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ABSTRACT 

The paper presents a route choice model for dynamic assignment in congested, i.e. overcrowded, 

transit networks where it is assumed that passengers are supported with real-time information on 

carrier arrivals at stops. If the stop layout is such that passenger congestion results in First-In-First-

Out (FIFO) queues, a new formulation is devised for calculating waiting times, total travel times 

and route splits. Numerical results for a simple example network show the effect of information on 

route choice when heavy congestion is observed. While the provision of information does not lead 

to a remarkable decrease in total travel time, with the exception of some particular instances, it 

changes the travel behaviour of passengers that seem to be more averse to queuing at later stages 

of their journey and, thus, prefer to interchange at less congested stations.  
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1 INTRODUCTION  

It has been largely acknowledged in the last decades that urban sustainable development needs to 

overcome the dependence on the private car (Newman and Kenworthy, 1999, European 

Commission, 2009) and requires a modal shift towards public transport, as it performs better than 

private transport with regard to the six sub-objectives for sustainability developed by May in 2001 

(unpublished, cited by Black et al., 2002). In this context, much hope is invested in Advanced 

Traveller Information Systems (ATIS). Indeed, although information provision cannot directly 

decrease private car use, it can produce time savings – either when tracking and comparing travel 

options or when planning and deciding – and thus can enhance the quality of service, which in turn 

contributes to persuading people to switch modes.  

In order to evaluate the potential benefit brought about by ATIS in terms of total travel time 

savings and congestion relief on the public transport network, new route choice models for transit 

assignment are needed, which are capable of representing the travel choices of passengers assisted 

by information systems and highlight any change in the distribution of flows across the network 

with respect to the case where no ATIS is in place, especially if the system is subject to recurring 

overcrowding.  

Consequently, this paper proposes a dynamic route choice model for transit assignment to densely 

connected networks where congestion results in passengers First-In-First-Out (FIFO) queues at the 

stops and where travellers are supported with real-time information on vehicle arrivals, for 

example through countdown displays. 

In densely connected urban networks, following Nguyen and Pallottino (1988) and Spiess and 

Florian (1989), it is assumed that passengers would not select the shortest single itinerary to 

destination, but would rather choose a bundle of potentially optimal paths, formally known as 

hyperpaths or travel strategies, and then would follow one specific path of their hyperpath 

depending on events occurring while they are waiting at the stop, namely what is the first 

attractive line (Nguyen and Pallottino, 1988) that they can board. 

Moreover, as in (Hickman and Wilson, 1995, Gentile et al., 2005), it is assumed that real-time 

information changes the travel behaviour in such a way that travellers would not get on a carrier 

only because it is the first of their choice set that becomes available at the stop, but would board it 
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2 

 

only if its remaining travel time to destination is shorter than the sum of waiting time plus travel 

time upon boarding for subsequent services. An important innovation with respect to (Hickman 

and Wilson, 1995, Gentile et al., 2005) is that the proposed model acknowledges that recurrent 

overcrowding can result in passengers’ queues at transit stops and, in the context of commuting 

trips, it is assumed that travellers do not make their travel choices only considering the average 

values of frequencies and in-vehicle travel times, but also considering congestion levels for the 

different lines of their choices. In other words the proposed model assumes that the users know by 

previous travel experience how many vehicles of the same line they have to wait, on average, 

because of insufficient capacity on-board.  

First applications to a small example network seem to suggest that, if real time information is 

provided, route choices tend to be more conscious in the sense that passengers would be more 

prone to wait for a subsequent service or select slower lines in order to avoid transfers at crowded 

stations. 

The rest of the paper is organised as follows. The next section presents the background of the 

study, while the methodology is explained in Section 3. The solution algorithm is detailed in 

Section 4. Finally, in Section 5 a numerical example is presented and conclusions are drawn in 

Section 6. 

2 BACKGROUND  

Transit assignment aims at describing and predicting the choices of public transport users, 

depending on the assumptions made about travellers’ behaviour, congestion effects, and the level 

of service supplied by the transport system.  

For example, in networks with highly frequent services it is assumed that travellers do not time 

their arrival at stops with the lines’ schedule and, when making their travel choices, they only 

consider average frequencies and in-vehicle travel times (this is the main assumtpion of frequency-

based models). In such a setting, transit assignment models can be developed considering a 

strategy-based (or hyperpath-based) route choice model, as in (Spiess and Florian, 1989). Starting 

from the origin, the travel strategy involves the iterative sequence of walking to a public transport 

stop or to the destination, selecting the set of attractive lines (Nguyen and Pallottino, 1988) to 

board and, for each of them, the stop where to alight. If two or more attractive lines are available at 

the origin/transfer stop, then the best option is to board the first one approaching (Spiess, 1983, 

Spiess, 1984).  

The result of such a choice is a set of simple itineraries that can diverge, only at stops, along the 

routes of the attractive lines (Bouzaiene-Ayari et al., 2001), and the realisation of the same travel 

strategy may change, from day to day, due to ‘micro-level’ events such as what attractive line 

becomes available first at the stop, or what is the actual realisation of the waiting and in-vehicle 

time. Notwithstanding these uncertainties on the supply and the stochasticity of the waiting time, 

the classical application of the hyperpath paradigm allows for developing a determisinstic route 

choice model for transit assignment, where it is assumed that travel choices ultimately depend on 
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the expected value of the total travel time and not on its actual realisation on a particular day. 

Despite some authors (Miller-Hooks and Mahmassani, 2000, Pretolani 2000, Yang and Miller-

Hooks, 2004) have also applied hyperpaths to model explicitly the effect of day-to-day variations 

of travel times on route choice and on its en-trip adaptations, such extensions are not considered 

here, while the original formulation of travel strategies for deterministic route choice in networks 

with uncertanties is. 

Furthermore, when the usual assumptions that no congestion occurs, and that the only information 

available to passengers is what line arrives first, do not hold true, the traditional strategy-based 

assignment models are not suitable to represent the behaviour of passengers that travel in densely 

connected transit networks. Consequently in the last two decades many works have been proposed 

to investigate either the effect of passenger queues at the stop or the effect of countdown displays, 

while the combination of the two problems has’t been largely investigated yet. 

2.1  Congestion and capacity constraints  

While recurring passenger congestion is one of the main problems faced by large-city transit 

networks, in the literature there does not seem to be any broad agreement on how this phenomenon 

should be modelled. 

The vast majority of research works carried out in this context focuses on static transit assignment 

and the effects of overcrowding are modelled by means of the effective frequency, with or without 

capacity constraints (De Cea and Fernandez, 1993, Cominetti and Correa, 2001, Cepeda et al., 

2006), fail-to-board probability (Kurauchi et al., 2003), attractivity threshold (Leurent and 

Benezech, 2011), or by micro-simulation (Teklu, 2008).  

However, even when capacity constraints are considered, static models can only yield average 

results (in terms of flows and travel time estimation) for the entire analysis period, and cannot 

reproduce the formation and dispersion of passenger queues at stops nor their dynamic effects on 

route choice. This drawback is partially overcome by Schmöcker et al. (2008), who develop a 

quasi-dynamic strategy based assignment that reproduces dynamic variations in the Level of 

Service (LoS) caused by passenger congestion. On the other hand, while in their route choice 

model it is assumed that the anticipated value of delays increases the expected total travel time to 

destination, the effect of congestion on passengers’ distribution among attractive lines is 

disregarded. 

Additionally, the majority of strategy-based assignment models assume that, if travel demand 

exceeds the supplied capacity, queuing passengers do not respect any boarding priority. The 

assumption is usually accepted when modelling passenger flows in rail and/or underground 

networks because large platforms allow travellers to mingle and, thus, it is though that who arrives 

last might be ‘lucky’ and board the first approaching carrier despite congestion, while other 

passengers can be ‘unlucky’ and keep waiting even if they arrived before. However, when 

overcrowding is very severe the priority of those who are closer to the edge of the platform is 

usually respected and, thus, a model based on a First-In-First-Out (FIFO) queuing mechanism 

would seem more appropriate. Additionally, for bus systems (where boarding is generally allowed 
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only from front doors) the stop layout is usually designed to allow passengers queuing in a FIFO 

fashion.  

Unfortunately, models based on the FIFO queuing assumption have proved to be very complex to 

develop and, to the best of the authors’ knowledge, all existing attempts (Gendreau, 1984, 

Bouzaïene-Ayari, 1988, Bouzaïene-Ayari et al., 2001, Leurent and Benezech, 2011) share the 

stability condition (passengers waiting at a stop would consider an attractive set that is never 

completely saturated, in the sense that, at least for one of the attractive lines, passengers can board 

the first vehicle coming, Bouzaïene-Ayari et al., 2001) which implies the following two 

shortcomings: 

· as congestion increases, more (and hence ‘worse’) lines are included in the attractive set; 

and 

· if all lines are congested, passengers would rather walk than keep waiting (even if 

frequencies are high, so that the extra waiting time due to congestion is, anyhow, short). 

A schedule-based approach has also been applied by some authors (Hamdouch and 

Lawphongpanich, 2008, Hamdouch et al., 2011), who have extended an existing dynamic strategy-

based model for traffic assignment with time-expanded network (Hamdouch et al., 2004) to public 

transport systems. This approach has the advantage that the dynamic assignment reduces to a static 

assignment on the time-expanded network and, in this setting, it is possible to accurately represent 

the build-up and dissipation of passenger queues at stops. On the other hand, the very concept of 

travel strategy is changed because passengers know and trust the service time-table (this is one of 

the basic assumptions of schedule-based models) and can precisely select their best travel option; 

however, it is uncertain if they will be able to board/sit when congestion occurs. 

2.2  Effects of countdown displays in networks with 

uncertainties 

The effects of way-side (Grotenhuis et al., 2007) travel information systems, such has Variable 

Message Signs (VMS), has been widely investigated in traffic networks, and the hyperpath 

paradigm has also been used to model drivers re/routing as consequence of real-time travel 

information received by means of VMS (Ukkusuri and Patil, 2007, Gao et al., 2010, Gao 2012) in 

stochastic road networks. 

Also for public transport users the support of way-side information systems, for example count-

down displays, can reduce uncertainties and, thus, affect their route choice. Nevertheless, for 

transit networks the topic has been studied less extensively than for private traffic networks. The 

few existing exceptions include Hickman and Wilson (1995) and Gentile et al. (2005). 

The authors recognize that when count-down displays are installed at transit stops the route choice 

behaviour described in the seminal works on hyperpaths/travel strategies ceases to be rational. 

Instead, it is reasonable to assume that travellers use countdown displays in order to minimise their 

expected total travel time to the destination and when a vehicle approaches the stop, a waiting 

passenger does not board it simply because it is the first attractive line arriving, but instead 
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compares its expected travel time to the destination upon boarding with the expected total travel 

times of later arrivals.  

The authors only consider uncongested scenarios and acknowledge the fact that the travel time 

savings produced by countdown displays do not seem to be remarkable (Gentile et al., 2005). On 

the other hand, as it will be clarified in the following sections, it is plausible to assume that in case 

of severe overcrowding, the provision of information may change the behaviour of public transport 

users and, thus, help in relieving congestion phenomena. 

Consequently, in this paper the combined effect of queues and real-time travel information is 

investigated and a model is proposed, which may be exploited to assess if count down displays can 

help in relieving congestion. 

3 METHODOLOGY 

3.1  Problem definition  

The provision of real-time information through countdown displays brings about some important 

demand-side effects in transit networks that are affected by recurrent congestion, as discussed 

here. 

Depending on the design of the stop, two important sub-cases of FIFO queues may appear: either 

the stop is designed to have physically separate queues for each line; or passengers arriving at the 

stop join a single, mixed queue regardless of their attractive line set. 

The first instance is very common in coach terminals. In this case, should congestion occur and no 

real-time information be available, passengers cannot behave strategically because they must join 

one specific queue as soon as they reach the stop. It may then be difficult to change queue in order 

to take advantage of events occurring while they are waiting (e.g. if another line arrives first). 

Consequently, the stop has to be modelled as a group of separate stops, each of which is served by 

one line only. However, if countdown displays are available and passengers have sufficient 

experience to predict how many vehicles will pass before being able to board each line, travel 

behaviour in the case of separate queues can also be modelled as strategic. Indeed, the information 

‘anticipates’ the event of a vehicle arrival to the moment when the user reaches the stop; hence, the 

optimal travel strategy comes true in the moment when the traveller actually chooses which line to 

board, taking into account the length of the different queues. In other words, if information is 

provided, this case can be treated as if there were a single ‘mixed’ queue. 

The second type of stop layout (single, ‘mixed’ FIFO queue) is more common in urban public 

transport networks. If congestion occurs, users arriving at the stop join the queue and board the 

first line of their attractive set that becomes available. However, if no real-time information is 

provided and regular services are available, it is possible that passengers would change their 

attractive set while they wait, as described by Billi et al. (2004) and Noekel and Wekeck (2007). 

On the other hand, if information is provided, an attractive-set structuring can be modelled more 
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easily also in the presence of regular services because it can be assumed that passengers know the 

line they will board as soon as they reach the stop. 

Consequently, in such a setting, the route choice can always be modelled by extending the results 

of Hickman and Wilson (1995) and Gentile et al. (2005) to a dynamic scenario where congestion 

phenomena are considered. 

 

3.2  Network formalisation and basic notation 

The transit network, which comprises a set of lines ℑ Í ℵ (ℵ is the set of natural integers), together 

with the pedestrian network is represented by a directed hypergraph (Gallo et al., 1993) HG = {N, 

A}, where N = {i | i = 1, 2, …,n} is the node set and A = {a | a = 1, 2, …, m} is the hyperarc set. 

The generic hyperarc a is univocally identified by its initial, or tail, node TLaÎN and its final, or 

head, node(s) HDaÌN, that is a = (TLa, HDa). The number of nodes included in the head of the 

hyperarc is called cardinality (|HDa|), and hyperarcs with cardinality equal to one are also called 

proper arcs (Nguyen et al., 1998) or, simply, “arcs”. 

The sets of nodes and arcs, as illustrated in Figure 1, are constructed as follows: 

 

NP:  pedestrian nodes;  

NC:  centroid nodes, including all passenger origins and destination (NC Í  NP); 

NS:  stop nodes; 

NB:  boarding nodes;  

NA:  alighting nodes;  

 

FIGURE 1: Representation of a stop in the hypergraph 

 

AP:  pedestrian arcs, represent walking time. For each a Î A
P its tail and head belong to 

the pedestrian node set: TLa, HDaÎ N
P, "  aÎNP ; 

pedestrian arcs 
dummy arcs 

stop nodes 

waiting arcs and hyperarcs 

line nodes 

dwelling arcs 
line arcs 
alighting arcs 

pedestrian nodes 
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AL:  line arcs, represent in-vehicle travel time.  

"  a Î A
L: TLa Î N

B, HDaÎ N
A ; 

AD:  dwelling arcs, representing the time a bus spends at a stop while passengers 

alight/board.  

"  a Î A
D: TLa Î N

A, HDa Î A
B;  

AZ:  dummy arcs, are introduced for algorithmic purposes. They do not have a physical 

meaning, but represent a graphic connection between the transit network and the 

pedestrian network.  

"  a Î AZ: TLa Î NP, HDa Î NS; 

AA:  alighting arcs, represent the time that passengers need to disembark.  

"  a Î A
A: TLa Î N

A, HDa Î N
P; 

AH:  waiting hyperarcs (Billi et al., 2004), These represent the total expected waiting 

time for a specific set of attractive lines serving a stop: AH Í {(i , j): iÎNS, J Í NB, 

jÎJ}. Each waiting hyperarc hÎAH is univocally identified by a singleton tail 

(TLh), which is a stop node, and by a set head (HDh) of boarding nodes. Therefore, 

the waiting hyperarc can be indicated as h = {(TLh , j): jÎHDh} and it can also be 

regarded as a set of ‘branches’, or simple waiting arcs a, each of which has the 

same tail node of h (TLa = TLh) and a head node belonging to the head set of h 

(HDa ÎHDh). Moreover, the head node of a branch of a hyperarc h (aÎh) is 

associated with one particular line (LHDa) among those who share the stop 

represented by TLa = TLh.  

FSi:  forward star of node i, i.e. the set of arcs sharing the same head node i.  

FSi = {a Î A| HDa = i}; 

BSi:  backward star of node i, i.e the set of arcs sharing the same tail node i.  

BSi = {a Î A| TLa = i} 

HFSi :  hyper-forward star of node iÎNS, i.e. the set of hyperarcs sharing the same stop 

tail i: HFSi = {hÎAH: TLh = i} 

 

In order to represent time-dependent travel times, waiting times, etc., the following dynamic 

variables are also introduced with reference to the generic aÎh and hÎAH: 

ja(t):  instantaneous frequency (instantaneous flow of carriers) of the line LHDa evaluated 

at the stop node corresponding to TLa at time t;  

κa(t):  congestion parameter, expressed as the total number of vehicle arrivals that 

passengers are unable to board at time t (because of capacity constraints) before 

they board the line LHDa; 

wh,d(t):  expected waiting time for passengers directed towards destination d, who reach the 

stop TLh at time t and considering the set of attractive lines represented by hÎAH; 
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wa|h,d(t):  conditional expected waiting time. This is the expected time before boarding the 

line LHDa associated with aÎh for passengers, directed towards destination d, who 

reach the stop TLa at time t ; its value depends on the set of attractive lines 

considered, which is represented by hÎAH; 

ta|h,d(t):  conditional boarding time on the line LHDa for passengers, directed towards 

destination d, who reach the stop TLa at time t – namely ta|h(t) = t + wa|h(t), and 

its value depends on the set of attractive lines considered, which is represented by 

hÎAH; 

pa|h,d(t):  diversion probability (Cantarella, 1997) at time t for passengers directed towards 

destination d: ratio of passengers that board line LHDa to those whose set of 

attractive lines is represented by hÎAH; 

( )PDF ,a aw t :  probability distribution function (PDF) of the waiting time before boarding line 

LHDa at time t; 

( )CDF ,a aw t :  survival function of the waiting time before boarding line LHDa at time t. The 

survival function indicates the probability that the variable is greater than a certain 

value and it can be regarded as the opposite of the cumulative distribution function 

(CDF) for the same stochastic variable, namely ( ) ( )CDF , 1 CDF ,a a a aw wt t= - . 

It should be noticed here that, although diversion probabilities, conditional waiting and conditional 

boarding time depend on the specific destination considered, the subscript d is neglected in the 

following in order to improve readability. 

Moreover, with reference to the generic proper arc aÎHG\{AH} and iÎN, the following variables 

are also defined: 

ca(t):  travel time of arc a for users entering it at time t ; 

ta(t):  exit time from arc a for users entering it at time t – namely, ta(t) = t + ca(t); 

ta
-1(t):  entry time to the arc a for users exiting it at time t ; 

gi,d(t):  total travel time from node i to destination dÎNC at time τ ; 

g*
i,d(t):  minimum total travel time from node i to destination dÎNC at time τ . 

3.3  Formulation  

In a dynamic setting, the results of Hickman and Wilson (1995) and Gentile et al. (2005) are 

extended to obtain a time-dependent expression for the travel cost of the minimal hyperpath from 

every node to the destination: 
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'

| PDF ( , ) CDF ( , ) ( ) aa
a h
a a

a h w w dwp t tt
+¥

Î
¹
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'|
' ,| 0
'

1
( ) PDF ( , ) CDF ( , ) 

( )
aa h a

a ha h
a a

w w w w dw
p

t t t
t

+¥

Î
¹

= × Õò  (3) 

| |( ) ( ) ( )h a h a h
a h

w p wt t t
Î

= ×å  (4) 

 

For each possible intermediate stop node i, ( ),i dg t  is fully defined when PDFa and CDF 'a  are 

known; on the other hand the optimality of a travel strategy depends on the correct selection of the 

attractive set. Thus, the definition PDFa and CDF 'a , and the method of selection of the attractive 

set are core problems in the development of the new route choice model, and will be considered in 

detail next. 

PDFs and CDFs of the waiting times 

The major assumption of the model is that in the context of commuting trips, if congestion leads to 

the formation of FIFO queues, passengers have a good estimate of the average number of vehicles 

of the same line that they must let go before being able to board (Trozzi et al., 2013).  

In this setting, the waiting time before boarding is a stochastic variable, whose value depends on 

the assumption made about service regularity. For example, if the basic hypotheses about carrier 

and passenger arrivals (Nguyen and Pallottino, 1988, Spiess and Florian, 1989) are not changed, 

the total waiting time before boarding may be modelled as an Erlang-distributed stochastic 

variable with parameters κa(t) and ja(t), such that: 

( ) ( ) 1( )( ) exp ( )
, if 0

PDF ( , ) ( ) 1   !

0,                                                        otherwise

aa

a a

a a

w w
w

w

k tk tj t j t
t k t

-é ùë ûì × - × ×
ï ³

= -é ùí ë û
ï
î

 (5) 

 

Alternatively, when regular services with constant headways are considered, the waiting time 

before the first arrival is uniformly distributed and, therefore, the PDF of the total waiting time can 

be expressed as in equation (6). 
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[ ]( ) 1 ( )
( ),   if 

PDF ( , ) ( ) ( )

0,          otherwise

a a
a

a a a

w
w

k t k t
j t

t j t j t

-
£ <

=

ì
ï
í
ï
î

 (6) 

 

The definition of survival functions is not as straightforward as the definition of PDFa. This is 

because some stops can be shared by regular and irregular services. For example, this can be the 

case for large bus terminals, where there are some lines whose routes run in segregated lanes 

(where the absence of interaction with private car traffic and/or road works enhances the service 

regularity) and there are also some other lines that are subject to service irregularity because their 

routes do not run in segregated lanes.  

For this reason, the definition of equations (2) and (3) is articulated into two different subcases, 

depending on whether the line considered for the evaluation of its diversion probability and 

conditional expected waiting time has constant or exponentially distributed headways.  

For example, if LHDa is a service with constant headways, PDFa(w, t) is expressed by means of 

equation (5). Moreover, if: 

' , ',

( ) 1

( )
a

a
a

HD HDa d a dw g g
k t

b
j t

-
= + + -  (7) 

 

then ( ), ',CDF ' , a HDa d HDa dw g g t+ - is expressed as in equation (8) if LHDa' is a service with 

exponentially distributed headways; while if LHDa’ is a service with constant headways, 

( ), ',CDF ' , a HDa d HDa dw g g t+ - is expressed as in equation (9). 

( )
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' ' ' '' ( ) [ ( ) ]( )
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j t j t

k t
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-ì
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ò  (9) 

 

On the other hand, in the case where LHDa is a service with exponentially distributed headways, 

then PDFa(w, t) is expressed by means of equation (6), while ( ), ',CDF ' , a HDa d HDa dw g g t+ -  is 

expressed by equations (8) and (9) for irregular and regular services respectively, where ba’ is 

defined as: 

' , ',a HD HDa d a dw g gb = + -  (10) 
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Attractive set 

In general, the above expressions of the diversion probabilities and expected waiting times can be 

applied to any hyperarc hÎHFSi. However, only a specific waiting hyperarc is associated with the 

set of lines that are mostly convenient to board, at time t, in order to reach the destination in the 

minimum time.  

The lines to be included in the waiting hyperarc (or, equivalently, in the attractive set) generally 

depend on the time t when the set is evaluated and can be determined by solving a combinatorial 

problem. At least for the static case, the problem of determining the attractive set can be simplified 

because it is counter-intuitive to exclude a line from the choice set if it has a shorter remaining 

travel time than any other line already included in the set. Therefore, a greedy approach may be 

applied (Spiess and Florian, 1989, Nguyen and Pallottino, 1988, Chriqui and Robillard, 1975) by 

processing the lines in ascending order of their travel time upon boarding and the progressive 

calculation of the values of pa|h, wh, and gi,d is stopped as soon as the addition of the next line 

increases the value of gi,d. At this point, the cost is minimal and the set of lines corresponds to the 

attractive set. 

The correctness of the greedy method, in the static case, depends on the shape of the waiting time 

PDF (exponential). While this does not hold in the dynamic scenario, a greedy procedure is 

suggested anyhow for the application of the proposed model to real-scale networks, where the 

solution of the full combinatorial problem may become computationally intractable. 

4 THE ALGORITHM 

As mentioned in the introduction, the proposed route choice model should be embedded in a full 

dynamic transit assignment procedure. Consequently, a solution algorithm is needed to perform 

the shortest time-dependent many-to-one (hyper)path search for every possible arrival/departure 

time.  

To this end, the Decreasing Order of Time (DOT) method, presented by Chabini (1998) and 

having been analytically proven to be the most efficient solution method for the all-to-one search 

for every possible arrival time, is extended to the time-dependent shortest hyperpath problem. It 

should be noted here that although the proposed model has a continuous time representation, a 

discrete-time representation is adopted for its numerical solution.  

The main idea is to divide the analysis period P = [0, T] into Θ time intervals, such that AP = 

{t0, t 1, ..., t q, ...,  t Q-1}, with t 0 = 0 and t  Q -1 = T, and to replicate the network along the time 

dimension, forming a time-expanded hypergraph HGT, where nodes and (hyper)arcs have an 

explicit time dimension and are, respectively, called vertices and (hyper)edges. If time intervals 

are short enough to ensure that the exit time of a generic edge ta(t
 q) is not earlier than the next 

interval t q+1, for t £ Θ-2, it is ensured that the network is cycle-free and the vertex chronological 

ordering is equivalent to the topological one. Thus, HGT  is scanned starting from the last temporal 

layer to the value assumed for t = t 0 and, within the generic layer, no topological order is 
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respected. When a generic vertex (i, t q) is visited, its forward star is scanned in order to set the 

minimal travel cost to destination and the successive edge by means of equation (1). In fact, at this 

point of the algorithm, not only the costs of the edges ( ) ( )( ), , , ( )a a aa TL HD tq qt t=  of the forward 

star, but also the minimal costs from every vertex ( ), ( )a aHD t qt  to destination are known. If the 

examined vertex represents a stop node in the time-expanded hypergraph, then the successive edge 

corresponds to a hyperarc of the hypergraph HG and it is determined by means of the greedy 

procedure detailed in Section 4.1.  

By assumption the network behaves as static outside the analysis period, therefore for departure 

time intervals greater than or equal to Θ-1 the computation of the shortest hyperpath is equivalent 

to a static procedure and is calculated according the algorithm by Spiess and Florian (1989).  

4.1 Time-dependent shortest hypertree algorithm for every 

possible arrival time 

Beyond variables already specified, the algorithm also includes: 

 

· q time interval index; 

· qInt: time interval length; 

· d: destination node;  

· i: generic node; 

· FSi: set of arcs belonging to the forward star of node i;  

· HFSi: set of hyperarcs belonging to the hyper-forward star of node i; 

· a = (i, j): generic arc and/or branch of hyperarc aÎ h;  

· h: generic hyperarc;  

· suc(i,  t q ): successor arc and/or hyperparc of the generic node i at time interval t q; 

· ca(t
 q): generalised travel time on arc a at time interval t q, aÎA\{AH}; 

· ja(t
 q): instantaneous frequency corresponding to the line associated with arc a at time 

interval t  , aÎFSi, iÎNS;  

· ta(t
 q ): exit time from arc a for users entering it at time interval t q; 

· ta
-1(t q): entry time to the arc a for users exiting it at time t q ; 

· κa(t
 q ): congestion parameter at time interval t q for the line LHDa associated with the arc 

aÎFSi, iÎNS; 

· pa|h(t
 q ): diversion probability at time interval t q 

· wa|h(t
 q ): conditional expected waiting time at time interval t q; 

· wh(t
 q ): waiting time at node i = TLh at time interval t q; 

· gi,d (t
 q ): current travel cost from generic node i to destination d at time interval t q; 

· gi,d,h (t
 q ): current travel cost from stop node i to destination d at time interval t q if 

considering the attractive line represented by hyprarc h; 
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· g*i,d(t
 q): minimum travel cost from generic node i to destination d at time interval t q; 

· g*i,d 
stat: minimum travel cost from generic node i to destination d at time interval 

t q ³ tQ-1;  

 

The pseudo-code of the solution algorithm for the time-dependent all-to-one shortest hyperpath 

problem for every possible arrival time is, hence, detailed: 

 

Step 0 (SSHP – Initialisation):  i Î N \ {d} 

Calculate g*
is(t

 Q-1) = gs*
is

stat 

 
Ó q Î [0,Q -2] 

 Set g*
d,d(t

 q) = 0, suc(d,  t q) = Æ 

  
Ó i Î N \ {d} 

    Set g
*

i,d(t
 q) = ¥ 

 

Step 1 (Calculate hyperpath travel time): 
Ó q Î [0,Q -2] 

 
Ó i Î N \ {d} 

  If i Î NS
,  

 Apply the greedy procedure to define the set of attractive lines and 

calculate the travel cost 

    g*i,d(t
 q) = gi,d,h (t

 q ) and suc(i, t q) = h 

  Else if i Ï N
S
, 
Ó a Î FSi 

   If [[ ca(t
 q) / qInt]]  > 1 

    ta(t
 q ) = [[ ca(t

 q ) / qInt]] + t q 

   Else 

    ta(t
 q) = t q + 1 

    gi,d(t
 q) = ca(t

 q) + gHDa,d(ta(t
 q)) 

   If g*
i,d(t

 q) > gi,d(t
 q) 

    g*
i,d(t

 q) = gi,d(t
 q) and suc(i,  t q) = a 

 

The greedy-like procedure invoked in Step 1 of the solution algorithm requires that once a stop 

node i is reached, all lines LHDa, aÎFSi, are sorted in increasing order of travel time upon boarding 

(gHDa,d). In general, gHDa,d should be evaluated for each line LHDa, at the conditional boarding time 

ta|h(t
 q) and this value, in turns, does not only depend on the particular line LHDa considered, but 

also on what other lines are included in the choice set (hyperarc h).  

Because at this stage the attractive hyperarc has not been determined yet, the following hyperarcs 

are defined: 
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{ },         1,2,..,l lh a l n= =  (11) 

 

and lines are sorted according to the following criterion: 

( )( ) ( )( ) ( )( )
1 1 1 2 2 2, | , | , |... ,         

n n nHDa d a h HDa d a h HDa d a h ig t g t g t n FSt t t£ £ £ =  (12) 

The rest of the greedy-type procedure adopted follows as normal: one line at a time is added to the 

attractive set and the calculation is stopped as soon as the addition of the next line increases the 

value of , ,i d hg . 

 
Step 1.0 (Initialisation): ∀ a Î FSi, aÎ AW 
 Set hl= al, according to equation (11)  

 Sort al Î FSi, according to equation (12) 

 Set h:= a1 

 Calculate wa1|h(t
 q) with equation (3) 

 If [[wa1|h (t
 q) / qInt]]  > 1 

  ta1|h(t
 q) = [[wa1|h (t

 q) / qInt]] + t q 

 Else 

  ta1|h(t
 q) = t q + 1 

 Calculate wh(t
 q) with equation (4) 

 gi,d,h (t
 q):=wh (t

 q) + gHDa1,d (ta1|h1 (t
 q )) 

 l:= 2 

 
Step 1.1 (Updating h): While (l £ n) and gHDal,

 d (tal|hl 
(t q)) < gi,d,h (t

 q) do: 

 h:= h È {al} 

  a Î h 

  Calculate pa|h (t
 q) with equation (2) 

  Calculate wa|h (t
 q) with equation (3) 

  Calculate wh (t
 q) with equation (4) 

  If [[wa|h (t
 q) / qInt]]  > 1 

   ta|h(t
 q) = [[wa|h (t

 q) / qInt]] + t q 

  Else 

   ta|h(t
 q) = t q + 1 

  gi, d,h (t
 q) = wh (t

 q) + ( )| | |( ) ( )
aa h HD h a h

a h

p g tq qt t
Í

×å  

  l:= l + 1  
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5 NUMERICAL EXAMPLE 

A numerical example is presented in order to show the effects of queues on passenger route 

choice, when information about actual waiting times is provided at transit stops. The example 

network is the same used by Spiess and Florian (1989) in their seminal work on optimal travel 

strategies in static networks, and is depicted in Figure 2a.  

For the scope of this example, the analysis morning peak period [07:30–09:30] is divided in one-

minute intervals. In order to fully consider the effect of queues and information, frequencies and 

in-vehicle travel times are assumed to stay equal to the values depicted in Figure 2a, and all lines 

are irregular, with exponentially distributed headways. 

By contrast, it is assumed that since 08:00 a queue arises at stop node 3, such that passengers 

wishing to board line arc 17 have to wait for the second arrival of the corresponding transit Line 

004. Also, from 08:30 onwards, a queue arises at stop node 1 and passengers wanting to board 

Line 001 or Line 002 have to wait for the second carrier. Before 08:00 and from 09:30 onwards 

there is no passenger congestion, so the problem can be considered static and the optimal travel 

strategy from each node to destination (node 16) is depicted in Figure 2b, where in bold are 

represented values calculated without considering the effect of countdown displays.  

 

 (a) 
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FIGURE 2  

(a): hypergraph representation of the example network with in-vehicle travel times (tt) and average 

frequencies (f) of each line 

(b): travel times to destination (node 16) outside the analysis period, expressed in minutes. In bold 

are the values calculated without considering the effect of countdown displays 

 

The effects of congestion at a stop with a mixed FIFO queue are shown in Figure 3 for the case 

where information is provided (a) and not provided (b). If information is provided and a mixed 

queue arises at stop 3, passengers that have boarded Line 001 at stop 1 prefer to alight at stop 2 

rather than staying on board. The behaviour is perfectly rational because, should they stay on 

board (i.e. the dwelling arc 6 of Figure 2a is included in the optimal strategy), they would 

necessarily alight at stop 3 and experience, there, the queuing delay due to oversaturation. 

Interestingly, if no real-time bus departure information is provided the optimal travel strategy is to 

stay on-board, as depicted in Figure 3b. Therefore it could be inferred that when information 

mitigates the uncertainty, due to service irregularity, the expectation of congestion, further down 

along the trip, seems to influence local choices more than the waiting time at the current location. 

On the other hand, in case of full uncertainty (irregular services and no additional information) the 

decision tends to be more myopic and to consider mainly the local delay. 
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FIGURE 3 

(a): travel times in minutes from each node to destination (node 16) when countdown displays are 

available at each stop and passenger queues are ‘mixed’ 

(b): travel times in minutes from each node to destination (node 16) when countdown displays are 

not available at each stop and passenger queues are ‘mixed’ 

 

The effects of congestion at a stop with a separate FIFO queues (e.g. bus terminals), are shown in 

Figure 4, where it is assumed that stop 1 has such a layout. If no countdown displays are available 

and congestion occurs, as soon as passengers arrive at the stop, they have to join either the queue 

for boarding Line 001 or the queue for boarding Line 002. Consequently, they cannot take 

advantage of events taking place while they are waiting at the stop and no travel strategy is 

possible. In this scenario, a rational passenger will compare the total travel time of boarding Line 

001 (12’ expected waiting time + 25’ travel time upon boarding = 37’), the total travel time of 

(a) 

(b) 
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boarding Line 002 (12’ expected waiting time + 24.5’ travel time upon boarding = 36.5’) and will 

choose the second option, as in Figure 4a. 

By contrast, if information is provided at stop 1, the route choice can be strategic also in case of 

passenger congestion, as explained in Section 2, and will result in the hypertree depicted in Figure 

4b. Because in this case the provision of real-time information allows for a travel strategy, the 

decrease in total travel time is quite substantial and, with reference to the o-d pair 1-16, it accounts 

for 11.35% of the total travel time, while in the first instance (no congestion) the reduction is only 

of 0.5 minutes (1.8%), and in the second instance (08:30-09:00) it is only of 0.51 minutes (1.9%). 

 

  

  
FIGURE 4 

(a): travel times in minutes from each node to destination (node 16) when countdown displays are 

not available at each stop. The passenger queues at stop 1 are separate and ‘mixed’ at stop 3 

(b): travel times in minutes from each node to destination (node 16) when countdown displays are 

available at each stop. The passenger queues at stop 1 are separate and ‘mixed’ at stop 3 and 

passenger queues are ‘mixed’. 

(a) 

(b) 
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6 CONCLUSIONS 

In this paper a time-dependent route choice model and algorithm have been presented to assess the 

effects of cont down displeys under sever overcrowding.  

Assuming that congestion can be represented by a First-In-First-Out (FIFO) queue of passengers at 

transit stops, it has been shown that the route choice model independently developed by Hickman 

and Wilson (1995) Gentile et al. (2005) can also be applied to time-dependent, congested 

scenarios, provided that the selection method for the attractive set and the waiting times’ 

probability distribution function (PDF) and survival function (CDF)  are changed in accordance 

with the new hypotheses. The presence of real-time information at stops ensures that the model 

can describe route choice both in case of separate or ‘mixed’ queues. Moreover, the different 

adaptive behaviours considered by Billi et al. (2004) and Noekel and Wekeck (2007) in case of 

regular services can be disregarded. 

The proposed model cannot devise an exact solution for services with an intermediate degree of 

regularity because in this case it is usually assumed that the PDF of the waiting time before the 

first carrier arrives follows an Erlang distribution, which cannot be convoluted. On the other hand, 

the model represents a step forward with respect of those usually applied for representing route 

choice in congested scenarios because it can handle easily both the case of perfectly irregular 

services (i.e. lines with exponentially distributed headways, this is the case usually considered in 

models with capacity constriants) and perfectly regular services (i.e. lines with constant 

headways), for which an exact solution is devised. 

Finally, it should be highlighted here that the application envisaged for the proposed route choice 

model is dynamic transit assignment and not passenger routing. This is for two main reasons. First, 

the congestion parameter κa(t) can only be evaluated by means of a queuing model embedded in a 

full assignment procedure, for example like the one presented in (Trozzi et al., 2013).  

Second, notwithstanding the inherent uncertainty and stochasticity on the supply-side, the 

proposed deterministic model only considers average values of the waiting and in-vehicle travel 

time, independently from their actual realization on a particular day. In dynamic routing 

applications, this would lead to a distortion in the computation of travel times, as the following 

examples clarify. Consider a stop i, a set of attractive lines represented by hyperarc h and the 

attractive line LHDa (aÍh): on a specific day the actual realization of the waiting time before 

boarding LHDa may be different than the conditional expected value wa|h(t) and thus those who 

have reached stop i at time t will be subject to a different travel time upon boarding than 

( )| | ( )
aHD h a hg t t . Similarly, if on a specific day the in-vehicle travel time on the first lag of the 

journey is different than the expected value, the passenger will experience at the transferring stop a 

queuing delay that is generally different than what expected. 
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While these (small) distortions would not allow an application of the proposed model for dynamic 

routing purposes, it can always be embedded into a dynamic deterministic transit assignment 

procedure where, in general, average traffic conditions and travel times are considered.  

Hence, future work will concentrate on dynamic transit assignment applications to real-scale 

networks in order to fully evaluate the potential congestion relief brought about by countdown 

displays. Moreover, applications to medium-size networks will also be implemented to evaluate 

the impact of the proposed greedy heuristic for the selection of the line choice set. 
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