difficulty func-

tion should touch the qB plane. For a version “just below” the plane the form of the

difficulty function should have components identical to the version except for the com-

ponent related to the least likely of the demands on which the version succeeds. For a

version “just above” the plane the form of the difficulty function should have compo-

nents identical to the version except for the component related to the least likely of the

demands on which the version fails. In both cases if more than one demand is the least

likely then any of these demands can be used as a reference;

4. Determine which of these candidate difficulty functions is closest to a version or, equiv-

alently, furthest from the demand profile.

For example, consider a case in 3–dimensions with the following demand profile. P1 +

P2 + P3 = 1 and P1 ≤ P2 ≤ P3 ≤ P1 + P2 ≤ P1 + P3 ≤ P2 + P3 ≤ P1 + P2 + P3.

For P1 + P2 ≤ qB ≤ P1 + P3 the V̄B that results in the maximum qBB is given by either⎛
⎜⎜⎝

√
P1√
P2

qB − P1 − P2√
P3

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝
qB − P3√

P1

0√
P3

⎞
⎟⎟⎠ , depending on which is further from the demand profile.

If we consider the inner–product,
〈
θB, θB − P̄

〉
, which we wish to minimize for each of these

candidate difficulty functions we obtain

qB − P1 − P2√
P3

(
P1 + P2 + P3 − qB√

P3

)
or

qB − P3√
P1

(
P1 + P3 − qB√

P1

)
.

So, whichever of these expressions has the smaller value will indicate the difficulty function

with the largest qBB .
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On page 119 we postponed explaining why use was made of the component related to the

least likely demand on which a version fails or succeeds? The reasons depend on whether the

reference version for the difficulty function lies above or below the qB plane. In what follows

we shall discuss each of these two cases in turn, using a version V̄ with the form V̄ =

k∑
i=1

V̄i,

where each V̄i is a unique vector in S and they form a set Sk. Relatedly, let W̄1, . . . , W̄n−k

be the remaining versions contained in S, forming the set Sn−k.

Case 1: V̄ is a version that lies “just below” the plane

Firstly, consider the case where V̄ is a version that lies “just below” the plane. Our aim is

to define a difficulty function that is

1. as far away as possible from the demand profile;

2. touches the qB plane, and;

3. remains in the vicinity of the vector V̄ .

We proceed in a constructive manner by commencing with the V̄ as a template for our

difficulty function. To this end, all of the components related to demands on which V̄

fails should be the same for our difficulty function. So, we seek a difficulty function θB =
k∑

i=1

V̄i +

n−k∑
j=1

θjW̄j , with yet to be determined scalars θ1, . . . , θn− k such that

〈
θB, P̄

〉
=

k∑
i=1

∥∥V̄i

∥∥2 + n−k∑
j=1

θj
∥∥W̄j

∥∥2 = qB .

We may rewrite this relationship in the slightly more suggestive form,

q́ :=

n−k∑
j=1

θj
∥∥W̄j

∥∥2 = qB −
k∑

i=1

∥∥V̄i

∥∥2.

That is, we seek a difficulty function W̄ =

n−k∑
j=1

θjW̄j in the subspace Span(Sn−k), such that

the projection of W̄ with respect to P̄ has magnitude q́, and W̄ is as far away as possible from

P̄ . In fact, the second requirement of largest possible angular distance from P̄ is equivalent to

the requirement that W̄ have the largest possible angular distance from the version

n−k∑
j=1

W̄j ,

which is itself parallel to the main diagonal of Span(Sn−k). Two points will be relevant in

specifying W̄ . Firstly, since V̄ lies “just below” the qB plane, this implies that q́ ≤ ∥∥W̄i

∥∥
for any W̄i ∈ Sn−k. Secondly, we have demonstrated previously that a version W̄min ∈ Sn−k,

whose magnitude is equal to min
{∥∥W̄i

∥∥ : W̄i ∈ Sn−k

}
, makes the largest possible angle with

the version

n−k∑
j=1

W̄j . The version W̄min is the version in Sn−k that fails only on the least

likely demand associated with the versions in Sn−k. With these observations, W̄ must be

parallel to W̄min while touching the plane induced by q́. This plane is perpendicular to the
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version

n−k∑
j=1

W̄j . So, W̄ = φW̄min for some scalar φ, such that

〈
W̄ , P̄

〉
=

〈
φW̄min,

n−k∑
j=1

W̄j

〉
= φ

∥∥W̄min

∥∥2 = q́.

Therefore, φ =
q́∥∥W̄min

∥∥2 and, hence, the complete required form of θB is

θB =

k∑
i=1

V̄i +

n−k∑
j=1

θjW̄j =

k∑
i=1

V̄i +

⎛
⎜⎜⎜⎝
qB −

k∑
i=1

∥∥V̄i

∥∥2
∥∥W̄min

∥∥2
⎞
⎟⎟⎟⎠ W̄min . (4.17)

This potential solution has the same form as the solution difficulty functions in the 2–

dimensional and 3–dimensional examples begun on page 118, and it suggests that one can-

didate for the maximum value of qBB is

qBB =
〈
θB , θB

〉
=

k∑
i=1

∥∥V̄i

∥∥2 +
⎛
⎜⎜⎜⎝
qB −

k∑
i=1

∥∥V̄i

∥∥2∥∥W̄min

∥∥
⎞
⎟⎟⎟⎠

2

. (4.18)

This potential solution for qBB will be compared with the potential solution from the second

case, which we now discuss.

Case 2: V̄ is a version that lies “just above” the plane

Secondly, we consider the alternative case, where V̄ is a version that lies “just above” the

plane. Again, our aim is to define a difficulty function, θB, that

1. is in V̄ ’s “neighbourhood”;

2. is as far away as possible from P̄ , and;

3. touches the qB plane.

Since V̄ lies “just above” the qB plane, any version that is a linear combination of a proper

subset of versions in Sk must lie below the qB plane. The largest of these versions must be

the sum of all of the versions in Sk, excluding the smallest imperfect single version in Sk

(we denote this smallest version as V̄min). This sum of versions will be a version that forms

the longest diagonal on the “walls” of a bounded region defined by V̄ . Consequently, we

have a version that lies below the qB plane, and using this version we wish to determine the

largest difficulty function (say θB) in the subspace Span(Sk) that touches the qB plane. But,

because this version is a version in Span(Sk) lying “just below” qB, this is identical to the

previous case we discussed. Therefore, we seek a difficulty function that is the sum of the

version lying “just below” the plane, and some vector parallel to V̄min. This sum should be



CHAPTER 4. GEOMETRIC MODELS OF COINCIDENT FAILURE 122

a vector that touches the qB plane. That is, we seek θB =

(
k∑

i=1

V̄i − V̄min

)
+ φV̄min, for

some scalar φ, such that

qB =
〈
θB, P̄

〉
=

〈(
k∑

i=1

V̄i − V̄min

)
+ φV̄min, V̄

〉
=

k∑
i=1

∥∥V̄i

∥∥2 + (φ− 1)
∥∥V̄min

∥∥2.
Therefore,

φ =

(
qB +

∥∥V̄min

∥∥2 − k∑
i=1

∥∥V̄i

∥∥2)
∥∥V̄min

∥∥2 ,

which implies that the form of θB is exactly the same as the form of solution difficulty

functions in the 2–dimensional and 3–dimensional examples begun on page 118. That is,

θB =

k∑
i=1

V̄i +

⎛
⎜⎜⎜⎜⎜⎝

(
qB −

k∑
i=1

∥∥V̄i

∥∥2)
∥∥V̄min

∥∥2
⎞
⎟⎟⎟⎟⎟⎠ V̄min . (4.19)

As a consequence, our second candidate for the largest value of qBB is

qBB = 〈θB, θB〉 =

k∑
i=1

∥∥V̄i

∥∥2 − ∥∥V̄min

∥∥2 +
⎛
⎜⎜⎜⎜⎜⎝

(
qB +

∥∥V̄min

∥∥2 − k∑
i=1

∥∥V̄i

∥∥2)
∥∥V̄min

∥∥
⎞
⎟⎟⎟⎟⎟⎠

2

. (4.20)

A comparison of the values of Eq.’s (4.18) and (4.20) determines which of these is the actual

largest value for qBB and, therefore, determines the difficulty function with the largest size.

4.8 Summary

This chapter, in conjunction with Appendix A, has focused on developing a geometric model

of coincident failure in multi–version software, using the LM model as the starting point for

the endeavour25. Various aspects of the LM model have striking geometric interpretations.

For instance, given a finite set of demands, an arbitrary difficulty function was shown to

uniquely define the non–negative components of a vector in a finite–dimensional vector–

space. The vector so defined is, at most, of unit size. Similarly, software failure sets and

the demand profile were both shown to be vectors of, at most, unit size (see Section 4.4).

25In Appendix A, by presenting a formulation of the mathematics of finite–dimensional vector–spaces in
a heuristic manner, justification is given for many of the notions and constructs used in developing the
geometric model (see Sections A.1, A.2, and A.3). Not least of these is the construction and use of the inner–
product as a multilinear transformation that imbues a vector–space with universal and consistent lengths
and angles (see Section A.2).



CHAPTER 4. GEOMETRIC MODELS OF COINCIDENT FAILURE 123

The size or magnitude of these vectors are expected pfds, and the expectation of the square

of a difficulty function (that is, the expected system pfd in the EL model) was shown to

be the same as the square of the magnitude of the vector that is defined by the difficulty

function. This is because there is a natural identification of mathematical expectation, on

the one hand, with inner–product on the other hand26. So,

the longer the magnitude of a vector, the larger the expected system pfd resulting

from a pair of independent, identically distributed version development processes27

related to the vector’s associated difficulty function.

Also, the mean of a difficulty function – that is, the expected pfd resulting from a version

development process related to the difficulty function – defines a plane that is orthogonal to

the vector defined by the demand profile. In this sense we may state that

the expected pfd of a difficulty function is the magnitude of a vector’s projection –

where the vector is defined by the difficulty function – in the direction of the vector

defined by the demand profile.

Put another way, the mean defines an entire family of difficulty functions that “cast the same

shadow” on the demand profile (see Section 4.6).

The chapter also explored a number of theorems28 that are relevant for the extremisation

problems of Chapter 5. To illustrate an application of the theorems, consider the challenge

of finding a difficulty function (with a specified mean) that has the largest possible value

for its associated expected system pfd. This is a quadratic optimisation problem with linear

(inequality) constraints. It turns out that to solve this problem there are two relevant

geometric facts that we prove:

1. if the given mean equals the expected pfd of some difficulty function with components

equal to either 0 or 1, then this difficulty function is a solution to the problem and the

given mean is the largest value for the expected system pfd. Indeed, difficulty functions

whose components are either 0 or 1 are the only difficulty functions with the property

that their means are equal to their associated expected system pfd ;

2. more generally, given a set of difficulty functions that share the same mean, a solution

to the problem can be found by considering those difficulty functions that make the

largest angle with the demand profile. Theorem 4.6.1, on page 104, states this, in terms

of a relationship between the magnitude of a difficulty function and the cosine of the

angle it makes with the demand profile29. This approach, of using cosines of angles to

26see Section 4.3, starting on page 88.
27see Section 2.5, starting on page 43.
28see Sections 4.6 and 4.7
29For our purposes, the cosine of an angle is an invertible function since we are only concerned with angles

between 0 and π
2

radians. Consequently, we may state a relationship between the magnitude of a difficulty
function and the angle it makes with the demand profile, as a relationship between the magnitude of a
difficulty function and the cosine of the angle it makes with the demand profile.
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maximise or minimize quadratic functions, has not been applied to software reliability

modelling before, and we have not come across explicit reference to such a technique in

the literature.

Related to this are the largest and smallest angles a difficulty function can make with the

demand profile, which we derive in Theorems 4.7.1 (on page 110), 4.7.5 (on page 114) and

4.7.6 (on page 114).

Finally, some of the theorems exemplify notions related to the degree of diversity between

difficulty functions. For instance, the angle between difficulty functions is informative in the

following way. For a pair of difficulty functions with given means and second moments (and,

therefore, fixed sizes), the larger the angle between the difficulty functions the smaller the

covariation between them. This casts an old notion – the covariation between a pair of

difficulty functions – in a new light – the angle between them. However, angles can be used

to capture more than just covariation. For there are families of difficulty functions that are

awkward to study using notions like covariance, since the difficulty function pairs thereof

have seemingly unrelated means and covariation. However, such a set of difficulty function

pairs may be described in terms of an angle. For instance, suppose the sizes of a pair of

difficulty functions, and the angle between them, are given. Then, all difficulty function pairs

with these properties have the same expected system pfd related to forcing diversity, despite

distinct pairs possibly having difficulty functions with different means and covariation.



Chapter 5

Bounds on Expected System

PFD

In Chapter 4 a geometric model of coincident failure was developed, with the aim of using

it to determine bounds on expected system pfd. In particular, Section 4.2 (page 87) details

the 5 steps to be followed when using the model to obtain bounds. In summary, obtaining

the solution to a given extremisation problem1 proceeds as follows:

1) Start with a model of coincident failure in multi–version software: either the LM model,

or an extension with the canonical form discussed in Chapter 3.

2) From the model of coincident failure, define an equivalent vector–space representation

(a finite–dimensional, real, inner–product space in a given basis).

3) Use the constraints of the extremisation problem to define the region of the vector–space

containing all potential solutions.

4) Solve the extremisation problem by performing transformations on vectors contained in

the region of potential solutions, in a bid to to obtain a vector (or a collection of vectors)

which achieve the extreme.

5) Reinterpret the solutions in terms of the LM model, or a suitable extension.

The techniques for representing a practical scenario as an LM model extension – that is, step

1 indicated above – were covered in Chapter 3, while Chapter 4 focused on the methodology

that accomplishes steps 2 and 3. In this chapter, we concentrate on steps 4 and 5: that is,

we derive various attainable bounds on the expected pfds of versions and systems, under

various conditions.

1The extremisation problems presented in this chapter are not an exhaustive problem set, and were chosen
for being representative of the type of problems that can arise. The chapter will focus largely on extremising
the following quantity: Given the difficulty functions θA and θB , such that θA �= θB , we extremise the
expected system pfd induced by forcing diversity, which is

qAB :=
〈
θA, θB

〉
.

In this sense qAB is the inner–product of 2 distinct vectors, and as such many bounds related to qAB follow
naturally from the properties of inner–products.

125
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This chapter contains four sections: Sections 5.1, 5.2, 5.3, and 5.4. Section 5.1 gives rea-

sons for bounding the expected system pfd. The focus of Section 5.2 is defining conditions

under which forcing diversity cannot result in an expected system pfd that is worse than it

would be if diversity was not forced. Section 5.3 focuses on deriving upper and lower bounds

for the expected pfd of a system built by forcing diversity, qAB, under various conditions

of available knowledge. For our purposes, knowledge comes in the form of having available

various probabilities that, if true, constrain the magnitude of qAB . Such constraining proba-

bilities include the demand profile P̄ , the expected system pfds for systems built by allowing

diversity to occur naturally, difficulty functions and single version expected pfds. Finally, a

summary of the results of the chapter is given in Section 5.4.

5.1 Reasons for Bounding the Expected System PFD

One of the useful consequences of the LM model assumptions is that comparisons can be

made between an expected pfd for a single–version system and the expected pfd for a related

1–out–of–2 system. This was highlighted in Chapter 2, and is particularly useful when using

pfd estimates of single version systems to bound the possible pfd estimates for related multi–

version systems. In general, the expected pfd for a single version system cannot be used to

bound expected system pfd in this way2. However, this is possible under the LM model, and

generalisations of the LM model that adhere to observability Criterion 2.4.1. For in these

situations, the expected pfd for a channel (built using a given methodology) is identical to

the expected pfd for a single version system (built using the same methodology). So, for

development processes that are adequately modelled via the LM (or LM-like) model, we

may bound the expected system pfd by using the expected pfds for the channels3. In this

chapter, we consider scenarios in which the expected pfds for single–version systems are

known, and use these to bound the expected pfd for a related 1–out–of–2 system built by

forcing diversity.

Obtaining accurate estimates of difficulty functions (and, therefore, expected pfds) may

be infeasible or unlikely to achieve in practice. This is because in Chapter 2 we defined

difficulty functions as expectations of suitable score functions with respect to version sam-

pling distributions (for instance, see page 36), and these distributions are unknowable in

many cases. However, by using bounds on expected system pfd, an assessor of a system

can be conservative about what system reliability to expect: bounds facilitate “worst–case”

analysis. An example of this is the use of Beta–factors in practice; in particular, when

reasoning about common–cause failure and its potential impact on the reliability of safety

critical systems. In essence, a beta–factor is the relative size of the reliabilities associated

with two systems, expressed in form of a quotient. For instance, if the expected system pfd

2See Appendix C for a discussion.
3For instance, it is plausible that estimates for the reliability of Commercial off–the–shelf (COTS) software,

based on historical failure data, might be readily available. Also, there are situations where it is reasonable
to argue that COTS software have been developed by development teams that have had no interaction with
one another during development4 . Consequently, given reliability estimates for COTS software to be used
in a fault–tolerant configuration, it is possible to define attainable bounds on the expected system pfd. This
is because the marginal expected pfds are the expected pfds of the single version COTS developments.
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is qAA and the expected pfd for a constituent channel is qA, we may define a beta–factor βA

as follows.

βA :=
qAA

(qA)
2 .

Consequently, this beta–factor gives an idea of the error involved in expecting the channels

to fail independently. Suppose only the value of qA is known to an assessor of this “A”

system. Then, by choosing hypothetical values for βA, the assessor may consider the dif-

ferent consequences of naive assumptions of failure independence. Results presented in this

thesis bound qAA when qA is given, so that the assessor has an upper bound for her range

of hypothetical beta–factor values:

βA ≤ max {qAA}
(qA)

2 .

Additionally, forcing diversity – the requirement that each channel be developed using

a unique development process methodology – has been advocated as a possible way of en-

couraging failure diversity between versions. However, forcing diversity cannot always be

expected to result in better system reliability than if diversity was allowed to occur natu-

rally instead. Nevertheless, there are cases when forcing diversity results in expected system

pfd that cannot be worse, and may be better, than if diversity is not forced. In fact, in

Chapter 2 (see Section 2.5 on page 42) we discussed two such cases under the LM model,

using two related notions of indifference: indifference in methodologies and indifference in

expected pfd values. In this chapter, we reiterate the close relationship between these 2

notions of indifference, and prove a generalisation of an earlier result where forcing diversity

was shown to be beneficial under indifference in methodologies. Also, we give a necessary

and sufficient geometric condition for forcing diversity to result in expected reliability that

is no worse than otherwise.

Even when forcing diversity is shown to be “a good thing” as it results in improving

expected reliability, the extent of this improvement might still be relevant. For instance, it

might be the case that the largest expected reliability gain brought about by forcing diver-

sity may not justify the added cost that may accompany such a policy. We do not take into

account cost considerations for the purposes of our analyses5, partly because thresholds for

cost–benefit trade-offs are likely to be decided on a case–by–case basis in general. Never-

theless, in any such decision model, it is useful to know what the bounds on the expected

reliability would be. Consequently, by specifying attainable bounds on the reliability of a sys-

5See Appendix C for a brief discussion of why “how to conduct such cost–benefit considerations” is
unobvious.
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tem built by forcing diversity, we indicate the limits on any expected reliability improvement

obtained thereby.

Furthermore, the methodology we use for bounding expected pfds can also be used to

bound other averages that may be of interest. For instance, recall that the expected system

pfd for an “AB” system built with the common influence E between the channel development

processes may be written as

qAB =
∑

all x, all e

θA;e (x) θB;e (x)P (X = x)P (E = e) , (5.1)

where X is a random demand and θA;e (x), for instance, is the probability that a randomly

chosen “A” version, developed when the common influence had a value e during development,

fails on the demand x. Each of the following pair of means may be averaged to obtain Eq.

(5.1):

• q(e) =
∑
all x

θA;e (x) θB;e (x)P (X = x) is the probability that an “AB” system, built

under the common influence value e during its development, fails on a random demand.

Viewed as a function of the common influence E, the expectation of this average with re-

spect E gives Eq. (5.1). Consequently, for each value e we may treat θA;e (x) and θB;e (x)

as difficulty functions, and using the ideas of Chapter 4 we may define a representative

geometric model (with axes defined by the demands) and extremise q(e).

• q(x) =
∑
all e

θA;e (x) θB;e (x)P (E = e) is the probability that an “AB” system, built

under an unknown value for the common influence, fails on a demand x. Viewed as a

function of the random demand X , the expectation of this average with respect X gives

Eq. (5.1). Therefore, for each demand x the quantities θA;e (x) and θB;e (x) can be

treated in an analogous fashion to difficulty functions, and using the ideas of Chapter 4

we may define a representative geometric model (with axes defined by the values of the

common influence) and extremise q(x).

The bounds also give information about the distributions of expected system pfds, in that

they specify the interval of values over which the distribution assigns non–zero probability

(see Fig. 5.1).

5.2 Forced Diversity vs Natural Diversity

Recall from Chapter 2 that in building a 1–out–of–2 system, diversity between channel de-

velopment processes can either occur naturally – due to the respective development teams

making their respective decisions in isolation, albeit under similar circumstances – or it may

be “forced” – by imposing different conditions under which the different teams make their

respective decisions in isolation. Since we demonstrated in Section 2.5 that, under the LM

model, forcing diversity does not always ensure better expected reliability than if diversity

were allowed to occur naturally6, we are faced with a problem. A manager of the develop-

6That is, given a pair of development process methodologies – say methodologies A and B – the minimum
of the three expected system pfds qAA, qBB and qAB is not always qAB .
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Figure 5.1: The techniques of this chapter give bounds on the expected system pfd. Consequently,
they define the interval over which the distribution of expected system pfd may assign non–zero
probability values.

ment of a 1–out–of–2 system, trying to decide whether to force diversity or not, cannot rely

on there being a particular order between the expected system pfds of these alternatives, in

general. This prompts the following question.

Under what conditions is qAB ≤ min {qAA, qBB} ? (5.2)

The result in Eq. (2.18) on page 47 gives a particular case where this holds: that is, under

indifference between the expected system pfds when diversity is not forced, forcing diversity

gives a lower bound on expected system reliability. We generalise this result in the next

sub–section. In addition, in sub–section 5.2.2, we tackle the problem of whether to force

diversity or not, given that an assessor has no compelling reason to prefer one methodology

over another from a given set of methodologies.

5.2.1 Preliminary Bounds when Forcing Diversity

When is Eq. (5.2) certain to hold in practice? Assume that the manager of a system

development process has estimates of either the relative values or the actual values of the

expected system pfds for homogeneous systems (that is, estimates of either
qAA

qBB
, or qAA and

qBB). Consider two arbitrary non–zero difficulty functions7, θA and θB. Without loss of

generality, we assume that the inequality
√
qAA = ‖θA‖ ≤ ‖θB‖ =

√
qBB holds. Then, Eq.

(5.2) holds if, and only if, the following inequality holds.〈
θB − θA, θ̂A

〉
≤ 0 or ‖θB‖ cos γ ≤ ‖θA‖ , (5.3)

7Note, we are interested in only non–zero difficulty functions8, since a zero difficulty function guarantees
qAB = 0.



CHAPTER 5. BOUNDS ON EXPECTED SYSTEM PFD 130

where γ is the angle between θA and θB . So, the projection of θB in the direction of θA must

be smaller than the magnitude of θA. The border line case is when the difficulty functions

form a “right–angled triangle”, with the larger difficulty function as the hypotenuse. This

suggests the following theorem.

Theorem 5.2.1. Let θA and θB be a pair of difficulty functions such that ‖θA‖ ≤ ‖θB‖
and let γ denote the angle between them. Forcing diversity will result in expected system pfd

that is no greater, in general, than any of the pair of related expected system pfds that result

from allowing diversity to occur naturally
(
that is,

〈
θA, θB

〉 ≤ ‖θA‖
)
if, and only if,

π

2
≥ γ ≥ cos−1

(‖θA‖
‖θB‖

)
≥ 0 . (5.4)

So, for any orientation of θA and θB such that γ is sufficiently large, forcing diversity will

not worsen expected reliability. Note that inequality (5.4) does not depend on the values of

difficulty functions, it only depends on the expected system pfds for homogeneous systems.

This is important since, in practice, it might be easier to specify a reliability estimate than it

is to specify an entire difficulty function. Also, given that you might have some information

about a pair of difficulty functions, the theorem specifies “how good” the unknown parts of

the difficulty functions need to be to ensure obtaining the best reliability as a consequence

of forcing diversity.

Three special cases of Theorem 5.2.1 include:

Case 1 ‖θA‖ = ‖θB‖: This captures the idea of indifference between the expected sys-

tem pfds resulting from building both channels of a system by using methodology A

or B exclusively. That is, for a system assessor who is indifferent between the expected

system pfds resulting from allowing diversity to occur naturally, none of these expected

system pfds is better than the expected system pfd resulting from forcing diversity. This

result was proved in [13], and is a consequence of the fact that the projection of one

difficulty function in the direction of the other difficulty function must be smaller than

either difficulty function. Put another way, the condition ‖θA‖ = ‖θB‖ is equivalent

to requiring that the difficulty functions touch the surface of the same sphere. Conse-

quently, it is impossible to orient the difficulty functions – that is, create a sufficiently

small angle between them – in a way that results in a projection that is sufficiently long

enough for diversity not to be beneficial. Therefore, Eq. (5.3) always holds9.

Equality is attained if, and only if, the difficulty functions thereof are collinear. Since

the difficulty functions are required to have the same magnitude, collinearity implies

that the difficulty functions are identical. This means that the channels are developed

in such a way that the teams are identical in how difficult they find each demand. This is

unlikely to be the case in practice: one can expect differences to exist between the teams

9This result is a consequence of the Cauchy-Schwarz inequality since, from Eq. (5.3), we have

qAB = |〈θA, θB〉| ≤ ‖θA‖ ‖θB‖ = ‖θB‖2 = 〈θB , θB〉 = qBB = min {qAA, qBB} . (5.5)
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(e.g. different individuals with different software development experience make up the

different teams), even if such differences may have only a small impact on the variation

in difficulty between the teams. Consequently, it is unlikely that the equality holds in

practice, in which case forcing diversity gives the best expected system reliability.

Figure 5.2: This figure depicts two viewpoints of the set of all difficulty functions considered when
maximizing qAB , subject to the constraint that the expected system pfds for homogeneous “AA”
and “BB” systems are assumed equal. All of the difficulty functions of interest have their tips
touching the surface of a sphere of radius ‖θA‖. Intuitively, from the figure on the right above, we
see that it is impossible to orient an arbitrary pair of difficulty functions that both touch the sphere
in such a way that the projection of one vector in the direction of the other vector is longer than
the other vector. This implies that the angle γ must be at least 0, which is the case for any pair of

relevant difficulty functions touching the sphere, and at most
π

2
.

Case 2 θA and θB are orthogonal : In particular, if the difficulty functions are perpendicular

then their mutual projections are 0̄, and thus Eq. (5.3) holds with

qAB = 0 ≤ min {qAA, qBB} .

If there exist imperfect single versions, say V̄1 and V̄2, such that they do not fail coinciden-

tally on any demands (therefore, they are orthogonal) and ‖θA‖ ≤ ∥∥V̄1

∥∥, ‖θB‖ ≤ ∥∥V̄2

∥∥,
then qAB = 0 can be attained. Otherwise, the attainable lower bound is tighter. How-

ever, qAA, qBB << 1 for high reliability systems, so that such a pair of orthogonal

versions can occur in practice.

Case 3 A pair of difficulty functions, one of which is constant, with the same mean: Without

loss of generality, consider the difficulty functions θA = qBP̄ and θB, so that

qAB =
〈
θA, θB

〉
=
〈
qBP̄ , θB

〉
= qB

〈
P̄ , θB

〉
= (qB)

2 ≤ min {qAA, qBB} .

Of course, for a specified demand profile P̄ , its related bounding region constrains the size

of the maximum possible angle, γmax, between an arbitrary pair of difficulty functions with

specified sizes ‖θA‖ and ‖θB‖. From Theorem 5.2.1 the minimum angle required for forced
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Figure 5.3: In this figure the candidate difficulty functions are orthogonal and, consequently, must
lie on the boundaries of the region defined by P̄ .

Figure 5.4: Here a pair of difficulty functions, one of them being constant, is assumed to have
the same mean (so they have the same projection lengths on the demand profile). The constant
difficulty function is parallel to the demand profile, P̄ . Consequently, the projection of any other
difficulty function in the direction of P̄ has a length that is the shared mean and, hence, must be
the length of the constant difficulty function.
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diversity to guarantee an expected system pfd that cannot be worse is

γ = cos−1

(‖θA‖
‖θB‖

)
= cos−1

(√
qAA

qBB

)
,

which may be too large (that is, γmax < γ) given the restrictions of P̄ . In such a case it is

impossible for forcing diversity to be beneficial. The problem of determining the value of

γmax given P̄ , ‖θA‖ and ‖θB‖, is the focus of ongoing research.

We can use the special cases above to specify some more examples of when forcing

diversity is beneficial. Consider the case when a manager of a development process has

reason to believe that the difficulty functions for the channels’ development processes are

identical on some subset of the demand space. So, given a demand profile P̄ , suppose θA and

θB are such that they are identical on a subset of demands. Then, according to Theorem

4.7.4 there are 3 difficulty functions, V̄1, V̄2 and V̄3, such that V̄2 is orthogonal to both V̄1

and V̄3,

θA = V̄1 + V̄2 and θA = V̄2 + V̄3.

This means that qAB =
〈
θA, θB

〉
=
〈
V̄2, V̄2

〉
+
〈
V̄1, V̄3

〉
. Similarly, qAA =

〈
V̄2, V̄2

〉
+
〈
V̄1, V̄1

〉
and qBB =

〈
V̄2, V̄2

〉
+
〈
V̄3, V̄3

〉
. Consequently, forcing diversity will not worsen reliability

(that is, qAB ≤ min {qAA, qBB}) if, and only if
〈
V̄1, V̄3

〉 ≤ min
{〈

V̄1, V̄1

〉
,
〈
V̄3, V̄3

〉}
. So, the

three cases outlined above as particular examples of Theorem 5.2.1 can be applied here to

give three more cases in which forcing diversity is beneficial. If the parts of the difficulty

functions that are not identical have any of the following properties:

1. If they have the same size, then
〈
V̄1, V̄1

〉
=
〈
V̄3, V̄3

〉
. This is indifference between the

sizes of the difficulty functions on a subset of the demands. Consequently, via the

Cauchy–Schwarz inequality,
〈
V̄1, V̄3

〉 ≤ 〈
V̄1, V̄1

〉
=
〈
V̄3, V̄3

〉
= min

{〈
V̄1, V̄1

〉
,
〈
V̄3, V̄3

〉}
;

2. If they are orthogonal, then
〈
V̄1, V̄3

〉
= 0 ≤ min

{〈
V̄1, V̄1

〉
,
〈
V̄3, V̄3

〉}
;

3. If they have equal means, with either V̄1 or V̄3 being a constant difficulty function, then〈
V̄1, V̄3

〉
=
〈
V̄1, P̄

〉〈
V̄3, P̄

〉 ≤ min
{〈

V̄1, V̄1

〉
,
〈
V̄3, V̄3

〉}
.

5.2.2 Forced Diversity under Indifference between Methodologies

In the last sub–section we indicated how indifference between expected system pfds (for in-

stance, qAA = qBB) may be used to justify forcing diversity. Similarly, there is another form

of indifference – indifference between methodologies – that may be used to justify forcing

diversity. A manager of a development process is said to be indifferent between method-

ologies if, amongst alternative combinations of methodologies that may be used to build

the channels of the system, she is equally likely to use any of these combinations in building

the system10. Such a situation could arise for different reasons, including:

10Indifference between pfds and indifference between methodologies are closely related, but different. Re-
gard “the expected system pfd resulting from building a system by employing a randomly chosen method-
ology” as a random variable. Then indifference between methodologies defines a distribution of expected
system pfds, while indifference between expected system pfds is a statement about equal realisations of a
random variable. To illustrate this relationship further, suppose an engineer is presented with two seemingly
identical balls that are coloured differently – perhaps, one blue and one green. Further suppose that the
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• The manager may be convinced that the methodology combinations do not differ sig-

nificantly, in terms of both the cost incurred in their use and their associated expected

system pfds;

• The manager has no evidence available to suggest one combination being better, in some

relevant sense, than another;

• The manager may suspect that certain combinations of methodology indeed result in bet-

ter expected system reliability. However, she may be unsure about whether the expected

reliability gains from using these combinations justify the potential extra economic cost

incurred in using these combinations.

Given such uncertainty about preferences between methodologies, our aim is to illustrate a

scenario where forcing diversity is the desired option. To this end we consider a coordina-

tor/manager of the development of some 1–out–of–N system, who is faced with the choice

of whether to force diversity (that is, require that each channel be built using a unique

methodology) or not. Suppose:

1. The manager has a choice ofN , unique software development methodologies,m
1
,m

2
, . . . ,m

N
,

say;

2. The manager is indifferent amongst the methodologies that may be employed in the

development of each channel. So, any of m
1
,m

2
, . . . ,m

N
is equally likely to be assigned

to the development of each channel. In practice, this would be the case if the manager

has no evidence to justify preferring one methodology over another. For instance, the

methodologies may be relatively novell and as such historical, empirical or anecdotal

evidence to justify the use of one methodology over another may be unavailable. Even if

the methodologies have been applied extensively it might be the case that they have not

been applied under sufficiently similar circumstances, similar to the current proposed

development process. For instance, the systems that have been built using the method-

ologies might have architectures that are sufficiently different from the proposed system

architecture to be built. So, available empirical evidence may not be applicable in choos-

ing which methodologies should be preferred. Note, however, that this does not mean

the difficulty functions, induced by applying the methodologies, are the same; our asses-

sor might readily accept that it is plausible some methodologies are more suited for use

in tackling certain issues during development than others, despite not knowing which.

Indeed, as was pointed out in [13], it should be expected that diverse methodologies

should induce diverse difficulty functions.

Under these conditions the following theorem holds.

manufacturer of the balls has told the engineer that one of these seemingly identical balls has a significantly
higher bounce, according to an industry–standard definition for the bounce of a ball, without indicating
which of these balls has a higher bounce. The engineer is then tasked with guessing which of the two balls
has the lower bounce. Since the balls are seemingly identical, the engineer would assign equal probability to
each ball having the lower bounce, despite being told that one of the balls indeed has a higher bounce. The
bounce of each ball is analogous to the expected system pfd for a homogeneous system: in both experiments
these are unknown quantities with a possible ordering, and a choice of lowest of these unknown quantities
must be made. The balls having equal probability of being the one with the lowest bounce is akin to being
indifferent between methodologies. However, if by running tests on the balls in her laboratory, the engineer
finds out that the balls actually have equal bounce heights, then she becomes indifferent between the heights
of the ball bounces. This is similar to being indifferent between expected system pfds.
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Theorem 5.2.2. Building a 1–out–of–N system by forcing diversity results in a system with

expected pfd that is less than or equal to the expected pfd obtained if diversity were not

forced. That is,

P

(
1–out–of–N system, built by not

forcing diversity, fails on X

)
≥ P

(
Πm

1
, . . . ,Πm

N
fail on X

)

Proof. We assume an LM–type model of the development and operation of a 1–out–of–N

system. So, each channel is developed in isolation, the model of system development is the

product probability space comprised of the models for each channel and
(
X,ΣX,PX(·)) is a

model of demand occurrence. However, because there is no mathematical difference between

the LM–model and a generalisation of the LM model where independence is modelled via

conditional independence, the following proof applies in both cases. That is, this result

also applies in cases where the development of the channels is isolated except for common

activities which induce conditional failure independence between the channels. Let i
1
, . . . , i

N

be indices associated with the channels, 1, . . . , N , of a 1–out–of–N system such that i
j
=

m
1
, . . . ,m

N
for j = 1, . . . , N . These indices will be used as a notational device in the proof

to assign methodologies to the development of the channels. So, for example, given 3 unique

methodologies, {m
1
,m

2
,m

3
}, a 1–out–of–3 system whose development is modelled by the

random vector (Π
m3

,Π
m1

,Π
m2

) is equivalent to (Π
i1
,Π

i2
,Π

i3
) where channel 1 is developed

using methodology 3, i.e. i
1
= m

3
, channel 2 is developed using methodology 1, i.e. i

2
= m

1
,

and channel 3 is developed using methodology 2, i.e. i
3
= m

2
. Each methodology, say mi,

induces a related difficulty function, θmi
(x). Now, there are N

N

ways of assigning the N

methodologies to the development of the channels. Each of these assignments are equally

likely. Furthermore, N ! of these are assignments in which diversity is forced. That is, there

are N ! ways of assigning the N unique methodologies to the developments of the N channels

such that no two channels are developed using the same methodology. Therefore, there are

N
N −N ! ways in which a manager may assign the methodologies such that at least two of

the channels are developed using the same methodology. As a consequence of the manager

having no preference in which of these possible assignments should be employed if diversity

is not forced, then

P

(
1–out–of–N system, built by not

forcing diversity, fails on X

)
=

∑
i1,i2,··· ,iN

⎛
⎝∫

X

N∏
j=1

θijPX(dx)

⎞
⎠−N !

∫
X

N∏
j=1

θmjPX(dx)

N
N −N !

,

where the Lebesgue–Stieltjes integrals used here collapse to finite sums for our purposes, so

that

∫
X

N∏
j=1

θijPX(dx) =

∫
X

θ1j . . . θNj
PX(dx) =

∫
X

θ1j (x) . . . θNj
(x)PX(dx)

=
∑
X

θ1j (x) . . . θNj
(x)PX(x),

and θij (x) is the difficulty function induced by the methodology ij. Since the integrals
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above are finite valued (by definition, these integrals are probabilities) we may view the

right–hand–side of the last equation as the arithmetic mean of real numbers. Consequently,

using the well known result that the arithmetic mean of a finite set of non–negative real

numbers is greater than or equal to their geometric mean11 [46, 47, 48], we see that

∑
i1,i2,··· ,iN

⎛
⎝∫

X

N∏
j=1

θijPX(dx)

⎞
⎠−N !

∫
X

N∏
j=1

θmjPX(dx)

N
N −N !

≥

⎛
⎜⎜⎜⎜⎜⎜⎝

∏
i1

· · ·
∏
i
N

∫
X

N∏
j=1

θijPX(dx)

⎛
⎜⎜⎝

∫
X

N∏
j=1

θmj
PX(dx)

⎞
⎟⎟⎠

N !

⎞
⎟⎟⎟⎟⎟⎟⎠

1

N
N
−N !

Upon rewriting the right–hand–side of the inequality above, and applying a generalisation

of the Cauchy-Schwarz inequality, this implies

⎛
⎜⎜⎜⎜⎜⎜⎝

∏
i1

· · ·
∏
i
N

∫
X

N∏
j=1

θijPX(dx)

⎛
⎜⎜⎝

∫
X

N∏
j=1

θmj
PX(dx)

⎞
⎟⎟⎠

N !

⎞
⎟⎟⎟⎟⎟⎟⎠

1

N
N
−N !

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∏
i1

· · ·
∏
i
N

∫
X

[
N∏

j=1

θi
j

1

N
N
−N !

]NN
−N!

PX(dx)

⎛
⎜⎜⎝

∫
X

N∏
j=1

θmjPX(dx)

⎞
⎟⎟⎠

N !

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1

N
N
−N !

≥
∫
X

N∏
j=1

θmjPX(dx) = P
(
Πm

1
, . . . ,Πm

N
fail on X

)

Therefore,

P

(
1–out–of–N system, built by not

forcing diversity, fails on X

)
≥ P

(
Πm

1
, . . . ,Πm

N
fail on X

)
. �

Note: for its use in practice the theorem does not require the manager to have estimates of

the expected pfds used in the theorem; whatever the values of the expected pfds they must

imply the theorem holds. This is ideal because such estimates may not be readily available

for various reasons, including the typical complexity of software used in safety critical sys-

tems as well as the “structure” of the demand space which may make exhaustive testing

infeasible. Indeed, partly because such estimates may be unavailable in practice, managers

of development processes may not have strong justification to prefer some methodology over

some other methodology. In essence, the manager is indifferent among these methodologies.

11A sketch proof of this can be given by taking the natural logarithm of a representative arithmetic mean,
accepting that the natural logarithm function is concave, monotonic increasing and therefore, by Jensen’s
inequality, the result follows.
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5.3 Optimisation of Expected System Pfd under Forced

Diversity

So far we have explored conditions for forcing diversity to be beneficial. Now, we concern

ourselves with trying to determine the limits on system reliability under a policy of forcing

diversity. While, in practice, it may be difficult to obtain complete descriptions of difficulty

functions and demand profiles, it is possible that partial knowledge of such functions and

estimates of expected pfds are available. These estimates might be based on historical data of

system operation and failure behaviour, where such systems operate in similar environments

and have been developed using similar development process methodologies. Such available

knowledge may be used to constrain the value of expected system pfd. For instance, COTS

software that has been used extensively – such as part of airplane flight control systems

(typically fly–by–wire) [49] [34] or Database Management Systems – will potentially have

data concerning several hours of use. So, estimates for the pfds of such software may be

available. One viewpoint of such estimates is that these are expected pfds. Expectations,

because of uncertainty about the existence of unseen demands on which the software would

fail. So, if such COTS components were created using different methodologies, and these

components are to be used in a fault–tolerant configuration, then the pfd estimates constrain

the reliability of the system to be built.

In this section we shall consider a number of constrained optimisation problems in which

we will seek a pair of difficulty functions, θA and θB, that result in an extreme value for

some given function. The objective function – that is, the function to be extremized

– will usually be the expected system pfd under a development process policy of forcing

diversity, qAB . The set of difficulty function pairs that achieve the extreme value of the

objective function will be constrained. In fact, both equality and inequality constraints will

always be imposed, and sometimes one of the difficulty functions will be given. So, the

aim will be to find a difficulty function (or a pair of difficulty functions) that results in the

maximum/minimum value of qAB being attained. The equality constraints will either be

linear (such as a given value for the mean of an unknown difficulty function) or quadratic

(such as a given value for the expected system pfd for a homogeneous system). The inequality

constraints will only be used to ensure that the vectors of interest in the solution of the

optimisation problems are indeed difficulty functions; the vectors lie in a region of the vector

space defined by the demand profile P̄ . In summary, given two channels of a 1–out–of–2

system (labeled A and B), the constraints on the optimisation problems that follow will be

functions of the following:

1. Either a difficulty function θA, or (in an exclusive sense) θB;

2. The demand profile, P̄ ;

3. The expected pfds (qA or qB);

4. The expected system pfds (qAA or qBB).

We take each constrained optimisation problem in turn.
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5.3.1 Extremisation of qAB (given a Demand Profile)

Theorem 5.3.1. Given a demand profile, P̄ , the maximum/minimum possible values for

qAB resulting from a pair of non–zero difficulty functions are 1 and 0.

Proof. Since there is no constraint on which pair of difficulty functions we may choose, the

problem is trivial. For the minimum we choose any pair of difficulty functions that lie in

orthogonal subspaces, thus ensuring that their inner–product is zero. On the other hand,

for the maximum, the largest difficulty function is the one that guarantees failure on every

demand; that is, the version P̄ . Consequently, by defining θA := P̄ and θB := P̄ we ensure

that θA and θB are collinear and, therefore, their inner–product is the maximum possible

value. �

5.3.2 Extremisation of qAB (given a Demand Profile, qB and qBB)

Given P̄ , qB �= 0 and qBB �= 0 what is the maximum/minimum possible qAB resulting from

a pair of non–zero difficulty functions, one of them with associated means qB and qBB? We

shall deal with the maximum and the minimum in turn.

Theorem 5.3.2. Let θB be some difficulty function that has associated means qB and qBB.

Let θA be a non–zero vector that we seek such that with θB maximises qAB . Given the

demand profile P̄ the maximum value of qAB is qB, obtained by θA = P̄ for any appropriate

θB.

Proof. Firstly we need to check that P̄ , qB and qBB are consistent, in the sense that there

exists θB with associated means qB and qBB . Such a θB exists if, and only if, the largest

difficulty function that touches the qB plane has a magnitude of at least
√
qBB. Therefore,

using the algorithm for obtaining the largest difficulty that touches the qB plane discussed in

the previous chapter, we can verify θB’s existence. Suppose we have verified θB’s existence

and, consequently, defined a suitable θB. Since qAB = 〈θA, θB〉 =
〈
θA, θ̂B

〉
‖θB‖ then, in

order to maximise qAB, we proceed in 2 steps:

1. Find a vector, θA, with the largest projection in the direction of θB;

2. Find the θB that results in the largest of these largest projections.

From the computational form of the inner–product it is easy to see that P̄ gives the largest

projection in the direction of θB. But the projection of P̄ in the direction of θB must have

length
〈
P̄ , θ̂B

〉
=

qB√
qBB

, irrespective of which θB we use. Therefore, θA = P̄ gives the

maximum value of qAB as

qAB =
〈
P̄ , θB

〉
= qB �

For the lower bound there are 2 possibilities: θB may, or may not, lie completely in a

subspace spanned by the versions in some proper subset of S. That is, θB may, or may

not, lie in a “wall” of the bounding box defined by the demand profile P̄ . If θB does not

lie in a “wall”, then it is impossible to define non–zero θA that ensures a lower bound for
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qAB. This is because due to the continuity of Rn it is always possible to define a smaller,

non–zero θA that ensures a smaller, non–zero value for qAB . If, on the other hand, θB lies

in a “wall” then it lies in a subspace, say Span(Sk), that has related orthogonal subspaces,

such as Span(Sn−k). Therefore, any difficulty function θA ∈ Span(Sn−k) will ensure that

qAB = 0.

5.3.3 Extremisation of qAB (given a Demand Profile and Difficulty

Function)

Given a demand profile, P̄ , and a difficulty function, θB, we can define the set of all difficulty

functions such that the value of qAB =
〈
θB, θA

〉
is some yet to be determined q. An arbitrary

member of this set is denoted as θA. In particular, specifying such a set tells us which

difficulty functions are relevant in three cases: 1) those that result in the maximum qAB

value; 2) those that result in the minimum qAB value, and; 3) those that result in qAB =

qAqB (this is the case where the channels fail independently). In solving the problem we

will use the components of vectors with respect to the orthonormal basis Ŝ, where these

components may be obtained from the components with respect to the orthogonal basis S

via the transformation T of Section 4.4. We proceed as follows. An arbitrary difficulty

function has the form

θA :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, subject to the constraints

0 ≤
0 ≤
0 ≤
...

0 ≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤ √
P1

≤ √
P2

≤ √
P3

...

≤ √
Pn

. (5.6)

For an arbitrary member of the set of interest the value of qAB is q. That is,

qAB =
〈
θA, θB

〉
= x1θB1 + . . . + xnθBn = q (5.7)

which implies that for some non–zero θB component, say θBj �= 0, we have

xj =
1

θBj

(
q − (x1θB1 + . . . + xj−1θB(j − 1) + xj+1θB(j + 1) + . . . + xnθBn)

)
. (5.8)

This equation constrains the values of {x1, . . . , xn}, the n unknown components of the ar-

bitrary difficulty function θA. Consequently, using Eq. (5.8) in Eq. (5.6), the form of a



CHAPTER 5. BOUNDS ON EXPECTED SYSTEM PFD 140

difficulty function that satisfies such a constraint is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

...

xj−1

1

θBj

(
q − (x1θB1 + . . . + xj−1θB(j − 1) + xj+1θB(j + 1) + . . . + xnθBn)

)
xj+1

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.9)

The jth component of this difficulty must satisfy the constraints of Eq. (5.6). This implies

that the value q is constrained by the bounds

x1θB1 + . . . + xj−1θB(j − 1) + xj+1θB(j + 1) + . . .

. . . + xnθBn ≤ q ≤ θBj
√

Pj + x1θB1 + . . .

. . . + xj−1θB(j − 1) + xj+1θB(j + 1) + . . .

. . . + xnθBn .

These bounds suggest an approach for obtaining the maximum, or minimum, q values. We

demonstrate the approach by obtaining the maximum; the minimum is obtained by following

an analogous argument. Note: so far the jth component has been chosen arbitrarily as

the component determined by Eq. (5.7) apart from the requirement that θBj be non–zero.

However, if we further require that θBj
√
Pj be the largest of the set

{
θB1

√
P1, . . . , θBn

√
Pn

}
,

then for the maximum q to be obtained it is necessary that

q́ = x1θB1 + . . . . . . + xj−1θB(j − 1) + xj+1θB(j + 1) + . . . + xnθBn, (5.10)

where q́ = q − θBj
√
Pj . But, this has a similar form to the constraint in Eq. (5.7) except

that the number of unknown components is reduced by one: that is, this constraint does not

involve xj . Thus, we may approach this in a similar way we approached Eq. (5.7). That is,

the n− 1 components {x1, . . . , xj−1, xj+1, . . . , xn} of θA are constrained by Eq.’s (5.10) and

(5.6). By continuing in this fashion until there are no more components to determine, and

then backwards substituting to obtain the form of θA and the maximum value of qAB , we

have

qAB = θB1
√
P1 + . . . + θBn

√
Pn = qB (5.11)

and the form of the difficulty function that makes this maximum qAB value possible is

θA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
P1√
P2√
P3

...√
Pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.12)
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This result is an alternative proof of Theorem 5.3.2 on page 138. Observe that Eq.’s (5.11)

and (5.12) do not depend on the magnitude of θB implying that in this case the expected

system pfd for a homogeneous, methodology–B system is unimportant in determining the

maximum value of qAB .

Instead of maximizing qAB we could have used this approach to determine the maximum

covariation between an unknown difficulty function, θA, and the given difficulty function,

θB. That is, given a demand profile P̄ and a difficulty function θB, we maximise

Cov
X

(
θA (X) , θB (X)

)
:=

〈
θA, θB − qBP̄

〉
. (5.13)

The result of this is the following theorem. The components of vectors in this theorem are

expressed with respect to the orthonormal basis Ŝ.

Theorem 5.3.3. Given a demand profile, P̄ , and a difficulty function, θB let the related

variance vector be θB − qBP̄ . There exist imperfect single versions, V̄ and W̄ , with compo-

nents
{
V̄ 1, . . . , V̄ n

}
and

{
W̄1, . . . , W̄n

}
, such that

V̄ i =

{√
Pi, if θBi− qB

√
Pi < 0

0, otherwise
, W̄ i =

{√
Pi, if θBi− qB

√
Pi > 0

0, otherwise
,

and the maximum and minimum values for a covariance of difficulty functions, one of the

difficulty functions being θB, are
〈
θB − qBP̄ , V̄

〉
and

〈
θB − qBP̄ , W̄

〉
respectively.

As a consequence of Theorem 5.3.3, we see that Eq. (5.12) may be written as

θA = V̄ + W̄ + Ū ,

where the imperfect single version Ū is defined as having vector components,
{
Ū1, . . . , Ūn

}
,

such that

Ū i :=

{√
Pi, if θBi− qB

√
Pi = 0

0, otherwise
(5.14)

That is, the difficulty function that results in the maximum expected system pfd under forced

diversity, qAB, is the sum of three difficulty functions that, respectively, result in the maxi-

mum, minimum and zero covariation with the given difficulty function θB.

5.3.4 Extremisation of qAB (given Demand Profile, qA, Difficulty

Function)

Given a demand profile P̄ , an expected version pfd qA, and a difficulty function θB , what is

the maximum/minimum possible qAB? We seek a difficulty function V̄A with related mean
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qA such that
〈
V̄A, θB

〉
is minimised/maximised. Let

V̄A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, subject to the constraints

0 ≤
0 ≤
0 ≤
...

0 ≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤ √
P1

≤ √
P2

≤ √
P3

...

≤ √
Pn

(5.15)

Figure 5.5: Maximisation of qAB , given θB . For a fixed mean, qA, we seek an appropriate difficulty
function by moving away from the demand profile in a direction that increases the value of its
inner–product with θB . This increase in inner–product value is illustrated by the fact that moving
a difficulty function close to P̄ to a difficulty function further away from P̄ , while keeping the mean
fixed at qA (this is the requirement that the arrow head always touch the thick dashed–line), will
cause the difficulty function to touch increasingly “higher” thin dashed–lines, each of these thin
dashed–lines being orthogonal to θB . So, the inner–product of the difficulty function that is further
away is greater.

Recall, these constraints are equivalent, under transformation T of Section 4.4, to the

usual constraints of difficulty function values necessarily lying in the closed unit interval.

Extremising qAB, given difficulty θB and qA, is an n-dimensional problem with the 2 con-

straints,

〈
V̄A, θB

〉
= x1θB1 + x2θB2 + . . .+ xnθBn = qAB〈

V̄A, P̄
〉
= x1

√
P1 + x2

√
P2 + . . .+ xn

√
Pn = qA (5.16)

For this set of equations to really represent 2 constraints we require θB �= P̄ . In the case

where θB and P̄ are collinear, any V̄A ensures the value qA for qAB and the problem is solved.

Appreciate that in stating these constraints we have written the unknown qAB as though it

was a known value constraining the problem. The purpose of this “trick” is to ultimately

put qAB at the center of the constraints on V̄A detailed in Eq. (5.15). The advantage of this

is that it ensures that attainable bounds can be defined on qAB , and the bounds necessarily

take these constraints on difficulty functions into account. This set of linear equations can

be cast in the form of a matrix, and the usual methods of row operations can be used to

“eliminate” two of the variables x1, . . . , xn. In so doing Eq. (5.15) becomes
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0 ≤
0 ≤
0 ≤
...

0 ≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qAB

√
P2 − qAθB2

θB1
√
P2 − θB2

√
P1

−
(
θB3

√
P2 − θB2

√
P3

θB1
√
P2 − θB2

√
P1

x3 + . . .+
θBn

√
P2 − θB2

√
Pn

θB1
√
P2 − θB2

√
P1

xn

)
qAθB1− qAB

√
P1

θB1
√
P2 − θB2

√
P1

−
(
θB1

√
P3 − θB3

√
P1

θB1
√
P2 − θB2

√
P1

x3 + . . .+
θB1

√
Pn − θBn

√
P1

θB1
√
P2 − θB2

√
P1

xn

)
x3

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ √P1

≤ √P2

≤ √P3

...

≤ √Pn

,

(5.17)

where θB1
√
P2 �= θB2

√
P1. It is always possible to choose components that satisfy θB1

√
P2 �=

θB2
√
P1 since θB and P̄ are not collinear and, consequently, θB is not a constant difficulty

function. Let us choose the components so that θ∗B1 =
θB√
P1

and θ∗B2 =
θB√
P2

are the highest

and lowest θ∗B values, respectively. In this case, θ∗B1 > θ∗B2 and therefore θB1
√
P2 > θB2

√
P1.

Using the following shorthand notation,

()1 :=

(
θB3

√
P2 − θB2

√
P3

θB1
√
P2 − θB2

√
P1

x3 + . . .+
θBn

√
P2 − θB2

√
Pn

θB1
√
P2 − θB2

√
P1

xn

)

and

()2 :=

(
θB1

√
P3 − θB3

√
P1

θB1
√
P2 − θB2

√
P1

x3 + . . .+
θB1

√
Pn − θBn

√
P1

θB1
√
P2 − θB2

√
P1

xn

)
,

observe that from the constraints on x1 and x2 in Eq. (5.17) we may define the following

upper bounds on qAB.

qAB≤ 1√
P2

[(
()1 +

√
P1

)(
θB1

√
P2 − θB2

√
P1

)
+ qAθB2

]
(5.18)

qAB≤ −1√
P1

[
()2

(
θB1

√
P2 − θB2

√
P1

)
− qAθB1

]
(5.19)

Similarly, we can also define lower bounds on qAB.

qAB≥ 1√
P2

[
()1

(
θB1

√
P2 − θB2

√
P1

)
+ qAθB2

]
qAB≥ −1√

P1

[(
()2 +

√
P2

)(
θB1

√
P2 − θB2

√
P1

)
− qAθB1

]
Here, we see the advantage of treating qAB as if it were a known quantity. For, the upper

bound on qAB is manifestly dependent on the unknown quantities x1, . . ., xn which, in

turn, are subject to the difficulty function constraints in Eq. (5.15). As a result, all of

the constraints in our optimisation problem are brought to bear on the value of qAB in an

obvious way. Also, the symmetry of these upper and lower bounds hint at a more general

point about the current optimisation problem: the minimisation of qAB follows analogous

steps to the maximisation of qAB. So, while we choose to concentrate on the maximisation

problem from here on, the minimisation problem develops in an almost identical manner.

An attainable upper bound for qAB is given by the smaller of the two upper bounds
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stated in Eq.’s (5.18) and (5.19). We are free to choose which upper bound is the smaller

of the two as either case will lead us to the same answer. Suppose the upper bound in Eq.

(5.18) is less than, or equal to, the upper bound in Eq. (5.19). This would be the case if,

and only if,

qA − P1 ≥ x3

√
P3 + . . . + xn

√
Pn ≥ 0 (5.20)

In particular, this suggests that the unknown quantity x3

√
P3 + . . . + xn

√
Pn should equal

qA − P1, at least. Observe that the form of the upper bound in Eq. (5.18) is such that it is

linear in ()1. Also, ()1 is itself linear in the unknowns x1, . . ., xn. So, optimising this upper

bound on qAB results in an n–2 dimensional Linear optimisation problem with 2 constraints.

That is,

q́=
θB3

√
P2 − θB2

√
P3

θB1
√
P2 − θB2

√
P1

x3 + . . .+
θBn

√
P2 − θB2

√
Pn

θB1
√
P2 − θB2

√
P1

xn

qA − P1=x3

√
P3 + x4

√
P4 + . . .+ xn

√
Pn, (5.21)

for some as yet to be determined real number q́. Compare this with the original n–

dimensional problem in Eq. (5.16). The problems have identical forms and so can be

approached in the same manner. The obvious advantage now is that the problem stated in

Eq. (5.21) is of lower dimensionality. Solving this lower dimensional problem by using the

approach already utilised for the higher dimensional problem results in yet another lower

dimensional problem: this process is iterative. There are two possible end points to this

process: either the dimensionality of the problem ultimately reaches 2–dimensions (for even

number n) or 3–dimensions (for odd number n). Upon reaching any of these stages the

problem becomes deterministic, in which case components can be determined in the lower

dimensional problems, and backward substitution can be used to determine components in

higher dimensional problems until all of the components are determined. Ultimately, this

can lead to a number of different forms for V̄A in Eq. (5.15), including:

V̄A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
P1

0√
P3

...

0

qA −
j−1
2∑

i=1

P2i−1√
Pj

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
P1

0√
P3

...

0√
Pj

qA −
j+3
2∑

i=1

P2i−1√
Pj+1√
Pj+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
P1

0√
P3

...

0√
Pj

qA −
n∑

i=1

Pi +

j−1
2∑

k=1

P2k√
Pj+1√
Pj+2

...√
Pn−1√
Pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
P1

0√
P3

...

0√
Pj

qA −
j+1
2∑

i=1

P2i−1√
Pj+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.22)
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where j is some odd number. Under the transformation T−1 we may write these vectors in

LM–model coordinates as

V̄A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

1
...

0

qA −
j−1
2∑

i=1

P2i−1

Pj

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

1
...

0

1

qA −
j+3
2∑

i=1

P2i−1

Pj+1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

1
...

0

1

qA −
n∑

i=1

Pi +

j−1
2∑

k=1

P2k

Pj+1

1
...

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

1
...

0

1

qA −
j+1
2∑

i=1

P2i−1

Pj+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.23)

This illustrates that there are a number of possible forms for the difficulty. So, in these cases

maximum qAB has the following forms.

qAB =
〈
V̄A, θ

∗
B

〉
= P1θ

∗
B1 + . . . + Pj−2θ

∗
B(j − 2) +

⎛
⎝qA −

j−1
2∑

i=1

P2i−1

⎞
⎠ θ∗Bj,

qAB =
〈
V̄A, θ

∗
B

〉
= P1θ

∗
B1 + . . . + Pj+2θ

∗
B(j + 2) +

⎛
⎝qA −

j+3
2∑

i=1

P2i−1

⎞
⎠ θ∗B(j + 1),

qAB =
〈
V̄A, θ

∗
B

〉
= P1θ

∗
B1 + . . . + Pnθ

∗
Bn+

⎛
⎝qA −

n∑
i=1

Pi +

j−1
2∑

k=1

P2k

⎞
⎠ θ∗B(j + 1),

qAB =
〈
V̄A, θ

∗
B

〉
= P1θ

∗
B1 + . . . + Pjθ

∗
Bj +

⎛
⎝qA −

j+1
2∑

i=1

P2i−1

⎞
⎠ θ∗B(j + 1).

We could have approached the same problem another way. From Fig. 5.5 we can ap-

preciate that the further away a non–zero vector, θA, is from P̄ – in a preferred direction

determined by another vector θB – the larger the projection of θA on θB. This preferred

direction is specified by requiring that the projection of θA in θB’s direction should be larger

than the projection of θA if it was collinear with θB. The condition that θA be collinear

with θB means that θA is a scalar multiple of the unit vector in the direction of θB. That

is, θA = q
θB

‖θB‖ for some non–zero real number q. The scaling q may be determined by the

expectation of θA having a value qA. So,

qA =
〈
θA, P̄

〉
=
〈
q

θB
‖θB‖ , P̄

〉
= q

〈 θB
‖θB‖ , P̄

〉
= q

qB
‖θB‖ .
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Therefore, q =
qA ‖θB‖

qB
and θA =

qAθB
qB

. Consequently, the length of the projection of θA

in the direction of a collinear θB is

〈
θA,

θB
‖θB‖

〉
=

qA‖θB‖
qB

. Accordingly, we are interested

in those difficulty functions with projections in the direction of θB that are larger than this.

That is, we seek θA such that

〈
θA,

θB
‖θB‖

〉
≥ qA‖θB‖

qB
⇔

〈
θA,

qB

‖θB‖2
θB − P̄

〉
≥ 0

So, a proof along these lines will require obtaining a difficulty function, θA, which has a

mean qA and a projection in the direction of the known vector
qB

‖θB‖2
θB − P̄ that is as large

as possible.

5.3.5 Extremisation of qAB (given values for qA, qB, qAA, and qBB)

Given qA, qB, qAA and qBB what is the maximum/minimum possible qAB? Again, we ignore

the trivial cases when either qAA or qBB equals zero. By ignoring these cases, we are asserting

that qA and qB are non-zero as well. Let θA and θB be the non–zero, arbitrary difficulty

functions with these means, respectively. Also, suppose P̄ is some applicable demand profile.

The size of qAB is dependent on how close together, or far apart, the difficulty functions

are. In particular, this angular distance is minimized and maximised if θA, θB and P̄ are

coplanar. That is, extremisation occurs when these three vectors lie in a 2-dimensional

plane spanned by any two of these vectors that are not collinear. For minimisation, we

require θA and θB to lie on either side of P̄ . Contrastingly, for maximisation, the difficulty

functions should lie on the same side of P̄ . This makes sense since, via the Cauchy-Schwarz

inequality, perpendicularity results in a qAB that is zero, and collinearity results in qAB that

is largest. Additionally, this relationship between geometry and extremisation lends itself

to “natural language” expressions. For example, difficulty functions that are close together

(i.e. possess a sufficiently small angle between them) can be said to be “similar”, “positively

correlated” or “not very diverse”. Alternatively, if a sufficiently large angle exists between

them they can be said to be “dissimilar”, “negatively correlated” or “very diverse”. Let γA

and γB be the respective angles the difficulty functions make with P̄ . Using the condition

for minimisation/maximisation of qAB the angle between the difficulty functions should be

γA ± γB. Therefore,

〈
θA, θB

〉
= ‖θA‖ ‖θB‖ cos (γA ± γB) = ‖θA‖ ‖θB‖ cos

(
cos−1

(
qA

‖θA‖
)

± cos−1

(
qB

‖θB‖
))

= ‖θA‖ ‖θB‖

⎛
⎜⎜⎝ qAqB
‖θA‖ ‖θB‖ ∓

√(
‖θA‖2 − qA2

)(
‖θB‖2 − qB2

)
‖θA‖ ‖θB‖

⎞
⎟⎟⎠

= qAqB ∓
√
(qAA − qA2) (qBB − qB2)
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Consequently, the minimum/maximum value of qAB is

〈
θA, θB

〉
= qAqB ∓

√
(qAA − qA2) (qBB − qB2) (5.24)

In terms of the probabilistic LM model Eq. (5.24) uses the maximum value of the magnitude

of Cov
X

(
θA (X) , θB (X)

)
, which is

√
(qAA − qA2) (qBB − qB2), to maximise qAB. That is,

Eq. (5.24) is a special case of the LM equation, Eq. (2.15), with maximum magnitude for

the covariance.

Actually, the bounds given above are always attainable in the general context of an inner–

product space. For the bounds to be particularly relevant to difficulty functions they need to

be restricted to some region defined by some P̄ . By definition, a non–zero difficulty function

must make a non–negative angle of size strictly less than 90◦ with some P̄ . In order for the

bounds to be attainable we require a pair of difficulty functions, with mean characteristics

as given, that fit in some appropriate bounding region. In what follows we treat the lower

and the upper bounds in turn, defining necessary and sufficient conditions for attaining these

bounds in a region defined by some P̄ .

For the lower bound, the largest possible angle between the difficulty functions should be

90◦, as this is the largest separation between difficulty functions that is possible in a bounding

region. In fact, this is the condition for the lowest possible lower bound of the inner–product

of two difficulty functions: it is the case for which qAB = 0. If γA + γB ≥ π

2
then it is

possible 12 to construct 2 or 3 dimensional demand profiles such that 〈θA, θB〉 = qAB = 0.

In fact, if γA + γB >
π

2
then the relevant vectors are

θA :=

⎛
⎜⎝‖θA‖

0

0

⎞
⎟⎠ , θB :=

⎛
⎜⎝ 0

‖θB‖
0

⎞
⎟⎠ , and P̄ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qA
‖θA‖

qB
‖θB‖

√√√√1−
((

qA
‖θA‖

)2

+

(
qB

‖θB‖
)2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, if γA + γB =
π

2
, then an example of a set of vectors that satisfy the zero bound is

θA :=

(
‖θA‖
0

)
, θB :=

(
0

‖θB‖

)
, and P̄ :=

⎛
⎜⎜⎜⎝

qA
‖θA‖

qB
‖θB‖

⎞
⎟⎟⎟⎠ .

12As a side–note the condition γA + γB ≥ π

2
is equivalent to either of the requirements

cos

(
cos−1

(
qA

‖θA‖

)
+ cos−1

(
qB

‖θB‖

))
≤ 0, or

qA
2

qAA
+

qB
2

qBB
≤ 1. (5.25)
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Alternatively, when γA+γB <
π

2
we can define a pair of difficulty functions that are coplanar

with the demand profile and, therefore, satisfy the lower bound given by Eq. (5.24) if, and

only if,

sin (γA + γB) ≤
max

{√
‖θA‖2 − qA2,

√
‖θB‖2 − qB2

}
‖θA‖ ‖θB‖ . (5.26)

This follows from the requirement that vectors in the direction of θA and θB lie in a 2–

dimensional bounding box with a unit vector diagonal if, and only if, such a bounding box

itself lies inbetween 2 extreme bounding boxes with sides

⎧⎪⎨
⎪⎩
⎛
⎝ 0

qA
‖θA‖

⎞
⎠ ,

⎛
⎜⎝
√
1−

(
qA

‖θA‖
)2

0

⎞
⎟⎠
⎫⎪⎬
⎪⎭ and

⎧⎪⎨
⎪⎩
⎛
⎜⎝
√
1−

(
qB

‖θB‖
)2

0

⎞
⎟⎠ ,

⎛
⎝ 0

qB
‖θB‖

⎞
⎠
⎫⎪⎬
⎪⎭ .

An example of this is depicted in Fig. 5.6. If the condition in Eq. (5.26) holds, then we

Figure 5.6: An example of a pair of difficulty functions, θA and θB , for which qAB is minimum.

may define the following set of vectors that hit the lower bound specified by Eq. (5.24).

θA :=

(
‖θA‖
0

)
, θB :=

(
‖θB‖ cos (γA + γB)

‖θB‖ sin (γA + γB)

)
and P̄ :=

⎛
⎜⎜⎜⎜⎜⎝

qA
‖θA‖

√
1−

(
qA

‖θA‖
)2

⎞
⎟⎟⎟⎟⎟⎠ . (5.27)

We switch our attention to the upper bound. For the upper bound to be attained it is

necessary that the angle between each vector and the demand space is strictly less than 90◦.

Without loss of generality suppose
π

2
> γA ≥ γB. Therefore,

π

2
> γA ≥ γA − γB which
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Figure 5.7: An example of a pair of difficulty functions, θA and θB , for which qAB is maximum.

implies
qA

‖θA‖ ≤ cos (γA − γB); that is, in the orientation where θA and θB are coplanar with,

and on the same side of, P̄ it is necessary that θA be closer to θB than it is to P̄ . Observe

that vectors in the direction of θA and θB can be contained in a 2–dimensional bounding

region defined by a unit vector if and only if such a region lies between two extremes, one of

which is a valid bounding box and the other is a degenerate, unattainable bounding box. The

attainable bounding box has some unit vector, P̄ , as its diagonal while the other extreme

is the vector P̄ and the zero–vector. The extreme cases are “separated” by an orientation

angle of
π

2
− (γA − γB) and the sides of the attainable extreme bounding box are

⎧⎪⎨
⎪⎩
⎛
⎜⎝
√
1−

(
qA

‖θA‖
)2

0

⎞
⎟⎠ ,

⎛
⎝ 0

qA
‖θA‖

⎞
⎠
⎫⎪⎬
⎪⎭ .

An example of such a bounding box is given in Fig. 5.7. So, both vectors θA and θB are

contained in some acceptable bounding region so that the upper bound on qAB given by Eq.

(5.24) is attained if, and only if,

cos (γA − γB) ≤ qA
‖θA‖ ‖θB‖ . (5.28)

This is the requirement that the projection of θB in the direction of θA must be shorter

than the projection of P̄ in the direction of θA. Using this we may define a pair of difficulty

functions, subject to the constraints on their means, such that their inner–product is a
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maximum.

θA :=

(
0

‖θA‖

)
, θB :=

(
‖θB‖ sin (γA − γB)

‖θB‖ cos (γA − γB)

)
and P̄ :=

⎛
⎜⎜⎝
√
1−

(
qA

‖θA‖
)2

qA
‖θA‖

⎞
⎟⎟⎠ .

5.3.6 Maximisation of qAB (given a Demand Profile, qA and qB)

Given a demand profile P̄ , and values for both expected pfds qA and qB, what is the maxi-

mum/minimum attainable value for qAB? The perfect version, i.e. the zero difficulty func-

tion, is the only difficulty function orthogonal to P̄ . As a consequence either qA or qB equal

to zero implies that the difficulty functions thereof must be the zero vector, which guaran-

tees that qAB = 0. Therefore, we focus on non–zero difficulty functions and, equivalently,

qA, qB �= 0. In seeking a pair of difficulty functions that ensure the maximum value of qAB

we consider four cases in turn:

Case 1 : If qA = qB, then both difficulty functions must touch the same plane. We know that for

fixed magnitudes a pair of difficulty functions will have their maximum inner–product

when they are collinear. Furthermore, since the difficulty functions have the same first

moment, qA, they must be no larger than the largest possible difficulty function touching

the qA plane. Consequently, the solution to the maximisation problem in this case is

to assign both difficulty functions to be the largest difficulty function touching the qA

plane. Therefore, the largest value for qAB is the value of qAA for the largest difficulty

function (see Section 4.7.4) with mean qA.

Case 2 Suppose that the values of qA and qB are such that the largest difficulty functions – say

θA and θB – touching the qA and qB planes, lie in the same 1–dimensional subspace

Span
(
V̄
)
, where V̄ ∈ S. So, θA and θB are collinear. Consequently, qAB is maximised

by these difficulty functions and its value is

qAB =
〈
θA, θB

〉
=

〈
qA∥∥V̄ ∥∥ V̂ ,

qB∥∥V̄ ∥∥ V̂
〉

=
qA∥∥V̄ ∥∥ qB∥∥V̄ ∥∥

〈
V̂ , V̂

〉
=

qA∥∥V̄ ∥∥ qB∥∥V̄ ∥∥ .
Case 3 : If there exists a version V̄ such that, without loss of generality, qA <

∥∥V̄ ∥∥ < qB,

then the candidate pair of difficulty functions to be found, θA and θB, touch different

planes. Obtain the largest difficulty function that touches the qA plane and define this

as θA. Now we have P̄ , qB and a difficulty function and we wish to obtain another

difficulty function θB that together with θA maximises qAB. But this is precisely the

extremisation problem dealt with in Section 5.3.4. Therefore, using this technique we

obtain a difficulty function θB that indeed maximises qAB with θA. For example, suppose

qA < P1 + P3 + . . . + Pj−2 + Pj < qB, and θA has the form:
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θA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
P1

0√
P3

...

0√
Pj−2

0⎛
⎝qA −

(j−1)/2∑
i=1

P2i−1

⎞
⎠

√
Pj

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, θB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
P1

0√
P3

...

0√
Pj

0
...⎛

⎝qB −
(r−1)/2∑

i=1

P2i−1

⎞
⎠

√
Pr

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The largest qAB is then

〈
θA, θB

〉
= P1 + P3 + . . . + Pj−2 +

⎛
⎝qA −

(j−1)/2∑
i=1

P2i−1

⎞
⎠

√
Pj

√
Pj + 0 ·√Pj+2 + . . .

. . . + 0 ·

⎛
⎝qB −

(r−1)/2∑
i=1

P2i−1

⎞
⎠

√
Pr

= qA.

That is, the maximum qAB is the lower of the two expected version pfds.

Case 4 The algorithm used in the previous case, where θA was maximised and θB was defined

using the algorithm of Section 5.3.4, is quite general. It gives the correct solution in

cases’ 1, 2 and 3. We suspect that this algorithm gives the correct solution in the

general case where no restrictions are placed on qA and qB. One reason is the fact that

case 1 and case 3 are “extremes”: in case 1 the planes are identical and in case 3 the

planes are separated by a version. If, starting from the situation with overlapping planes,

a plane is moved by a “very small” amount we may ask for a pair of difficulty functions

that maximise qAB in this configuration. Since R
n is continuous it seems plausible that

the pair of vectors which give the largest qAB value will be “close” to the pair of vectors

that maximised qAB when the planes were overlapping. However, while we suspect this

algorithm to result in the correct solution we have not proved this and it remains the

focus of future work.
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5.3.7 Maximisation of qAB (given a Demand Profile, qAA and qBB)

Theorem 5.3.4. Given a demand profile P̄ , and expected pfds qAA and qBB, the maximum

possible value for the expected pfd qAB is
√
qAAqBB.

Figure 5.8: We seek a pair of difficulty functions that maximise qAB , with the requirement that one
of the vectors touches the sphere of radius

√
qBB and the other touches the sphere of radius

√
qAA.

From the diagram collinearity of the vectors will give the largest inner–product of the vectors. Since∥∥P̄∥∥ = 1 it is always possible to define a pair of collinear difficulty functions of the given sizes
collinear with the demand profile.

Proof. We deal exclusively with the case where both qAA and qBB are non–zero; for if one

of these quantities is zero, then qAB is zero. For non–zero qAA and qBB, constant difficulty

functions with magnitudes
√
qAA and

√
qBB attain the maximum qAB given by the Cauchy–

Schwarz upper bound. These are the difficulty functions θA =
√
qAAP̄ and θB =

√
qBBP̄ .

�

5.4 Summary

It is tempting to use the equations of the LM model as a practical recipe for obtaining

numerical values of reliability measures. However, the LM model is a conceptual model with

measures of interest, such as difficulty functions, that may be unknowable in practice. This

can make direct use of the LM model – as a tool for inference – problematic. Furthermore,

even if one had estimates for some of the measures (for instance, the expected pfd of the

channels qA), using these estimates in the LM model may not be enough to obtain the values

of other measures of interest (for instance, the expected system pfd qAA). The problem here

is that the relationship between a known qA and an unknown qAA defines a family of difficulty

functions with the same mean, but possibly different variation over the demand space13. This

is easily seen on the right–hand–side of Eq. (2.13) on page 43, which we reproduce here,

where the variance term’s value is constrained by knowing the value of qA but still unknown.

qAA = (qA)
2
+ Var

X

(
θA(X)

)
13An equivalent geometric characterisation of this is that qA defines a family of difficulty functions, with

possibly different magnitudes, that touch the same plane. The plane in question is orthogonal to the demand
profile, and lies at a distance qA from the origin.



CHAPTER 5. BOUNDS ON EXPECTED SYSTEM PFD 153

So, the value of qAA is not uniquely determined by qA. Nevertheless, qAA is constrained

by qA so that it is possible to obtain difficulty functions that result in extreme values for

qAA; in effect bounding the possible values of qAA. This chapter has been concerned with

defining such bounds on the expected system pfd resulting from forcing diversity under var-

ious scenarios. In each scenario a set of parameter values are assumed as known, and the

related expected system pfd resulting from forcing diversity is either maximised (worst case)

or minimized (best case). The scenarios differ in the constraints on the optimisation prob-

lem: the latter scenarios in the chapter being more constrained than the former scenarios.

Nevertheless, in each extremisation problem, the bound obtained is attainable, and a pair of

difficulty functions that attain the bound is given. Ordered by sub–section, we summarize

the results of some of the constrained extremisation of qAB:

5.3.4 Maximise qAB (given a demand profile, qA, and difficulty function θB): Given

that a manager has knowledge about the frequency of demands and which demands a

given team finds “difficult”, in choosing another team should the manager concentrate

on diversifying the teams with respect to the most likely demands or with respect to the

difficult demands for the first team? More precisely, suppose the manager has estimates

of the expected pfds for each channel (qA and qB), some knowledge of the frequency of

demands, as well as an idea of the difficult and easy demands for team “B”. On page

141, we showed that the upper bound for qAB is attained by a difficulty function, θA,

with mean qA and the property that it assigns the value 1 on the most difficult demands

according to θB. That is, the worst case qAB is given by a team “A” that will always

fail to develop a version that succeeds on the demands that team “B” finds difficult.

This confirms an intuitive notion – that during software development, if the difficult

demands for one team are known, then the benefits of forcing diversity are undermined

considerably if the teams have the same “most difficult” demands. This is still true even

if the most difficult demands according to θB are extremely unlikely. In this situation, if

every version team “A” can produce fails on the most likely demands, then this results

in a very bad expected pfd for the channel being built, but does not necessarily result in

the worst–case expected system pfd if these demands are not the most difficult demands

for team “B”also.

5.3.5 Maximise qAB (given qA, qB, qAA, and qBB): This is an example of how an upper

bound can provide a consistency check for an assessor using beta–factors. In this case,

the assessor has estimates for the channel pfds (qA and qB) and beta–factor values for

homogeneous systems, and she is interested in determining the worst–case expected sys-

tem pfd resulting from forcing diversity. Homogeneous systems are those systems where

both channels are built with the same methodology, either methodology “A” (so we may

define beta–factor βA :=
qAA

qA2
) or methodology “B” (so beta–factor βB :=

qBB

qB2
). On

page 146, we derived the worst case expected system pfd :

max {qAB} := qAqB

(
1 +

√
(βA − 1) (βB − 1)

)
, (5.29)
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whenever the beta–factors satisfy both of the following conditions14:

(a) βB ≤ βA (without loss of generality) ,

(b) 1 ≤ βA + βB − βAβB +

(
1− qB
qB

)2

.

Consequently, by choosing beta–factors that satisfy (a) and (b), an assessor can be sure

of the worst case bound given in Eq. (5.29). In essence, the assessor has put a bound

on the beta–factor for the system under forced diversity, βAB :=
qAB

qAqB
, in terms of βA

and βB:

max {βAB} =
(
1 +

√
(βA − 1) (βB − 1)

)
. (5.31)

What do the difficulty functions and demand profile that maximise qAB in this way

look like? An example of such a collection of distributions15 is illustrated in Fig. 5.12.

For added clarity, these distributions are shown separately in Fig.s 5.9, 5.10 and 5.11.

As expected, the worst–case is given by a pair of difficulty functions that “agree” on

which demands are difficult. This is despite the hypothetical development teams – whose

actions are described by these difficulty functions – having very different probabilities

of making mistakes on very likely demands: this would be the case in this example, if

the parameters were such that:

qAβA � qB

(
1−

√
(βB − 1)√
(βA − 1)

)
.

5.3.6 Maximise qAB( given a demand profile, qA, and qB): In this scenario, the manager

has some knowledge of the frequency of system demands, as well as estimates of the

expected pfds for the channels, qA and qB. Here, the pair of difficulty functions that

attain the worst case qAB depend on the demand profile, and how large qA and qB are.

We derived upper–bounds on qAB, as well as pairs of difficulty functions that attain

these bounds, in the following three cases:

(a) If qA = qB, then the largest qAB is given by a pair of identical difficulty functions

with the largest possible second moment. We showed, in section 4.7.4 on page

117, that by ordering subsets of the demand space the difficulty functions with the

14This is an example of how a seemingly unobvious relationship between expected pfds can have a simple

geometric meaning. The algebraic condition in (b), i.e. 1 ≤ βA + βB − βAβB +

(
1− qB

qB

)2

, was originally

stated in Eq. (5.28) on page 149 as:

cos (γA − γB) ≤ qA

‖θA‖ ‖θB‖ . (5.30)

To see this, use the substitution

‖θA‖ ‖θB‖ cos (γA − γB) = qAqB +
√

(qAA − qA2) (qBB − qB2) ,

in Eq.(5.30), and expand the terms. This is the geometric requirement that the two difficulty functions fit
inside a “bounding” box defined by the demand profile, P̄ , in Fig. 5.7.

15These distributions were depicted earlier as vectors in Fig. 5.7 on page 149.
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largest second moment can be obtained16. This means, if the least likely demand

has a probability q with the property that qB ≤ q, then the worst–case is given by a

pair of identical difficulty functions such that they assign a difficulty
qB
q

to the least

likely demand, and zero difficulty to every other demand. Consequently,

max {qAB} =
qB

2

q
.

The lesson here is that for systems with sufficiently small expected system pfds and

indistinguishable expected channel pfds, teams which are likely to fail on the unlikely

demands undermine expected system reliability.

(b) If qA �= qB and the largest “A” and “B” difficulty functions with these means are

“parallel”, then the worst–case is given as:

max {qAB} =
qAqB
q

,

for some q that is the mean of a difficulty function with the following two properties:

this difficulty function is parallel to the largest “A” and “B” difficulty functions, and

it takes only the values 0 or 1 on each demand. This suggests that those difficulty

functions that take on the value 0 or 1, and have expected values very close to

qA and qB, define all of the most difficult demands for pairs of difficulty functions

that attain the worst–case expected system pfd. Therefore, if a pair of teams has

probabilities of making mistakes that are diverse with respect to these demands,

then the resulting expected system pfd from forcing diversity between these teams

cannot be the worst–case.

(c) If qA �= qB and there exists a difficulty function θ with mean q such that (without

loss of generality) qA < q < qB. Further, suppose that θ assigns only the values

0 or 1 as difficulties to the demands. Then, we showed that the worst–case is the

smaller of the two expected pfds for the channels:

max {qAB} = qA .

Again, all of the difficulty functions that satisfy the properties of θ define all of the

most difficult demands for any pair of difficulty functions that attain the worst–case

expected system pfd.

In this Chapter, we also considered the consequences of different notions of indifference,

for an observer charged with the task of choosing development process methodologies that

result in the best expected system pfds. In particular, two notions of indifference were

considered: indifference between methodologies and indifference between expected pfds. We

16The order is according to the single–version pfds related to the subsets, related by assuming the subsets
define the failure–sets for single–versions
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illustrate these in turn, as follows. Given the alternative methodologies “A” and “B” for

developing the channels of a system suppose that, upon using any of these methodologies

to develop both system channels, there is no evidence available to the observer to indicate

which of the resulting expected system pfds (qAA or qBB) is worse. Then, if asked to assign

a probability to the event “qAA > qBB”, the observer may specify a probability value that is

the same as the value she would give if she was considering either of the alternative events

“qBB > qAA” or “qBB = qAA” instead. In this sense the observer is indifferent amongst

the possible, alternative orderings of the expected system pfds that result from building the

system using either methodology “A” or methodology “B” exclusively. We say the observer

is indifferent between the methodologies. However, if the observer has reason to believe that

the expected system pfds are indeed identical in value – that is, she is convinced that the

event “qBB = qAA” holds – then she is indifferent between the expected system pfds17.

Using these notions of indifference in section 5.2, we considered the question of whether

diversity should be forced or allowed to occur naturally. In sub–section 5.2.1 (see page 129)

we gave geometric arguments for a result first stated in [13], concerning why indifference

between expected system pfds for homogeneous systems implies that forcing diversity cannot

worsen, and may improve, expected system pfd. In addition, we stated a necessary and

sufficient condition for forcing diversity to not worsen expected system pfd, noting that this

condition depended only on the ratio of qAA and qBB. Further, we showed in sub–section

5.2.2 and Theorem 5.2.2 (see page 135) that similar results hold when forcing diversity under

indifference between the methodologies. Unlike indifference between expected system pfds

– which in practice requires evidence that these possibly unknowable expected system pfds

are equal – use of Theorem 5.2.2 does not require knowledge of expected system pfd values.

Instead, not having evidence that indicates a preference amongst alternative methodologies

is the sufficient requirement for using the theorem.

17We note that these notions of indifference can be argued to be the same. They both imply that when asked
to choose the best expected system pfd the observer will choose either qAA or qBB with equal probability.
However, we take the viewpoint that there is a relevant difference here, since one experiment is conditional
on the event “qBB = qAA”, while the other experiment considers this event as only one of three possible
outcomes.
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Figure 5.9: This demand profile, together with the difficulty function distributions in Fig.s 5.10

and 5.11, maximise qAB . Upon using βA :=
qAA

qA2
in this simple “existence” example, we see that

there are two kinds of demands: those that occur with probability βA
−1, and those that occur with

probability 1− βA
−1.
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Figure 5.10: This difficulty function distribution, θA, is part of the solution that maximises qAB .

Upon using βA :=
qAA

qA2
, this distribution of θA has the following four properties: 1) Those demands

which occur during system operation with probability βA
−1 will result in failure with probability

qAβA; 2) Those demands which occur during system operation with probability 1 − βA
−1 do not

result in failure; 3) The average difficulty is qA; 4) The second moment of the distribution is
qA

2βA.
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Figure 5.11: This difficulty function distribution, θB, is part of the solution that maximises qAB .

Upon using both βA :=
qAA

qA2
and βB :=

qBB

qB2
, this distribution of θB has the following four prop-

erties: 1) Those demands which occur during system operation with probability βA
−1 will result in

failure with probability qB

(
1 +
√

(βA − 1) (βB − 1)
)
; 2) Those demands which occur during sys-

tem operation with probability 1−βA
−1 will result in failure with probability qB

(
1−
√

(βB − 1)√
(βA − 1)

)
;

3) The average difficulty is qB ; 4) The second moment of the distribution is qB
2βB .
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Figure 5.12: A pair of difficulty functions, θA and θB , and a demand profile that together attain
the maximum value qAqB +

√
(qAA − qA2) (qBB − qB2) for qAB .



Chapter 6

Summary of Main Conclusions

In this chapter, we discuss the results of the extensions to the EL and LM models, detailed

in Chapters 3, 4 and 5. Broadly speaking, there are two ways in which the LM model has

been extended: weakening of the “perfectly isolated teams” assumption in the model, and

developing two alternative visual (graphical and geometric) representations of the LM model.

Along these lines the chapter is divided into two main sections: a discourse on generalised

models of coincident software failure (in the context of modelling controlled team interaction)

in Section 6.1, and section 6.2 concludes the chapter with a summary of optimisation results

using geometric models of coincident failure.

6.1 Models of Controlled Team Interaction: Modelling

Dependence via Conditional Independence

What changes in the LM model when the “perfectly isolated teams” assumption is weak-

ened? To answer this the scenario we chose to model was the development of a 1–out–of–2

system, where each channel of the system is built by a unique team. The teams are allowed

to interact with each other, and the teams could share common influences (such as common

educational backgrounds, or shared development time schedules). It turns out that such

dependent software development may be modelled using conditional probabilistic indepen-

dence, in a similar spirit to how the LM model characterizes failure dependence between

independently developed software. Indeed, in this sense the models we have developed are

a natural extension of the LM model: mathematically, the effect of a common influence

between the teams is very similar to the effect of a demand in the LM model, since both

cases result in conditionally independent channel failure (see Section 3.2). This is not the

most general form of model we could have explored. However, in Chapter 3 we pointed out

that the most general form of a probabilistic model of coincident failure is too general to

be useful. Instead, we considered a model of a system development process in which the

channel development processes are kept isolated, except for certain points during develop-

ment where activity outcomes affect all of the channel development processes. Such a system

161
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development process has the property that activities in one channel development process are

conditionally independent of activities in the other channel development process, conditional

on dependence–creating influences such as “back–to–back” testing. In effect this model uses

conditional independence to model dependence between the developments of the channels.

This characteristic can be seen visually if the scenario is depicted as a BBN. Figures 6.1, 6.2

and 6.4 are depictions of three such scenarios. The property of conditionally independent

random variables, X and Y say, conditional on some random variable Z, is equivalent to the

graphical property that the Z node in the BBN blocks all paths between the nodes represent-

ing X and Y . We say that Z d–separates X and Y (see Chapter 2 : Section 2.6 (beginning on

page 48) for a definition of d–separation). For example, in Fig. 6.1 the development process

activities “coding” for channel A (with outcome represented by node “High level design and

initial version code” for channel A ) and “coding” for channel B (with outcome represented

by “High level design and initial version code” for channel B) are conditionally independent,

conditional on the common influence “specification clarification” since this node d–separates

the other two nodes. Using graphical models (of which BBNs are a special case) as we do

here to reason about the models of coincident failure is useful for two reasons: they aid

intuition by visualizing relationships of conditional independence, and the implications of

such dependence (e.g. “given a set of dependent activities during the development process

are the channels developed independently?”) can be recognised by applying simple rules

based on the graph’s topology (e.g. concerning the existence of common ancestor nodes or

marginalisation justified by d–separation).

6.1.1 Decoupling Channel Development Processes

There are two scenario types that may be modelled as controlled team interaction: scenarios

where decoupling is possible, and scenarios where decoupling is not possible. Decoupling

is the act of substituting a common influence with a pair of influences, one for each channel

development process, that have the same distribution as the original common influence. A

necessary condition for decoupling to be possible is observability criterion 3.2.3 (on page

71) which states:

For a practical scenario in which decoupling is possible an observer, embedded in a channel’s

development process, cannot confirm or refute whether an activity is a common influence by

observing the outcomes of activities in the development process she is embedded in..

This is similar to, but not the same as, observability criterion 2.4.1 (see page 38), which

states:

An observer embedded in the development process of a perfectly isolated development team

should not be able to confirm, or refute, the existence of any other development process by

observing activity outcomes in the process she is embedded in.
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Figure 6.1: Example of the generalised model of coincident failure where the versions are developed
under dependent development processes which exhibit conditional independence with respect to
some common influences. For illustrative purposes we have indicated “Back to Back testing” as the
preferred mode of testing in the process; in general there are additional forms of testing that may be
applied to the versions. Note that “Back to Back testing” cannot be decoupled since, by definition,
there necessarily needs to exist two versions to perform the test non–trivially and, consequently, the
common activity violates observability criterion 3.2.3.
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Indeed, criterion 3.2.3 is a necessary consequence of, but not a sufficient condition for, crite-

rion 2.4.1 holding. As an example of how the criterion may be applied in practice consider

that in N–version programming a coordinating team’s objective is to enact the Communi-

cation and Documentation (C & D) protocol [8, 14]. The goal of the C & D protocol is

to avoid opportunities for one team to influence another team in an uncontrollable, and

unnoticed manner. An extreme viewpoint of this objective is “to ensure that observability

criterion 2.4.1 holds”, and an alternative less extreme viewpoint is “to ensure that observabil-

ity criterion 3.2.3 holds” (so that the teams do not influence each other despite dependencies

between them). In particular, consider an activity of issuing specification clarifications (see

Fig. 6.2) to the teams in a manner that seeks to preserve the independence between the

channel development processes. For instance, consider a simple scenario where a dedicated

team might be charged with studying the specification, and issuing clarifications to both

channel development teams if and only if ambiguities are discovered by this dedicated team.

Such a team may be replaced by a pair of teams, one for each channel development pro-

cess, tasked with performing the same job but only issuing clarifications to their respective

channel development process. So, the single node “Specification clarifications” in Fig. 6.1

becomes the related pair of nodes in Fig. 6.2: the channel development processes have been

decoupled with respect to the “Specification clarifications” activity1.

Note that an alternative protocol has been advocated and used in practice where clari-

fications have only been issued to a development team upon request, and only to the team

requesting the clarification2 [8, 14, 11]. If a single team performs this duty for both teams

then it might be tempting to expect decoupling can be achieved by replacing this team with

a pair of teams, each dedicated to a unique channel development process. However, the prob-

lem is that while the clarifications issued by the common team may conform to observability

criterion 3.2.3 the common team interacts with both of the development teams. Consequently,

there is no guarantee that questions asked by one team won’t influence answers given to the

other team. Hence, decoupling cannot be justified. Mathematically, while the sample space

for the common influence obeys observability criterion 3.2.3 – a necessary condition for de-

coupling to be possible – the probability distribution for the common influence is “affected”

by the common team answering questions from both development teams3.

1Strictly speaking, for decoupling to be possible the probability measures for the marginal “Specification
clarification” activities should be identical to the probability measure for the common “Specification clar-
ifications” activity. It is useful to ask whether such probability measures differ depending on whether the
team issuing specification clarifications know that they are giving updates to one or multiple teams. While
we do not expect substantial difference to occur based on such knowledge we can avoid such considerations
by requiring that the team not be told how many teams are receiving any updates they produce.

2Unless there is an error in the specification in which case an update is broadcast to all teams.
3This demonstrates that while updates to the specification do not necessarily constitute a violation of

observability criterion 3.2.3, and thus may be a point of decoupling between the processes, defining such
a protocol in practice can be challenging. Specification updates were broadcast to all teams in NASA’s 4
universities experiment [11] and Knight and Leveson’s experiment [10]. The following excerpt is taken from
[49] and discusses how clarifications affected the independent development of the channels in the Boeing 7J7.

“... Boeing experience is that among sources of errors it is most often the basic requirements which are
erroneous or misinterpreted. ........ The errors due to misinterpretation can be reduced by very close
communication between the system requirements engineers and the software designers. ..... the software
designers can help the engineers recognise limitations in the software design when the requirements are
being written. There is much benefit from this interactive relationship, which is precluded by the
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As an example of a common influence with respect to which decoupling is not possible

consider “Back to Back” testing. For each input given to a pair of versions, “Back to Back”

testing involves comparing the outputs of the versions to determine if a mismatch occurs.

The rationale being that a mismatch of the outputs may be indicative of the occurrence of

failure. So, by definition “Back to Back testing” requires one version from one team and a

second version from the other team in our Fig. 6.1 scenario. This means that the outcomes of

the common activity of testing – which inputs cause failure in the versions – may conform to

observability criterion 3.2.3, but the distribution thereof is a result of interaction between the

versions. Therefore, it is impossible to define independent, identically distributed analogues

of such a testing procedure that necessarily uses dependence. Consequently, “Back to Back”

testing cannot be used for decoupling. Alternatively, however, if one considers the random

generation of test suites to be used in testing both channels’ versions then such random

generation need not “interact” with the channel development processes and its outcomes –

some subset of the input space – conform to observability criterion 3.2.3. Therefore, such an

activity may be used for decoupling. This form of decoupling was studied in [38].

6.1.2 The Independent Sampling Assumption

In Chapter 1 we suggested that the ISA is a necessary consequence of perfect team isolation,

but not a sufficient condition since it can be used in cases where certain information is shared

between the development processes. We expound on this point here. Recall that the depicted

BBNs only depict sources of uncertainty. This means that if the outcome of a common

activity is known then this common activity will not be depicted in the figures as it won’t

be a source of uncertainty. The act of fixing the outcome of a common activity decouples the

development processes. It is, therefore, theoretically possible that the channels’ development

processes be completely decoupled by a mixture of fixing the outcomes of common influences

that cannot be used for decoupling (because these influences have outcomes that “transfer”

information between the teams), and decoupling with those common influences that can be

used. This is not always possible because there are some common influences that by definition

require interaction between the processes (see “Back to Back” testing above). However, when

it is possible the consequence is that the teams develop their versions independently. Thus,

the ISA holds. The topology of the resulting BBN will be very similar to the BBN for

the LM model depicted in Fig. 6.3. However, there is a subtle difference which cannot

be seen from the BBNs, precisely because the BBN only depicts sources of uncertainty. In

general, a pair of decoupled processes may contain instantiated common influences where

these common influences could not, otherwise, be used for decoupling. For instance, if the

teams are required to exchange the details of the algorithms (excluding implementation

dissimilar software design approach, where systems and software teams must be kept segregated. [...]
the 7J7 program confirmed that the three separate teams [...] were having to ask Boeing so many
questions for clarification of the requirements that the independence of the three teams was irreparably
compromised. This is the reason why Boeing elected to revert to the usual and customary method of
creating and certifying flight critical source code. It was determined that there is a net gain in total
system integrity with the single software design approach.”
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Figure 6.2: Decoupling of the specification clarifications may be possible since such information
may be sanitized, ensuring that no information passes between the teams and, thus, observability
criterion 3.2.3 holds for the activity. Also, note that the “Back to Back testing” in Fig. 6.1 has
been replaced with testing using a randomly generated test suite to be used to test both versions.
This common influence satisfies observability criterion 3.2.3 and decoupling with respect to this
activity/influence is possible.
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details) they have respectively implemented during development then this will not be a

source of uncertainty during the development process if the algorithms used by the teams

have been predetermined. Such common influence outcomes do not conform to observability

criterion 2.4.1 since information exchange occurs between the teams. Therefore, despite the

teams being conditionally independent in how they develop their versions (conditional on

the values of common influences), the teams are not perfectly isolated and violate one of the

assumptions of the LM model. We say the model is LM–like.
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Figure 6.3: An example of a development process that may be modelled via the LM model. Such
a diagram does not distinguish between a scenario where there are no common influences during
system development, and a scenario where all of the common influences are instantiated (that is,
they have values that remain fixed throughout the development process.)

Another example of how the teams may be independent (ISA holds) but may still violate

the conditions of the LM model is given by considering the system specification. Since

the system specification gives details about the 1–out–of–2 system being developed this is

a source of dependence between the development processes. However, the nature of this

dependence and its implications for whether the LM model is applicable is determined by

whether the teams have access to the system specification (as opposed to some modified

version of this that is tailored towards a channel’s development). If the teams have access

to the system specification then this could result in one team being able to infer details

about the other development process. This is certainly a violation of observability criterion
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2.4.1, and thus LM is not applicable. Despite this violation the teams are still conditionally

independent in how they develop their versions, conditional on the specification. So, given

a system specification, a BBN very similar to (and subtly different from) the one in Fig. 6.3

is still applicable. Such a model is LM-like because the ISA holds, but is not LM because

fixed information passes between the teams. One might attempt to reduce commonality

between the development processes resulting from the system specification by using a pair

of so–called V–specifications ; one for each channel. The idea is that the V–specification is

more channel–focused than the system specification, with the aim of reducing unnecessary

common–viewpoints between the teams while maintaining enough detail and affording the

teams enough flexibility in designing and implementing their respective versions4. Of course,

whether this will achieve the LM conditions will vary from scenario to scenario.
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Figure 6.4: The channel development processes in Fig. 6.2 have been decoupled with respect
to all of the common influences that are sources of uncertainty, except for the system specifica-
tion. In order to reduce this to the EL/LM model a system specification will need to be writ-
ten/defined/instantiated, thus removing the uncertainty from this activity. Additionally, the writ-
ten specification and any other common influence that has been instantiated (and therefore are not
depicted in the figure) should conform to observability criterion 2.4.1. Then, the BBN reduces to
the LM model as depicted in Fig. 6.3.

4The original notion of V–specification was suggested by proponents of N–version software [8, 50, 14].
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6.1.3 Common Influences

Note that the “common influences” need not be limited to the development phase. Indeed,

mathematically there is no difference between the demands and common influence outcomes

in that both of these create correlation between the channel development processes’ respective

difficulty functions. Other examples of common influences “outside” of the development

process are possible. For example, if we are interested in both physical and software-caused

failures our BBNs can include extra nodes that are parents of the nodes “ΠA fails” and “ΠB

fails”, to represent common stress factors like ambient temperature or common shocks. A

note of caution is sounded here, however. Justification for conditional independence between

the channel failures, conditional on these influences, will need to be provided and this forms

part of future work.

6.1.4 Modelling Results and Practical Considerations

The extensions to the LM models clarify the relationship between the intuitive ideas of

“separation”, “ independence”, “diversity of process”, formal concepts of probabilistic inde-

pendence and correlation, and measures of interest such as pfd. In addition, these models

offer some direct, practical help for decision making: we were able to derive three “preference

criteria” among processes for developing two-version systems, based on sufficient conditions

which we think people will recognise match the characteristics of practical situations they

may face. Fig. 6.5 summarizes how our results enlarge the set of scenarios in which math-

ematically founded preferences can be stated between alternate ways of running multiple-

version development. Our “preference criteria” describe changes that improve the system

development process by shifting it from one domain to another as depicted in Fig. 6.5. In

particular, an improvement over previous theory is in addressing questions such as, “When

does combining multiple ways of ‘forcing’ diversity bring more benefit than simply ‘forcing’

diversity in one way (see [15, 51])?” Preference criterion 3.2.8, when used iteratively, gives a

sufficient condition in this regard. To illustrate, suppose we have at our disposal a choice of

two programming languages, C++ and Pascal, such that the use of each language, when used

exclusively to develop both channels of a 1–out–of–2 system, results in the same expected

system pfd. That is, we are indifferent between the expected system pfds resulting from

using, exclusively, either C++ or Pascal in developing both channels of the system. Then,

forcing diversity (using both languages, one for each channel’s development) cannot worsen,

and may improve, reliability. Given that we force diversity in this way suppose we identify

another dimension of diversity, such as choice of algorithm to implement. Then, as long

as we are indifferent between the expected system pfds resulting from either applying one

algorithm to both channels or the other algorithm to both channels the preference criteria

holds: forcing diversity with respect to algorithms cannot worsen reliability.

We summarize the assumptions, and results, of these generalised models in Fig. 6.6 and

Fig. 6.7 respectively. Does the insight derived from the earlier “EL” and “LM” models

(both of which assume the version development processes to be strictly “independent”)

remain valid, despite the fact that independent development can be difficult to guarantee
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Figure 6.5: A venn diagram showing the space of scenarios we have considered (each scenario
involves some system development process employing controlled team interaction), and the subsets
on which the various results recalled or derived in Chapter 3 apply. Observe that the LM model can
be viewed as a special case of the model of controlled team interaction with complete decoupling: the
additional requirement is observability criterion 2.4.1 holds. The arrows indicate the “preference
criteria” of Chapter 3: following an arrow from a subset of scenarios into another one cannot
worsen, and may improve, the expected system pfd. Note that the arrow on the far right indicates
an improvement in the positive covariance case of preference criterion 3.2.7. This is the case when
the common influence used to decouple the processes induces positive failure correlation between
the channels. Alternatively, if the common influence induced negative failure correlation, then
decoupling cannot improve reliability and the arrow in the figure would point downwards instead.
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Figure 6.6: This table summarizes the assumptions of the LM model extensions for which decou-
pling is possible, and can be viewed as a venn diagram with intersecting sets of assumptions for
the models. These models are collectively referred to as LM–like models with decoupling. LM–like,
because the Independent Sampling Assumption (ISA) holds. A subset of these models are EL–like
because the ISA holds, and the channel development processes are identically distributed. EL–like
model assumptions are a special case of LM–like model assumptions. Each assumption in the table
applies to each region that the assumption is contained in. Consequently, all of the assumptions
apply to LM–like models, and a subset of these apply to EL–like models.
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Figure 6.7: Results from the LM–like models with decoupling possible. The results from the
EL-like models are a subset of the results applicable to LM–like models.
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in practice and at times it is even advisable to violate it intentionally? For instance, does

the main message obtained from the EL result still hold, i.e. that a prudent assessor, given

identical version development processes, should assume positive correlation between version

failures? Indeed it does because with mirrored version development processes the ISA was

indeed the most optimistic assumption (cf. Eq. (3.3) in Chapter 3), so that the conclusion

applies a fortiori if it is violated.

A limitation of the preference criteria is that they depend on simple sufficient conditions

(e.g. they support decisions about removing a common influence if it induces positive covari-

ance between difficulty functions for any values of the other influences), and when these are

not satisfied the criteria no longer help: to decide between alternative system development

processes one must then look for empirical evidence.

These generalised models make it easy to include in the descriptions of “cause of depen-

dence” the cases of diversity-reducing influences that yet improve system pfd (e.g., testing

with a common, randomly chosen test suite); as well as the possibility, at least in theory,

of common influences that improve system pfd by increasing diversity. Dependence in the

system development process is not in itself good or bad. What matters are questions like:

does the common influence that “creates” the dependence affect the teams’ difficulty func-

tions in “the same way”? Do both teams become more or less likely to make mistakes on

given demands due to a change in an influence?

6.2 Geometric Model of Coincident Failure

The results of Chapter 3 are “qualitative”: they specify an ordering between expected system

pfds resulting from different ways of organising the development process, without indicating

how large these orderings might be. Consequently, while these results suggest preferable

ways of organising the development process, they give no indication of how much benefit

a given preference can bring. So, despite expected pfds possibly being either difficult to

estimate or unknowable in practice, is it still possible to gain an appreciation of how big or-

derings between expected pfds might be? In Chapter 4, starting from the models of Chapter

3, we developed a geometric model of coincident software failure. The main motivation for

this was to understand the effect of forcing diversity on system reliability and, in particular,

how much benefit or loss (in terms of system reliability) forcing diversity can bring under

different practical situations. Consequently, the problems of interest involved the optimisa-

tion of the expected system pfd resulting from forcing diversity, qAB, subject to constraints.

In performing such optimisations we required a formulation of the LM model that was both

flexible and descriptive enough to allow different extremisation problems to be approached

in an intuitive and unified way. A typical form of the optimisation problems we considered

is the following:

Obtain a pair of difficulty functions, θA and θB, such that they maximise the expected system

pfd, qAB, subject to some constraints on the demand profile and the expected pfds qA, qB,



CHAPTER 6. SUMMARY OF MAIN CONCLUSIONS 174

qAA and qBB.

To this end we developed a geometric formulation of the LM model, inspired by so–called

coordinate–free approaches to applied geometry5. Using this model, important relationships

in the LM model can be stated in terms of the behaviour of the inner–product on pairs of

difficulty functions6.

6.2.1 Benefits of Geometry-based Analyses

This novel approach to modeling and analysing coincident failure in multiversion software

presents a number of benefits, including:

1. It provides a unified approach to the constrained extremisation of expected pfds;

2. It is based on one of the oldest branches of mathematics and, consequently, many proofs

of relationships between difficulty functions and expected pfds are simple consequences of

well known results;

3. Proofs of theorems stating constrained relationships between expected (system) pfds can

be done using whatever coordinates make the problem easier to analyse: if the theorem is

proved in one coordinate system, it will also be true in any alternative coordinate system.

This is a consequence of the inner–product being invariant – under a change of basis –

when acting on an arbitrary pair of difficulty functions. That is, the inner–product’s values

are unchanging under a change of the coordinate system used to describe the underlying

vector space. In Chapter 5, under a basis transformation T that is defined in Section 4.4,

multiple theorems were proved using convenient coordinate systems. Some of these results

are summarized in Fig.s 6.10, 6.11 and 6.14;

4. The inner–product defines important geometric relationships between pairs of difficulty

functions. So, there is a rigorous sense in which difficulty functions have magnitudes, pro-

jections, and make angles with each other. Consequently, theorems stated in terms of the

5The essence of such approaches, used widely in Mathematical–physics, is that when using geometry
to solve practical problems there are important relationships that characterise/solve the problem (such as
angles between vectors and lengths of vectors), and these relationships should be independent of the choice
of basis/coordinates used to describe the problem. This principle was followed in developing the model as
follows. For a fixed number of demands, n say, we postulated the existence of an n–dimensional inner–

product space (An inner–product space is a vector space, together with an inner–product defined with
respect to it. See Postulate 4.3.2 on page 92, and page 190) such that a subset of the space has vectors
that model difficulty functions, and the action of the inner–product on pairs of these vectors gives expected
(system) pfds. See Chapter 4 : Section 4.3 (beginning on page 88) for a more precise statement of the
geometric models definition.

6As an example of how the LM model results find expression in the geometric models consider, in partic-
ular, the EL model result which shows that identical difficulty functions (e.g. for teams which develop their
versions in such a way that they have identical probabilities of making any given mistake) imply that the
expected system pfd is no better than it would be if the versions were expected to fail independently. For
the difficulty function θ this is characterized by (see Eq. (2.13) on page 43)

E
[
θ2

] ≥ E [θ]2 .

In geometric terms this is the result
‖θ‖ ≥ 〈

θ, P̄
〉
.

That is, the difficulty function θ has a size, ‖θ‖, which is never smaller than the projection of θ in the
direction of the demand profile, P̄ . This is depicted in Fig. 4.8 on page 103 for two difficulty functions, θA
and θB .
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inner–product also “suggest” what relationships involving difficulty functions and expected

pfds are (im)possible. This aids intuition when performing constrained optimisation, since

such geometric relationships indicate sufficient conditions for a maximum/minimum of

some objective function to be obtained. This is especially useful when the optimisation

problems involve either non–linear constraints, or non–linear objective functions. For in-

stance, one might wish to find a difficulty function, θA, such that the following 3 constraints

are satisfied: 1) it has a related expected system pfd value of qAA; 2) a demand profile is

specified (that is, for each demand an associated probability that the demand will occur

in practice is specified), and; 3) together with a given difficulty function, θB say, the pair

θA and θB results in a maximum value for qAB.

The quadratic constraint in this example problem is the specified expected system pfd,

qAA. This means
√
qAA is the size of the difficulty function θA to be found. Hence, the

set of potential solutions is the set of all difficulty functions that touch the surface of an

n–dimensional sphere, where the sphere has radius
√
qAA and is centered at the origin.

Consequently, in order to maximise qAB, we seek members of this set that are as close

to being collinear with θB as possible. This is a concise statement of an algorithm

that results in a solution. It is cumbersome, at best, to state this recipe for solving the

optimisation problem using alternative formalisms, such as probability theory (the basic

formalism used in the LM model)7.

5. Relationships between difficulty functions, where these relationships are stated solely in

terms of an inner–product, are not dependent on the size of the demand space: that

is, such relationships hold for any set of difficulty functions defined on a finite number of

demands. This is because the proofs of these results are independent of the dimensionality

7For the interested reader we proceed to solve the problem for the case where
√
qAA is not larger than

the size of the largest difficulty function that is collinear with θB . Consequently, we may obtain θA by
multiplying the unit vector in the direction of θB by

√
qAA. But, which difficulty function is the largest

difficulty function that is collinear with θB? Given the components of the demand profile
(√

P1, . . . ,
√
Pn

)
in the basis Ŝ, the largest difficulty function is

√
Pj

θBj

⎛
⎜⎜⎜⎜⎜⎝

θB1
θB2
...

θB(n− 1)
θBn

⎞
⎟⎟⎟⎟⎟⎠

,

where θBj = θ∗B(xj)
√

Pj is the non–zero component such that

√
Pj

√
qBB

θBj
is the smallest quotient out of

all similar quotients that involve components of the difficulty function θB . This quotient is the magnitude

of the largest difficulty function that is collinear with θB . Consequently, as long as
√
qAA ≤

√
qBB

θ∗B(xj)
, the

difficulty function θA that we seek is

√
qAA√
qBB

⎛
⎜⎜⎜⎜⎜⎝

θ∗B(x1)
θ∗B(x2)

...
θ∗B(xn−1)
θ∗B(xn)

⎞
⎟⎟⎟⎟⎟⎠

,

where we have written the components in the LM–basis S. So, using this θA together with θB gives the

maximum value of qAB as
√
qAAqBB . Obtaining the solution in the case where

√
qAA ≥

√
qBB

θB(xj)
is more

involving, utilising results from earlier chapters in the thesis.
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of the underlying vector–space used to model the difficulty functions. Consequently, such

relationships can be depicted in 2 or 3 dimensions, and these diagrams may then be used to

guide intuition about what the implications of such relationships are in higher dimensions.

Each such diagram may depict sets of difficulty functions and, therefore, the diagram is

useful for comparing these sets. As an illustration consider Theorem 4.6.6 stated on page

107, which we reproduce here. Let qB and qBB designate the first and second moments,

respectively, for an arbitrary difficulty function.

In the basis S suggested by the LM model, the only difficulty functions for which qBB = qB

are the “single versions”: those difficulty functions with each of their components equal to

either 1 or 0.

This theorem equates two values, qB and qBB, of some inner–product. This means that to

understand the consequences we may depict this relationship in a 3–dimensional diagram,

such as Fig. 4.17 on page 116, and use this to aid intuition when reasoning about the

relationship in higher dimensions. We reproduce the diagram here in Fig. 6.8 for the

reader’s convenience. Here, the set of all possible difficulty functions in 3–dimensions is

Figure 6.8: For a demand space of size 3 there are 23 possible “single versions”/“failure regions”,
including the perfect version represented by the origin, all of which are depicted in this figure. The
imperfect single versions are the largest difficulty functions with their associated means, and this is
still true in higher finite–dimensions.

depicted as a subset of the non–negative region. In particular, we see that there are 23

difficulty functions with the property qB = qBB. While we may not be able to depict this

property in higher–dimensions, the coordinate–independent nature of the theorem suggests

that in n dimensions there are 2n difficulty functions with this property. Furthermore,

consequences of this property – such as, the single versions being the largest difficulty

functions with their respective means – also hold in higher dimensions.

6. There are optimisation problems that are relatively easy to solve using this geometric for-

malism, compared with using alternative formalisms. For instance, consider the arguably
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non–trivial optimisation problems discussed in Section 5.3.6 (beginning on page 150) which

are solved by appealing to simple geometric relationships between sets of difficulty func-

tions.

7. Relationships in the LM model that are relevant for constrained optimisation, but do

not have an immediate probabilistic interpretation, can have geometric meaning. For

instance, the quantity
qA√
qAA

arises when trying to maximise the value of the expected

system pfd qAB, given values for qA, qB, qAA and qBB. This dimensionless8 quantity is not

a probability; it has the form
probability√
probability

.

However, the ratio is the cosine of the angle the difficulty function makes with the demand

profile. The difficulty functions that satisfy this constraint touch the surface of an (n−1)–

dimensional “sphere”, where the sphere is centered on the point (qA, . . . , qA︸ ︷︷ ︸
n times

) with radius

√
1− q2A

qAA
.

Everything else being equal, the smaller this cosine the more variation of difficulty exists.

Alternatively, the larger the cosine the closer the difficulty function is to being constant.

See Fig. 4.9 on page 104, and Fig. 4.16 on page 112, for depictions of this relation-

ship. In general, such relationships can be depicted in representative 2–dimensional and

3–dimensional diagrams (using arrows hinged at the origin) that illustrate how these con-

straints limit the objective function qAB.

8. Furthermore, these geometric models also apply to extensions of the LM model that relax

the ISA. Recall, in Chapter 3 we extended the LM model using conditional independence

to model dependent channel development processes. One consequence of this is that given

a demand, and the outcomes of all common influences between the development teams

of a 1–out–of–2 system, the channels fail independently. This is mathematically similar

in form to the difficulty functions in the LM model, the difference being that instead of

conditioning solely on a demand the conditioning now also takes into account all of the

outcomes of common activities during the development process. Therefore, like the LM

model, the expected system pfds are expectations of products of difficulty functions. In

terms of the geometric model this means that given n demands and m common influences

– the ith common influence having ni possible outcomes – we may represent a difficulty

function as an N–dimensional vector in a N–dimensional inner–product space, where

N = n + n1 + . . . + nm. Consequently, the results of geometrically modelling the LM

model are also applicable as the consequences of a dependent software development process

that is modelled via conditional independence.

8This quantity is dimensionless: the numerator and denominator are of the same degree.
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6.2.2 Results and Practical Considerations

The EL/LM models were primarily developed to explain possible failure correlation between

independently developed software versions. It is tempting to use these models by estimating

the expected pfds they refer to, and using these estimates directly in making decisions about

actual development processes. However, one hindrance to doing so is that some of the

probability distributions used in the models, such as demand profiles and version sampling

distributions, may not be completely known in a given practical scenario. Consequently,

making expected pfds possibly unknowable as well. On the other hand, bounds on expected

pfd are a weaker requirement than knowing the actual expected pfd values. In this regard

the bounds we obtained are a first–step in estimating possibly unknowable expected pfds,

by constraining their values using other model parameters that may be known.

An assessor of a system may gain confidence in her estimates of expected pfds if these

estimates satisfy relationships that the actual, unknown values of the expected pfds must

satisfy. The bounds on expected system pfd define such consistency checks. For instance,

if the assessor had estimates of the expected channel pfds and the demand profile, then her

possible estimates of expected system pfd are bounded as indicated in Fig. 6.10. Many more

of such relationships are summarised in Fig.s 6.10, 6.12, and 6.14.

Related to the previous point is the use of beta–factors when reasoning about expected

system pfd. The beta–factors we are interested in are the relative sizes of expected pfds, and

as such they indicate the “orders of magnitude” difference between expected pfds. Conse-

quently, by casting the extremisation problems in terms of beta–factors, we can specify how

many “orders of magnitude” improvement in expected system reliability may be obtained

from organising the development process in some preferred way. For example, in Fig.s 6.11

and 6.12 (see pages 183 and 184) we summarize some bounds derived in terms of the ex-

pected pfd values qA, qAA, qB and qBB. Equivalently, when these results are put in terms of

beta–factors (as in Fig. 6.13 on page 185), they also indicate bounds on how many “orders

of magnitude” the expected system pfd may improve by,

We also explored sufficient conditions for forcing diversity to result in the least expected

system pfd amongst alternatives. In particular, Theorem 5.2.1 (on page 130) gives a necessary

and sufficient condition in this regard, and is based solely on the relative sizes of the pair

of expected system pfds for homogeneous systems, qAA and qBB. This result generalises a

particular case first shown in [13], where forcing diversity was argued to be beneficial when an

assessor was indifferent between qAA and qBB; that is, qAA = qBB for the assessor. The result

also indicates a certain irrelevance of the expected channel pfds and the demand profile in

ensuring that forcing diversity is beneficial. Admittedly, in order to use the result in practice,

either knowledge of the values of qAA and qBB or justification for the equality of these values

is required. However, another result comes to a similar conclusion, but with less stringent

conditions for its use in practice, is given by Theorem 5.2.2 (on page 135). Here, instead

of indifference between the values of the expected system pfds, the assessor is indifferent

amongst the different possible methodologies that may be used to build a homogeneous

system. Under this indifference the theorem states that the expected system pfd resulting
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from not forcing diversity cannot be better than the expected system pfd resulting from

forcing diversity.

In the course of developing the model, many relationships were derived between difficulty

functions, their sizes, their means and the angles they make. As a flavour of the kind

of relationships that are possible we offer the following three examples. For many more

relationships along similar lines the reader is referred to Chapter 4.

1. The models make apparent how the sizes of difficulty functions (and, therefore, their re-

lated expected system pfds) are constrained by the vector P̄ . This vector has components,

in the basis
¯̂
S, that are completely defined by the demand profile and, consequently, is

referred to in this thesis as the demand profile (see the definition on page 94). By using

the normalised basis Ŝ :=
{
P̂1, . . . , P̂n

}
(defined on page 92) an arbitrary difficulty func-

tion can be expressed as a linear combination of these basis vectors, where the weights in

the linear combination (that is the vector components) can be no larger than thresholds

defined by the demand profile. That is, an arbitrary difficulty function θ may be written

as

θ =
n∑

i=1

θ(xi)P̂i,

where θ(xi) ≤
√
P (X = xi) for i = 1, . . . , n. The case where θ(xi) =

√
P (X = xi) for all

i defines the largest difficulty function, P̄ , which is the difficulty function that represents

failure on all demands9.

2. For a set of difficulty functions with identical means, the larger the angle a difficulty

function makes with the demand profile the larger the difficulty function. On a related

note, the difficulty functions that are furthest away from the demand profile are those that

are collinear with the basis vector associated with the least likely demand.

3. There is a notion of “degree of diversity” between an arbitrary pair of difficulty functions

which is characterized by the angle between them. Given a set of difficulty function pairs,

where all of the difficulty functions have the same size, the larger the angle between a

pair of such difficulty functions the smaller the correlation between them. For instance, as

an extreme case, if the difficulty functions are perpendicular then the related value of the

expected system pfd (for a system built by channel development processes characterised

by those difficulty functions) is 0.

9The size of P̄ is one since

〈
P̄ , P̄

〉
=

〈 n∑
i=1

√
P (X = xi)P̂i,

n∑
j=1

√
P (X = xj)P̂j

〉

=

n,n∑
i=1,j=1

√
P (X = xi)

√
P (X = xj)

〈
P̂i, P̂j

〉

=
n∑

i=1

P (X = xi)

= 1,

where we used the bilinearity property of the inner–product and the fact that the basis vectors are an
orthonormal set of vectors.
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We now summarize the solutions to the extremisation problems of Chapter 5 in Fig.s

6.10, 6.11 and 6.14. But first, in Fig. 6.9, we express coordinate dependent forms of entities

in the model using the bases

S :=
{
P̄1, . . . , P̄n

}
and Ŝ :=

{
P̂1, . . . , P̂n

}
defined on pages 91 and 92, in Section 4.3. The entities used in the geometric model are:

1. P̄i is the vector that models the failure set for the software version that fails only on the

ith demand;

2. P̂i is the unit vector in the same direction as the vector P̄i;

3. P̄ is the vector such that in the basis S it models the software version that fails on all

demands, and in the basis Ŝ its components are completely defined by the demand profile

(hence, why this vector is referred to as the demand profile);

4. θA is a vector whose components in the basis S are completely defined by a difficulty

function θA(x). Consequently, we refer to such a vector as a difficulty function;

5.
〈
θA, θB

〉
is the inner–product of the vectors θA and θB.



C
H
A
P
T
E
R

6
.

S
U
M
M
A
R
Y

O
F
M
A
IN

C
O
N
C
L
U
S
IO

N
S

1
8
1

F
ig
u
r
e
6
.9
:
T
h
is

is
a
list

o
f
en

tities
in

th
e
g
eo
m
etric

m
o
d
el

ex
p
ressed

in
tw

o
b
a
ses:

th
e
o
rth

o
g
o
n
a
l

b
a
sis

S
,
su
g
g
ested

b
y
th
e
L
M

m
o
d
el,

a
n
d
th
e
rela

ted
o
rth

o
n
o
rm

a
l
b
a
sis

Ŝ
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Figure 6.14: Conditions under which forcing diversity guarantees a lower bound on the expected
system pfd, compared with if diversity is not forced.



Chapter 7

Suggestions for Future Work

It might be beneficial to explore the implications of changes to a development process, where

such changes are modeled as transformations of vectors representing the difficulty functions.

Can changes to the development process manifest as rotations, scalings and, or projections?

And would this mean that via such changes to the development process one might be able

to “navigate” the space of difficulty functions in preferred ways? Even if a given change

to the development process does not result in a vector transformation, perhaps it induces

a constraining surface in the vector space, such a surface representing the set of difficulty

functions that could potentially result from the given change. In such cases there might

even be orderings between the sizes of expected pfds resulting from different changes. In this

sense some changes are “better”1 than others, or are simply improvements. For instance, in

[52] the consequence of software reliability growth on the ratio of expected single–version pfd

to expected system pfd (that is, the ratio
qA
qAA

say ) was modelled thus: for each demand,

x, the value of some relevant difficulty function, θA(x) say, is scaled by some non–negative

amount f(x). In essence, reliability growth is achieved by practical activities that, in effect,

transform one difficulty function into another. An alternative approach would be to model

the effects of practical activities that result in reliability growth as geometric transformations

on difficulty functions. Then, the practical activities of interest are those with associated

geometric transformations that ensure the ratio
qA
qAA

satisfies some property, e.g. the ratio

increases.

Additionally, a duality between the demands and the programs exists in the LM model.

For a given demand there is an associated “difficulty” which is the probability a version

will be developed that fails on the demand. This characterises how different development

processes can result in the same demand having different difficulty: some ways of organising

the system development result in the demand being easy, while others result in the demand

being difficult. Similarly, for a given program, there is its associated pfd which is the prob-

ability that in operation the next randomly occurring demand will cause the version to fail.

1Changes may be better because they result in a lowering of the expected system pfd. However, in a
wider practical context, the economic implications of a change for the system development process might
imply a change is not preferable, even if it does result in improved reliability.

187
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This implies that different demand profiles may result in different pfds: some profiles make

the demands in the failure set for a given version very unlikely, while others make them

more likely. Now, the geometric model was developed from the viewpoint of different devel-

opment processes and a fixed demand profile, with the demands defining the dimensions of

the vector space and difficulty functions defining the n–tuples. It might be useful to explore

the consequences of a “dual” geometric formulation: one from the viewpoint of different

demand profiles and a fixed development process, where the dimensionality of the space is

equal to the number of possible versions and the n–tuples consist of version pfds. In such a

formulation, by performing transformations on vectors, one can study the effect of different

demand profiles on the reliability of software produced from a given development process.

Such analyses is useful when reasoning about the behaviour of systems under different en-

vironmental conditions. For instance, the potential difference between the demand profile

used when testing the system and the demand profile when the system has been deployed.

Another area for future work is in extending the modeling beyond 1–out–of–N systems.

While these are an important category of systems, and illustrate the basic problems in

managing “diversity”, the results obtained in this context may not scale as expected, or may

not transfer altogether to other fault–tolerant architectures. Certainly, in the case of the LM

model, Littlewood and Miller [13] showed that not all results extend in intuitive ways from

the 1-out-of-2 case to voted (k–out–of–n) architectures, and further subtle, counter–intuitive

effects are possible.

The expected pfds are averages so care should be taken in their interpretation and use.

In particular, a 1–out–of–N system’s actual pfd, when built, will normally differ from the

expected pfd. Nevertheless, before the 1–out–of–N system is built it is unknown which

programs will actually be developed to make up the channels. Therefore, there is uncertainty

about the failure behaviour of the actual system that is built. It is this uncertainty that

makes the system pfd “expected”. That is, given some configuration of methodologies to be

used during the developments of the channels, the expected system pfd is an average over all

of the system pfds of the possible 1–out–of–N systems that could be built. This is described

in more detail in [34]. Models that take into account the variation of the pfds of 1–out–of–2

systems that could possibly be built have been explored in the literature [53]. An extension

of the current work would be to consider bounds on the distributions of the versions and

version pairs.

The LM model has been applied to numerous practical applications [54]: from the mod-

eling of the consequences of diversity to security [18], to the modeling of the impact of

Human–machine diversity on the effectiveness of breast–cancer screening approaches [55].

By extending the LM model to cases of dependent software development as we have done,

there is plenty of scope to revisit these applications of the LM model and study what the

implications of dependence would be. For instance, the model of the fault–creation process

used in [53] may be extended, relaxing the assumption of the independent insertion of faults.

As a consequence could dependence result in much better, or much worse, reliability gains

than the authors predict would occur from “improving” development processes?

Also, like the LM model, there is significant potential for applying both the generalised
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models of dependent development and the geometric models beyond modeling coincident

failure in software. The reason is that at the heart of the models is the idea that dependence

may be modelled via conditional independence. Any system which may be conceptualised

this way could benefit from the model results. It would be interesting to apply both models

to other areas of Computer Science and Engineering applications – wherever dependence

between processes has been ignored by assuming independence.

Further analysis of the generalised models may reveal more “preference criteria”, with

sufficient conditions that are clear enough to be recognised in practical situations. It would be

especially interesting to find more examples of system development policies that should create

useful, negative covariance between the difficulty functions of the two channel development

processes.

In this thesis, forcing diversity has been demonstrated to be beneficial, but only under

certain conditions and only in the sense that it cannot result in worsening expected system

pfd. This would be sufficient to employ forced diversity in practice if the economic cost of

forcing diversity is not a constraint. However, in general, judgments about whether to force

diversity should also take into account the cost of implementing a regime of forcing diversity,

and consider the trade-offs between cost and reliability gains. An economic/utility model of

the benefits of forcing diversity could take our theorems and bounds into account, thereby

aiding system developers in deciding whether to force diversity under more general settings.

Finally, there are particular results that could benefit from further generalisation or

require more rigorous proof. For instance, does Theorem 5.2.2 (see Chapter 5, page 135)

still hold if the number of methodologies is larger than the number of channels? Initial

investigation suggests that the result should still hold for a larger pool of methodologies

since it is true for any set of n–distinct methodologies, and the more general case would

involve “simply” sampling without replacement n–times from a larger methodology pool.

Also, a rigourous proof of case 4 in Section 5.3.6 is a point of current investigation. For the

reasons stated in Section 5.3.6 the result is expected to be provable.



Appendix A

Finite–Dimensional, Real

Inner–Product Spaces

This appendix is a review of vector spaces and linear algebra. The aim is to provide a

sufficient amount of geometric background for work presented in the thesis. Some texts

that provide an excellent introduction and comprehensive treatment of some of the material

presented here include [40, 41, 42, 43, 44]. However, the development of vector spaces

presented here is a heuristic development tailored specifically with the framework of the

EL/LM models in mind, and with the aim of performing extremisation using geometric

manipulations. We enumerate the 3 sections according to their section numbers, giving

details of each section’s focus.

A.1 Vectors, Vector Spaces and Basis Vectors : Defines fundamental geometric entities and

concepts such as vectors, spans, linear independence and subspaces;

A.2 Real Inner–Product : Discusses the definition of a very important construct; the so–called

inner–product. The inner–product imbues vector spaces with useful geometric notions

such as angles and lengths;

A.3 Orthogonality and Collinearity: Defines the concept of an angle between a pair of vectors

in a finite–dimensional vector space. In particular, the notion of perpendicularity used in

2–dimensional Euclidean geometry is generalised to any finite–dimensional vector space.

A.1 Vectors, Vector Spaces and Basis Vectors

We are interested in defining and manipulating vectors; these are entities defined by a vector

space. For our purposes a vector space is a set V, the set of real numbers R and a pair of

binary operations 1 called vector addition, denoted by +, and scalar multiplication, denoted

by ·, that adhere to the eight axioms given below. The elements of V are called vectors

and the real numbers – elements of R – are called scalars. Let Ū , V̄ , W̄ ∈ V and let a, b ∈ R.

1Suppose we have defined a set of entities S. A Binary operation is a function f : (S× S) → S.
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The sum of two vectors is denoted V̄ + W̄ while the product of a scalar, a ,and a vector, V̄ ,

is denoted a · V̄ or aV̄ . The eight axioms are:

1. Associativity of vector addition: Ū +
(
V̄ + W̄

)
=
(
Ū + V̄

)
+ W̄ .

2. Commutativity of vector addition: V̄ + W̄ = W̄ + V̄ .

3. Identity element of vector addition: There exists an element, 0̄ ∈ V, called the zero vector

such that V̄ + 0̄ = V̄ , for all V̄ ∈ V.

4. Inverse elements of vector addition: For all V̄ ∈ V there exists an element W̄ ∈ V, called

the additive inverse of V̄ , such that V̄ + W̄ = 0̄. The additive inverse is denoted
(−V̄

)
.

5. Distributivity of scalar multiplication with respect to vector addition: a
(
V̄ + W̄

)
= aV̄ +

aW̄ .

6. Distributivity of scalar multiplication over the addition of real numbers : (a+ b) V̄ = aV̄ +

bV̄ .

7. Compatibility of scalar multiplication with the multiplication of real numbers : a
(
bV̄

)
=

(ab) V̄ .

8. Identity element of scalar multiplication: The multiplicative identity, 1 ∈ R, is such that

for arbitrary vector V̄ ∈ V, 1V̄ = V̄ .

A number of results follow from these axioms. For instance, the zero vector, 0̄, is unique2.

Also3, 0̄ = 0V̄ . From this it follows4 that
(−V̄

)
= − 1 · V̄ ; that is, the additive inverse of a

vector is the vector multiplied by the scalar −1. From here on we shall write −1 · V̄ as −V̄ .

Finally, we can define the difference of two vectors and division of a vector by a (non-zero)

scalar, since V̄ − X̄ = V̄ +
(−X̄

)
, V̄ /a = (1/a) · V̄ . The definition of vectors given above

may appear fairly abstract. However, there is a plethora of vector space examples, some of

which are:

• The set containing only the zero vector, {0̄}. Both vector addition and scalar multiplication

result in 0̄;

• The set of real numbers, R, is a vector space with vector addition being the usual addition

of numbers and scalar multiplication is the usual multiplication of real numbers. This is

a very important vector space, partly because any practical activity that is adequately

modelled by the real number line is therefore a vector space e.g. credit status, angles,

displacement, e.t.c.;

• The velocity of a body. Vector addition and scalar multiplication are defined most easily

by representing these vectors in R
n;

• The set of all m×n matrices with real number entries. Vector addition is matrix addition

and scalar multiplication is the multiplication of each entry of the matrix by a real number;

2Since if we had two distinct zero vectors, 0̄1 and 0̄2, then by definition 0̄1 = 0̄1 + 0̄2 = 0̄2, which is a
contradiction.

3Since 0V̄ = 0V̄ + V̄ +
(−V̄

)
= (0 + 1) V̄ +

(−V̄
)
= V̄ +

(−V̄
)
= 0̄.

4Since
(−V̄

)
= 0̄ +

(−V̄
)
= 0V̄ +

(−V̄
)
= (1− 1) V̄ +

(−V̄
)
= V̄ − V̄ +

(−V̄
)
= − 1 · V̄ .
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• The set of polynomials with coefficients in R and degree less than or equal to n is a vector

space over R, denoted by Pn. Vector addition and scalar multiplication are defined by

adding corresponding polynomial terms and distributing scalar multiplications over the

coefficients of polynomials, respectively. For example, (8x3 + 6x2 − 3) + (−7x2 + 2x) =

8x3 − x2 + 2x − 3 and 4(5x2 + 3x + 2) = 20x2 + 12x + 8. This is an (n+1)–dimensional

vector space;

Vector spaces are said to be closed under vector addition and scalar multiplication, which

means that the results of such operations are vectors. Consequently, a combination of these

operations also results in a vector. For instance, given the vectors V̄1, . . . , V̄j ∈ V and scalars

a1, . . . , aj ∈ R we may obtain the vector W̄ = a1V̄1+ . . . +ajV̄j . W̄ is referred to as a “linear

combination” of the vectors V̄1, . . . , V̄j . The span of a set of vectors is the set of all the

possible linear combinations of the vectors. We shall be concerned only with the spans of

finite sets of vectors. Consider the set of vectors S =
{
P̄1, . . . , P̄n

}
, and its associated span

denoted by Span(S). If it is impossible to define a proper subset of S that also spans Span(S),

then we say that the members of S are linearly independent. There is an equivalent way

of stating this via the following theorem.

Theorem A.1.1. The members of S are linearly independent if, and only if,

a1P̄1 + . . . + anP̄n = 0̄ =⇒ a1, . . . , an = 0.

Proof. To prove sufficiency we shall assume that there exists a non-trivial linear combination

of the vectors in S that results in the zero vector, and show that this implies there exists a

proper subset of S that also spans Span(S). Assume, for some P̄i we can write a1P̄1 + . . . +

ai−1P̄i−1 + ai+1P̄i+1 + . . . + anP̄n = − aiP̄i, for ai �= 0. Then it is possible to write P̄i as a

linear combination of the other vectors in S. This means that these other vectors – a proper

subset of S – span the vector space.

To show necessity we shall assume that there exists a proper subset of S that also spans

Span(S), and show that this implies there exists a non-trivial linear combination of the

vectors in S that results in the zero vector. Assume that some proper subset of S, say M,

also spans Span(S). Then, for a given vector in S not contained in M, say P̄i, there exists

some linear combination of vectors in M that yields P̄i. However, this means that it is

possible to write 0̄ as a linear combination of the vectors in M and P̄i where not all of the

coefficients are zero. �

For our purposes a subspace, S, of a vector space5 V is a subset of V that is, itself, a

vector space with respect to R and the same vector space operations as V. For instance,

examples of subspaces in R
3 include R

3 itself and lines, or planes, that pass through the

origin. In order to show that S is a vector space we need only show that for any Ū , V̄ ∈ S

and any a, b ∈ R we have aŪ + bV̄ ∈ S. For example,

5The vector space is actually the quadruplet
{
V,R,+, ·}. Nevertheless, it is usual to refer to V as the

vector space when the context is clear.
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Theorem A.1.2. Let V̄ ∈ V. Then, Span
({

V̄
})

is a subspace.

Proof. By definition, Span
({

V̄
})

=
{
W̄ ∈ V|W̄ = aV̄ for some a ∈ R

}
. Choose any X̄, Ȳ ∈

Span
({

V̄
})

and any a, b ∈ R. From the definition of Span
({

V̄
})

there exist c, d ∈ R such

that X̄ = cV̄ and Ȳ = dV̄ . Therefore,

aX̄ + bȲ = acV̄ + bdV̄ = (ac+ bd) V̄ ∈ Span
({

V̄
})

,

by definition of V and Span
({

V̄
})

. �

In fact, for any set of vectors V̄1, . . . , V̄m ∈ V, Span
({

V̄1, . . . , V̄m

})
is a subspace. Trivially,

V is a subspace with respect to itself.

The ability to obtain vectors by taking linear combinations of others raises the question:

“does there exist a set of vectors whose span is the entire vector space, V?”. Such a set is said

to span the vector space. Trivially, the set of all of the vectors in the vector space spans the

vector space. A set of linearly independent vectors that span the entire vector space is called

a basis for the vector space. It may be possible to define more than one basis for a vector

space. However, the number of vectors in any of these bases is the same, and defines the

dimension of the vector space. A finite dimensional vector space is one whose related bases

have a finite number of vectors, e.g. an n–dimensional vector space has n ∈ N vectors in any

related basis. The definition of a basis for a finite dimensional vector space is very useful,

not least because it implies every finite dimensional vector space is equivalent to some R
n.

Consequently, vectors can be depicted as arrows in some R
n and calculations/computation

can be carried out. See Fig.’s A.1, A.2, and A.3. We give some examples of basis:

• the empty set, ∅, is defined to be the basis for the 0–dimensional vector space {0̄};
• any real number is a basis for R;

• the set of m × n matrices such that each matrix has the value “1” in a unique position

and zero everywhere else is a basis for the vector space of m× n matrices;

• One possible basis for Pn is a monomial basis. For instance,
{
1, x1, x2, x3

}
is a basis for

P3.

Given a basis an n–dimensional vector space is equivalent to some Rn: vector manipula-

tions in such a vector space are equivalent to manipulations on n–tuples in some appropriate

R
n. To see this appreciate that:

Theorem A.1.3. Every vector in a finite–dimensional vector space can be written as a

unique, linear combination of the basis vectors.

Proof. This follows directly from the definition of linearly independent vectors. Assume that

there are 2 linear combinations, a1P̄1+ . . . +anP̄n and b1P̄1+ . . . +bnP̄n, of the basis vectors
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Figure A.1: A vector may be depicted as “an arrow of given length pointing in a given direction”.
Given a vector with tail at the “origin” any other arrow that is parallel to this vector, of the same
length and pointing in the same direction, is the same vector. This is very useful because any finite
dimensional vector space is equivalent to some R

n and, as such, may be visualised as a collection of
arrows.

{
P̄1, . . . , P̄n

}
that result in the same vector. Then,

a1P̄1 + . . . + anP̄n = b1P̄1 + . . . + bnP̄n ⇔ (
a1 − b1

)
P̄1 + . . . +

(
an − bn

)
P̄n = 0̄

=⇒ a1 = b1, . . . , an = bn. �

This means that given a basis, say S, we can associate with each vector, V̄ , a unique set of

coefficients, a1, . . . , an ∈ R, such that V̄ = a1P̄1+ . . . +anP̄n. a1, . . . , an are the components

of the vector, V̄ with respect to the basis S. Because there is one–to–one correspondence

between components of a vector and a vector it is usual to refer to the n–tuple (a1, . . . , an) as

the vector V̄ . It can be shown that all the properties of vectors carry over to manipulations

Figure A.2: Vector addition can be carried out with visual consequences. The visual effect of the
sum of two vectors is to produce the relevant diagonal of the parallelogram produced by the two
vectors.

on n–tuples. In particular, vector addition is achieved by adding together corresponding

vector components – that is,
(
a1, . . . , an

)
+
(
b1, . . . , bn

)
=
(
a1+ b1, . . . , an+ bn

)
– and scalar

multiplication is achieved by multiplying each component by the relevant scalar – that is,

c
(
a1, . . . , an

)
=
(
ca1, . . . , can

)
, where c ∈ R. So, manipulations on components of vectors is

actually shorthand for the equivalent manipulations in terms of linear combinations of basis

vectors. We can represent a given basis, say S, of an n–dimensional vector space as a set of

n–tuples in R
n. Since the basis vectors are linearly independent for P̄i ∈ S we must have

P̄i = 0 · P̄1+ . . . +0 · P̄i−1+1 · P̄i+0 · P̄i+1+ . . . +0. · P̄n. Therefore, P̄i has the components(
0, . . . , 0, 1︸︷︷︸

ith

, 0, . . . , 0
)
with respect to the basis S. This can be done for each basis vector
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Figure A.3: Scalar Multiplication is intimately linked to vector addition. Importantly, scalar
multiplication imbues the vector space with the notion of direction. If a vector is depicted as an
arrow than multiplying by a scalar produces an arrow, parallel to the original, that is scaled by the
relevant amount in the direction indicated by the sign of the multiplying scalar, as shown.

to obtain the n n–tuples that represent the usual basis in R
n. We follow the convention of

writing the vectors in R
n as column vectors. So, in the basis S, the n–tuples associated with

the basis vectors
{
P̄1, . . . , P̄n

}
are:

{
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n vectors

} ⊂ R
n, (A.1)

respectively. These n–tuples are important and always form a basis of Rn. They are called

the standard/usual basis in R
n. To see that these vectors actually form a basis observe that

they span R
n, since

for

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3
...

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

n
, c1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ c2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ . . . + cn−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ cn

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 + 0 + 0 + . . . + 0

0 + c2 + 0 + . . . + 0
...

0 + . . . + 0 + cn−1 + 0

0 + . . . + 0 + 0 + cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2
...

cn−1

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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and they are linearly independent, since

c1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ c2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ . . . + cn−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ cn

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 + 0 + 0 + . . . + 0

0 + c2 + 0 + . . . + 0
...

0 + . . . + 0 + cn−1 + 0

0 + . . . + 0 + 0 + cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2
...

cn−1

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

implies that c1, . . . , cn = 0. If we were to draw the usual basis vectors as arrows, then these

would be the arrows with “unit length” on each axis in a right–handed coordinate system;

such as the usual x–y–z Cartesian coordinate system (see Fig. A.4).

Figure A.4: The Standard/Usual Basis in n-dimensional Euclidean space, Rn. Note that for this
figure the “unit lengths” are intentionally drawn differently. This is because the basis vectors only
define primitive notions of length along each axis. That is, the value of “1” at a point on an axis
indicates that only “1” of the basis vector lying parallel to the axis completely defines that point.
However, this is a relative notion of distance that can change if a different basis is used: a new basis
vector parallel to the former basis vector, and 1

2
it’s length, will result in the point being indicated

with the value “2”. An inner–product is required to define a more general notion of length and
angles.

Here a very important point must be made. By choosing a basis we choose a set of

“arrows” with respect to which all other “arrows” are described. Consequently, these basis

“arrows” have components equivalent to the usual basis in R
n. However, the basis “arrows”

need not have the same “length”: these arrows only define primitive “unit lengths”. So, in

drawing these arrows all that is relevant is that each arrow should lie in the positive direction

of a unique axis, with the head of the arrows touching the “1” mark. You could say the
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axes need not have the same scale. It is more precise to say that at this level of description

only a very primitive notion of length exists: only relative length along each axis is defined,

relative to some unique basis vector. Defining length that is independent of the basis used

requires extra structure to be imposed on the vector space. Indeed, extra structure is also

necessary for defining appropriate notions of nearness and angles. To deal with such matters

in the following section we define a construct called the inner–product.

A.2 Real Inner–Product

In this section we develop a universal notion of length and angles in a vector space using

a largely heuristic approach. Ideally, a universal notion of length should be independent

of the basis vectors chosen to perform calculations in. Our aim is to define a function of

vectors that results in the lengths of the vectors, irrespective of the basis chosen. One vector

whose invariant length we should be able to specify for our function right away is the zero

vector, 0̄, whose length we define as 0. In addition, it is reasonable that such a function

will determine a consistent notion of unit length, globally. If such a function were defined

then for each vector, Ā, there would exist a vector, Â, in the same direction as Ā such

that this vector has unit length. We call such a vector a unit vector and we must have

the relationship Ā =
∥∥Ā∥∥ Â, for some unique, non-negative scalar

∥∥Ā∥∥ which we define as

the length or magnitude of Ā. From this relationship we infer that the zero vector is the

only vector with zero length, since if we assume that some vector Ā �= 0̄ has zero length then

Ā =
∥∥Ā∥∥ Â = 0Â = 0̄, which is a contradiction and, therefore, the result follows. We observe

that the magnitude of a vector parallel to Ā, say aĀ for some scalar a, is a
∥∥Ā∥∥ since

∥∥aĀ∥∥ Â = aĀ = a
(∥∥Ā∥∥ Â) =

(
a
∥∥Ā∥∥) Â,

from which we conclude ∥∥aĀ∥∥ = a
∥∥Ā∥∥ (A.2)

We expect other useful relationships. For instance, we know that the sum of vectors

parallel to a given vector is a vector parallel to the given vector. So, for the sum of a given

pair of vectors parallel to Ā – for instance, xĀ, yĀ and the sum xĀ+ yĀ for some scalars x

and y – we see that

(
x
∥∥Ā∥∥ + y

∥∥Ā∥∥) Â = (x+ y)
∥∥Ā∥∥ Â

= (x+ y) Ā

= xĀ+ yĀ

=
∥∥xĀ+ yĀ

∥∥ Â
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=
∥∥(x+ y) Ā

∥∥ Â
holds. Therefore, since Â is not the zero vector by definition, we have

∥∥(x+ y) Ā
∥∥ = x

∥∥Ā∥∥ + y
∥∥Ā∥∥ . (A.3)

That is, the magnitude of the sum of a pair of parallel vectors is equal to the sum of the

magnitudes of the vectors. This result may be generalised to the sum of any finite number

of parallel vectors via induction. Note that by choosing a vector Ā with respect to which

other vectors have been defined as parallel we have been manipulating vectors in Span
({

Ā
})

,

which we have previously shown to be a subspace. Therefore, the results in Eq.’s (A.3), (A.2)

are really a statement of linearity with respect to this subspace: given a vector Ā our “length

function” is a linear transformation6 from Span
({

Ā
})

to R. So, given a vector Ā, we seek

a real–valued linear function,
〈
, Â
〉
: Span

({
Ā
})→ R, such that:

1. for V̄ ∈ Span
({

Ā
})

, the magnitude of V̄ with respect to the unit vector Â is
〈
V̄ , Â

〉
;

2. for an arbitrary pair of vectors parallel to Ā – say V̄ , W̄ ∈ Span
({

Ā
})

– and for some

scalars – say x, y ∈ R – we have〈
xV̄ + yW̄ , Â

〉
= x

〈
V̄ , Â

〉
+ y

〈
W̄ , Â

〉
.

Linearity is a useful property for our length function to have if we are to ultimately

perform calculations with vectors. Thus far our main requirement has been: given a vector,

say Ā, we are able to calculate the length of any vector parallel to Ā in a linear fashion,

relative to the unit vector Â. What similar requirement will be useful for vectors not parallel

to Ā? We need a notion of length in the direction of Â for an arbitrary vector. If our

function defines such a length in a globally consistent and linear way, then this will be ideal.

Fig. A.5 suggests such a notion, inspired by a similar idea used in elementary trigonometry.

We postulate that a conceptual “shadow” of B̂ can be cast on the line defined by Â. The

signed length of this “shadow” is the length, up to sign and with respect to Â, of the dotted

green vector and we write this as
〈
B̂, Â

〉
. One way of viewing this is our function, relative

to Â, should return the “amount” of B̂ in the direction of Â. That is,
〈
B̂, Â

〉
is the value

of our function, relative to Â, on B̂. We expect that the closer B̂ is to being parallel to Â

the closer this length will be to either the value 1 or -1, the signed lengths if B̂ was parallel

to either Â or −Â respectively. Put another way we expect that the further B̂ is from being

parallel to Â the closer this length is to zero (since the dotted green vector approaches the

6Let V and W be vector spaces with respect to R. A function T : V → W is a linear transformation
if for scalars a, b and vectors X̄, Ȳ ∈ V we have T

(
aX̄ + bȲ

)
= aT

(
X̄
)
+ bT

(
Ȳ
)
. Linear transformations

are important, partly because they allow movement from one vector space to another in a manner that
is adapted to the underlying vector space structures. It is precisely this property that allows numerical
manipulations/calculations that are equivalent to the transformation to be carried out, upon choosing a pair
of bases for the respective vector spaces.
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Figure A.5: Unit vectors are projected unto each other

zero vector). So, our function should return the signed length of the projection of the vector

B̂ onto the subspace defined by Â, Span
({

Ā
})

. In particular,
∥∥Ā∥∥ =

〈
Ā, Â

〉
.

Also, we expect the symmetric relationship〈
B̂, Â

〉
=

〈
Â, B̂

〉
(A.4)

to hold: the length of B̂ in terms of Â is equal to the length Â in terms of B̂, since Â and

B̂ have equal lengths.

Another requirement for our function is that the magnitude of a finite sum of vectors

should equal the sum of the individual vector magnitudes, relative to Â. This is suggested

by examples such as in Fig. A.6. Three vectors, B̄1, B̄2 and B̄3 are summed to give the

Figure A.6: The projection of a sum of vectors is shown to be identical to the sum of the projections
of the individual vectors; a manifestation of an aspect of linearity.

vector B̄. The diagram suggests that the projection of B̄ onto Span
({

Ā
})

should equal the

sum of the projections of B̄1, B̄2, B̄3. That is, we expect
〈
B̄, Â

〉
Â =

3∑
i=1

(〈
B̄i, Â

〉
Â
)

=
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(
3∑

i=1

〈
B̄i, Â

〉)
Â. Thus, since Â �= 0̄, we require

〈
3∑

i=1

B̄i, Â

〉
=

3∑
i=1

〈
B̄i, Â

〉
.

Yet another useful requirement is that the length of the projection of a vector should

be proportional to the length of the vector : in a sense the longer a vector is the longer its

projection should be. Ideally, for any vector B̄ this is the relationship

〈
bB̄, Â

〉
= b

〈
B̄, Â

〉
, (A.5)

for any scalar b. The requirements specified so far imply that our function, with respect to

unit vectors, operates on vectors in a linear way. That is, for any unit vector Â,〈
, Â
〉
: V → R

is a linear transformation. An immediate consequence of this is the following interesting

relationship. Recall that for non–zero vectors Ā and B̄, Ā =
∥∥Ā∥∥ Â and B̄ =

∥∥B̄∥∥ B̂ so that

1∥∥Ā∥∥
〈
Ā, B̂

〉
=

〈
Â, B̂

〉
=

〈
B̂, Â

〉
=

1∥∥B̄∥∥
〈
B̄, Â

〉
,

where we have used both linearity, to move scalars in and out of the first “slot” of our

function, and the symmetry of
〈
Â, B̂

〉
. Therefore,

∥∥B̄∥∥〈Ā, B̂
〉

=
∥∥Ā∥∥ ∥∥B̄∥∥〈Â, B̂〉 =

∥∥Ā∥∥〈B̄, Â
〉
. (A.6)

Not only does this relate projections with respect to Â and projections with respect to B̂,

it does so in a symmetric way. This is because the middle expression is symmetric in Ā

and B̄. To check our intuition we consider the behaviour of this relationship under different

conditions?

• If Ā and B̄ have the same magnitude, then we expect them to result in projections with

equal magnitude. Indeed, this symmetric relationship is predicted by Eq. (A.6) since∥∥Ā∥∥ =
∥∥B̄∥∥ implies

〈
Ā, B̂

〉
=
〈
B̄, Â

〉
. In particular, if

∥∥Ā∥∥ =
∥∥B̄∥∥ = 1 then we obtain

the symmetry requirement of Eq. (A.4).

• If B̄ is a unit vector, i.e.
∥∥B̄∥∥ = 1 or B̄ = B̂, then we expect that the projection of Ā on

B̄’s subspace should have a signed magnitude that is proportional to the magnitude of Ā.

In fact Eq. (A.6) tells us that the magnitude of the projection is
〈
Ā, B̂

〉
=

∥∥Ā∥∥〈Â, B̂〉;
the signed length of the projection of Â scaled by length of Ā.

• If Ā = B̄, then the projections should be identical; the length of the vector. Eq. (A.6)

confirms this since it implies
∥∥Ā∥∥ =

∥∥B̄∥∥. Note that an arbitrary non–zero vector is

parallel to itself in the same direction. Therefore, its projection into its subspace should
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be itself, with positive length. This is manifest from Eq. (A.6) since
∥∥Ā∥∥ =

〈
Ā, Â

〉
.

• When is the magnitude of a projection equal to zero? If and only if either the vector

being projected is the zero vector, or the subspace being projected to is Span({0̄}), or the
vectors are as far from being parallel as possible. Each of these cases holds in Eq. (A.6).

Recall that we proved only the zero vector has magnitude 0 and this is reaffirmed here.

For, an arbitrary vector either is parallel to itself, or is the zero vector. Consequently, the

only conditions that result in its length,
〈
Ā, Â

〉
, being zero are precisely those for which

Ā = 0̄.

This relationship captures, as special cases, all of the properties we have specified so far for

our function. To emphasize this we may define the relationship as

〈
Ā, B̄

〉
=

∥∥Ā∥∥ ∥∥B̄∥∥〈Â, B̂〉 , (A.7)

which is symmetric in arbitrary non–zero vectors Ā and B̄. The symmetry has yet another

important consequence. Because our function is required to be linear in the first “slot” we

can show that our function is also linear in the second slot as well. For,

〈
Ā, xX̄ + yȲ

〉
=
〈
xX̄ + yȲ , Ā

〉
= x

〈
X̄, Ā

〉
+ y

〈
Ȳ , Ā

〉
= x

〈
Ā, X̄

〉
+ y

〈
Ā, Ȳ

〉
,

where x, y ∈ R and X̄, Ȳ ∈ V. This shows that our function is necessarily Bilinear.

In summary, we have specified necessary properties for a function that should define for

us a consistent, global notion of length. Our function should be a real–valued function of

pairs of vectors: 〈 , 〉: V × V → R. Furthermore, for Ā1, Ā2, Ā, B̄ ∈ V and a,b ∈ R, the

following properties should hold.

Linearity:
〈
aĀ1 + bĀ2, B̄

〉
= a

〈
Ā1, B̄

〉
+ b

〈
Ā2, B̄

〉
Symmetry:

〈
Ā, B̄

〉
=
〈
B̄, Ā

〉
Positive definiteness:

〈
Ā, Ā

〉
=
∥∥Ā∥∥2 ≥ 0, for all Ā and〈

Ā, Ā
〉
=
∥∥Ā∥∥2 = 0 if, and only if, Ā = 0

These properties are necessary and sufficient for our purposes. They define a function, the

so–called real inner–product, that imbues the vector space with notions of angles7 and

length. A vector space over R together with an associated real inner–product is called a real

inner–product space. Although we motivated the definition by appealing to trigonometric

relationships in a 2–dimensional plane the definition is sufficiently robust and applicable in

infinite–dimensional vector spaces. However, we will be concerned with finite–dimensional

vector spaces.

A consequence of defining an inner–product for a vector space is that a notion of math-

ematical continuity is also defined8. Intuitively, this makes sense since continuity requires a

7Although we have implicitly utilised notions of angles in discussing parallel and non-parallel vectors we
shall make this explicit later on when discussing orthogonality and collinearity.

8Formally, a real inner–product space is necessarily a normed linear space which, in turn, defines a
topological space which, in turn, defines some notion of continuity. Alternatively, a real inner–product space
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concept of “arbitrary closeness of entities” and inner–products define distances. Continuity

is a necessary requirement for the operations of differentiation, and Riemann integration

on closed, bounded intervals. So it comes as no surprise that inner–product spaces are very

important as the foundation of many models and methods in Physics, Engineering and Math-

ematics using multidimensional calculus. However, one of the achievements of the present

work is that for the extremisation problems we do not use calculus. This is pertinent for the

quadratic optimisation problems since the nature of such problems can make the search for

turning points, and thus the use of calculus, an irrelevant exercise. Therefore, the solution

of such problems using only the inner–product space structure is a clear demonstration of

the power afforded by this approach.

In the motivation for the definition of the inner–product it was suggested that its prop-

erties are carefully chosen to facilitate calculation. Also, we stated that an important reason

for a choice of a basis in a vector space is to allow calculations. We demonstrate the “coming

together” of these two observations. Let S =
{
P̄1, P̄2, . . . , P̄n

}
form a basis for V. Then,

for arbitrary vectors θA, θB we may write these as unique linear combinations of the basis

vectors; that is, θA =

n∑
i=1

θAiP̄i and θB =

n∑
j=1

θBjP̄j . The inner–product of the vectors is

〈θA, θB〉 =
〈

n∑
i=1

θAiP̄i,

n∑
j=1

θBjP̄j

〉
=

n∑
i=1

n∑
j=1

〈
θAiP̄i, θBjP̄j

〉
=

n∑
i=1

n∑
j=1

θAjθBi
〈
P̄i, P̄j

〉
.

As a consequence of linearity the apparently abstract entity, 〈θA, θB〉, is evaluated as a linear

combination,

n∑
i=1

n∑
j=1

θAjθBi
〈
P̄i, P̄j

〉
, of the products of the vector components defined by

the choice of basis, S. The sum can be processed further. Recall that in defining the inner–

product we postulated the existence of unit vectors in every possible direction. So, each

vector P̄i has an associated unit vector P̂i such that P̄i =
〈
P̄i, P̂i

〉
P̂i =

∥∥P̄i

∥∥ P̂i. Therefore,

using Eq. (A.7), this allows us to write

〈θA, θB〉 =
n∑

i=1

n∑
j=1

θAjθBi
〈
P̄i, P̄j

〉
=

n∑
i=1

n∑
j=1

θAjθBi
∥∥P̄i

∥∥ ∥∥P̄j

∥∥〈P̂i, P̂j

〉

=
n∑

i=1

θAiθBi
∥∥P̄i

∥∥2 + 2
n∑

i<j=1

θAjθBi
∥∥P̄i

∥∥ ∥∥P̄j

∥∥〈P̂i, P̂j

〉
.

(A.8)

The set Ŝ =
{
P̂1, P̂2, . . . , P̂n

}
forms a basis for V, since by definition each unit vector is

proportional or “linearly related” to a unique basis vector in S and, consequently, they inherit

linear independence and spanning properties of S. If we use Ŝ as the basis in Eq. (A.8) we

obtain

〈θA, θB〉 =

n∑
i=1

θAiθBi+ 2

n∑
i<j=1

θAjθBi
〈
P̂i, P̂j

〉
. (A.9)

defines a metric space which, in turn, defines a topological space which, in turn, defines some notion of
continuity.
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The observation here is that the use of unit, basis vectors simplifies the form of the expression

for evaluating the inner–product of a pair of vectors. We shall return to this form to simplify

it further, after we have discussed the notion of angles, collinearity, and orthogonality in

inner–product spaces.

A.3 Orthogonality and Collinearity

How does one define the angle between a pair of non–zero vectors in a vector space? On the

one hand there is no reason to expect that we can orient possibly infinite dimensional vectors

to obtain an intended angular separation between them. On the other hand vector spaces by

definition carry with them a natural notion of vectors being parallel or collinear: any pair of

vectors such that one of the vectors is a scaling of the other can be considered to be collinear.

In addition, at the heart of the definition for the inner–product presented in this work lies

the notion of projections of one vector onto the subspace spanned by another vector. When

defining this what we are actually doing is defining a mapping between a vector space – a

construct which can be difficult to visualise in higher dimensions – and trigonometry which

we are very comfortable with visually. An example of this sort of relationship is shown in Fig

(A.7). These diagrams are drawn to illustrate how the angle between the non–zero vectors

Figure A.7: The inner-product is used to define the angle between two non–zero vectors by
creating a 2–dimensional triangle whose sides are the lengths of the relevant vectors. In figure (a)
only arrows are used to depict multidimensional vectors in some abstract vector space. In figure (b)
a 2–dimensional triangle with sides equal to the lengths of the vectors drawn in figure (a). The angle
between the vectors Ā and B̄ is the one defined by the angle between the corresponding sides of the
triangle in (b); the angle is obtained by employing the cosine rule. Upon having this understanding
of the relationship between figures (a) and (b) it is not necessary to depict them as separate; instead,
a single picture, such as (c), in which arrows with the corresponding vector lengths separated by
the correct angles may be drawn.

Ā and B̄ are defined. Diagram A.7a should be viewed as a very primitive representation of

the vectors in some orientation. Note that although the arrows define a triangle the lengths

of the arrow have been deliberately drawn to be different from the corresponding triangle in

A.7b to emphasize the point that the triangle in A.7a contains only very primitive orientation

information: the addition of Ā and
(−B̄

)
defines Ā− B̄. In contrast, the triangle in A.7b is

constructed with sides whose lengths are defined by the inner–product. Triangles are simple

to both visualize and manipulate. In particular, the angle between the sides corresponding
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to the vectors Ā, B̄ is determined using the cosine rule,

cos γ =

(∥∥Ā∥∥2 + ∥∥B̄∥∥2) − ∥∥Ā− B̄
∥∥2

2
∥∥Ā∥∥ ∥∥B̄∥∥ (A.10)

The angle between the vectors Ā and B̄ is defined as the value of γ. Once this relationship is

determined the ideas in A.7a and A.7b can be coalesced into a single figure, A.7c. Equation

(A.10) states a relationship that is actually much simpler than it looks. Upon using the

properties of the inner–product we have

cos γ =

(〈
Ā, Ā

〉
+
〈
B̄, B̄

〉) − 〈
Ā− B̄, Ā− B̄

〉
2
〈
Ā, Â

〉〈
B̄, B̂

〉

=

(〈
Ā, Ā

〉
+
〈
B̄, B̄

〉) − (〈
Ā, Ā

〉
+
〈
B̄, B̄

〉)
+ 2

〈
Ā, B̄

〉
2
〈
Ā, Â

〉〈
B̄, B̂

〉

=

〈
Ā, B̄

〉〈
Ā, Â

〉〈
B̄, B̂

〉 . (A.11)

Equation (A.11) is commonly used in the literature as the definition of the angle between

the vectors Ā and B̄. This is because the cosine is completely determined by the relevant

values of the inner–product. This is no accident and should come as no surprise since it is

precisely this sort of reasoning that was used to motivate the definition of the inner–product

in the first place.

A comparison of Eq.’s (A.11) and (A.7) illuminates an alternative view of “atomic”

projections; the projection of one unit vector onto the subspace spanned by another unit

vector. It is the case that

cos γ =
〈
Â, B̂

〉
. (A.12)

That is, the cosine of the angle between two vectors is the inner–product of their respective

unit vectors. Another way of saying this is that the cosine of the angle between the non–zero

vectors Ā and B̄ is the signed length of the projection of Â on Span
({

B̂
})

. Manifestly,

we see why the inner–product is primarily used to return signed lengths of projections. It

is because the atomic projections – that is, the inner–product of unit vectors – are really

cosines. That is why the requirement, ∣∣∣〈Â, B̂〉∣∣∣ ≤ 1, (A.13)

we stated in the motivation for the inner–product is an important one. This is the Cauchy–

Schwarz inequality. An equivalent way of seeing that this requirement is encapsulated in

the definition of the inner–product is via the following proof.

Proof. Consider an arbitrary pair of non–zero vectors, Ā and B̄. For any scalar x and from
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the properties of the inner–product we must have

x2
〈
B̄, B̄

〉 − 2x
〈
Ā, B̄

〉
+
〈
Ā, Ā

〉
=

〈
Ā− xB̄, Ā− xB̄

〉
=
∥∥Ā− xB̄

∥∥2 ≥ 0.

If the quadratic expression above is viewed as a graph, then the inequality is equivalently

depicted as the graph not lying below the “x–axis”. This would be the case if and only if the

related quadratic equation has only one or no real roots. That is, the quadratic’s associated

discriminant is non-positive. So, we require

4
〈
Ā, B̄

〉2 − 4
〈
B̄, B̄

〉 〈
Ā, Ā

〉 ≤ 0

and the result follows. �

This inequality points out yet another important property of projections. By definition,

the “further” a vector is from a 1–dimensional subspace the smaller the magnitude of its

projection onto the subspace – for instance,
∣∣∣〈B̄, Â

〉∣∣∣ ≤ 〈
B̄, B̂

〉
. We shall show later on that

this relationship remains true for projections of vectors onto higher dimensional subspaces.

Now that we have a definition of angles, we may consider different orientations between

pairs of vectors. For the vectors Ā and B̄, we use the form
〈
Ā, B̄

〉
=

∥∥Ā∥∥ ∥∥B̄∥∥ cos γ of the

inner–product to facilitate the discussion.

1. First, we consider which orientations are relevant when the inner–product is 0. We pointed

out previously that as a consequence of the inner–product definition there are three, possi-

bly not exclusive, possibilities:
∥∥Ā∥∥ = 0,

∥∥B̄∥∥ = 0 or cos γ = 0. The first two possibilities

imply Ā = 0̄ and B̄ = 0̄ respectively. The third implies that the angle between the vectors

is 90◦; the vectors are perpendicular. These are the three conditions under which the

pair of vectors are said to be orthogonal. From the foregoing it is clear that the zero

vector is the only vector that is orthogonal to every other vector and itself.

2. Next, we consider what happens when a pair of non–zero vectors are parallel or collinear.

In this case γ = 0 and, consequently
〈
Ā, B̄

〉
=
∥∥Ā∥∥ ∥∥B̄∥∥; the Cauchy–Schwarz inequality

becomes an equality. While this shows that collinearity is sufficient for the Cauchy–

Schwarz inequality becoming an equality it is also necessary. This can be shown either by

appealing to the “single–root” condition in the proof of the Cauchy–Schwarz inequality

given above, or observing that if
〈
B̂, Â

〉
= 1 then

〈
B̄, Â

〉
=

∥∥B̄∥∥〈B̂, Â
〉

=
∥∥B̄∥∥.

Armed with the notion of orthogonality, we revisit the expression for the evaluation of

the inner–product of two vectors given in Eq. (A.9). We had obtained this form by using

unit, basis vectors. In addition to this we now require that the basis vectors be mutually

orthogonal. This means that
〈
P̂i, P̂j

〉
= 0 for i �= j. Consequently, we obtain further

simplification to the canonical form for the inner–product,

〈
θA, θB

〉
=

n∑
i=1

θAiθBi. (A.14)

Thus, we have demonstrated that the computational form of the inner–product of two vectors
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can be written as the sum of the products of the vectors’ corresponding components. This is

possible because we chose to evaluate the inner–product using a basis of unit vectors that

are orthogonal. Such a basis is called an orthonormal basis. If an orthonormal basis is

used as the usual basis in R
n, then Eq. (A.14) is the applicable form of the inner–product

and is referred to as the usual inner–product in n–dimensional Euclidean space. The usual

inner–product is the easiest form of the inner–product to manipulate in calculation since it

only involves products of corresponding vector components. A subtle point to make here is

that by choosing an appropriate basis – that is, a basis adapted to the inner–product – all

of the information that characterizes geometric relationships between vectors is contained in

the vectors’ components. Another way to put this is lengths relative to an orthonormal basis

are manifestly equivalent to lengths defined by the inner–product.



Appendix B

Negative Failure Correlation in

Diversity Experiments

Several experiments to study the impact of (design and process) diversity on system reliability

have been carried out. Some examples include the UCLA/Honeywell six language project

[56], the UCI/UVA experiment conducted by Knight and Leveson1 [10], the four universities

experiment sponsored by NASA2 [11], and the university of Iowa/Rockwell NVS project3.

More recently there have been further attempts to study diversity but not under controlled

conditions. Thousands of programs submitted to online programming competitions have

been analysed and the potential for diversity to result in significant reliability improvements

has been explored [57]. Also, database diversity and its potential for non–crash failure

detection has also been extensively studied [58, 59]. In this appendix we recount one of

the more popular diversity experiments, the Knight and Leveson experiment, and clarify the

relationship between the result reported in [10] and the LM result about correlated coincident

failure, on average, resulting from independently developed versions. We also note that in

this experiment there are no version pairs that fail together on some demands and, despite

this, exhibit negative failure correlation. In this regard we give a sufficient condition which

might explain why this is the case. This sufficient condition may also explain a similar lack

of coincidentally failing, negatively correlated pairs in another diversity experiment ([57]).

The Knight and Leveson experiment was used to test the hypothesis that the independent

development of multiple software versions, developed to the same requirements specification,

results in the independent failure of the versions that are developed. Twenty seven software

1This involved advanced undergraduate and graduate students from two universities developing programs
to solve the “Launch interceptor” problem. The problem is to determine whether data from radar reflections
off a flying object indicate a hostile flying object, to which an a signal for an interceptor must be given.

2This study involved forty programmers from four universities in teams of two (one programmer, one
mathematician), producing twenty versions of software to be used in the sensor management of a redundant
strapped down inertial unit. The acceptance procedure consisted of sixty test cases, fifty of which were
functional tests and the remaining randomly generated. Specification clarifications were given to the teams
as question/answer pairs.

3forty students (thirty–three Electrical and Computer Engineering (ECE) and Computer Science (CS)
students from University of Iowa and seven from Rockwell international) formed fifteen programming teams
to independently design, code and test computerized airplane landing systems.

207
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versions were created by advanced undergraduate and graduate students in computer science

from the University of Virginia and University of California. Attempts were made to ensure

the independent creation of the versions. Each version was ultimately subjected to a million

inputs/demands generated according to an operational profile that had been validated by

domain experts. The failure behaviour of each program on these inputs was determined.

From this, estimates can be obtained for both the pfds of the programs and the probability

that at least two of the versions fail on a randomly submitted input. Given twenty seven pfd

estimates, obtained from observing the failure behaviour of the versions on the test inputs,

the programs were assumed to fail independently on a random test input. In essence, if

we label the pfds as pfd1, . . . , pfd27, this independence assumption defines a collection of

twenty seven independent Bernoulli trials (the ith trial has parameter pfd i), resulting in a

probability distribution with the property

1 =
27∏
i=1

(pfd i + psd i) =
27∏
i=1

pfd i +
1

26!

∑
σ∈S27

pfdσ(1)psdσ(2) . . . psdσ(27) + . . . +
27∏
i=1

psd i ,

where S27 is the set of all permutations of the indices {1, . . . , 27} and pfd i = 1 − psd i , for

all i = 1, . . . , 27. Consequently, the probability of at least two of the versions failing on an

arbitrary input is given by

P0 := P

⎛
⎜⎝At least two programs

fail simultaneously

on a given test input

⎞
⎟⎠ = 1−

27∏
i=1

psd i −
1

26!

∑
σ∈S27

pfdσ(1)psdσ(2) . . . psdσ(27).

“Arbitrary input”, because we assume that this probability is the same irrespective of what

input is under consideration. Therefore, we may define a Bernoulli distributed random

variable, F ∼ Ber(P0); this is the experiment “an arbitrary input is submitted to all of the

versions, and the failure behaviour of the versions is observed”. In order to statistically

test whether this model is accurate one needs to compare the estimates of probabilities of

coincident failure (obtained from the observed experiment sample) with a so-called region of

acceptance which describes the set of outcomes that are “most likely”, assuming the model

F ∼ Ber(P0) is adequate. “Most likely” is defined by a chosen confidence level for the test

(99% was used). Of the one million test inputs, 1255 were observed to have caused at least

two of the versions to fail. This was compared with the endpoints of a 99% confidence interval

of a distribution that describes a sequence of n independent samplings from the distribution

F ∼ Ber(P0). Such a sequence of n ( = 1 million) independent Bernoulli trials – where each

trial is the submission of an input to all of the versions, and at least two versions fail on the

input with probability P0 – defines a binomial distribution, Bin(n, P0). The probability that

in n such trials there were s instances where at least two of the versions failed is given as

P

(
s instances out of n where

at least two of the versions failed

)
=

(
n

s

)
P0

s (1− P0)
n−s � P (K = s) ,
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where K∼N
(
nP0, nP0 (1− P0)

)
is the random variable distributed according to the Normal

approximation to the Binomial distribution B(n, P0). This Normal approximation is justified

because the number of test inputs, n, is large at one million. The model, F , was rejected at

99% confidence level and thus an assumption of independent failure of the versions, resulting

from the independent development of the versions, was refuted. We now know via the EL/LM

models that a more appropriate model would have been the following. Given the input x

and the twenty seven versions π1, . . . , π27, the indicator function for the event of interest is

1−
∏
i<j

(
1− ω

(
πi, x

)
ω
(
πj , x

))
=

{
1, if some pair of the 27 versions fails on x

0, otherwise

where i, j = 1, . . . , 27. Consequently, given the model (X,ΣX,PX (·)) for the occurrence

of demands the probability that at least two of the versions fail on a randomly occurring

demand is

P

⎛
⎜⎝ At least two programs

fail simultaneously

on a random test input

⎞
⎟⎠ =

∑
x∈X

⎛
⎝1−

∏
i<j

(
1− ω

(
πi, x

)
ω
(
πj , x

))⎞⎠PX (x).

If only a given pair of versions, π1 and π2, was under scrutiny then this simplifies to

P (π1 and π2 fail a random demand) =
∑
x∈X

(
ω
(
π1, x

)
ω
(
π2, x

))
PX (x) . (B.1)

which is the system pfd for a given pair of versions in a 1–out–of–2 configuration.

So, the experiment results suggest that despite attempts to independently develop mul-

tiple software versions (and in so doing make the insertion of faults into the versions by the

development teams independent) positive failure correlation between the developed versions

can still occur. Essentially, for the versions that are actually developed, the independent

insertion of faults during the creation of these versions does not preclude the overlapping

of failure regions associated with inserted faults. It is such overlaps that result in coinci-

dent failure between the developed versions. This result is related to, but different from

the EL/LM model result “independently developed versions cannot be expected to fail inde-

pendently” (see Section 2.5). The difference is that the EL/LM result is a statement about

average system pfd, where the average is calculated over all possible pairs of independently

developed versions. On the other hand the Knight and Leveson result is a statement about

the system pfd for a system made out of a given set of versions, and the uncertainty from

the versions’ development processes is not directly taken into account4. This difference is

illustrated by Eq.’s (2.2) and (2.15) in Chapter 2, which we reproduce here as Eq.’s (B.2)

and (B.3) respectively. It is the difference between the probability that a given pair of ver-

4In order to account for this uncertainty a large sample of programs would need to be developed under
“identical” development process conditions. The prohibitively large cost associated with this can make
this infeasible, as was pointed out in the NASA funded software diversity experiment [11] involving four
universities. It is the case, however, that there are repositories such as those studied in [57] that contain
thousands of programs written to the same relatively “simple” requirements specifications. In such cases a
feel for version sampling distributions might be obtained.
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sions, π1 and π2, fail on a randomly chosen demand, computationally given by expanding

Eq. (B.1) as

P

(
π1 and π2 fail

on a random demand X

)
= E

X
(ω (π1, X)ω (π2, X))

= pfd1pfd2 + Cov
X

(ω (π1, X) , ω (π2, X)) (B.2)

and the probability that a randomly chosen pair of versions fail on a randomly chosen

demand, given as

P

(
ΠA and ΠB fail

on a random demand X

)
= E

X,ΠA,ΠB

(ω (ΠA, X)ω (ΠB, X))

= E
X
(θA (X))E

X
(θB (X)) + Cov

X
(θA (X) , θB (X)) .

(B.3)

In both of these equations the covariance terms suggest deviations from failure independence.

These results are clearly related, but different results. If independence holds in Eq. (B.2)

for every possible version pair5 then independence is guaranteed in Eq. (B.3). This is an

argument of sufficiency but not of necessity, for the equations suggest that it is possible

not all pairs of versions exhibit failure independence and yet the channels may yet still fail

independently, on average. Admittedly, how to recognise such a situation in practice is a

non-trivial problem.

It turns out that, apart from pairs of versions that exhibited no coincident failure (in

this sense these versions are considered to be orthogonal), no negative failure correlation

was exhibited by pairs of versions sampled from the twenty seven versions produced in the

experiment [60]. A similar situation was observed for the expected system pfds reported

in an analysis of thousands of programs submitted to an online programming competitions

website [57]. There, thousands of programs were submitted to solve three programming chal-

lenges (referred to as the “3n+1”, “factovisors” and “prime–time” problems in the study)6.

The development of a 1–out–of–2 system with improving channel development processes was

simulated by removing the most unreliable versions from pools of versions that could be

created for each channel. The channels’ development processes were diverse in that differ-

ent programming languages were used for their creation (C,C++ and Pascal). After each

improvement to the development processes, randomly chosen version pairs were combined

and expected system pfd calculated. This was compared with the expected channel pfd to

5Admittedly, this would be a rather strange set of possible programs.
6The three programming challenges were:

• 3n+1: A number sequence is built as follows. Start with a given number; if it is odd, multiply by 3 and
add 1; if it is even, divide by 2. The sequence length is the number of these steps to arrive at a result of 1.
Determine the maximum sequence length for the numbers between two given integers 0 < i, j ≤ 100, 000;

• factovisors: For two given integers 0 ≤ i, j ≤ 231, determine whether j divides factorial i.

• prime–time: Euler discovered that the formula n2 +n+41 produces a prime for 0 ≤ n ≤ 40. However, it
does not always produce a prime. Write a program that calculates the percentage of primes the formula
generates for n between two integers i and j with 0 ≤ i ≤ j ≤ 10, 000.
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observe the order of reliability improvement due to diversity. It was the case that to begin

with the expected system pfd was close to, but worse than it would be under independent

failure of the versions. Upon improving the development processes the positive failure cor-

relation between the versions becomes significant, resulting in reliability improvements that

are not as large as they would be under independent channel failures. This was true for all

3 programming challenges. However, the results from the “factovisors” challenge differ from

the “3n+1” challenge when the processes in each case produced very reliable programs. For

the “3n+ 1” challenge positive failure correlation still significantly undermined the benefits

from diversity, while in the “factovisors” challenge the positive failure correlation was greatly

reduced with improving development processes, resulting in significant reliability gains due

to programming language diversity. These experiments suggest that particular pairs of ver-

sions, and version pairs on average, benefit from diversity when most of the version pairs

are essentially orthogonal and, otherwise, positive failure correlation undermines the benefits

from diversity.

Why would this be the case? Certainly, the EL and LM models tell us that if the de-

velopment teams are “similar” in which tasks they find difficult to develop software for then

the resulting set of versions can be expected to be positively correlated in their behaviour.

This would explain the results of the programming challenge (differences in programming

language does not induce sufficiently diverse development processes for negative failure cor-

relation to be observed). This, however is a statement on average which does not preclude

the possibility of producing particular version pairs that are negatively correlated: Eq. (B.2)

clearly suggests the possibility of zero or negative failure correlation. Yet, in the experiment

none of the pairs of coincidentally failing versions sampled from the twenty seven versions

exhibit negative failure correlation, given that these versions are imperfect and sometimes

fail together on the same demand. On the other hand note that if positively correlated ver-

sion pairs are sufficiently likely then positive failure correlation for average pairs of versions

unsurprisingly occurs (as an extreme example if positive covariance in Eq. (B.2) occurs for

all version pairs this implies positive covariance in Eq. (B.3)). To shed some light on this it is

instructive to deconstruct the covariance term in Eq. (B.2). Using the geometric framework

developed in Chapter 4 the version π1 can be modelled by a vector V1, and similarly some

vector V2 models π2. If V1 is not the perfect version 0̄ (that is, the version that succeeds

on all demands) then it will be a sum of orthogonal, imperfect single versions according to

Theorem 4.7.4. We may choose these imperfect single versions such that each fails on a

unique, single demand. V2 may be similarly decomposed. In fact, we may write

V1 = P1 + P and V2 = P2 + P,

where P1 is a sum of imperfect single versions (and is thus an imperfect single version) that

fail on those demands that V1 fails on but V2 does not. P1 is the “exclusive failure” part

of V1. Similarly, P2 models the “exclusive failure” part of V2. In contrast to P1 and P2, P

is the sum of imperfect single versions that fail only on the demands that both V1 and V2

fail on. Note that {P1, P2, P} is an orthogonal set of vectors. This allows us to compute the
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following probabilities (recall that the demand profile is modelled by the vector P̄ ):

P

(
π1 fails and π2 succeeds

on a random demand X

)
=
〈
P1, P̄

〉
, P

(
π2 fails and π1 succeeds

on a random demand X

)
=
〈
P2, P̄

〉
,

P

(
π1 and π2 fail

on a random demand X

)
= pfd12 =

〈
P, P

〉

and, consequently, the covariance between the versions V1 and V2 can be written as7

〈
V1, V2 − qP̄

〉
=
〈
P, P

〉〈
Y, Y

〉− 〈
P1, P1

〉〈
P2, P2

〉
(B.4)

where
〈
Y, Y

〉
=

(
1− 〈

P1, P1

〉− 〈
P2, P2

〉− 〈
P2, P2

〉− 〈
P, P

〉)
is the probability that both

versions succeed in operation. Note that

〈
P, P

〉〈
Y, Y

〉︸ ︷︷ ︸
A product of probabilities

where one probability concerns

coincident version failure, and

the other coincident version success

− 〈
P1, P1

〉〈
P2, P2

〉
.︸ ︷︷ ︸

A product of probabilities,

where each probability concerns

the exclusive failure of a version

In this factored form it is clear that the sign of the covariance is determined by the sizes of

two terms: a product of probabilities where the versions have identical behaviour (that is,

probability of “both versions fail” and probability of “both versions succeed”), and a product

of probabilities where the versions have dissimilar behaviour (that is, for each version, the

probability of the version failing exclusively). Therefore, the versions fail independently if

and only if

〈
P, P

〉〈
Y, Y

〉
=
〈
P1, P1

〉〈
P2, P2

〉
.

However, it is unobvious how a development process may be constrained in such a way as

to ensure such a relationship for the pair of versions produced. Additionally, the versions

7If we recall that:

P

(
π1 fails on a

random demand X

)
= pfd1 =

〈
V1, P̄

〉
=

〈
P1 + P, P̄

〉
=

〈
P1, P̄

〉
+

〈
P, P̄

〉
,

P

(
π2 fails on a

random demand X

)
= pfd2 =

〈
V2, P̄

〉
=

〈
P2 + P, P̄

〉
=

〈
P2, P̄

〉
+

〈
P, P̄

〉
= q

then the covariance between the versions V1 and V2 can be written as〈
V1, V2 − qP̄

〉
=

〈
P1 + P,P2 + P − (〈

P2, P̄
〉
+

〈
P, P̄

〉)
P̄
〉

=
〈
P,P

〉 (
1− 〈

P1, P1
〉− 〈

P2, P2
〉− 〈

P,P
〉) − 〈

P1, P1
〉〈

P2, P2
〉

=
〈
P,P

〉〈
Y, Y

〉− 〈
P1, P1

〉〈
P2, P2

〉
where

〈
Y, Y

〉
=

(
1− 〈

P1, P1

〉− 〈
P2, P2

〉− 〈
P2, P2

〉− 〈
P,P

〉)
is the probability that both versions succeed

in operation.
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exhibit negative failure correlation if and only if

〈
P, P

〉〈
Y, Y

〉
<
〈
P1, P1

〉〈
P2, P2

〉
,

and positive failure correlation if and only if

〈
P, P

〉〈
Y, Y

〉
>
〈
P1, P1

〉〈
P2, P2

〉
.

Now, if the development process is such that the versions created tend to be very reliable,

then the probability of joint success
〈
Y, Y

〉
is very large and the probability of coincident

failure
〈
P, P

〉
is very small

(〈
P, P

〉� 1 ,
〈
Y, Y

〉)
. So, in order for the versions to be positively

correlated, it is sufficient that one version have a probability of failing exclusively that is

equal to the probability of coincident failure. While we do not expect equality in practice, it

might be the case that the sizes of these probabilities are comparable. Experimental studies

of diversity have not focused on estimating the relative sizes of these probabilities8 and, for

development processes that result in very reliable systems, failures (whether coincident or

not) are extremely rare. This presents difficulties for making such estimates. However, if

these probabilities were comparable then, due to the relatively large probability of coincident

success
〈
Y, Y

〉
, positive failure correlation can be expected. This might explain the lack of

negatively correlated version pairs that are not orthogonal in [10], and the lack of negative

failure correlation for the pairs of versions created to solve the “3n+ 1” and “factovisors”

programming challenges reported in [57]. To round off this section we make two observations:

• for a scenario with 2 demands (this approximates a situation where the demand space

can be partitioned into 2 large, meaningful subsets where versions fail identically over

the subset) it is impossible for non–orthogonal versions to be negatively correlated. In

2–dimensions, for a pair of versions that have some coincident failure, we have
〈
P, P

〉 �= 0

and
〈
Pi, Pi

〉
= 0 for some i = 1, 2. This implies that the rhs of Eq. (B.4) cannot be

negative.

• the factored form of covariance – the rhs of Eq. (B.4) – is derived for a pair of imperfect

versions. However, this form is still true if, instead of a pair of versions, we considered

a population of versions (in this case the vectors would represent difficulty functions).

That is, the covariance in the LM Eq. (B.3) can be factored similarly. Consequently,

the observations made for the case of a particular pair of versions carry over to the case

where version pairs are averaged over. The difference being that considerations on average

are weaker than considerations for a particular pair of versions: negative correlation, on

average, does not imply negative correlation for particular version pairs.

8However, it is the case that the studies might give indications to general patterns, if any. For instance,
half of the faults found in the Knight and Leveson experiment involved 2 or more of their (mostly very
reliable) programs.



Appendix C

The LM Model: Interpretations

and Practical Considerations

The LMmodel may be applied in a variety of situations. In this chapter we further discuss the

definition of the LM model, considering the various mathematical constructs that make up

the LM model, and showing different ways in which the model may be applied in practice (see

Chapter 2 for a detailed introduction to the LM model). In so doing we aim to demonstrate

the wide applicability of the LM model.

C.1 A Characterization of Isolated Teams

Given a system development process (consisting of a pair of channel development processes)

how would one determine, in practice, if the development teams thereof are perfectly iso-

lated? Intuitively, achieving perfectly isolated development teams in practice should imply

that each team’s respective development process is indistinguishable from a single–version

system development process. In this regard, when introducing the LM model in Chapter 2 ,a

necessary requirement for perfectly isolated development teams was observability criterion

2.4.1. This was the requirement that the outcomes of activities in a given channel develop-

ment process be such that from them a participant in the process cannot confirm or refute the

existence of another channel development process. In practice, any software development pro-

cess that aims to achieve the independent development of multiple, functionally-equivalent

software versions must satisfy this requirement. Note, however, that this is not a sufficient

condition for the channels to be developed probabilistically independently: despite this prop-

erty holding further justification needs to be given for why the probability of developing an

arbitrary pair of versions factors into a product of the probabilities of developing each of the

versions. It is worth noting that criterion 2.4.1 is a property of the outcomes of the process,

and not the state of mind of the development team members: it does not mean that one

development team is not aware of the other team’s existence. For instance, the development

teams may be separated in time with one development process beginning only after the other
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process has finished (e.g. functionally equivalent COTS software with development processes

separated by a year). The team members in the latter process may be aware that the former

process took place, and yet the outcomes of the activities in the latter process are such that

they do not reference (even if indirectly) the previous process.

The criterion is also necessary for the development of a single version system, using a

given methodology1, to be probabilistically indistinguishable from the development of a 1–

out–of–2 system’s channel built using the same methodology. This is because the criterion

ensures that the sample spaces in each of these scenarios is identical; examination of the

outcomes cannot be used to distinguish between these two development scenarios. The

further requirement that the same methodology be used in both scenarios ensures that the

probability distributions are identical. This will be useful when discussing the result that,

under the LM model assumptions, “on average, using a 1–out–of–2 system architecture

ensures a system reliability that is no worse, and may be better, than the system reliability

resulting from employing a related single–version system architecture” (see Section 2.5 for a

more precise statement of this result). Note that if the criterion does not hold then the sample

spaces are not identical, and therefore the probability distributions cannot be identical in

the usual meaningful way.

C.2 Conditionally Independent Version Sampling Dis-

tributions

The version sampling distributions in the LM model are conditionally independent, con-

ditional on some common event during the system development process or during system

operation. This is exemplified in Fig. C.2. In this diagram there are no random variables

depicted as occurring during the system development process in such a way as to lie on a

path connecting the channel development processes. However, the purpose of the diagram

is to depict relationships between sources of uncertainty. Therefore, if a random variable

has its value fixed for the period over which the model is valid this random variable is not

depicted in the graph. Typical examples of such random variables include an unchanging

system specification, the education and experience of the development team members, the

organisation funding the development process and the industry “state of the art”. Each of

these potential sources of uncertainty might be unchanging over a significant period of time.

As a consequence a diagram such as Fig. C.2 may not depict them. However, the values

of such random variables can affect both channel development processes, thereby inducing

conditional independence between the channel development processes. So, for the pair of

versions π1 and π2 the selection/development of π1 for one channel is conditionally inde-

pendent of the selection/development of π2 for the second channel, conditional on common

influences that describe the “state of the world” shared by the channel developments, but

not depicted in the graph.

While in general these conditional influences can be subject to variation and uncertainty

1For the definition of methodology used in this thesis please see Section 2.1)
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fails
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Figure C.2: An example of a development process that may be modelled via the LM model. Such
a diagram does not distinguish between a scenario where there are no common influences during
system development, and a scenario where all of the common influences are instantiated (that is,
they have values that remain fixed throughout the development process.)
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there are two view points where such uncertainty disappears:

1. before the system development process has begun the values of such influences are decided

upon, and intended to be fixed for the duration of the system development process (e.g. a

fixed budget for the project, and personnel). Consequently, one may apply the LM model

with fixed values for these influences before the system development process has begun2;

2. after the system development process has completed the values of these influences have

been observed, and are known with certainty to have been unchanging;

Note that even if these common influences change during development the LM model may

still be used, conditional on the “latest” values of the influences3 and the satisfying of

observability criterion 2.4.1.

C.3 Relationships Between The EL and LM Models

The EL model has been described as a particular case of the LM model: it is the LM model in

the situation where the channel development processes utilise identical methodologies. Con-

sequently, the teams develop their respective versions “in the same way”. They are equally

likely to make the same mistakes during development. The mathematical characterisation of

this is that the channel development processes have identical version sampling distributions.

However, it is possible to describe the LM model as resulting from a sampling with replace-

ment from a distribution whose mean is given by the EL model. To see this recall from

Chapter 2 that a typical version sampling distribution is conditional on the outcomes of the

activities in a channel’s development process
(
for example, PΠ(π|d(n − 1), . . . , d1)

)
. In this

sense the version sampling distribution can be viewed as a measurable function of random

variables thus making it a random variable (i.e. PΠ(π|D(n−1), . . . , D1)). We refer to this as

a version sampling random variable. This means that if d
′

(n−1) ∈ Ωdn−1
, . . . , d

′

1 ∈ Ωd1

is a set of development process activity outcomes (and, therefore, may be viewed as a develop-

ment process methodology) and d(n−1) ∈ Ωdn−1
, . . . , d1 ∈ Ωd1

is a different set/methodology

then

PΠ(π|d(n− 1), . . . , d1) �= PΠ(π|d′(n− 1), . . . , d
′

1)

in general. This suggests that there is variation in the version sampling random variable

across different values of the development activities’ outcomes. Each instantiation of the

version sampling random variable defines a conditional distribution for modelling a channel

development process with the given activity outcomes. A pair of instantiations would be a

2Whether this model is still valid after the development process has completed is a related, but separate
matter. Certainly, it is not unusual for personnel or budgetary changes to be made during the course of
system development, and for such changes to have undesired effects [61]. Nevertheless, the point here is that
when the LM model is instantiated it is valid to treat these possible sources of uncertainty as known and
fixed since this would reflect the intended conditions under which system development will occur.

3“Latest” is in quotes because the intention here is not to suggest that time is necessarily the relevant
factor for deciding which values of influences to use. Time is used here because it is easy to think in terms of a
model with a memoryless property of the distant past: only the most recent values of random variables matter
in determining the stochastic law to use for the system’s further evolution. However, in general, as long as
the relevant values of the influences can be identified the version sampling distributions are conditioned on
these values.
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diverse pair of channel development processes, in general. Such a pair of sampling distribu-

tions define a system development process with diverse channel development processes. The

probability that a version π is created for one channel is not necessarily the same as the

probability the version is created for the other channel. Note that the mean of the distri-

bution of the random variable PΠ(π|D(n− 1), . . . , D1) is obtained by averaging the version

sampling distribution over all the possible values of the development process activities re-

sulting in the version sampling distribution PΠ (π). So, if there is “complete uncertainty”

concerning the outcomes of activities in a channel development process the version sampling

distribution to use is the one given by the average. Therefore, in a system development

process where each channel’s development process has “complete uncertainty” the sampling

distributions for each channel will be identical: the average sampling distribution PΠ (π).

This is an EL model situation. This illustrates a possible relationship between LM models

(being “fine–grained” entities on the one hand) and EL models (being “aggregate” entities

on the other hand), and can be characterized as follows: the more uncertainty one has about

the independent channel development processes the less diverse the channel development

processes appear to be.

C.4 Modelling Non–linear Software Development Frame-

works

In developing the LM model the development process activities were linear, with later activi-

ties directly depending only on the outcomes of the activity immediately prior. For instance,

in each channel development process depicted in Fig. C.2 the activity “unit testing and code

inspection” is directly dependent only on the outcome of the activity “coding”. However,

such a linear relationship between the activities is not necessary for the LM model to be

applied. This is because even if the activities within a channel development process have

non-linear dependence relationships, as long as the outcomes of the activities in the process

conform to observability criterion 2.4.1, the version sampling distributions can be condi-

tionally independent. This means that various kinds of software development frameworks

(e.g. enhanced waterfall models, the Spiral model, or Agile methods [30, 31, 32]) may be

modelled by LM, including software development processes involving cyclical relationships

between different activities (e.g. errors discovered in a prototype version may expose errors

in the specification resulting in a specification update). The models can describe what hap-

pens over each cycle in a cyclical development framework, or what ultimately happens at

“the end” of the development process (in those scenarios where it makes sense to speak of

the development process ending).

C.5 When Forcing Diversity Cannot Worsen Reliability

We demonstrated in Chapter 2 (Section 2.5) two senses in which forcing diversity was shown

to result in the best reliability, compared with when diversity is not forced. This is true
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when a manager of a development process is:

1. “indifferent” between which of a set of available methodologies to use when diversity is

not forced. Consider a situation where the manager does not have sufficient evidence

to determine which methodology results in the best expected system pfd. Even though

the manager might be willing to accept that there might exist an ordering between the

methodologies – in the sense that use of some methodologies results in better expected

system pfds than others – the manager can be agnostic about what that order actually is.

So, the discrete probability distribution that models the managers propensity of choosing

a given methodology is such that the methodologies are equally likely to be chosen;

2. “indifferent” between the expected system pfds resulting from not forcing diversity. Here,

the manager has sufficient evidence to indicate that the numerical value of the expected

system pfd is the same, irrespective of which methodology is employed in system develop-

ment.

Both of these results are generalised in Chapter 5 and summarized in Fig. 6.14 on page 186.

C.6 Cost Considerations

Cost considerations complicate decisions about whether to employ a fault–tolerant architec-

ture and whether to force diversity. For instance, the result just outlined for the virtue of

fault–tolerance under the LM model was demonstrated by comparing the reliability result-

ing from a 1–out–of–2 system development with the reliability of “a necessarily cheaper”

channel development process. This, however, may be an incomplete consideration. That

is, it might be the case that the reliability gain from employing a 1–out–of–2 architecture

does not justify the possible extra expense. Generally, there is no simple way in which the

LM model can be used to compare the reliability when fault–tolerance is not used with the

reliability when it is used. This is because cost can be considered as part of the methodology

for a channel development: it affects the way a version is developed and it can change from

one development process to another. Consequently, unless explicit assumptions are made

about how changes in cost change version sampling distributions, there is no general way

in which version sampling distributions may be compared on a cost basis. Similar issues

arise when considering whether to force diversity, or not, in the context of the LM model.

The use of extra methodologies in forcing diversity may imply development costs cannot

decrease, but may increase. Again, a comparison that involves changing costs requires extra

assumptions about the relationship between changes in methodologies and the consequences

of these changes for version sampling distributions. So, again general results seem unlikely.

Certainly, if forcing diversity is too expensive to implement then one may explore how much

process diversity can be implemented, and whether this limited process diversity should be

pursued. In this regard it seems likely that applying Theorem 5.2.2 (on page 135) to subsets

of the set of N channels would still produce arguments for forcing diversity, other things

being equal. Experimental evaluation of the relationship between cost and reliability gains
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from employing fault–tolerant architectures could prove useful in indicating trends; work has

been carried out in this regard [60, 62].

C.7 Definitions of Terms and Concepts in The LM Model

The application of the LM model to practical situations requires care in defining and using

the model constructs. Notwithstanding, the model benefits from a significant amount of

flexibility so that many different systems can, and have been modelled using the formalism

(see [54] for a general overview. Also, see [18] for a discussion of its application to security,

[55] for an application to computer–aided detection in a medical environment and [58] for

a discussion of its application to database management systems). In this section we ex-

plore some of the flexibility in defining LM model concepts for different practical scenarios.

The point is to demonstrate the freedom in applying the modelling framework to different

scenarios.

C.7.1 Relationship Between The Score Function and Correctness

For the score function to be defined in practice it is necessary for some notion of correctness

to have already been defined. Here we are appealing to the idea that, ultimately, it is possible

to determine whether a program has responded correctly, or not, to a demand received from

the environment, even if such enlightenment is gained long after the fact. That is, for every

practical scenario of interest we postulate the existence of an oracle such that by it’s use it is

always possible to determine when a given version fails on a given demand. Ideally, such an

oracle should be intimately related to the requirements specification for the system. However,

there may be errors contained in this documentation. In such cases the LM model is still

applicable since the notion of correctness used to define the score function is not necessarily

obtained from the requirements and specification. Hence, a program that implements the

erroneous specification will be determined by the score function to fail in operation.

C.7.2 Relationship between Demand Space, Program Space and

Score Function

There are a number of different ways in which we may define the triplet of the demand

space X, the space of programs P and the score function ω(π, x). This is useful since it

allows the LM model to be used to analyse possibly different systems in different ways, and

thereby answer different questions related to system reliability. In what follows we explore

various examples of such definitions. Our aim is to point out the care that should be taken

when defining X, P and ω(π, x) since these quantities are necessarily related, and cannot all

be defined independently of each other4. However, within this constraint there are various

possibilities for the definitions. For illustration consider the following scenarios, each with

4The reason for this is because we are defining a function, ω(π, x). So, for ω(π, x) to be well defined its
domain, the cartesian product of the sets X and P, must be well defined. In practice, this means that it is
impossible for the definition of ω(π, x) to be independent of X and P.
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corresponding suggested definitions for these three entities. The definitions associated with

each scenario are non–unique and alternatives are certainly possible.

1. Consider a system that is intended to contain a yet to be built software component, where

this software component should operate in a given environment. Treating the software as

a black box let us suppose that in order for an observer to determine whether the software

has failed it is necessary and sufficient to observe the environmental input to, and the

corresponding output of, the software. In this sense the internal state of the software is

unimportant in determining system failure. Consequently, we may define X as the set of all

possible inputs to the system from the environment. P is defined as the set of all programs

that may possibly be developed. So, for π ∈ P, x ∈ X we define the score function

ω(π, x) =

{
1, if π can be executed in the system and in operation fails on x

0, otherwise.

Note, it is reasonable to expect that programs are created to run on a specified target

software platform (for instance, source code may be compiled to create operating system

specific executables). Consequently, programs created for one platform may not execute

on another platform. P, as the set of all programs that may be developed, can contain

programs that will not be executable on the platform of choice for the system under

consideration. Strictly speaking, the act of submitting an input to such a program from

the environment does not make sense since such a program cannot be executed as part

of the system under consideration. However, the score function as defined above treats

system success and the inability to execute the program π in the system as equivalent:

they are both indicated by the value “0” of the score function. Clearly, these two events

are significantly different. So, the version sampling distributions (such as PΠ(·)) may be

defined with the requirement that versions that cannot be executed in the system have

zero probability of being created. That is, programs that can be executed are developed,

”almost surely”5. In essence, this indirectly transforms expectations of the score function

into sums of probabilities of either success or failure events exclusively. Alternatively, P

may be defined to be the set of all programs that can be executed in the system. Upon

doing this the score function definition may be given as

ω(π, x) =

{
1, if π fails on x in operation

0, if π succeeds on x in operation

2. If the internal program state is important (in the sense of example 1 above) in determining

whether a system fails or succeeds then X may be defined as the set of all ordered pairs

consisting of a possible internal program state and a possible input to the system from

the environment. P is the set of all programs that may possibly be developed, and for

5Events whose complements have zero probability of occurrence are said to occur “almost surely”.
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π ∈ P, x ∈ X we define the score function

ω(π, x) =

{
1, if π can be executed in the system and in operation fails on x

0, otherwise.

3. Consider the development of a system channel such that there is a fixed computer memory

size that the program to be developed must fit in (for instance, 1 GB). This considerably

limits the space of possible programs from the space of all possible programs. Further,

suppose that the sensors for the system being built ultimately provide inputs with a digital

resolution of the environment so that there is a finite, possibly very large number of binary

inputs to the system (for example, a resolution of 64 bits). Then P may be defined as the

set of all programs that may fit into the fixed amount of memory, X may be defined as the

set of all ordered pairs of possible program states and binary inputs to the system that

describe the environment, and for π ∈ P, x ∈ X we define the score function

ω(π, x) =

{
1, if π can be executed in the system and in operation fails on x

0, otherwise.

Again, PΠ(·) is defined appropriately to make the score function usefully detect success.

4. Given that whatever program is developed must run on a predetermined target (Hardware

and Software) platform, P can be defined as the set of all programs that can fit in some

fixed amount of memory, be deployed and are executable on the target platform. Then,

the set of demands can be defined as the set of all ordered pairs of possible program states

and binary inputs to the system that describe the environment, and for π ∈ P, x ∈ X we

define the score function

ω(π, x) =

{
1, if π fails on x

0, otherwise.

In this case the definition of the score function is equivalent to a useful and complete

definition of failure and success events. Consequently, the distribution PΠ(·) does not

have to be defined in such a way as to assign zero probability to the development of

certain programs.

5. What about if a subset of the inputs are such that failure to correctly handle these inputs

results in significantly worse consequences compared with failing to handle other inputs?

Then we may consider these inputs as being critical in this sense, and restrict our analysis

to studying the behaviour of software over this input subset. So, we define X as the set of

all ordered pairs of system–state and critical environmental input. P and ω(π, x) may be

defined in the same way as example 4 above.

6. Further still, given partial knowledge of a program’s failure behaviour, suppose tests of

the program on some subset of the input space show that the program does not fail on the

subset. Therefore, this program could potentially be any program from P that does not

fail on the same subset of demands6. Thus, we may define P as the set of all programs

6Here, we are assuming that confidence in the results of testing is not an issue, and that no extra knowledge
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which have the property that they do not fail on this subset of the demand space. In

such a scenario the failure behaviour of such programs on the complement of this subset

of demands is of interest. X and the score function may be defined in the same way as

example 5 above.

C.7.3 The (In)divisibility of Programs

We have illustrated different ways of defining P. Also, the definition of a program for the

purposes of modelling has some flexibility. Each definition of program we might be interested

in derives from the usual definition of a program, but abstracts away from this definition by

concentrating on a property of interest. For instance, as was hinted at previously, a program

could be a binary sequence that fits in some fixed amount of memory. Alternatively, all

programs that have identical failure sets define an equivalence class and, consequently, they

may be considered to be “the same” program. Further yet, programs that have the same

behaviour in terms of control flow are considered to be the same program despite not having

identical binary signatures. It is also useful to note that the modelled notion of a program

may be viewed as either being atomic (each member of P is a single entity) or not. Atomicity

is acceptable despite the possibility that in practice there may be a sense in which one

program is “contained within” another program. The point is if the programs are intended

to be functionally equivalent, forming the channels of a 1–out–of–2 system, then modularity

is unimportant to answer the question “do a pair of programs fail coincidentally?”. We

have not come across any practical scenario where application of the models has necessarily

required a non–atomic notion of programs.

C.7.4 Subjective vs Objective Probabilities

Another aspect of modelling that is flexible is the “nature” or interpretation of the proba-

bilities. To a large extent this thesis has presented probabilities, like system pfd, as objective

probabilities: the values of these probabilities are the same for all observers. However, this

does not need to be the only applicable viewpoint as, alternatively, the probabilities may be

subjective: possibly changing from one observer to another and dependent on an observer’s

state of knowledge about the environment in which an experiment is taking place. As an

example of this consider the result that under indifference between methodologies forcing

diversity guarantees reliability that is no worse, and may be better, than if diversity is not

forced. This was first stated in Chapter 2 (see Eq. (2.19) on page 48) and generalised in

Chapter 5 (see Theorem 5.2.2 on page 135). Each of these results can be viewed as state-

ments involving either objective or subjective probabilities. Under a viewpoint of objectivity

the probabilities have fixed, possibly unknown, values. The results therefore are statements

that are true whatever the fixed values of the pfds are. To use the results the values of the

expected pfds do not need to be known; one need only verify that a given scenario satisfies

the conditions under which the results hold. Alternatively, if viewed as subjective entities

the expected pfd values in these results are the values an observer/assessor has evidence

concerning the behaviour of the program on other subsets of the demand space is available.
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to support a belief in. In this sense the results act as a consistency check for the observers

beliefs: if the values do not obey the inequalities then they are inconsistent, and the observer

will need to modify her beliefs.

C.7.5 The Definition of Program and System Failure

Use of the LM model requires that the failure behaviour of the versions in isolation be

sufficient to determine the failure behaviour of the 1–out–of–2 system that is comprised of

the versions. The score function, ω(π, x), states when a given program π fails on a given

demand x. To determine when a 1–out–of–2 system consisting of a pair of versions, π1 and

π2 say, fails on a given demand x it is sufficient to multiply the respective values of the

score function, ω(π1, x)ω(π2, x). There is an unstated assumption here. We assume that

the act of combining the programs into a system does not introduce, or remove, the failure

behaviour of the individual programs. To this end only the consequences of design faults are

the main focus of these conceptual models. However, further care should be taken in what

the definitions of channel and system failure are, and how these are related. This is because

the score function is not necessarily a direct statement about the outputs of the channels.

Instead, it is a statement about a consistent classification of the channel and system outputs

into failure and success categories, where coincident channel failure is sufficient for system

failure.

As an example of the kinds of issues that may arise, consider an application of fault–

tolerance in detecting channel failure using back–to–back, channel–output comparisons.

That is, comparing the numerical outputs of a system’s constituent channels, and thereby

looking for differences between these values which would indicate that at least one of the

channels has failed. For the purposes of giving a simple example suppose that differences in

the channel outputs due to the use of finite approximation mathematics do not occur7. In

effect this means that we do not have a problem with false–positives (like the protection–

system scenario we considered when introducing the LM model in Chapter 2 ). So, whenever

the versions both succeed their outputs will be identical. Then the LM model can be viewed

as a “pessimistic”8 demonstration of the extent to which coincident failure undermines the

failure detection capability of fault–tolerance. Pessimistic because coincident failure may

involve different wrong outputs from the channels which would be detected as a failure

occurrence in practice, but the LM model as presented here ignores9.

7A dramatic example of such phenomena is the so–called consistent comparison problem detailed in [63].
8The quotes indicate that the pessimism here can be argued to be optimism, since false positives due to

phenomena like the consistent comparison problem are assumed to not be an issue.
9The use of diverse, coincident failure as a means of failure detection may or may not be practical.

Certainly, this has been argued as a possible cost–effective means of failure detection, and is intimately
linked with the ethos of fault–tolerant approaches like N–version programming [14, 8]. This approach might
be adequate in a scenario where upon detecting differences in channel output transfer of control is given to
some backup–system, such as in the A310 flap/slat control system where failure detection causes a backup–
system to take over for the continued safe flight and landing of the aircraft [10]. There are, however, issues
which need to be considered with the approach including the consistent comparison problem (which implies
differences of channel output may not necessarily be due to failure) and the added possible impact on system
availability; even if failure is detected there may be a need to carry out further analysis offline thus reducing
system availability. In the NASA sponsored “four universities” experiment [11] “continued service” was a
priority and consequently coincident failure was sufficient for system failure despite the possibility of the
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C.7.6 The Definition of Development Teams

There is also flexibility in the number of development teams that the model caters for. Thus

far, in the model’s development and use, it has been useful to model in terms of a sin-

gle development team per channel development process. However, this is not a necessary

requirement: a channel’s development process may involve multiple teams, with varied re-

sponsibilities, interacting with one another within the process. As long as the ISA holds the

intra–team interactions within a given channel development process can be as complex as

possible. Also, the models do not preclude the possibility or the effects of teams controlling

the channel development processes from “outside”, such as the coordinating team (C-team)

in the development of N–version software. Furthermore, the number of “actual” teams that

constitute “a single team” in each process need not be the same and does not change the

model’s applicability.

channels failing with different outputs.
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