IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Sajjad, A., Rajarajan, M., Zisman, A. & Dimitrakos, T. (2015). A scalable and
dynamic application-level secure communication framework for inter-cloud services. Future
generation computer systems: the international journal of grid computing and escience,
48(July), pp. 19-27. doi: 10.1016/j.future.2015.01.018

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13061/

Link to published version: https://doi.org/10.1016/j.future.2015.01.018

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Scalable and Dynamic Application-level Secure
Communication Framework for Inter-Cloud Services

Ali Sajjad®P* Muttukrishnan Rajarajan®, Andrea Zisman?®, Theo
Dimitrakos

@City University London, EC1VOHB London, UK
bBritish Telecom Ltd, Adastral Park, B62 Orion Building PP10, IP53RE Ipswich, UK

Abstract

Most of the current cloud computing platforms offer Infrastructure as a
Service (IaaS) model, which aims to provision basic virtualized computing
resources as on-demand and dynamic services. Nevertheless, a single cloud
does not have limitless resources to offer to its users, hence the notion of an
Inter-Cloud environment where a cloud can use the infrastructure resources
of other clouds. However, there is no common framework in existence that
allows the service owners to seamlessly provision even some basic services
across multiple cloud service providers, albeit not due to any inherent in-
compatibility or proprietary nature of the foundation technologies on which
these cloud platforms is built. In this paper we present a novel solution which
aims to cover a gap in a subsection of this problem domain. Our solution
offers a security architecture that enables service owners to provision a dy-
namic and service-oriented secure virtual private network on top of multiple
cloud TaaS providers. It does this by leveraging the scalability, robustness
and flexibility of peer-to-peer overlay techniques to eliminate the manual con-
figuration, key management and peer churn problems encountered in setting
up the secure communication channels dynamically, between different com-
ponents of a typical service that is deployed on multiple clouds. We present
the implementation details of our solution as well as experimental results
carried out on two commercial clouds.
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networks

1. Introduction

Most of the currently available Cloud Computing solutions are mainly
focused on providing functionalities and services at the infrastructure level,
e.g., improved performance for virtualization of compute, storage and net-
work resources, as well as necessary fundamental functionality such as virtual
machine (VM) migrations and server consolidation etc. In the cases when
higher-level and more abstract concerns need to be addressed, existing In-
frastructure as a Service (IaaS) solutions tend to focus on functional aspects
only. Furthermore, if a cloud’s computational and storage infrastructure
resources are overloaded due to increased workloads, its service towards it
clients will degrade. The idea of an Inter-Cloud [I] has been gaining much
traction to address such a situation, where a cloud can borrow the required
infrastructure resources of other clouds. However, in order to progress from
a basic cloud service infrastructure to a more adaptable cloud service ecosys-
tem, there is a great need for tools and services that support and provide
higher-level concerns and non-functional aspects in a comprehensive manner.

The OPTIMIS project [2] is an ongoing effort in this regard which strives
to provide a holistic approach to cloud service provisioning by offering a single
abstraction for multiple coexisting cloud architectures. Of the various high-
level concerns being addressed by the OPTIMIS project, a major concern of
high importance is the provisioning of a secure communication framework
to the services utilizing the resources of different cloud IaaS providers. The
usage pattern of these services is usually quite flexible, i.e., on one hand they
might be directly accessed by end-users or on the other hand they might be
orchestrated by other Service Providers (SP) for their customers.

There are three fundamental steps in the life cycle of a service in the cloud
computing ecosystem; the construction of the service, the deployment of the
service to one or more laaS clouds and lastly the operational management
of the service. In the resulting scenarios, the presence of the multiple IaaS
providers in the cloud ecosystem is the key issue that needs to be addressed
by any inter-cloud security solution. A major goal of service owners is to
select TaaS providers in an efficient way in order to host the different com-
ponents of their services on appropriate clouds. In this respect, third-party
cloud brokers [3] can play a major role in simplifying the use, performance



and delivery of the cloud services. These brokers can also offer an inter-
mediation layer spanning across multiple cloud providers to deliver a host of
optimization and value-added services which take advantage of the myriad
individual cloud services e.g., aggregation of different services or arbitration
for a best-match service from multiple similar services. For the numerous
interaction possibilities among these parties, whatever the usage scenarios
maybe, the security of data and the communication between the consumers
of the service and its multiple providers is of paramount importance.

In the light of the above discussion, it is clear that an inter-cloud se-
curity solution is highly desirable that would provide a framework enabling
seamless and secure communication between the actors of a cloud ecosystem
over multiple cloud platforms. Such a solution, however, has to overcome a
number of challenges because of architectural limitations. This is because
most of the current cloud service platforms, and the multi-tenants environ-
ments they offer, make it difficult to give the consumers of their services
flexible and scalable control over the core security aspects of their services
like encryption, communication isolation and key management. Secure com-
munication is also challenged by lack of dynamic network configurability in
most cloud providers, caused by the inherent limitations of the fixed network
architectures offered by these providers.

In this work we address the secure, flexible and scalable communication
concerns that in our view must be overcome in order to provide holistic
provisioning of services to consumers from multiple cloud service providers.
We present the architecture and design of an inter-cloud secure communica-
tion framework that offers the features of dynamic and scalable virtual net-
work formation, efficient and scalable key management and minimal manual
configuration all on top of secure and private communication between the
components of the service across multiple cloud platforms. Our architecture
provides a single virtual network to the service using resources from multiple
cloud providers and offers the capability to efficiently and transparently run
services on top of this network while catering for the dynamic growth and
shrinkage of the components of the service.

The rest of the paper is organized as follows: In Section [2| we outline the
key motivations for our approach. We elaborate on the detailed Inter-Cloud
Virtual Private Network (ICVPN) architecture in Section 3] In Section [4] we
present our experimental setup and the analysis of the performance results of
our solution. In Section [5| we present the background and related works that
address peer-to-peer overlays, virtual network connectivity and key manage-



ment issue related to this domain. We conclude in Section [0l with the future
directions of our work.

2. Motivation

The design and architecture of our inter-cloud secure communication
framework is inspired by a collection of techniques like Virtual Private Net-
works [4] (VPN) and Peer-to-Peer (P2P) Overlays [5]. Network virtualization
techniques like VPNs and P2P Overlays have been shown to provide their
users legacy communication functionalities of their native network environ-
ments, despite the topology, configuration and management architecture of
the actual underlying physical network. This fits perfectly with our goal of
providing a secure virtual private network as a service to the consumers oper-
ating on top of multiple cloud providers. All complications and complexities
of managing a physical network can be handled by the overlay network, en-
abling the services deployed on multiple clouds to benefit from a customized
communication network typically only available in physical local-area envi-
ronments.

2.1. Peer-to-Peer Overlay

Traditionally, most of the private network solutions for similar problem
spaces require the direct and continuous control of a centralized adminis-
tration entity over every aspect of the overlay network, consisting of all the
participants that constitute and facilitate the operation of the service being
deployed and run on the multiple cloud providers. Such a central controller
provides services to authenticate, secure and police the interactions amongst
peers. These centralized solutions make it almost necessary to provide com-
plex support and management functionalities to meet the users’ demand of
smooth and continuous operation. Furthermore, to robustly handle the loads
generated by a large number of users, significant infrastructure resources and
services like mirroring or redundant instances and load-balancers must be set
aside, incurring additional costs for the cloud service user. Peer-to-peer over-
lays, on the other hand, are designed to offer improved scalability, flexibility
and availability in a distributed fashion without extensive reliance on cen-
tralized servers or resources. For these reasons, such overlay networks have
been used very successfully to provide specialized application layer services
like voice over IP (VoIP) e.g., Skype [6] and file sharing e.g., Bittorrent [7].
Structured P2P overlay networks based on distributed hash tables (DHT)
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support the scalable storage and retrieval of key, value pairs on the overlay
network which is very helpful when we need to store and retrieve meta-data
related to the virtual private network management. Existing P2P algorithms
like Chord [§], Pastry [9] and Tapestry [10] have been widely used to provide
scalable and fast information storage and retrieval services for a vast variety
of applications. We have leveraged the Kademlia algorithm [11] to cater for
our storage and retrieval requirements to build up a virtual private network.
This DHT-based algorithm locates values using the peer ID and guarantees
that on average, any data object can be located in O (log N) peer hops, N
being the number of peers in the overlay.

Therefore, by provisioning a VPN among the nodes of a P2P overlay net-
work, we can enable feature of using secure communication between the com-
ponents of a service deployed on multiple clouds. Furthermore, we promote
an approach where a distributed and scalable key management framework
is utilized to provide the cryptographic primitives used to establish secure
tunnels among the nodes of the P2P overlay networks. The synergy of these
three technologies produces a scalable, secure and robust inter-cloud commu-
nication solution which is able to handle a large number of communicating
peers with considerably less management complexity.

In this paper, we present the design and architecture of such an Inter-
Cloud Virtual Private Network (ICVPN) solution, which provides secure
communication facilities to users that want to deploy their cloud service’s
components over the infrastructure of multiple cloud TaaS providers. At its
core, it provides the ability to automatically establish P2P overlay networks
among the VMs constituting a single cloud service that runs on multiple
[aaS providers. We handle the platform interoperability and federation is-
sues inherent in the inter-cloud environment by using a VM contextualization
approach to provision our virtual machines on multiple cloud platforms as a
part of our ICVPN solution’s operation. Using the same P2P and VM con-
textualization techniques, we also offer a distributed key management service
which facilitates the distribution of cryptographic constructs like keys and
certificates to the VMs constituting the user’s cloud service. The configu-
ration and maintenance of the VPN connections using the P2P overlay is
autonomous and transparent to the cloud service itself, as a major goal of
our work is to free the cloud service user from the complicated configurations
typically required to set up the key management and virtual networking in-
frastructures in similar problem spaces.



2.2. Admussion Control

In P2P networks, bootstrapping a new peer is a well-known issue, i.e.,
there is a need for the new peer to discover the required configurations and
peers of the overlay to successfully join the network and access resources.
There are some traditional solutions for this issue like server-based peer lists,
host caches containing information of the last-known hosts, and random ad-
dress probing to actively find peers. In our solution, we embed some boot-
strapping information in each peer so that when it comes up it can join the
overlay but first it has to undergo an overlay admission control process.

Symbol Explanation

n A large prime number

g A primitive root modulo n (often called a generator)
S A random string used as the user’s salt

P The user’s password

X A private key derived from the password and salt

v The host’s password verifier

u Random scrambling parameter, publicly revealed

a,b Ephemeral private keys, generated randomly and not publicly revealed
A,B  Corresponding public keys
H() Cryptographically secure one-way hash function
(m,n) The two quantities (strings) m and n concatenated
K Session key

Table 1: Mathematical notation for SRP

The requirement and importance of secure admission control is obvious
as scalable key management and secure communication schemes are effective
only after the peers join the overlay in a secure admission process. This is
also useful to thwart the well-known vulnerability of P2P networks to Sybil
attacks [12]. Our admission control scheme is used only once when the peer
bootstraps for the first time and all peers of a cloud service share a secret key
which is used for authentication at admission control via TLS-SRP (Secure
Remote Password) [13].

The use of SRP protocol is very suitable for our system model as it
allows a peer to authenticate itself to a bootstrap peer without exchanging
the shared secret key, it is resistant to dictionary attacks, and it does not



Peer Super Peer
PeerlID —  (lookup s,v)

x = H(s, P) — s
A=yg* (mod n) A—

«— B,u B=v+g¢" (modn)
S = (B — g*)@+tu@)  (mod n) S = (Av")’ (mod n)
K = H(S) K = H(5)
MI[1] = H(A,B,K) MI[1] — (verify MI[1])
(verify M][2]) «— M][2] M2| = H(A, M[1], K)

Table 2: The Secure Remote Password protocol

need a trusted third party and thus avoids the overhead of an equivalent
PKI-based scheme. The explanation of the mathematical symbols used in
the protocol is given in Table [I| whereas the summarised interactions of the
protocol itself, that are undertaken between the peers and the super peer,
are given in Table

After a peer is authenticated and joins the overlay, it is issued with a
session key that is kept in a secure cache and is valid for a set time period.
Our scheme can utilize previous session keys to generate new session keys to
take advantage of key-continuity and avoiding overloading the authentication
system.

2.3. Secure Service based Resource Discovery

To join a peer-to-peer overlay, each peer needs to acquire a unique iden-
tification number (peer ID). In most structured P2P systems, this is done
by the peer itself by choosing a random number from a large identity space.
However, this approach is vulnerable to Sybil attacks [12], in which the at-
tacker can subvert the functioning of a per-to-peer overlay by creating and
using a large number of false identities. A common way of dealing with this
issue it to use some trusted authority to allocate peer IDs to the participat-
ing peers and the peers validate each other by querying the central authority
with a validation request. In our model, it can work by designating a stable
peer as the Certificate Authorities (CA) for the overlays other peers. The
CA can assign peer IDs to the peers and signs a certificate that binds the
servicelD of the cloud service making use of our solution and peer ID within
the public certificate of the peer for a limited time duration. The peer then



can use this signed certificate to authenticate itself with other peers in the
overlay.

However, using this Trusted Third Party (TTP) model to validate peers
and allocate them their identities can introduce substantial communicational
and computational overhead, especially as the number of peers in the overlay
increases. We propose a decentralized solution that overcomes the above
mentioned scalability problems by utilizing a functional encryption based
scheme [I4]. In a generic functional encryption scheme, a decryption key
describes a function of the encrypted data to the user. This function F'(,-)
is modelled as a Turing Machine and an authority possessing a master secret
key (msk) can generate a key skk that can be used to compute the function
F(k,-) on some encrypted data. Identity-Based Encryption [15], [16], [17],
Searchable Encryption [I§] and Attribute-Based Encryption [19] are some
examples of a Functional Encryption scheme. To describe it more formally
but briefly, A functional encryption scheme (FE) for a functionality F dened
over (K, X) is a sequence of four algorithms (setup, keygen, encryption,
decryption) satisfying the following correctness condition for all £ € K and
x € X is given in Table

Sequence Explanation

setup(1) — (pp, msk) Generate a public and master secret key pair
keygen(mk, k) — sk Generate secret key for k

enc(pp,x) — ¢ Encrypt message z

dec(sk,c) =y Use sk to decrypt ¢

Table 3: Four-tuple Functional Encryption

For ICVPN, we employ a special case of Functional Encryption which falls
under the category of systems known as the predicate encryption schemes
with public index. For our scheme we make use of the system defined in [19]
as Attribute-Based Encryption (ABE), where the decision that which users
can decrypt a ciphertext is based on the attributes and policies associated
with the plaintext message and the user. In this scheme an authority creates
secret keys for the users of the system based on attributes or policies for
each user and anyone can encrypt a plaintext message by incorporating the
appropriate attributes or policies in the scheme. There are two versions of

the ABE, Key Policy ABE and Ciphertext-Policy ABE.



In KP-ABE, attributes are assigned to a ciphertext when creating the
ciphertext and policies are assigned to users/keys by an authority which
created the keys. A key provides an access formula that operates over the set
of attributes that must evaluate to true for decryption to yield the plaintext
message. A key can decrypt only those ciphertexts whose attributes satisfy
the policy.

In CP-ABE, the users of the system are assigned different attributes and
each user is issued a key from an authority for its set of attributes. The
ciphertext contains a policy which is a Boolean predicate over the attribute
space) and if the users attribute set satisfies the policy, they can use their
key to decrypt the ciphertext. Another attractive feature of this scheme is
that it is collusion resistant, i.e., multiple users cannot pool their attributes
together to decrypt a ciphertext. We describe the implementation of our
version of this scheme in Section III.

2.4. Secure Diffie-Hellman for Session Key Generation

The peers of the ICVPN use a Diffie-Hellman exchange based protocol
to agree on a secret key S and parameters for establishing the IPsec tun-
nels between the VMs for secure communication. It avoids the overhead and
complexities of the Public Key Infrastructure (PKI) and of managing the cer-
tificates in the peers. This protocol provides confidentiality and protection
against man-in-the-middle (MiTM) attacks, whereas authentication is han-
dled by the scheme described in the previous section. This protocol comes
into action immediately after the communicating peers have completed the
discovery phase and want to proceed to the secure communication phase.

The initiating peer A generates its ephemeral key pair before entering
the secure communication phase. The peer begins the exchange by sending
a Hello message to the other peer. The Hello message contains the peer 1D
of the peer. Each peer has a unique 160-bit random peer ID (PID) that is
generated once at installation time. The PID is used to look up credentials
and configuration data from the overlay DHT for a particular peer. The
responding peer B replies with a Hello message of its own, containing its
PID. On its receipt of the response, peer A sends the DH generator g, the
DH prime p and

DH, = ¢ mod p

to the peer B. A hash of the public DH parameters and the responder Bs
Hello message is performed and sent in the same message to prevent MiTM



attacks.
hash(g|| p|| DH4 || B(Hello))

All subsequent messages also contain a hash image that is used to link the
messages together. This allows rejection of false messages injected during
an exchange by a MiTM attacker. On receipt of the above message, peer B
checks the hash using the received DH parameters for A and its own Hello
message. If it matches, it generates its own random DH secret value and
computes its public DH parameter

DHpg = ¢° mod p
and sends it to A with the hash. It then calculates the DH result as
DHp = (DH4)® mod p
Now A can deduce the same DH result as
DHp = (DHg)® mod p

For the calculation of the shared secret S, first a total hash (H,) of all the
received and sent messages in the current exchange is calculated by both
peers. The final shared secret is the hash of a concatenation of the DHR, the
PID’s of A and B, and the H,.

S = hash(DHy || PID4 || PIDg || H,)

The PIDs act as the context fields and H, as a nonce value, as recommended
in [20].

3. Design and Architecture

In this section we present our Inter-Cloud VPN architecture (ICVPN).
The architecture consists of two main components, namely the peer-to-peer
overlay and the secure virtual private connections, as described below.

3.1. Peer-to-Peer Querlay

The diversity of the protocols, APIs and capabilities of multiple cloud-
providers participating in an inter-cloud scenario is a problem area that our
system tries to solve by using P2P techniques and cloud-specific VM con-
textualization [21I]. We take advantage of the fact that all cloud providers
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provide automated means of launching VMs on their platforms, therefore
the use of a VM contextualization service lets us operate in an inter-cloud
environment as underlying differences of each cloud platform can be handled
and bridged by the contextualization service.

The core technique employed by the ICVPN is the use of two tiers of
P2P overlays. A universal P2P overlay is used to provide a scalable and
secure service infrastructure to initiate and bind multiple VPN overlays to
different cloud services in an inter-cloud scenario. The universal overlay it-
self can be initiated either by the cloud service user, an inter-cloud broker
or the cloud service providers themselves. Its main purpose is to help with
the bootstrapping activity of VPN peers. It also provides other functionali-
ties such as service advertisement, service discovery mechanisms, and service
code provisioning, with minimal requirement for manual configuration and
administration. This approach acts as an aggregation service for the eventual
peered overlay resources (which in this case are virtual machines) span across
the inter-cloud domain to help form an inter-cloud virtual private network.
The peers of the universal overlay act as super peers for the nodes of the un-
derlying overlays and let new nodes enrol, authenticate, bootstrap and join a
particular VPN overlay based on the cloud service requiring a VPN service.
In our architecture, we deploy the universal overlay in such a fashion that
we have at least one of its peers in every cloud provider participating in a
particular inter-cloud scenario.

As depicted in Fig.[1] the cloud service user or the cloud broker could itself
be a peer in the universal overlay and a subset of the universal overlay peers
can act as super-peers for the peer nodes of the VPN overlay for a particular
cloud service. The universal overlay peers can join and leave the system
dynamically and additional VMs from the cloud providers can be provisioned
to act as the universal overlay peers as well. As both the universal and
the VPN overlay nodes are basically VMs provisioned from different cloud
providers, they can be demoted or promoted from these overlays respectively
based on parameters like performance and availability.

To join the universal overlay, each peer needs to acquire a unique iden-
tification number (PID). This is generated by the peer itself on its first ini-
tialization on a VM as a unique 160-bit random number. It also needs some
bootstrapping data to validate itself with a super peer for admission into
the overlay. The bootstrapping data consists of the IP addresses of the super
peers, the ID of the service that this particular VM belongs to and the service
secret key. This data is embedded in a secure cache on the VM by a VM con-
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@ Virtual Machine

Cloud 2 Cloud 3

Figure 1: Two-tiered architecture for the Inter-Cloud VPN solution

textualization service [2I] when it is provisioned for the service deployment
and the same contextualization service is used to install the peer-to-peer
client in the VM. So after bootstrapping phase, the peer follows the protocol
described in Table 2 for a validated admission into the overlay, using the
service secret key as the required password P.

Once the peer has joined its overlay, it needs to discover its neighbours and
additional configuration data to establish secure tunnels with them so that
the deployed service can communicate securely with its different components.
In order to achieve this, we use the following scheme based on the Functional
Encryption predicates discussed in the last Section. A simplified step-wise
description of the scheme is as follows:-

i. A super peer sets up its own Master Secret ms and Public Parameters

pp

ii. The super peer generates a private key for itself using the ServicelD as
the public key i.e. Pubgp = Servicel D N\ Super Peerl D for each service
the super peer is managing

iii. The VPN peer requests for pp on boot up from the super peer

iv. The VPN peer sends a Provisioning Request to super peer encrypted by
the super peer’s public key (Pubgsp)

v. The super peer issues a private key to the VPN peer encrypted by its
own private key, against the public key Pubypy = VMID A PeerlD A
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Servicel D
vi. The super peer inserts the VPN peers public key in the overlay DHT
to keep a record of issued private keys, against the key(Servicel D) =
value (List of V. M1D) and for each peer; key (V M;p,) = value (Puby py;)
vii. The VPN peer requests lists of other peers from super peer and it re-

turns result of key(Servicel D) encrypted using Pubypy, = PeerID A
Servicel D

In a typical usage scenario, the cloud service user is responsible for pro-
visioning virtual machines from cloud service providers to deploy and run
their applications. These virtual machines are considered as the peers of the
VPN overlays and the complete life-cycle of the peers is handled by a P2P
client embedded in the appliance image used to instantiate a virtual machine
on a cloud platform. However, a further advantage of the universal overlay
approach is that the peers of a VPN overlay can get, update and modify
the P2P client program dynamically from the super-peers in the universal
overlay. The program to be run is signed by the super-peers for validity
and it can check for updated versions of itself by querying for the associated
servicelD in the persistent store of the universal overlays DHT.

3.2. Secure Virtual Private Connections

The key feature of our ICVPN is establishing a secure communication
network between the peers of the overlay formed over a collection of cloud
providers infrastructure. Therefore, after successfully joining the overlay net-
work to become part of a service, a VPN peer starts the process of creating
secure tunnels to the other peers of the service it wants to communicate with,
according to the functional operations of that particular service. To achieve
this, we make use of IPsec [22] to authenticate and encrypt each TP packet
of a communication session between the peers, thus creating end-to-end tun-
nels which provide protection against eavesdropping, message tempering and
message forgeries. For establishing mutual authentication between peers at
the beginning of the session and negotiation of cryptographic keys to be
used during the session, we employ the Internet Key Exchange protocol [23],
which can make use of standard cryptographic primitives like public key
cryptography [24] and AES [25]. In our approach, we make use of the se-
cure Diffie-Hellman based scheme described in Section II to derive a secure
session key which is used in the AES-CBC mode to ensure the confidential-
ity of the traffic exchanges between the peers using the tunnel [26]. Our
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approach removes the Diffie-Hellmans well-known susceptibility to a MiTM
attack. This is done by providing a way to authenticate the Diffie-Hellman
exchange. In most traditional systems, this is done by depending on digital
signatures backed by a centrally managed PKI. However, it has been shown
from a practical point of view that deploying and managing a central PKI can
be a complex and problematic experience as evident from the DigiNotar and
Comodo incidents [27]. PKIs require too many managerial as well as compu-
tational and communicational resources, which are not easy to commit by a
small scale cloud service customer. Especially in our target use case, where
such customers wants to use the resources of multiple cloud providers, they
typically does not want to deal with issues like cross-carrier authentication,
certificate revocation lists, and other complexities. It is therefore a much
simpler approach to avoid PKIs altogether, especially when developing se-
cure commercial products. Hence, we augment the Diffie-Hellman exchange
with the SRP scheme combined with secure hash usage at the start of the
key exchange and PKI is not required for this approach to authenticate the
Diffie-Hellman exchange. The session keys generated for the IPsec commu-
nication are valid for a short period of time and when the keys expire the
protocol is run again to come up with new session keys to maintain the IPsec
tunnels.

DHT Service

Key-based Routing P2P

Content

[ Client
Storage Peer Discovery/Bootstrap

Service

uoneinbiyuod

Overlay Maintenance
IPsec

Interface

Figure 2: Architecture of a P2P client in the VPN overlay

Another practical advantage of this approach is the reuse of existing
frameworks and tools which have been thoroughly tried and tested in a myr-
iad of different domains, are widely used and have been adopted in both
academic and commercial domain. The main components of the peer-to-peer
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client used to construct a virtual private network in our model are shown in
Fig.[2l These include the standard components required to form a structured
peer-to-peer overlay like the Distributed Hash Table (DHT) service, which
basically acts as the command-and-control channel for the ICVPN solution,
key-based routing, peer discovery, bootstrapping service and overlay main-
tenance service. All of these services are provided by a modified Kademlia
implementation mentioned in Section IV. In addition to these peer-to-peer
specific components, we have a secure content storage for the client where
sensitive data like keys, passwords, and security tokens etc. are stored. The
configuration component is integrated with the overlays DHT so that the
clients behaviour can be modified dynamically by push new configurations
to it from the super peers. The configuration component manages both the
peer-to-peer related configurations as well as the policies used to configure
the IPsec tunnels between the peers for the use of the higher-level services
using the client to provide the secure communication framework.

The P2P client software sets up and configures the IPsec security asso-
ciations according the service network security policy, which is advertised
by the cloud service user through the DHT of the Universal Overlay. The
peers of the underlying VPN overlay periodically check for any update in the
security policy and apply and enforce any changes on the kernel of the VM
through the P2P client’s IPsec interface.

4. Implementation and Evaluation

We implemented a working prototype of ICVPN using the Java program-
ming language, that can be deployed on Linux based virtual machines. Our
implementation is built using open source libraries and APIs. Specifically,
we use the BouncyCastle library [28] for most of the cryptographic opera-
tions, the cpabe library [29] for the CP-ABE based access control, and the
TomP2P library [30] for its implementation of the Kademlia [I1] peer-to-peer
protocol and the overlay DHT. In addition, we use BT Compute Cloud [31]
and Flexiant Cloud [32] as our cloud service providers.

We present the results of a series of experiments we conducted to evaluate
the effect of our prototype ICVPN solution upon the network performance of
a service deployed on two different cloud IaaS providers. We use a 3-tier web
service comprising of database, business logic and presentation components
deployed on nine virtual machines hosted on the clouds of British Telecom
Ltd. and Flexiant Ltd., our partners in the EU OPTIMIS project. The
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purpose of these experiments is to evaluate the architecture being proposed,
in terms of service latency and service throughput, in a practical scenario
with a service deployed over a real wide-area network, with the BT cloud
geographically located in Ipswich, England and Flexiant cloud located in
Livingston, Scotland. We define service latency as the inter-cloud round-trip
time taken by a HTTP request, issued by a service component on one cloud,
to get a response from the target service component on a different cloud.
Similarly, service throughput is the inter-cloud network throughput between
service components deployed on different clouds.

4.1. Service Latency

We compare the latency between the components of the service deployed
on different cloud providers, as the latency between the components in the
same cloud is almost negligible as they are usually hosted on the same hyper-
visor. We measured the latency by using the round-trip delay of an HT'TP
HEAD request/response pair, as the components of the web service commu-
nicate with each other using HT'TP protocol and ICMP, the de facto latency
measurement protocol, is blocked in the networks of our cloud providers. We
computed the average latency by running 10 experiments very hour for a
period of 24 hours, firstly without using the ICVPN solution and then with
it.
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Figure 3: Service latency of 240 round-trip time experiments from BT to Flexiant clouds
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Figure 4: Service latency of 240 round-trip time experiments from Flexiant to BT clouds

Looking at the results shown in Fig. 3] and Fig. [d], we can see that using
our solution only has a small impact on the HT'TP latency, increasing it just
by about 5%. For ease of analysis, we collect the network traffic dump when
running our experiments, using the tcpdump packet sniffer. We found out
from the traffic dumps that the increased delay we encountered is mostly
due to the additional packets transmitted and received by the peers for the
purposes of key exchange and cryptographic primitives negotiation when es-
tablishing an IPsec tunnel. After this initial handshake phase is over, the
latency performance is almost same in the comparative experiments.

4.2. Service Throughput

We measure the throughput between components of the service deployed
on different cloud providers by using Iperf [33], a commonly used network
testing tool. We measured the throughput in both directions by transferring
30 MB data, a size chosen empirically to saturate the WAN links between the
components and get the throughput results representing realistic conditions.
We computed the average throughput by running 10 experiments every hour
for a period of 24 hours, firstly without using the ICVPN solution and then
applying the security policy to tunnel the traffic through IPsec. The results
are shown in Fig.
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Figure 5: Service throughput of 240 data transmission experiments in both directions
between BT and Flexiant clouds

From the throughput results, the first thing that stands out is the dif-
ference in the throughput values depending on the direction of transferring
the data. Although we don’t have the detailed knowledge of the underly-
ing physical wide-area network connectivity between the two cloud service
providers, such readings are not unheard of in this domain and are usually
due to differences in upstream and downstream traffic conditions, different
routes chosen by the IP packets or network configuration issues. Irrespective
of that, by looking at the comparative results it is clear that we just incur
a small overhead in the throughput, of about 10%. By analysing the traffic
dumps generated from the throughout test, we can attribute this overhead to
the IKE and IPsec handshakes in addition to the extra time taken by the VM
kernel in encrypting and encapsulating 30 MB of data for each throughput
test.

4.8. Service Scalability

One of the main motivation of using P2P overlays in our solution is their
ability to scale as the number of VMs in the inter-cloud VPN service increases
with the possible increase in the workload. Some cloud services can easily
expand to hundreds even thousands of VMs across multiple clouds and it is
important that our solution is able to cope with this sort of flexibility.
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Therefore, in order to measure the scalability of our solution, we observe
the scale-up behaviour of the super peers of our universal overlay as more and
more P2P clients request to enrol and join their respective VPN overlays. The
metric that we use to measure the scalability is the number of bootstrapping
requests that a super peer can service per second as more and more VPN
peers try to join an overlay. For this measurement, due to the limitation of
resources and privileges in our test-bed cloud providers, instead of launching
thousands of VMs to emulate a large number of peers trying to join an
overlay, we launch only a few VMs containing the P2P client in each cloud
provider but create more and more instances of the peer in the same VM
to simulate a heavy workload. On the other hand, we increase the number
of super peers handling the bootstrapping linearly and observe how many
requests they were able to process per second by looking into their log files.
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Figure 6: Effect of increasing the number of Super Peers on the maximum requests pro-
cessed per second

As we can see in Fig. [ our solution was able to handle more bootstrap-
ping requests per second as we increased the number of super peers. Again,
due to the limitation of resources and privileges, we limit the number of VMs
acting as the dedicated super peers to four on each of our two test-bed cloud
providers. We can see from the progression in Fig. [6] our solution was able
to scale linearly to hundreds of requests per second as the number of super
peers was increased.
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4.4. Secure Resource Discovery Overheads

One of the main overheads in peer-to-peer overlays related to the cost of
the resource discovery after the peers have bootstrapped. Securing this pro-
cess further adds to this overhead but in an effort to characterise the effect
of our secure resource discovery mechanism, we compare it with an alternate
design of a PKI-based system where the super peers have the functionality
of a Certificate Authority (CA), each peer is issued a signed certificate upon
authenticated completion of the bootstrapping process and queries the Uni-
versal Overlay DHT for resource discovery and gets the resulting data back
which is encrypted by the owning peer using its private key. We remove the
cost of the DHT lookups from our measurements as their theoretical com-
plexity is known to be O log(n) for Kademlia DHT but due to the nature
of actual runtime measurements they can add unhelpful noise to the data.
We define the runtime cost for both designs as the time duration between
the start and end of the secure resource discovery process.
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Figure 7: Secure resource discovery for 100 runtime analysis measurements between PKI
and Functional Encryption approaches on ICVPN

From the results shown in Fig. [ the mean runtime of the PKI-based
design is 1313.52 milli-seconds whereas that for our Functional Encryption
based scheme is 338.81 milli-seconds. This shows that our scheme incurs
about 74.2% less overhead than a PKI based scheme.
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5. Related Work

The central thrust of our architecture is the provisioning of a secure vir-
tual private network over multi-cloud infrastructure. VPNs have been a
mainstay for providing secure remote access over wide-area networks to re-
sources in private organizational networks for a long time. Well-known tools
and softwares like OpenVPN [34] are used to create secure point-to-point or
site-to-site connections for authenticated remote access. However, the main
problem in client/server based approaches is that they require centralized
servers to manage the life cycle of all the secure connections for the partic-
ipating clients, hence suffering from a single point-of-failure. Another issue
is the quite complex and error prone configuration problems especially if
you want to construct and manage a large-scale network not having a rela-
tively simple topology, as it would require customized configuration on every
client and even more elaborate management and routing configuration on the
server-side. Another major drawback is the complexity of key distribution
among all the participating clients in a VPN, as the software itself does not
provide any key distribution service and all keys have to be manually trans-
ferred to individual hosts. In case of PKI model, an additional requirement of
a trusted Certificate Authority exists that has to issue individual certificates
to all the servers and clients constituting a VPN, which incurs an additional
communication overhead when forming a virtual private network.

There have been some other VPN solutions for large-scale networks aimed
at grid and cluster computing environments, such as VIOLIN [35] and VNET
[36], that do not follow a strict client/server model based approach. VNET
is a layer 2 virtual networking tool that relies on a VNET server running on
a Virtual Machine Monitor (VMM) hosting a virtual machine in a remote
network which establishes an encrypted tunnel connection to a VNET server
running on a machine (called Proxy) inside the users home network. All of
the remote virtual machines communication goes through this tunnel and the
goal of the Proxy is to emulate the remote virtual machine as a local host on
the users home network, in effect presenting it as a member of the same LAN.
The motivation of this approach is to tackle the users lack of administrative
control at remote grid sites to manipulate network resources like routing
and resource reservations etc. but it suffers from the previously discussing
problem of complex and manual configuration though going for the simplicity
of a private LAN. Also the scalability will be a big issue for the Proxy as
the number of remote virtual machines grows as each will require a secure
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tunnel connection and corresponding virtual network interface mapped to
the Proxys network interface by the VNET server software.

VIOLIN is a small-scale virtual network with virtual routers, switches and
end hosts implemented in software and hosted by User-Mode Linux (UML)
enabled machines as virtual appliances. It allows for the dynamic establish-
ment of a private layer 3 virtual network among virtual machines, however,
it does not offer dynamic or automatic network deployment or route man-
agement to setup the virtual network. Virtual links are established between
the virtual appliances using encrypted UDP tunnels that have to be manu-
ally setup and are not self-configuring, making it cumbersome to establish
inter-host connections in flexible and dynamic fashion.

P2P VPN solutions like Hamachi [37] and N2N [3§] have come up as
peer-to-peer alternatives to centralized and client/server model based VPNs.
Hamachi is a shareware application that is capable of establishing direct
links between computers that are behind NAT firewalls. A back-end cluster
of servers are used to enable NAT traversal and establish direct peer-to-
peer connections among its clients. Each client establishes and maintains
a control connection to the server cluster. It is mainly used for internet
gaming and remote administration but suffers from scalability issues as each
peer has to maintain the connection with the server as well as any other
peers it wants to communicate with, ending up with the overhead of a mesh-
topology. It therefore offers limited number of peers (16 per virtual network)
and limited number of concurrent clients (50 per virtual network). The keys
used for connection encryption and authentication are also controlled by the
vendors servers and individual users do not initially control who has access
to their network. N2N is a layer 2 VPN solution which does not require a
centralized back-end cluster of servers like Hamachi but it uses a peer-to-peer
overlay network similar to Skype, where a number of dedicated super-nodes
are used as relay agents for edge nodes that cannot communicate directly
with each other due to firewall or NAT restrictions. The edge nodes connect
to a super-node at start-up and pre-shared TwoFish [39] keys are used for
link encryption. As it operates on layer 2, the users of the overlay have
to configure their IP addresses etc. It also assumes node membership as
relatively static with edge nodes rarely leaving or joining the network over
their life cycle.

More recently, some commercial cloud computing services have been made
available by different vendors that provide a virtual private network inside
their public cloud offering and offering the customers some limited degree of
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control over this network, which is called a Virtual Private Cloud (VPC).
Prime examples in this domain are Amazon Virtual Private Cloud [40],
Google Secure Data Connector [41] and CohsiveF'T VPN-Cubed [42]. These
are aimed at enterprise customers to allow them to access their resource
deployed on the vendors cloud over an IPsec [22] based virtual private net-
work. Although these products allow the possibility of leveraging the cloud
providers APIs to flexibly grow and shrink their networks, the management
and configuration is as complex as a traditional network as components of
the VPC such as internet gateways, VPN servers, NAT instances and sub-
nets have to be managed by the customers themselves. Furthermore, the
customers are required to setup a hardware IPsec device on their premises
that connects to an [Psec gateway in the VPC running as a virtual appliance
which integrates the enterprises network with the VPC subnet in the cloud.
Most importantly, with the exception of [42], these solutions are locked to
single cloud vendor and [42] provides use of a selective set of cloud providers
by placing its virtual appliances as VPN gateways in these cloud infrastruc-
tures and allowing the customers to join these gateways in a mesh topology
manually.

6. Conclusion

In this paper, we present a scalable and robust secure communication
framework for services deployed in an inter-cloud environment. We employ
the flexibility and scalability afforded by structure peer-to-peer overlays to
join virtual machines running on different cloud IaaS providers with each
other using IPsec tunnels, hence providing confidentiality, authentication
and integrity for all the data exchanged between different components of
the service. Our solution needs minimal manual configuration as peers are
automated to discover the information needed to perform their operations
from the Universal Overlay. We also provide a distributed and scalable key
management solution for the consumption of the virtual machines to set-
up the secure communication channels. Our solution supports the dynamic
addition and removal of nodes from the VPN overlay as we use the peer-to-
peer DHT not just as a command and control channel for managing the VPN
peers but also for the churn management of peers in the VPN overlay. We
have evaluated a prototype implementation based on experiments conducted
in realistic conditions, over multiple cloud infrastructure environments and
found minimal latency and throughput overhead of creating and maintaining
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the ICVPN connections among the participating VMs of a service.
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