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Abstract

This thesis is based on the work done during my PhD studies and is

roughly divided in two independent parts. The first part consists of

Chapters 1 and 2 and is based on the two papers Cavaglià et al. [2011]

and Cavaglià & Fring [2012], concerning the complex PT-symmetric

deformations of the KdV equation and of the inviscid Burgers equa-

tion, respectively. The second part of the thesis, comprising Chapters

3 and 4, contains a review and original numerical studies on the prop-

erties of certain quasilinear dispersive PDEs in one dimension with

compacton solutions.

The subjects treated in the two parts of this work are quite different,

however a common theme, emphasised in the title of the thesis, is

the occurrence of nonsemilinear PDEs. Such equations are charac-

terised by the fact that the highest derivative enters the equation in

a nonlinear fashion, and arise in the modeling of strongly nonlinear

natural phenomena such as the breaking of waves, the formation of

shocks and crests or the creation of liquid drops. Typically, nonsemi-

linear equations are associated to the development of singularities and

non-analytic solutions.

Many of the complex deformations considered in the first two chapters

are nonsemilinear as a result of the PT deformation. This is also a

crucial feature of the compacton-supporting equations considered in

the second part of this work.

This thesis is organized as follows.

Chapter 1 contains an introduction to the field of PT-symmetric

quantum and classical mechanics, motivating the study of PT-symmetric



deformations of classical systems. Then, we review the contents of

Cavaglià et al. [2011] where we explore travelling waves in two fam-

ily of complex models obtained as PT-symmetric deformations of the

KdV equation. We also illustrate with many examples the connec-

tion between the periodicity of orbits and their invariance under PT-

symmetry.

Chapter 2 is based on the paper Cavaglià & Fring [2012] on the PT-

symmetric deformation of the inviscid Burgers equation introduced in

Bender & Feinberg [2008]. The main original contribution of this

chapter is to characterise precisely how the deformation affects the

gradient catastrophe. We also point out some incorrect conclusions

of the paper Bender & Feinberg [2008].

Chapter 3 contains a review on the properties of nonsemilinear

dispersive PDEs in one space dimension, concentrating on the com-

pacton solutions discovered in Rosenau & Hyman [1993]. After an in-

troduction, we present some original numerical studies on the K(2, 2)

and K(4, 4) equations. The emphasis is on illustrating the different

type of phenomena exhibited by the solutions to these models. These

numerical experiments confirm previous results on the properties of

compacton-compacton collisions. Besides, we make some original ob-

servations, showing the development of a singularity in an initially

smooth solution.

In Chapter 4 , we consider an integrable compacton equation in-

troduced by Rosenau in Rosenau [1996]. This equation has been pre-

viously studied numerically in an unpublished work by Hyman and

Rosenau cited in Rosenau [2006]. We present an independent nu-

merical study, confirming the claim of Rosenau [2006] that travelling

compacton equations to this equation do not contribute to the initial

value problem. Besides, we analyse the local conservation laws of this

equation and show that most of them are violated by any solution

having a compact, dynamically evolving support. We confirm numer-



ically that such solutions, which had not been described before, do

indeed exist.

Finally, in Chapter 5 we present our conclusions and discuss open

problems related to this work.
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Chapter 1

PT -symmetric deformations of

nonlinear wave equations

1.1 Complex extensions of dynamical systems

In this chapter we consider complex deformations of classical systems, motivated

by the analogy with PT-symmetric quantum mechanics.

Complex extensions of classical systems have been considered in different con-

texts, often revealing that crucial aspects of the dynamics of a real system can be

best understood as images of simpler phenomena happening in a larger complex

domain. For example, the connection between the integrability of a dynamical

system and its analytic properties when extended to complex time, first discov-

ered in the seminal work of Kovalevskaya Kowalevski [1889], is at the heart of

the celebrated Painlevè conjecture Ablowitz et al. [1978]. More recently, complex-

time dynamical systems have been considered in the attempt to understand the

fundamental mechanisms underlying chaos, see for example Calogero et al. [2005].

From another perspective, a great interest in complex classical systems has

also arisen in conjunction with the study PT-symmetric quantum mechanics ini-

tiated in Bender & Boettcher [1998]; Bender et al. [1999]. In these works, it was

discovered that non-Hermitian PT-symmetric complex deformations of quantum

Hamiltonians may still have a real spectrum, unless the symmetry is broken on

the quantum level. Complex classical PT-symmetric systems were considered ini-

tally in the attempt to find parallels with the quantum behaviour. Later, these
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1. PT deformations of KdV travelling waves

investigations gave rise to an independent field of research into the often surpris-

ing properties of these models, even when considered purely at the classical level.

This chapter is based on the work Cavaglià et al. [2011], and deals with the study

of complex travelling wave solutions to the KdV equations and its PT-symmetric

deformations.

1.2 A brief introduction to PT-symmetric quan-

tum mechanics

The field of PT-symmetric quantum mechanics stems from the discovery that

some quantum one-dimensional Hamiltonians, despite not being manifestly Her-

mitian with respect to the standard L2(R) metric, may still admit a purely real

spectrum, bounded from below Bender & Boettcher [1998]. Bender and Boettcher

quote as a main source of inspiration an unpublished work by Bessis and Zinn-

Justin, who conjectured that the complex cubic oscillator

H1 = p2 + i x3, (1.1)

relevant to describe the Yang-Lee edge singularity in statistical mechanics Fisher

[1978], may have a real spectrum. Bender and Boettcher investigated numerically

the family of complex anharmonic oscillators

Hǫ = p2 + x2(ix)ǫ, (1.2)

which reduces to the standard harmonic oscillator for ǫ = 0 and to (1.1) for ǫ = 1

and is not Hermitian for all ǫ > 0. They found that the energy levels En, defined

by the eigenvalue problem1

Hψn(x) ≡ −∂xxψn(x) + (ix)ǫψn(x) = Enψn(x), ψn ∈ L2(Rǫ), (1.3)

were all real for every value ǫ ≥ 0. Notice that, in (1.3), the boundary conditions

are defined on a complex path Rǫ. The need to deform the problem away from

1 The eigenvalue problem is obtained by making the standard replacement p → −i∂x in the
Hamiltonian and viewing it as a linear operator.
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1. PT deformations of KdV travelling waves

the real axis is due to the fact that solutions to (1.3) can have exponentially

decaying asymptotics only inside sectors of the complex plane (the Stokes sectors)

that rotate with ǫ. In order to define a continuous deformation of the harmonic

oscillator spectrum, the contour Rǫ is defined to lie asymptotically within a pair

of wedges given by |arg(x)− θǫ| < ∆ǫ and |arg(x)− π + θǫ| < ∆ǫ, where

∆ǫ =
π

ǫ+ 4
, θǫ = −π +

ǫ

2ǫ+ 8
π. (1.4)

The reader is invited to consult Bender & Boettcher [1998], Bender [2007] and

Bender & Turbiner [1993] for more details.
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Figure 1.1: The first excited energy levels of the Hamiltonians (1.2) as a function
of the deformation parameter, where N := ǫ+ 2. The plot is taken from Bender
& Boettcher [1998].
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1. PT deformations of KdV travelling waves

The pattern of the first energy levels is reproduced from Bender & Boettcher

[1998] in Figure 1.1. There are three distinct regions, with the harmonic oscillator

lying at the boundary of two of them. The spectrum is entirely real for ǫ ≥ 0.

Secondly, for −1 < ǫ < 0 only a finite number of eigenvalues are real, while the

rest of the spectrum is composed of pairs of complex conjugate energy levels.

Finally, the spectrum becomes entirely complex for ǫ ≤ −1. After the numerical

studies of Bender & Boettcher [1998], these results were established in Dorey

et al. [2001] using integrable model tools and the ODE/IM correspondence Dorey

et al. [2007].

In Figure 1.1, one can see very clearly some of the transitions from real to

complex eigenvalues in the region −1 < ǫ < 0, where several pairs of eigenvalues

can be seen merging and then disappearing. This signals that they coalesce and

then move into the complex plane developing two opposite imaginary parts. The

critical point ǫc at which the two energy levels merge is known as an exceptional

point : a point in the parameter space at which the spectrum becomes degenerate,

through the coalescence of (typically) two eigenvectors Berry [1994]; Heiss [2012].

Bender and Boettcher understood that the reality properties described above

are intimately related to the presence of an anti-linear symmetry of the Hamil-

tonians (1.2): PT-symmetry. A PT transformation is the combination of space

reflection (P) and time reversal (T), acting on functions of the position x and

momentum p as follows:

P : f(x, p) → f(−x,−p), T : f(x, p) → (f(x,−p))∗ , (1.5)

so that

PT : f(x, p) → (f(−x, p))∗ ≡ f(x, p)PT (1.6)

It is easy to verify that all the Hamiltonians in (1.2) are left invariant by (1.6). In

the previous expressions, ∗ denotes complex conjugation, and is a crucial element

of the construction. It implies that, quantum mechanically, PT is an anti-linear

symmetry. Another important feature is that PT is an involution, namely

PTPT = Id, (1.7)
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1. PT deformations of KdV travelling waves

where Id denotes the identity transformation. The important consequences of

these facts were already pointed out in Wigner [1960] for a general anti-linear

and involutive symmetry1. For simplicity, let us restrict to the case when the

spectrum is discrete, as is the case for the models (1.2). Then, if ψn(x) is the

eigenvector associated to the energy level En, one has

(H . ψn(x))
PT = (En ψn(x))

PT = E∗
n ψ

PT
n (x) (1.8)

and on the other hand

(H . ψn(x))
PT = HPT . ψPT

n (x) = H . ψPT
n (x). (1.9)

This shows that ψPT
n (x) is in turn an eigenvector, associated to the complex

conjugate eigenvalue E∗
n. Then, the spectrum is entirely real provided not only

the Hamiltonian, but also the eigenvectors are invariant under the anti-linear

symmetry, namely if

ψPT
n (x) = α ψn(x), (1.10)

where α ∈ C. If the property (1.10) holds for all eigenvectors, one says that the

model is in a phase of unbroken PT-symmetry, while in the phase of spontaneously

broken symmetry some eigenvalues can exist in complex conjugate pairs.

1.2.1 Physical applications

Non-Hermitian Hamiltonians with generic complex spectra have been used to

describe dissipative effects in open quantum systems long before the discoveries

discussed above Moiseyev [2011]. In that context, the spectrum is in general

genuinely complex, and the imaginary part of the energy levels measures the

effects of dissipation. The discovery that non-Hermitian Hamiltonians possess-

ing an anti-linear symmetry may have an entirely real spectrum suggests that

they define quantum theories with a unitary evolution and no dissipation. In

1 In fact the properties we are discussing are true in the presence of any anti-linear involutive
symmetry of the Hamiltonian. The term PT-symmetry is however used for historical reasons
even when the symmetry has another interpretation.
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1. PT deformations of KdV travelling waves

some cases, it is possible to prove that such Hamiltonians are in fact Hermitian

Hamiltonians in disguise, sometimes called pseudo- or quasi-HermitianDieudonné

[1961]; Mostafazadeh [2002]; Scholtz et al. [1992], provided one redefines the inner

product appropriately.

However, there are several examples in which the redefinition of the metric

is not possible and the system, despite having a real spectrum, is not equivalent

to any Hermitian counterpart and can show genuinely new features 1. So far,

the most interesting applications of the ideas of PT-symmetric quantum mechan-

ics in physics moreover lie at the interface between dissipative and “Hermitian”

behavior and revolve around the PT-symmetry breaking phase transition. The

merging of pairs of eigenvalues at exceptional points can describe new classes of

physical phenomena (see for example Fagotti et al. [2011]; Günther et al. [2007];

Uzdin et al. [2011] and Berry [1994]; Heiss [2012] for a general review on the

applications of exceptional points). A transition with similar characteristics ap-

pears also in the study of the localization/delocalization transition of magnetic

flux lines in type-II superconductors Hatano & Nelson [1996]. More recently,

the PT-symmetry breaking transition has been realized experimentally in optic

waveguides Klaiman et al. [2008]; Kottos [2010]; Rüter et al. [2010].

1.2.2 Comparison of quantum/classical behaviour

Bender, Boettcher and Meisinger discovered in Bender et al. [1999] that the PT-

symmetry breaking transition has a surprising classical counterpart. Namely,

they studied the classical trajectories of particles governed by the Hamiltonians

(1.2), and obeying the resulting equations of motion:

E = ẋ2 + x2(ix)ǫ, (1.11)

where ẋ denotes differentiation with respect to time: ẋ ≡ d
dt
x. Notice that, while

we will always consider the time variable t to be real, for ǫ 6= 0 we are forced

to extend the coordinate x in the complex domain. In Bender et al. [1999], the

1Surprisingly, it has been shown that this is the case even for the anharmonic oscillators
discussed above Siegl & Krejčǐŕık [2012].
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1. PT deformations of KdV travelling waves

constant of motion E was taken to be real: E ∈ R1. This ensures the preservation

of PT-symmetry at the classical level, meaning that the orbits of the system are

symmetric when reflected across the imaginary axis.

Bender, Boettcher and Meisinger discovered that

• For ǫ ≥ 0 all the solutions to (1.11) follow closed periodic orbits, and almost

all the orbits are PT symmetric 2.

• For ǫ < 0 all the the orbits are open and spiral to infinity in an infinite

amount of time. None of these orbits is PT-symmetric.

The fact that the boundary of these two classically well distinct regions is the same

as for the two quantum phases is very suggestive. Analogies between classical

and quantum behaviour were also observed in other, more general models. For

example, the same two statements above were found to hold for a family of

potentials with an added centrifugal term in Millican-Slater [2004]. However there

are also examples of models in which such correlations were not observed Dey &

Fring [2013]; Mandal & Mahajan [2013].

Moreover, the behaviour of the solutions to these differential equations is

surprisingly rich and was investigated in detail in many other works such as

Bender et al. [2006] and Bender & Darg [2007]. In particular, despite the fact

that all the trajectories for ǫ > 0 are periodic, they show a very rich topological

variety due to the fact that the motion takes place on a Riemann surface rather

than on the complex plane. In fact, the velocity field defined by

ẋ =
√
E − x2(ix)ǫ (1.12)

has a branch point at x = 0, which for irrational values of ǫ connects an infinite

number of sheets. The topology of the trajectories can be very intricate, because,

when projected on a single copy of the complex plane, an orbit exploring different

Riemann sheets will normally show many self-intersections. Besides, (1.12) has

1 In fact, E ∈ R is then an inessential parameter which can be rescaled at will simply by
redefining x or t, so that we can take E = 1.

2 Isolated examples of non PT-symmetric periodic orbits were noticed in Bender & Darg
[2007]. In Bender et al. [2006], the authors also speculate that there may isolated examples of
open orbits in this region.
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square root branch points at every point xtp such that the argument of the square

root is null:

E − x2tp(ixtp)
ǫ = 0. (1.13)

Such points, where the velocity of the particle is zero while its acceleration is

nonzero, are known as turning points of the dynamical system. In the present case

there are in general infinitely many turning points, living on different Riemann

sheets. Turning points play an important role in organizing the phase portrait

of the system as the orbits can be naturally classified in families of topologically

equivalent orbits, with trajectories of the same family encircling the same set of

turning points. In Bender et al. [2006], Bender & Darg [2007], the topology of

orbits connecting a generic pair of turning points was shown to undergo several

transitions as ǫ is varied. In Bender & Jones [2011], these observations were

related to the reality properties of the spectrum of a related quantum problem,

obtained by imposing boundary conditions in a pair of Stokes sectors different

from the one described in (1.4). Further analogies between quantum mechanics

and complex classical mechanics were proposed in other works (see for instance

Bender et al. [2010a,b]).

A slightly different problem was considered in Anderson et al. [2011]; Bender

et al. [2008]. In these works, the authors investigated the classical orbits of

some anharmonic oscillator Hamiltonians (such as (1.11) for ǫ ∈ N) allowing the

integration constant E to be complex. For nonreal values of E, the orbits are no

longer PT symmetric, and were shown to be in general open and space filling. We

will rediscover these observations below (in particular in Section 1.3.3.3), as some

of the same potential problems arise from the reduction of the KdV equation and

its deformations.

1.2.3 PT symmetric deformations of nonlinear wave equa-

tions

The extremely interesting phenomena described above have sparked a vast re-

search activity on the classical properties of complex PT-symmetric systems. New
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directions of research have included dynamical systems in more than one dimen-

sion such as the Lorenz system of ODEs Bender et al. [2009], many-body systems

such as Calogero-Moser models Fring & Znojil [2008], Fring & Smith [2010] and

PDEs Fring [2007], Bender et al. [2007], Assis & Fring [2009b], Assis & Fring

[2009a], Bender & Feinberg [2008]. In particular, the authors of these works con-

sider parametric families of PT-symmetric deformations of a given system. An

interesting question, inspired by the simple case of the anharmonic potentials, is

whether it is still possible to recognize a classical PT-symmetry breaking tran-

sition: a sudden change in the topological properties of the orbits such as the

change from open to closed orbits, associated to a loss of their symmetry.

In the rest of this chapter and in the next, we will explore the deformations of

two well-known nonlinear wave models: the Korteweg-de Vries (KdV) equation

and the inviscid Burgers equation, respectively.

1.3 The KdV equation: complex extension of

travelling waves and PT-symmetric defor-

mations

1.3.1 The KdV equation and its PT-symmetric deforma-

tions

The KdV equation reads

ut + βuux + γuxxx = 0. (1.14)

This equation famously arises as an asymptotic description of small-amplitude

waves in shallow water Korteweg & de Vries [1895], as well as in other physical

contexts (see Ablowitz & Segur [1981] for a survey). In physical applications, the

constants β, γ are normally real and could be simply eliminated by a redefinition

of x, t and u. Here, however, in the spirit of the complex extension of classical

physics motivated above, we will also consider complex values for these coeffi-

cients, and in general consider complex solutions.
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Notice that the complex KdV equation has been considered before, and is physi-

cally relevant in the theory of water waves Levi [1994]; Levi & Sanielevici [1996],

where it reduces to the standard, real KdV equation in a specific limit of almost

horizontal flow.

In this thesis we only scratch the surface of the properties of the KdV equation,

and in particular do not discuss its beautiful integrability properties. Moreover,

we will restrict our analysis only to a very limited class of solutions, namely

travelling wave solutions and two-soliton solutions (for the discussion of more

general solutions to the complex KdV equation, see Birnir [1986], Bona &Weissler

[2009] and references therein). Beside considering complex extensions of these

solutions, we will also consider how they are modified by some PT-symmetric

deformations of the KdV equation. The relevant definition of PT-symmetry will

be given below. The KdV equation (1.14) can be written in the Hamiltonian

form (see Olver [2000])

ut = J
δ

δu
HKdV, (1.15)

where the skew-adjoint operator J = ∂x defines the relevant symplectic structure,
δ
δu

denotes functional differentiation and the Hamiltonian HKdV is

HKdV =

∫ ∞

−∞
HKdV dx, (1.16)

with

HKdV = −β
6
u3 +

γ

2
u2x . (1.17)

The Hamiltonian HKdV, which has the physical interpretation of the energy of

the solution, is one of the infinitely many conserved quantities of this integrable

equation. We mention (as we will use these notions in Section 4.2.3) that the KdV

equation also admits a second Hamiltonian formulation, with a different definition

both of the symplectic structure and of the Hamiltonian density. As discovered

in Magri [1978], the presence of two compatible Hamiltonian formulations (see

Magri [1978] for the precise definition) is one of the ways to prove the existence

of infinitely many symmetries.
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PT-symmetry Let us now discuss PT-symmetry. The equation is invariant

under a symultaneous flip of space and time x 7→ −x, t 7→ −t, provided the field

transforms simply as u(x, t) 7→ u(−x,−t) 1. Adding complex conjugation to our

definition, the equation is PT-symmetric provided it has real coefficients. Since

we will shortly discuss a second possible realisation of an anti-linear symmetry,

let us denote the symmetry we have just described as PT+. Therefore the system

is invariant under

PT+ : x 7→ −x, t 7→ −t, i 7→ −i, u 7→ u for β, γ ∈ R. (1.18)

A solution is PT+-symmetric if u(x, t) = u∗(−x,−t). It is particularly interesting

to study examples of solutions which are not PT+-symmetric although β, γ ∈ R;

in the spirit of Section 1.2.2, such solutions are a classical example of spontaneous

symmetry breaking, and are expected to be qualitatively different from symmetric

solutions.

Besides the definition (1.18), one could regard the equation as PT-symmetric

(with another definition of the symmetry that we will indicate as PT−) also if

iβ, γ ∈ R. In this case, in fact, the equation is invariant under

PT− : x 7→ −x, t 7→ −t, i 7→ −i, u 7→ −u for iβ, γ ∈ R, (1.19)

and PT−-symmetric solutions are characterised by u(x, t) = −u∗(−x,−t).

Deformations It is simple to construct a PT-symmetry preserving deformation

of a given model by generalizing (1.3). Namely, any quantity φ(x, t) transforming

as PT : φ(x, t) 7→ −φ(x, t) under the symmetry can be deformed as φ(x, t) 7→
−i[iφ(x, t)]ǫ. The new quantity will remain anti-PT-symmetric with the crucial

difference that the overall minus sign is generated from the antilinear nature of the

PT-operator, i.e. i 7→ −i, rather than from φ(x, t) 7→ −φ(x, t). The undeformed

case is recovered for ε = 1 2. The paper Bender et al. [2007] was the first to

1 This rule is in accordance with the physical picture, where u(x, t) represents the elevation
of the wave in the vertical direction.

2 Notice that this definition is slightly different from (1.3), where the undeformed model is
obtained for ǫ = 0. This is simply due to different conventions in the literature.

11



1. PT deformations of KdV travelling waves

consider a complex deformation of the KdV model, obtained by applying the

recipe discussed above to the convective term of the equation:

ut + β(−i)u(iux)ε + γuxxx = 0, β, γ ∈ R. (1.20)

Another possibility, as proposed in Fring [2007], is to deform directly the Hamilto-

nian density appearing in (1.15) (while leaving unchanged 1 the operator J = ∂x).

The resulting deformed equation was shown to have at least an advantage over

(1.20), namely the existence of two conserved quantities, energy and momentum

(in contrast, the models (1.20) for ǫ > 1 are not Hamiltonian) 2.

For the two possibilities (1.18), (1.19) to define PT, there are two possible

rules for the deformation. We denote them as

δ+ε : ux 7→ ux,ε := −i(iux)ε or δ−ε : u 7→ uε := −i(iu)ε. (1.21)

Accordingly we define the deformed models by the following Hamiltonian densities

H+
ε = −β

6
u3 − γ

1 + ε
(iux)

ε+1, or H−
ε =

β

(1 + ε)(2 + ε)
(iu)ε+2 +

γ

2
u2x, (1.22)

with corresponding equations of motion

ut = ∂x
δ

δu
H+

ε → ut + βuux + γuxxx,ε = 0 (1.23)

ut = ∂x
δ

δu
H−

ε → ut + (−i)β(iu)εux + γuxxx = 0, (1.24)

respectively. The models related to H+
ε were studied in Fring [2007]. The second

family H−
ε was introduced in Cavaglià et al. [2011] and correspond to complex

versions of the generalized KdV equations. For the higher deformed derivatives

we use here the notation uxx,ε := ∂xux,ε, uxxx,ε := ∂2xux,ε,. . . , unx,ε := ∂n−1
x ux,ε,

which means we only deform the first derivative and keep acting on it with ∂x to

define the higher order derivatives.

1Deforming J would give rise to other possible rules of deformations, which will not be
considered in this work.

2 Consequently, travelling wave solutions of (1.20) are more difficult to study, since in
general they are described by a second order ODE (while a first order ODE is sufficient for the
models of Fring [2007]).
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1. PT deformations of KdV travelling waves

Finally, let us mention that, as pointed out in Bender et al. [2007], many

important integrable wave equations are PT-symmetric. However, integrability

is a very fragile property and we expect that it will not be preserved under the

deformation.

1.3.2 Complex extension of travelling waves

Travelling wave solutions are obtained from (1.14) by making the assumption

u(x, t) := u(x− ct), where c denotes the speed of the wave. This leads to an ordi-

nary differential equation, describing the possible profiles of translational waves.

We denote the independent variable of this ODE as ζ = x− ct. Then, after two

integrations and introducing the integration constants κ1 and κ2 ∈ C, we find the

first order equation:

u̇2 =
2

γ

(
κ2 + κ1u+

c

2
u2 − β

6
u3
)
. (1.25)

Normally, these integration constants would be fixed by imposing suitable bound-

ary conditions on the solution. A typical requirement is that u and its derivatives

are asymptotically vanishing, namely

lim
ζ→±∞

u(ζ) = lim u̇(ζ) = 0 (1.26)

or periodic, namely

u(ζ + T ) = u(ζ) (1.27)

for some real period T . Since we are interested in generic complex solutions to

the KdV equation, we will be more general and regard κ1 and κ2 as free complex

parameters. We will see shortly that most solutions will be open orbits.

We are particularly interested to examine whether there are orbits that break

the PT+ or PT−-symmetry of the model. One possibility to achieve this is clearly

to take generic complex values for the constants κ1 and κ2. These parameters are

simply related to the three zeros of the polynomial appearing in the rhs of (1.25).

13



1. PT deformations of KdV travelling waves

In the following, we will denote this polynomial as

2

γ

(
κ2 + κ1u+

c

2
u2 − β

6
u3
)

:= λP (u), λ = − β

3γ
, (1.28)

and

P (u) := (u−A)(u− B)(u− C). (1.29)

The zeros A, B and C satisfy the constraint

A+B + C =
3c

β
, (1.30)

and the positions of two of them (say, A and C) can be chosen freely by taking

κ1 =
1

6

[
β(A2 + AC + C2)− 3c(A− C)

]
, (1.31)

κ2 =
AC

6
[3c− β(A+ C)] . (1.32)

After a further integration, (1.25) can therefore be rewritten as

±
√
λ (ζ − ζ0) =

∫
du

1√
P (u)

, (1.33)

which gives rise in general to an elliptic function. Notice the similarity with (1.11):

in fact, equation (1.28) is simply the equation for the motion of a single particle

in a potential P (u), and in the following we adopt this language referring to u̇ as

the velocity field. Notice that the zeros of the polynomial A, B, C correspond to

turning points.

In Table 1.1, we summarise the possible choices of parameters preserving

either of the definitions of PT-symmetry we have given.

β γ A κ1 κ2 symmetry of orbits
PT+: ∈ R ∈ R ∈ R ∈ R ∈ R reflection w.r.t. real axis
PT−: ∈ iR ∈ R ∈ iR ∈ iR ∈ R reflection w.r.t. imaginary axis

Table 1.1: PT-symmetric choices of the parameters.
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1. PT deformations of KdV travelling waves

Deformation of travelling waves In the deformed case, we still obtain two

first-order potential systems of the form u̇2 = V (u). After a brief calculation, one

in fact finds, for the two deformations considered above:

- for the H+
ε model,

u̇2 = V+,ε(u) ≡
(
iε−1β(1 + ε)

6γε
P (u)

) 2
1+ε

, (1.34)

where P (u) is the same third order polynomial introduced in (1.28) ;

- for the H−
ε model,

u̇2 = V−,ε(u) ≡
2

γ

(
κ2 + κ1u+

c

2
u2 − β

iε

(1 + ε)(2 + ε)
u2+ε

)
. (1.35)

Some preliminary observations:

• We see that, for the deformation H+
ε , the potential has three zeros at the

same locations A, B, C as for the undeformed equation, specified by (1.30-

1.32). As we will see shortly, due to their different algebraic nature these

zeros are not turning points and their local characteristics depend on ε. See

Section 1.3.4.

• For the second family of models, the number of zeros of the potential

changes with ε. For ε = n ∈ N, there are exactly n zeros, while for generic

ǫ ∈ R there are infinitely many. In fact, for irrational values of ε, V −
ε (u)

has an infinite-order branch point at u = 0 and the zeros are distributed

on infinitely many Riemann sheets. These zeros still behave as turning

points, as in the undeformed case, and there is no other type of singularity.

This second deformation therefore will generate orbits similar to those of

the anharmonic oscillator potentials of Section 1.2, with a dense “forest of

turning points” 1 for large values of ε. In this work, we concentrate more

on the first type of deformation; however, some examples will be studied in

Section 1.3.5.

1quoting Bender et al. [2006]
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1. PT deformations of KdV travelling waves

We make a last comment before starting to consider some solutions in detail.

In (1.25, 1.34, 1.35) , the velocity u̇ is defined modulo a sign. This means that

every solution has a partner solution which simply retraces the same orbit back-

wards. For this reason, in the plots presented in the rest of the chapter we simply

depict different “orbits”: each corresponds to two solutions.

1.3.3 The undeformed equation

In the undeformed case, it is easy to find the solution explicitly, as (1.33) can be

solved in terms of an elliptic function. The solution is even simpler when some

of the roots coincide. Let us present in order the different possibilities.

1.3.3.1 Rational solutions

Rational solutions are obtained with the factorisation

P (u) = (u−A)3, (1.36)

which can be realised with the following choice of integration constants:

λ = − β

3γ
, κ1 = − c2

2β
, κ2 =

c3

6β2
and A =

c

β
. (1.37)

From the previous equations, we see that, given a PT±-symmetric choice of β

and γ, it is not possible to break the symmetry “spontaneously” with the value

of A. Moreover, breaking the symmetry of the equation by taking generic complex

values of γ, β simply amounts to a rotation of the solutions in the complex u-

plane.

We can easily find the solution explicitly by computing the integral (1.33):

u (ζ) =
c

β
− 12γ

β (ζ − ζ0)
2 . (1.38)

When viewed in the two-dimensional complex plane, this equation is the rational

parametrisation of a cardioid. A complete family of complex solutions, filling

the complex u-plane and symmetric with respect to the line arg(u) = arg( γ
β
), is

obtained by changing ζ0.
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1. PT deformations of KdV travelling waves
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Figure 1.2: Complex rational solutions of the KdV equation: in the left panel
PT-symmetric solutions for c = 1, β = 2, γ = 3 and A = 1/2; in the right panel,
we have taken c = 1, β = 2 + i2, γ = 3 and consequently A = (1− i)/4.

Two examples are shown in Figure 1.2, where we have traced in black the

square-root branch cut of the velocity u̇. On the second Riemann sheet, the

orbits are the same but they are travelled in the opposite direction. Let us make

a comment on the nature of the point u = A. This point cannot be reached in any

finite amount of time, and is an accumulation point for all the orbits. Moreover,

obits can only approach this point along the direction of the line arg(u) = arg( γ
β
).

This is a particular case of the general behaviour of orbits around algebraic zeros,

see Section 1.3.4.

1.3.3.2 Trigonometric solutions

Now let us consider the factorization P (u) = (u − A)2(u − B) , which can be

obtained by taking

λ = − β

3γ
, κ1 =

A

2
(βA−2c), κ2 =

A2

6
(3c−2βA) and B =

3c

β
−2A. (1.39)
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1. PT deformations of KdV travelling waves

The general solution in this case is

u (ζ) = A + (B − A) cosh−2

[
1

2

√
A− B

√
λ (ζ − ζ0)

]
. (1.40)

The phase portrait of these solutions can already show an interesting variety

depending on the value of the parameters. It is interesting to classify the different

possible behaviours of the orbits around the double zero u = A. This is clearly

no longer a turning point. Instead, this point is characterised by the vanishing of

both u̇ and ü (and therefore of all higher derivatives), meaning that the equation

admits the constant solution u(ζ) = A. This is therefore a stationary point. For

each of the two signs of the square root, the equation

u̇ = ±λ(u− A)
√
u−B (1.41)

now defines a smooth dynamical system in the neighborhood of u = A, which

can be studied locally with the standard tools for two-dimensional real systems.

It is convenient to separate u into its real and imaginary part, u = uR + iuI , uR,

uI ∈ R, so that (1.41) becomes:

u̇R = +Re
[√

λ
√
P (uR + iuI)

]
and u̇I = +Im

[√
λ
√
P (uR + iuI)

]
,

(1.42)

where we have restricted to the + sign in (1.41), since on the second sheet the

orbits are the same, but simply travelled in the opposite direction. According to

the classic classification reviewed in Appendix A, the behaviour of the solutions

around u = A is determined by the eigenvalues of the Jacobian matrix, which

here is simply

J (A) =




∂Re[
√

V (u)]

∂uR

∂Re[
√

V (u)]

∂uI

∂Im[
√

V (u)]

∂uR

∂Im[
√

V (u)]

∂uI




∣∣∣∣∣∣
u=A

=

(
Re[ d

du

√
V (u)] −Im[ d

du

√
V (u)]

Im[ d
du

√
V (u)] Re[ d

du

√
V (u)]

)∣∣∣∣
u=A

.(1.43)

with
√
V (u) =

√
λ
√
P (u). We denote the eigenvalues of J (A) by j1, j2. They

can be simply computed as

j1 =
d

du

√
V (u)|u=A =

√
λ(A− B), j2 = (j1)

∗, (1.44)
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1. PT deformations of KdV travelling waves

(a) (stable or unstable) star node, when ji ∈ R .
(b) centre , when ji ∈ iR .
(c) (stable or unstable) focus , in all other cases (ji /∈ R, /∈ iR).

Table 1.2: Small classification of the possible behaviour around the fixed point
u = A.

(with λ = − β
3γ
). We see that, while in a generic two-dimensional dynamical

system there is no restriction on the eigenvalues, in the present case they are

related by complex conjugation as a consequence of the Cauchy-Riemann equation

satisfied by the real and imaginary parts of
√
V (u).

The possible behaviour at u = A is therefore restricted to the cases listed in

Table 1.2. Let us consider them in order.

Case (a): solitary wave solutions When the choice of the parameters A, B

is such that ji ∈ R, all the orbits (apart from a single orbit connecting the fixed

point to infinity, without passing through the turning point u = B 1) approach

asymptotically u = A for ζ → ±∞. They are natural complex extensions of the

celebrated solitary wave solutions, or one-soliton solutions.

A PT+-symmetric example is shown in Figure 1.3, left panel. Notice that rela-

tions (1.39) imply that, if the parameters β, γ are chosen in a PT±-symmetric

way according to Table 1.1, solitary wave solutions cannot break the symmetry:

otherwise it would not be possible to have j1 ∈ R. However, asymptotically con-

stant solutions exist also if the symmetry is missing from the start (when γ and

β are generically complex), as for example shown in Figure 1.4 below.

Case (b): complex periodic solutions Solutions obtained for ji ∈ iR

correspond to complex periodic orbits. These solutions have no real counterpart

because in order to have periodic motion on the real axis one would need to have at

least two turning points (this case will be presented below in 1.3.3.3). The phase

portrait corresponding to complex periodic trigonometric solutions is presented

in a PT+-symmetric example in Figure 1.3, right panel. Looking at (1.40), we see

that the period of these trigonometric solutions is given by T = 2πi√
λ(A−B)

= 2πi
j1
.

1 This escaping orbit corresponds to the choice of Im(ζ0) = 2nπ, n ∈ Z.
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Figure 1.3: Left panel: PT+-symmetric solitary wave solutions of the KdV
equation with c = 1, β = 3/10, γ = −3, A = 4 and B = 2. Right panel: complex
periodic PT+-symmetric solutions of the KdV equation with c = 1, β = 3/10,
γ = 3, A = 4, B = 2. The period is T = 2

√
15π.

We notice that this expression is the same for all orbits. In fact, this is a general

feature of complex dynamical systems, which was noticed in Bender et al. [1999]

in the case of the differential equations (1.12). The period of a closed orbit can be

computed by a contour integral
∮
CA

du
u̇
, where CA denotes the closed orbit under

consideration, encircling the point u = A. Provided u̇ is an analytic function,

this quantity can be computed by integrating over any loop enclosing the point

u = A; therefore, the period is the same for all topologically equivalent orbits. In

the present case the period can be re-obtained by using the theorem of residues:

T =

∮

CA

du

u̇
=

∮

CA

du√
λ(u− B)(u−A)

=
2πi√

λ(A− B)
. (1.45)

With the same strategy, we can compute the energy (1.16) over one period:

ET =

∮

Γ

H [u(ζ)]
du

uζ
=

∮

Γ

H [u]√
λ
√
u− B(u−A)

du = −π
√
βγ

3

A3

√
A−B

. (1.46)

Also in this case, there is a single orbit escaping at infinity, identified by the

choice Im(ζ0) = 2nπ. The orbit passes through the turning point.
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1. PT deformations of KdV travelling waves

Case (c): open orbits Finally, when ji is neither real nor imaginary, all so-

lutions obtained with Im(ζ0) 6= 2nπ, n ∈ Z1 are open orbits spiralling indefinitely

around the point A. Depending on the choice of Riemann section, these orbits

fall into the fixed point or spiral out of it, corresponding to a stable or unstable

focus, respectively. We depict an example in Figure 1.4. Notice that this type of

behaviour is associated to orbits breaking PT-symmetry. Such orbits correspond

to taking generic complex values for A, and are accompanied by PT-symmetric

conjugate orbits corresponding to the choice A∗.

0 5 10 15
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0
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Im
u

Figure 1.4: Complex trigonometric solutions of the KdV equation with “spon-
taneously broken” PT-symmetry. c = 1, β = 3/10, γ = 3, A = 4 + i/2 and
B = 2 − i, meaning that this family of orbits break the PT+-symmetry of the
equation. All orbits of this type are in the present case open.

Relation with PT-symmetry breaking In summary, we have found that

PT-symmetric orbits are always either periodic or correspond to solitary waves.

Orbits that break the symmetry spontaneously are very different, in particular

1 Again, the latter case corresponds to a single orbit escaping to infinity.
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1. PT deformations of KdV travelling waves

they are always open. This is very reminiscent, in spirit, of the findings of Bender

et al. [1999] that we have summarised in Section 1.2.2.
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Figure 1.5: Detail of a trigonometric solution of the complexified KdV equation
with broken PT-symmetry. Here we have taken c = 1, β = 3/10, γ = 3 + i/2,
A = 4, B = 2. The point u = 4 behaves like a focus. This solution is characterised
by Im(ζ0) = 6.

When, on the other hand, the symmetry is explicitly broken, namely we take

generic complex values for β, γ, solutions are almost always open, with the fixed

point behaving like a focus (see Figure 1.5 for a detail). However, there are still

examples of periodic or asymptotically constant orbits. They are associated to a

subset of all possible choices for A, obtained by imposing the condition

Re(

√
λ(3A∗ +

3c

β
)) = 0 or Im(

√
λ(3A∗ +

3c

β
)) = 0. (1.47)

Two examples are shown in Figure 1.6. The centre is unstable against pertur-

bations. In fact, by varying the parameter A in a neighbourhood of A∗, one can

have a transition between an unstable focus and a stable focus passing through

the centre.
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Figure 1.6: Two solutions of the non PT-symmetric complex KdV equation,
where the parameters have been finely tuned in order to obtain a solitary wave
solution (left panel), or a periodic solution (right panel). The choice of parameters
is: Left: c = 1, β = (16 − 4i)/17, γ = −3, A = 4 + i, B = −5 − 5/4i ; Right:
c = 1, β = (−8 + 2i)/17, γ = −3 and A = 4 + i, B = −14− 7/2i .

1.3.3.3 Elliptic solutions

Finally, let us consider the general case of a potential P (u) = (u−A)(u−B)(u−C)
with three distinct turning points (the relation between A, B, C and the other

parameters is given in (1.32) ). In this case the solution reads:

u (ζ) = A +
(B − A)

sn2
(

1
2

√
B − A

√
λ (ζ − ζ0)

∣∣A−C
A−B

) , (1.48)

where sn(z|m) is Jacobi elliptic function.

In the PT-symmetric situation, this corresponds to the celebrated cnoidal

solution of KdV equation, playing an important role in the initial value problem

over a periodic domain. This solution is real and periodic, oscillating between

two turning points. In Figure 1.7, we present the natural extension of the cnoidal

solution to the complex plane, where it is accompanied by a family of complex

periodic orbits. Apart form a single real orbit running on the positive real axis

between u = C and u = +∞, all orbits again share the same period, given by

ω1 =
8√

B − A
√
λ
K

(
A− C

A− B

)
(1.49)

where K(m) denotes the complete elliptic integral of the first kind.
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Figure 1.7: PT-symmetric complex elliptic solutions of the KdV equation with
A = 1, B = 3, C = 6, c = 1, β = 3/10, γ = −3 for different values of Imζ0.

Being an elliptic function, the solution is in fact doubly periodic. The second

period, which in the example shown in Figure 1.7 would be purely imaginary, is

given by

ω2 = i
16√

B −A
√
λ
K

(
C − B

A−B

)
. (1.50)

When the symmetry is broken, we observe quite interesting trajectories which

densely fill each of the two sheets covering the complex u-plane. An example

is plotted in Figure 1.8. The trajectory appears to repeat indefinitely the same

manoeuvre around the turning points.

A simple explanation of the space-filling character of these orbits is that, when

the symmetry is broken, the two periods ω1, ω2 become genuinely complex. When

the imaginary parts of the two periods are not commensurable, the problem is

equivalent to motion on a torus with two incommensurable frequencies: it is a

classic result that this quasi-periodic motion is dense on the torus (see for example

Arnol’d [1989]). As noticed in Anderson et al. [2011]1, there are still sparse

examples of periodic orbits with a broken symmetry. These more complicated

1 Bender et al were considering simple potential systems. For an illustration of some of these
orbits, see Anderson et al. [2011], where also quartic potentials and more general non-elliptic
cases were considered. Some general polynomial potentials similar to theirs will be seen to arise
from the deformations discussed below.
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Figure 1.8: Spontaneously broken PT-symmetric complex elliptic solution of the
KdV equation for Imζ0 = 6 with A = 4, B = 5−i/2, C = 1+i/2, c = 1, β = 3/10
and γ = 3. The left panel shows the trajectory for −64 ≤ ζ ≤ 18 solid (red) and
18 < ζ ≤ 200 dashed (black). In the right panel: −200 < ζ < 1400. Notice that
this is a single, space-filling trajectory.

periodic solutions are obtained when the two elementary periods, despite being

both complex, happen to have imaginary parts commensurate to each other, in

the sense that there exist two integers m, n ∈ Z such that nω1 +mω2 ∈ R . This

can also be rewritten as (see Anderson et al. [2011])

Im(mω1 + nω2) = 0 → m

n
= −Imω1

Imω2
. (1.51)

It is important to remark that, similar to what was seen in the case of trigono-

metric solutions, these special obits exist only for a lower-dimensional subset of

the parameter set, and, for a generic choice of parameters, we again see a strong

connection between the periodicity of the orbits and PT-symmetry.

Finally we may also break the PT-symmetry completely by complexifying the

parameters of the model β or/and γ. This situation appears totally analogous to

the case of spontaneous symmetry breaking. We show an example in 1.9.
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Figure 1.9: Broken PT-symmetric complex elliptic solutions of the KdV equation
for Imζ0 = 6: in the left panel, A = 1, B = 3, C = 6, c = 1, β = 3/10 and
γ = 3 + 2i for −200 ≤ ζ ≤ 200; in the right panel, A = 1, B = 2 + 3i, C = 6,
c = 1, β = 3/10− i/10 and γ = 3 for −200 ≤ ζ ≤ 200.

1.3.4 Deformations of the KdV equation I: the PT+-symmetric

deformation

Let us come to the first type of deformation. Before presenting some examples,

let us make a general comment. From (1.34), we have

ζ − ζ0 = exp

[
iπ

2(ε+ 1)
(ε− 1)

] ∫
du

1

[λεP (u)]
1

1+ε

. (1.52)

In general, the best we can do is computing the integral in terms of a complicated

function F (u), such that

ζ − ζ0 = F (u). (1.53)

While this relation is in general not invertible, we can easily obtain the orbits

numerically by plotting them as lines of constant Im(ζ0). The following plots

were obtained simply as contour plots of Im(F (u)) in Mathematica.
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Behaviour at general algebraic points As we have anticipated, this defor-

mation leaves unchanged the position of the three zeros of the potential A, B,

C, but changes their characteristics depending on the value of ǫ. The qualitative

behaviour of the solutions of (1.34) around one of these roots (which we denote

generically as k) can be understood by considering the simple model equation

u̇ = b (u− k)α, (1.54)

where

α =
σ

ǫ+ 1
, (1.55)

and σ ∈ {1, 2, 3} is the order of the zero of P (u) at u = k. The solution of (1.54)

in general lives on an infinitely-sheeted Riemann surface, with a branch point

at u = k. Obviously we expect the behaviour to change abruptly depending on

whether α > 1 or α < 1. Notice that the “regular case” α = 1 stands alone: the

possible behaviours for α = 1 are the ones classified in Table 1.2. Solving (1.54)

for α 6= 1 we find

u(ζ) = k +

(
− b

α
(ζ − ζ0)

) 1
1−α

, (1.56)

where the value of Im(ζ0) labels different orbits. We notice that some solutions

(identified by Im(ζ0) = 0) are simply outgoing or ingoing rays, with the number

of rays on every Riemann sheet depending on α. They are described by

arg(u− k) = −arg(
b

α
) +

2nπ

1− α
, n ∈ Z (outgoing) , (1.57)

arg(u− k) = −arg(
b

α
) +

(2n+ 1)π

1− α
, n ∈ Z, (ingoing) . (1.58)

The difference between the cases α > 1 and α < 1 can be described as follows.

For α > 1 and for every value of Im(ζ0), every orbit approaches the point u = k

asymptotically for ζ → ±∞. They form a pattern resembling flowers with 2(α−1)

petals on every Riemann sheet. An example is shown in Figure 1.10. On the

contrary, for α < 1 the rays (1.57-1.58) are the only orbits passing through the
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1. PT deformations of KdV travelling waves

Figure 1.10: Complex PT-symmetric rational solutions of the deformed KdV
equation with c = 1, β = 2 and γ = 3 for the deformed model H+

−1/2, correspond-

ing to the behaviour (1.54) with k = 1/2 and α = 6.

point u = k, and neighbouring orbits form a saddle-point like pattern (see Figure

1.11).

The deflection of the orbits in the presence of such “generalised turning points”

was recently discussed in the paper Bender & Hook [2014]. In this paper the

rays (1.57-1.58) are referred to as “separatrix trajectories” and we adopt this

terminology in the following. They are a new feature which does not exist in the

undeformed case, and we will see that they divide the phase portrait in different

sectors.

Let us now present some results, concentrating in particular on the two sim-

plest factorizations: rational and trigonometric solutions.
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1. PT deformations of KdV travelling waves

Figure 1.11: Complex PT-symmetric rational solutions of the deformed KdV
equation with c = 1, β = 2 and γ = 3 for H+

−3, corresponding to the behaviour
(1.54) with k = 1/2 and α = −3/2.

1.3.4.1 Rational solutions

The solution for three coincident roots A = B = C is

u(ζ) = A−
(
(−i)ǫ+1(ǫ− 2)ǫ+1β

6γ(ǫ+ 1)ǫ

) 1
ǫ−2

(ζ − ζ0)
1+ǫ

ǫ−2 , (1.59)

which is simply the same as (1.56).

Applying (1.57 - 1.58) with α = 3
1+ǫ

, we see that the deflection angle between

ingoing and outgoing rays is

π

1− α
=
π(1 + ǫ)

4 + ǫ
. (1.60)

The case ε = −1
2
is illustrated in Figure 1.10. For another example let us

consider the case ǫ = 1
3
. Applying (1.57 - 1.58) with α = 3

1+ǫ
= 9

4
, we find the

pattern shown in Figure 1.12, with ingoing/outgoing orbits deflected by an angle

29

ThesisFigs/KdVrate=-3.eps


1. PT deformations of KdV travelling waves

π
5
at this generalised turning point. As shown in Figure 1.12, to complete the

“flower” we need to go around its centre twice since in this case the solution

extends over four Riemann sheets.

Figure 1.12: Contour plot showing different PT-symmetric rational solutions of
the H+

1/3 equation, with c = 1, β = 2 and γ = 3, corresponding to equation (1.54)

with k = 1/2 and α = 9/4. The system is defined on a four-sheet covering of the
complex u-plane: in the left and right panel, we show the shape of orbits on the
first two sheets. On the remaining two sheets, the picture would be the same,
with the orbits being travelled in the opposite direction.

In Figure 1.11, we plot an example of saddle-like solution for ǫ = −3, cor-

responding to a deflection angle of 2π
5
, and another example, the case ǫ = 6, is

reported in Figure 1.13. The latter corresponds to a “saddle” where different

sectors have an opening angle of 7
4
π. As was already seen in the case of the un-

deformed KdV equation, for the simple factorisation P (u) = (u − A)3 breaking

PT-symmetry simply yields a rotation and there are no interesting effects. For

example see the right panel of Figure 1.13.
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1. PT deformations of KdV travelling waves

Figure 1.13: In the left panel are shown four different orbits (all of them char-
acterised by Im(ζ0) = 1) of the H+

6 model with c = 1, β = 2 and γ = 3,
corresponding to (1.54) with k = 1/2 and α = 3/7. Each orbit makes a turn
around the point u = A and is deflected by an angle which approaches asymptot-
ically 7

4
π. Notice that these four orbits live on different Riemann sheets, so that

the are no intersections. In the right panel, we break PT-symmetry by taking
c = 1, β = 2 + 2i and γ = 3, leading to k = 1/4(1− i), and the same value of α.
Clearly this simply amount to a rotation.

1.3.4.2 Trigonometric solutions

The complete solution when B = C 6= A is expressed in implicit form as Fring

[2007]:

ζ − ζ0 = Λǫ(u− B)
ǫ

1+ǫ 2F1

(
ǫ

1 + ǫ
,

2

1 + ǫ
, 1 +

1

1 + ǫ
,
u−B

A− B
,

)
(1.61)

where Λǫ is a coefficient:

Λǫ = − i
ǫ

(
− 6γ

β(A− B)2

) 1
1+ǫ

(1 + ǫ)
ǫ

1+ǫ . (1.62)

Depending on the value of ǫ, the phase portrait can be organized around two

“flower centres” for −1 < ǫ < 0, two “saddles” for ǫ < −1 ∪ ǫ > 1, or a mixed

configuration with A a flower center and B a saddle for 0 < ǫ < 1.
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1. PT deformations of KdV travelling waves

We consider here simply an example of the first case for ǫ = −1
2
, which however

shows some features that we have observed also for other choices of ǫ. In this

case the solution (1.61) simplifies considerably becoming

ζ − ζ0 = α

(
12 log

u− B

u− A
+

3(A− B)

B − u
+

9(A−B)

A− u
+

3(A− B)2

(A− u)2
+

(A− B)3

(A− u)3

)
,

with α = − 48iγ2

(A−B)5β2
(1.63)

There are no periodic solutions, and no open orbits: instead every orbit appears

to be connected to either A or B at both limits ζ → ±∞, so that these orbits

can be described as solitary wave solutions, but with an algebraic rather than

exponential decay.

Also in this case, we see that PT-symmetry breaking is connected to an inter-

esting topological change in the nature of the orbits. This is illustrated in Figure

1.14, where we show the family of separatrix trajectories for the H+
− 1

2

model, for

different choices of the PT-symmetry breaking parameter Im(A).

The separatrix curves can be defined as orbits connecting one of the two

points u = A or u = B to infinity, and they divide the complex the u-plane

into sectors. Because they are orbits, they cannot be crossed and therefore all

orbits are confined to remain within these sectors. In the Figure, these orbits

have been plotted using the fact that they are characterised by Im(ζ0(u)) =

01, at least on one of the branches of the multi-valued function ζ(u) defined

by (1.63). In the upper left panel of Figure 1.14, solutions are PT-symmetric

corresponding to a choice of real A = 4, B = 2. In the upper right panel,

the symmetry has been broken by a very small imaginary part A = 4 + i
200000

,

B = 2− i
100000

, and we see that the network of separatrix curves suddenly changes

its topology. In particular, while for the symmetric solution the points A and B

are in completely disconnected sectors, this is no longer true when the symmetry

is broken. This makes the appearance of a new family of solutions connecting

the two points possible, such that limζ→+∞ u(ζ) = A and limζ→−∞ u(ζ) = B (

1 Notice that this condition is shared with other orbits which do not pass through u = ∞
and are therefore not separatrix curves. These orbits have been excluded from the plot.
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Figure 1.14: The network of separatrix curves for different solutions of the H+
− 1

2

model for c = 1, β = 3/10, γ = 3. The critical points A and B are chosen as:
(top left) A = 4, B = 2 ; (top right):A = 4 + i

200000
, B = 2 − i

100000
; (bottom

left): A = 4 + i
50
, B = 2 − i

25
; (bottom right): A = 4 + i, B = 2 − 2i . Notice

that the topology of the network corresponding to the first solution (the PT-
symmetric case) differs from the other three and does not allow the existence of
orbits connecting A and B.

or limζ→−∞ u(ζ) = A and limζ→+∞ u(ζ) = B ). The new topology of the orbits

appears to be preserved for all choices of A with Im(A) > 0.

In Figures 1.15 and 1.16 are illustrated several orbits of the PT-symmetric

solutions and a spontaneously broken solution, respectively. In the latter case,

these kink -type solutions are clearly visible.

We have observed the same qualitative aspects in the change of topology

in other cases, for example the case ǫ = −2
3
, very similar but for the different

number of sectors, is presented in Cavaglià et al. [2011]. However, we remark that,

in the case when the two points A and B both correspond to saddle-points, the

symmetry breaking has no appreciable qualitative effect on the solutions. This
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Figure 1.15: Complex PT-symmetric trigonometric/hyperbolic solutions of the
deformed KdV equation with A = 4, B = 2, c = 1, β = 2 and γ = 3 for H+

−1/2.

Figure 1.16: Trigonometric/hyperbolic solutions of the deformed KdV equation
H+

−1/2 with spontaneously broken PT-symmetry. The relevant parameters are:

A = 4 + i, B = 2− 2i, c = 1, β = 3/10 and γ = 3.
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1. PT deformations of KdV travelling waves

can be seen in Figure 1.17, and is due to the fact that in this case the orbits are

not connected to A or B, so that, at least when there are no branch cuts in the

complex u-plane, there is not an obvious topological change they might undergo.

Figure 1.17: Complex PT-symmetric trigonometric/hyperbolic solutions of the
H+

−2 deformation with c = 1, β = 2 and γ = 3. In the left panel, the solution
is symmetric with A = 4, B = 2. In the right panel, it is spontaneously broken,
with A = 4 + i/2, B = 2− i.

1.3.4.3 Elliptic solutions

Finally, we only sketch some general considerations on elliptic solutions. The

solution for generic values of A 6= B 6= C is given in the most general case Fring

[2007] by the Appel hypergeometric function:

ζ − ζ0 = Λǫ(u−A)
ǫ

1+ǫF1

(
ǫ

1 + ǫ
,

1

1 + ǫ
,

1

1 + ǫ
,
1 + 2ǫ

1 + ǫ
;
A− u

A−B
,
A− u

A− C

)
(1.64)

with

Λǫ = − i
ǫ

(
− 6γ

β(A− B)2

) 1
1+ǫ

(1 + ǫ)
ǫ

1+ǫ . (1.65)
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Again, the local behaviour around these three points depends on the value of ǫ,

and the phase space is divided into sectors by separatrix lines. A few case studies

suggest that a connection between PT-symmetry breaking and the change in the

topology of the orbits, analogous to the one reported in the previous section.

1.3.5 Deformations of the KdV equation II: the PT−-

symmetric deformation

Let us now consider briefly also the second type of deformation. The deformed

equation (1.35) can be rewritten as:

u̇2 = λǫ.−Qǫ,−(u), (1.66)

where

λǫ,− = − 2βiε

γ(1 + ε)(2 + ε)
(1.67)

and we have denoted:

Qǫ,−(u) :=
2

γ

(
κ2 + κ1u+

c

2
u2 − β

iε

(1 + ε)(2 + ε)
u2+ε

)
(1.68)

If ǫ :=M ∈ N, for example, QM,−(u) is a M +2-th order polynomial whose roots

are all distinct apart from at most three of them, since their positions depend

on only two parameters κ1 and κ2. The most general factorisation is therefore

QM,−(u) := (u − A1)
k
∏M+2−k

i=1 (u − Ai+1), with k = 1, 2, 3 or QM,−(u) := (u −
A1)

2(u−A2)
2
∏M+2−4

i=1 (u−Ai+2). Naturally, there are infinitely many possibilities.

We expect that, at least for ǫ ∈ N when the orbits cannot cross over to different

Riemann sheets1, the types of orbits would not be too dissimilar from the ones

studied in the case of the standard, undeformed KdV, since also in the present

case all the roots correspond to either turning points or fixed points. In the

following we will limit ourselves to showing an example for ǫ = 4.

However, we remark that at least one class of solutions can be found in closed

form for all values of ǫ: they are the solitary wave solutions of the generalised

1 For noninteger ǫ the behaviour could be much more complicated, as shown by the studies
of Bender and Boettcher.
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KdV equation, obtained by taking κ1 = κ2 = 0:

u (ζ) =


 c(ε+ 1)(ε+ 2)

iεβ
[
cosh

(√
cε(ζ−ζ0)√

γ

)
+ 1
]




1/ε

. (1.69)

Figure 1.18: PT-symmetric solutions for H−
4 : (a) Star node at the origin for

c = 1, β = 2, γ = 1; (b) centre at the origin for c = 1, β = 1, γ = −1. In both
cases there are four turning points at u = ±B, ±iB, with B = (15/2)1/4 .

1.3.5.1 An example with ǫ = 4

In this case the polynomial of the right hand side of (1.66) is of sixth order. We

present here just one very symmetric solution by assuming a factorization of the

form Q(u) = u2(u2 −B2)(u2 − C2), which is achieved with the simple choice

κ1 = κ2 = 0, B = iC and C4 =
15c

β
. (1.70)

In particular, for this factorisation the solution is given explicitly by (1.69).

This family of solutions has a fixed point at u = 0 and four turning points at

u = ±A, u = ±B: except for the number of turning points, the phase portrait

look very similar to that of the undeformed KdV equation, but here there are
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Figure 1.19: Broken PT-symmetry for the H−
4 model: these solutions spiral

around a focus at u = 0, accompanied by four turning points at u = ±B, ±iB,
with B = (15/2)1/4 . The parameters were chosen as c = 1, β = 2, γ = 1 + i3.

four distinct families of solitary waves. The behaviour around the fixed point can

be studied, just as was done in Section 1.3.3.2, by computing the eigenvalues for

small linear perturbations around u = 0, which are given by

j1 = ±i
√
λ4,−B

2, j2 = (j1)
∗, (1.71)

where λ4,− = − β
15γ

.

Therefore, if we follow the PT−-symmetric prescription γ ∈ R, β ∈ iR, we

obtain two real eigenvalues and therefore a star node at u = 0. This corresponds

to solitary wave solutions, and the phase portrait is shown in Figure 1.18 (left

panel). In this highly symmetric case these solutions are invariant under reflection

across both the real and imaginary axis. The same happens if we take γ ∈ R,

β ∈ R, leading to j1 ∈ iR and therefore to a center at u = 0 (see Figure 1.18, right

panel). In the most generic case with no symmetry, in particular for Imγ 6= 0, the

fixed point will turn into a focus, namely an open orbit (see Figure 1.19). This
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is the same connection between the loss of PT-symmetry and the periodicity of

the orbit observed in the KdV equation.

1.4 Complex deformations of soliton solutions

In this section we come back to the KdV equation and consider two-soliton so-

lutions, perhaps the simplest generalization of the travelling wave solutions we

have been considering so far.

They depend on four parameters, the momenta p1 and p2 of the two con-

stituent solitons and two phases φ1 and φ2 parametrizing their initial separation.

In the spirit of the previous sections, we will make these parameters complex.

Notice that the complex-momentum deformation was not considered before

even for the one-soliton solution, since we always focused, for simplicity, on real

values for the speed c. The one-soliton solution reads:

u (x, t) =
3γp2

β cosh2
[
1
2
(px− γp3t+ φ)

] , (1.72)

with p := c in the previous notations. Interestingly, if we take complex values

for c, this is no longer a travelling solution but instead pulsates, resembling a

travelling breather. The solution regains its shape after a certain distance ∆x

and certain amount of time ∆t, namely

u (x+∆x, t) = u (x, t+∆t) , (1.73)

where:

∆t =
2πRe(p)

−|p|2Im(γp2)
, ∆x =

2πRe(γp3)

|p|2Im(γp2)
. (1.74)

An example is depicted in Figure 1.20.

The two-soliton solution, first obtained in Gardner et al. [1967] via the inverse
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Figure 1.20: Complex spontaneously broken one-soliton solution of the KdV-
equation with β = 6, γ = 1 + i/2, p1 = 2, φ = i0.8 and ∆t = −π/2 for different
times t = −π/2 solid (blue), t = −1 dashed (red), t = 0 dasheddot (orange),
t = 0.7 dotted (green), and t = π/2 dasheddotdot (black).

scattering method, is

u (x, t) =
6γ

β

(p22 − p21) [(p
2
2 − p21) + p21 cosh(η2) + p21 cosh(2η2)][

(p1 + p2) cosh
(
1
2
(η1 − η2)

)
+ (p2 − p1) cosh

(
1
2
(η1 + η2)

)]2 ,

(1.75)

where

ηi = pix− γp3i t+ φi, (i = 1, 2). (1.76)

The time evolution of this solution, for complex values of the parameters, is

illustrated in Figures 1.21 and 1.22 in the u-plane. For large negative time the

two-solitons are separated, indicated here by two individual one-soliton solutions

touching each other only in the asymptotic point at u = 0. In the scattering

regime the two solutions merge in a non PT-symmetric manner until they sepa-

rate again for large positive time. Their characteristic pulsating frequencies (1.74)

can be observed throughout the process, with a slight displacement due to the

familiar phase shift in soliton interactions.

Two-soliton complex solutions are considered at a deeper level in Bona & Weissler

[2009], in particular in relation with the phenomenon of finite-time blow-up ex-

hibited by the complex KdV equation.
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Figure 1.21: PT-symmetric two-soliton solutions of the KdV equation for β = 6,
γ = 1, p1 = 1.2, p2 = 2.2, φ1 = i0.1 and φ2 = i0.2. Left panel: t = −2 solid
(blue), t = −0.2 dashed (red), t = 0.2 dotted (black); right panel: t = 0.3 dotted
(black), t = 0.8 dashed (red), t = 2.0 solid (blue).
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Figure 1.22: Broken PT-symmetric two-soliton solutions of the KdV equation
for β = 6, γ = 1 + iπ/8, p = 2(2/3)1/3, p2 = 2, φ1 = i0.1 and φ2 = i0.2. Left
panel: t = −4 solid (blue), t = −3.5 dashed (red), t = −2. dotted (black); right
panel: t = 0.7 solid (blue), t = 2 dashed (red), t = 8 dotted (black). Notice
that for this choice of parameters we have 2∆1

t = 3∆2
t = 6. We see that both

solitons have almost regained their original shape passing from t = 2 to t = 8,
but for a slight discrepancy due to the well known time delay occurring in soliton
scattering.

1.5 Summary of the results of this chapter

In this chapter, which is based on the contents of the paper Cavaglià et al. [2011],

we have considered many examples of complex travelling wave solutions to the

KdV equation and two different PT deformations of the model.

For the KdV equation, these solutions are obviously well-known, but had
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not been previously considered from the present viewpoint. This study confirms

the natural expectation that solutions which are not PT symmetric are in general

open, while PT-symmetric solutions are more regular – they in general correspond

to periodic or asymptotically constant solutions; we have also noticed the presence

of isolated exceptions to this rule, similar to those observed in Anderson et al.

[2011].

In Section 1.4, we discussed the analytic continuation of one and two-soliton

solutions to complex values of their parameters, making the observation (of which

we are unaware in the literature) that, for complex values of the speeds, these

solutions acquire a pulsating behaviour.

The deformation that we have denoted as PT− was proposed for the first time

in this paper. We also provided many new examples of solutions and discussed

the general features of a family of deformations – denoted as PT+ – which was

first introduced in Fring [2007]. We also considered the presence of orbits with

broken PT-symmetry in this family of deformed models and showed that, in the

present case, the symmetry breaking can lead to the appearance of orbits with a

new, kink-like topology.

————————————————————————

42



Chapter 2

PT -symmetric deformation of

the inviscid Burgers equation

We consider a family of PT-symmetric deformations of the inviscid Burgers equa-

tion in one dimension. The chapter is largely based on the publication Cavaglià

& Fring [2012], which completed the analysis Bender & Feinberg [2008] where

these models were first investigated. The most interesting aspect of the inviscid

Burgers equations is certainly the phenomenon of shock formation. We will dis-

cuss in detail how this is affected by the deformation. As compared to Bender

& Feinberg [2008], our conclusions are new on the following two points. First, in

Bender & Feinberg [2008] it was stated that for ǫ 6= (2n+1), n ∈ Z, no singular-

ities are formed in the evolution of a real initial profile. However, this conclusion

was based on an incorrect argument, and by using the method of complex char-

acteristics, we show that singularities can be formed for any value of ǫ. Secondly,

we observed that for all ǫ > 1 the nature of the singularities changes. They are no

longer gradient singularities as in the undeformed case, but the break-up occurs

via a blow-up of the second derivative of the solution. In some specific cases, this

leads to the formation of peaked solutions, which are continuous for all times and

have a jump in their first derivative, rather than shock solutions. This abrupt

change in the nature of the solutions indicates that the PT deformation is not

smooth around the ǫ = 1 case.
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2.1 The undeformed case

2.1.1 Inviscid Burgers equation, characteristics and gra-

dient catastrophe

The inviscid Burgers equation is a fundamental model of nonlinear transport,

applicable to a variety of situations ranging from traffic flow to gas dynamics. In

the one-dimensional scalar case to which we restrict, it reads

wt + wwx = 0. (2.1)

It is well known that for all smooth and bounded real initial conditions, the solu-

tion develops a singularity in finite time, characterized by the localized divergence

of the gradient of the solution. This happens due to a crossing of the characteris-

tic lines along which the solution is transported. Let us briefly recall the method

of characteristics. This is based on realizing that (2.1) implies that the solution

is constant along the curves (t, x(t)) in the tx-plane satisfying

dx

dt
= w(x(t), t) = w0(x(0)), (2.2)

where w0(y) ≡ w(y, 0). The solutions to this equation are a family of lines

x(t) = γ(x0, t) = x0 + w0(x0) t, (2.3)

parametrised by x0 := x(0) and are called characteristic lines or simply charac-

teristics. The solution to (2.1) is defined implicitly as

w(x, t) = w0(x0), x = γ(x0, t). (2.4)

The solution remains smooth as long as no two characteristics cross. However, it

undergoes a progressive steepening due to the fact that the equation is nonlinear

and therefore the characteristics are not parallel. Computing the gradient of the
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2. PT deformation of the inviscid Burgers equation

solution one finds

wx(x, t) =
w′

0(x0)
∂

∂x0
γ(x0, t)

=
w′

0(x0)

1 + w′
0(x0)t

. (2.5)

This equation shows that, under every smooth initial conditions, the gradient

blows up at a critical time ts defined by

0 < ts = min
x0

−1

w′
0(x0)

. (2.6)

Denoting with xmin
0 the position where the minimum is attained, one has

lim
t→t−s

wx(xs, t) = ∞, (2.7)

where xs = γ(xmin
0 , t). The singularity (2.7) is known as gradient catastrophe, or

as the formation of a shock. Prominent examples of this phenomenon in nature

are the breaking of water waves or the formation of pressure shocks in high tem-

perature gas or plasma. The equation (2.1) is an extremely simple mathematical

model but still captures interesting universal features of this class of singularities.

We consider some of these aspects in the next section. After the formation of the

singularity, the method of characteristics defines a multi-valued profile. An exam-

ple is shown in Figure 2.1. The occurrence of multi-valued solutions has a clear

physical meaning if the solution is thought to represent the profile of a breaking

wave; in other contexts, to retain the applicability of the model it is necessary to

introduce single-valued weak solutions. We briefly recall the basic definitions in

Section 2.1.3. In the next section we will concentrate on some complex analytic

aspects of the singularity.

2.1.2 Singularities as branch points

A very illuminating viewpoint on the gradient catastrophe was presented in Bessis

& Fournier [1984], where it was discovered that it is the result of a square root

singularity moving from the complex x-plane to the real axis. In a non-rigorous

way, this can be seen as follows. The equation expressing the crossing of charac-
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2. PT deformation of the inviscid Burgers equation
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Figure 2.1: Snapshots of the solution w(x, t) to the inviscid Burgers equation
with initial condition w(x, 0) = 1

1+x2 . The solid lines correspond to t = 0, t = 0.8

and t = ts =
8

3
√
3
≃ 1.5396 (the crest of the wave moves rightwards for increasing

times). The dotted multi-valued profile corresponds to t = ts + 1.

teristics is

∂

∂x0
γ(x0, t) = 0. (2.8)

For t < ts, (2.8) this equation normally has a discrete set of solutions, for strictly

complex values of x0. Let us denote one of these solutions as x0 = x∗(t), so that
∂

∂x0
γ(x0, t)

∣∣∣
x0=x∗(t)

= 0, and let us make the natural assumption that these zeros

are single. Then, neglecting higher order terms, in a neighbourhood of x0 ∼ x∗

and for fixed time t we have:

γ(x0, t) ∼ x∗(t) + t w0(x∗(t)) + t
w′′

0(x∗(t))

2
( x0 − x∗(t) )

2, (2.9)

and this implies that

x0(x, t) ∼ x∗(t) +

√
2

t w′′
0(x∗(t))

(x− z(t))
1
2 for x ∼ z(t), (2.10)
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2. PT deformation of the inviscid Burgers equation

where z(t) ≡ x∗(t) + t w0(x∗(t)). This shows that the solution, defined by

w(x, t) = w0(x0(x, t)), has a square root branch point at the point x = z(t)

in the complex x-plane. For t < tc, all such singularities lie far from the real axis

in the complex x-plane. Exactly at t = tc, one pair of complex conjugate singu-

larities reaches the real x-axis, causing the gradient catastrophe. The collision of

two square-root branch points produces the following universal behaviour at the

point of singularity:

w(x, t) ∼ w(xs, ts) + O (x− xs)
1
3 . (2.11)

-1.0 -0.5 0.5 1.0 1.5
Re x

-2

-1

1

2

Im x

Figure 2.2: Trajectories traced in the complex x-plane by the square root branch
points of the solution of (2.1) with initial condition w(x, 0) = 1

1+x2 . There are four
distinct trajectories, all traced for t in the interval t ∈ [0.0001, 1.75]. We observe
that two singularities emerge from each of the two poles x = ±i at t = 0+. One
pair of complex conjugate singularities moves off in the in the complex plane, while
the other two singularities reach the real axis simultaneously at t = ts = 8

3
√
3
.

They remain confined to the real axis for t > ts.

An example is shown in Figure 2.2, where we plot part of the trajectories

traced by the singularities of the solution with initial condition u(x, 0) = 1
1+x2 .

In this example there are four branch points, which emerge from the two poles

x = ±i at t = 0+1. The trajectories shown in the Figure were obtained simply

by solving (2.8) and then mapping the four solutions to the x-plane.

1 In other cases, the singularities lie at complex infinity at t = 0+.
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2. PT deformation of the inviscid Burgers equation

For t > ts, one sees that the two singularities that have collided on the real

axis split, producing a multi-valued profile (see for example the dashed profile in

Figure 2.1). At the points xb(t) where two branches merge, one has the algebraic

behaviour

w(x, t) ∼ w(xb, t) + O (x− xb(t))
1
2 , (2.12)

for x ∼ xb(t), t > ts.

Notice that throughout this section we have been concerned with real solutions

of the real Burgers equation. In the complex case, singularities would cross the

real axis individually causing the breaking of the profile. We will discuss this

more in detail in Section 2.2.

2.1.3 Shocks and weak solutions

In many applications of nonlinear transport equations, the physical interpretation

requires the solution to be single-valued. In gas dynamics, for instance, w(x, t)

represents the concentration of the gas and therefore should be a real positive

function. After the singularity, one can restore single-valuedness by cutting out

part of the multi-valued profile. The resulting profile has a discontinuity, known

as a shock. While these discontinuous solutions are certainly an idealization, they

can be used as a very good approximation to the very thin shock layers occurring

in nature. An indication of the naturality of this construction is that shock

solutions can be obtained from the ordinary, smooth solutions of the Burgers

equation:

wt + wwx = ηwxx, η > 0 (2.13)

in the zero-viscosity limit η → 0. Naturally, it is crucial that a physically mean-

ingful criterion is used to define the position of the shock front. This is done

by requiring the local validity of a conservation law. Normally, since w(x, t)

represents a density, one is interested in ensuring the conservation of

∫ ∞

∞
w(y, t) dy. (2.14)
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2. PT deformation of the inviscid Burgers equation

This quantity represents the area shaded by the profile of the solution. After a

singularity has formed, the conservation law still holds, provided one considers the

area shaded by the (unique) multi-valued profile obtained by analytic continua-

tion. The requirement that the area is preserved after introducing a discontinuity

gives a clear prescription on the position of the shock front (see Whitham [2011]

for an illustration). Let us mention, referring the reader to Whitham [2011]

for more details, that this definition can be easily adapted to a more general

conservation law, and that it can be translated into a differential equation, the

Rankine-Hugoniot condition, determining the position of the shock discontinuity.

Finally, we remind the reader that one could give a precise mathematical meaning

to discontinuous solutions in the sense of weak solutions. For this definition and

for a much deeper treatment of shock phenomena, including the important con-

cept of entropy which we did not attempt to cover in this overview, see Whitham

[2011].

2.2 Deformed case (ǫ > 1)

The family of deformations considered by Bender and Feinberg is

ut − iu(iux)
ǫ = 0. (2.15)

Let us summarise their findings.

First, they showed that the solution to (2.15) is given implicitly by

u(x, t) = U (ǫ)(x0, t) :=
1

ǫ
(G(x0)− iǫ t)

ǫ−1
ǫ W

(ǫ)
0 (x0), (2.16)

where

G(x0) := (iu′0(x0))
−ǫ, W

(ǫ)
0 (x0) := ǫu0(x0)(iu

′
0(x0))

ǫ−1, (2.17)

and the auxiliary parameter x0 is determined by the characteristic equation

x = γ(ǫ)(x0, t) := x0 +W
(ǫ)
0 (x0)t, (2.18)
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2. PT deformation of the inviscid Burgers equation

with u0(y) ≡ u(y, 0). In Bender & Feinberg [2008], this result was derived by

using the method of characteristic strips, a generalization of the method of char-

acteristics to the case of non-quasilinear equations such as (2.15). This solution

can be easily checked by explicit computation. Notice that (2.18) represents a

family of deformed characteristic lines, and for ǫ = 1 the solution reduces pre-

cisely to (2.4). However, for ǫ > 1, the solution is no longer constant along the

characteristics, as (2.16) is explicitly time-dependent.

It was subsequently realised in Curtright & Fairlie [2008] that there exists a

simple transformation relating (2.15) to the undeformed inviscid Burgers equation

(2.1). In fact, setting

w(ǫ)(x, t) ≡ ǫ u(x, t)(iux(x, t))
ǫ−1, (2.19)

one finds that, at least formally, if u(x, t) is a solution to (2.15) then w(x, t) satis-

fies the undeformed model (2.1). 1 In this light the solution (2.16)-(2.17) becomes

much more transparent, since the function W0 appearing in (2.17) plays the rôle

of initial condition W
(ǫ)
0 (x) = w(ǫ)(x, 0) and (2.18) are simply the characteristic

lines of this simpler, undeformed problem.

Finally, we report a useful expression, obtained by differentiating (2.16):

ux(x, t) =
1

(G(x0)− iǫ t)
1
ǫ

=
u′0(x0)

(1 + iǫ−1ǫ(u′0(x0))
ǫ t)

1
ǫ

. (2.20)

2.2.1 Singularities

In Bender & Feinberg [2008] the formation of singularities was also addressed.

More precisely, in this section we are considering singularities related to the cross-

ing of the characteristics (2.18), therefore associated to solutions of the equation

1 It is, furthermore, easy to generalise this map to the slightly more general case

ut − if(u)(iux)
ǫ,

in this case u is related to a solution w(x, t) of (2.1) by

w(ǫ)(x, t) ≡ ǫf(u)(iux)
ǫ−1.

This modification does not add much to the qualitative aspects of the problem.
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2. PT deformation of the inviscid Burgers equation

1 + d
dx0
W

(ǫ)
0 (x0)t = 0. We will comment later on a different kind of singularities,

which are related to solutions of G(x0)− iǫt = 0.

Similar to the undeformed case, the map (2.18) is degenerate whenever d
dx0
W

(ǫ)
0 (x0) =

−1
t
, and the generalisation of (2.6) appears to suggest that the time of formation

of the first singularity ts is given by

t(ǫ)s = min
x0∈R

−1
d

dx0
W

(ǫ)
0 (x0)

= min
x0

−1

ǫ d
dx0

(u0(x0)(iu′0(x0))
ǫ−1)

. (2.21)

This is the expression present in Bender & Feinberg [2008]. Notice that, for

a real initial condition u0(x), (2.21) can have a solution ts ∈ R+ only for ǫ =

(2n + 1), n ∈ Z. Therefore, Bender and Feinberg argued that, except for these

special values of ǫ, no singularities are formed in the evolution of a real initial

condition. By allowing the system to become complex and avoid the singularity,

the deformation would then have a smoothing effect.

However, as observed in Cavaglià et al. [2011], this conclusion is not correct.

The reason is that, for generic values of ǫ, the characteristic lines (2.18) become

complex and the simple expression (2.21) needs to be modified. The method of

complex characteristics has appeared before: in fact, the inviscid Burgers equa-

tion with complex initial data has a wide range of important applications, e.g.

in the study of geostrophic flows Baker et al. [1996], Chae et al. [2005] and even

random matrix models Matytsin [1994]. The only difference from the real case is

that, for t > 0, the inverse image of x ∈ R under the characteristic map (2.18) is

in general complex x0 ∈ C; the solution is still given by (2.16).1 The singularity

time ts can be found as

t(ǫ)s = min
x∗
0

−1
d

dx0
W

(ǫ)
0 (x∗0)

, (2.22)

1 Notice that we are implicitly assuming that the functions W
(ǫ)
0 and G in (2.16) are

analytic, so that they can be continued unambiguously to complex values of the arguments.
This assumption can probably be relaxed but this is not important for the present discussion.
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Figure 2.3: In the left panel, trajectories traced in the complex x-plane by the
square-root branch points of the ǫ = 2 solution with u0(x) =

1
1+x2 . In the right

panel, we consider the ǫ = 2.2 deformation with the same initial condition (in
this case, we are showing only some of the singularities, the ones corresponding to
the principal branch in the definition of W

(ǫ)
0 ). In both plots the trajectories are

shown for t ∈ [10−6, 0.36]; the arrow of time is such that the square-root branch
points move out of the poles at x = ±i as t increases from t = 0+.

where x∗0 are all possible solutions of the equations

0 <
−1

d
dx0
W

(ǫ)
0 (x0)

∣∣∣
x0=x∗

0

, (2.23)

0 = Im


x∗0 −

W
(ǫ)
0 (x∗0)

d
dx0
W

(ǫ)
0 (x0)

∣∣∣
x0=x∗

0


 . (2.24)

The first condition is simply ts > 0, while the second is the requirement that the

image of x∗0 crosses the real axis. These are two real equations, and therefore are

expected to have a discrete set of solutions x∗0 ∈ C. This shows that singularities

are possible for any value of ǫ and not only for ǫ ∈ 2N + 1. We have studied a

number of examples, considering the initial condition u0(x) =
1

1+x2 and different

values of ǫ, see for example Figures 2.3 and 2.4. These plots are the deformed

version of Figure 2.2. Again the singularities emerge from the two poles at t = 0+,

their number depending continuously on ǫ1. One can notice immediately that

1 For u0(x) =
1

1+x2 and ǫ = m ∈ N, we have 4m singular points. For irrational values of
ǫ the situation is more complicated since, due to (2.17), the point x0 = 0 is an infinite genus
branch point of the characteristic map, connecting infinitely many sheets. However, the number
of singularities on the first, physical Riemann sheet changes continuously.
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Figure 2.4: Trajectories of square root branch points in the complex x-plane,
for the ǫ = 3 (left) and ǫ = 5 deformation (right), where the initial condition
was chosen again as u0(x) =

1
1+x2 . In both plots the trajectories correspond to

t ∈ [10−6, 0.4], and move out of the poles at x = ±i as time progresses. One can
see that, since the solution is real, singularities arrive on the real axis in pairs
and afterwards remain confined there.

ε ts,1 ts,2 xs,1 xs,2

3 0.311791 0.644466 0.0770262 -1.21712
5 0.394011 0.662872 -0.18255 1.05226
7 0.594697 0.913866 0.241058 -0.970114
9 0.997223 1.45053 -0.279227 0.919109

Table 2.1: Time and location at which the first and the second singularities are
formed for some selected values of ǫ, in the case of u0 =

1
1+x2 .

there are crossings of the real axis at a finite time ts (one can see in Table 2.1

the time and position of the first two crossings for some values of ǫ). As one can

see in Figure 2.4, the cases ǫ = (2n + 1), n ∈ R are distinguished by the reality

of the solution: for these special values, singularities arrive at the same point on

the real axis in pairs and remain confined there for t > ts. However, singularities

do occur also for other values of ǫ.

Curvature blow-up In Cavaglià & Fring [2012] it was also observed that, for

ǫ > 1 and provided that u 6= 0 in a neighbourhood of the singularity, it no longer

corresponds to a gradient catastrophe. Instead, ux remains finite while the second

derivative uxx blows up. This can be seen very clearly from (2.19). Differentiating
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2. PT deformation of the inviscid Burgers equation

Figure 2.5: Left panel : space-time plot of (2.1) with initial condition w0(x) =

W
(3)
0 (x) defined by (2.17) with ǫ = 3, u0(x) =

1
1+x2 , for 0 < t < ts Right panel : the

corresponding solution of the ǫ = 3-deformed model, in the same time interval.
One can see that, as t→ t−s , w

(ǫ)
x → ∞, while for u this appears as uxx → ∞.

this expression one finds:

(iux(x, t))
ǫ−1 =

1

ǫ u(x, t)
w(ǫ)(x, t), (2.25)

uxx(x, t) = iǫ−1 (u(x, t)w
(ǫ)
x (x, t)− ux(x, t)w

(ǫ)(x, t))

ǫ(ǫ− 1)u2(x, t)(ux(x, t))ǫ−2
, (2.26)

where w(ǫ)(x, t) is the solution of the inviscid Burgers equation with w(ǫ)(y, 0) =

W
(ǫ)
0 (y). As t → t−s , we know that w(ǫ)(x, t) remains regular while w

(ǫ)
x (xs, t) →

∞. This implies that, provided u(x, t) 6= 0 in a neighbourhood of (xs, ts),

lim
t→ts

ux(xs, t) <∞, lim
t→ts

uxx(xs, t) = ∞. (2.27)

This is illustrated in Figures 2.5, 2.6 and 2.7.

Algebraic degree We have found that the points ǫ > 1 behave rather dif-

ferently from the undeformed case. This is confirmed by the algebraic degree of

these singularities in the x-plane: while for ǫ = 1 they are square-root branch

points of the solution, for ǫ > 1 they correspond in general to branch points of
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Figure 2.6: Left: solution of the ǫ = 2-deformed inviscid Burgers equation for
u0(x) =

1
1+x2 at times t = 0 (blue, dashed), t = 0.1 (purple, dotted) and at the

singularity time t = ts ∼ 0.191 (red, solid). Right: solution of the ǫ = 5/2-model
with the same initial condition, shown for t = 0 (blue, dashed), t = 0.1 (purple,
dotted) and t = ts ∼ 0.176 (red, solid). The black dots mark the places where
uxx → ∞.
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Figure 2.7: Left: solution of the ǫ = 3-model with u0(x) =
1

1+x2 , shown for t = 0
(blue, dashed), t = 0.1 (purple, dotted) and t = ts ∼ 0.312 (red, solid). Right:
solution of the ǫ = 5-model with the same initial condition, shown for t = 0 (blue,
dashed), t = 0.1 (purple, dotted) and t = ts ∼ 0.395 (red, solid). The black dots
mark the places where uxx → ∞.

the form (x− z(t))
3
2 . Repeating the argument of Section 2.1.2, we know that, if

1 + t
d

dx0
W

(ǫ)
0 (x0)

∣∣∣∣
x0=x∗(t)

= 0,
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2. PT deformation of the inviscid Burgers equation

then the inverse characteristic map x → x0 has a square root branch point at

x = z(t) := γ(ǫ)(x∗(t), t), and this means that we can write

u(x, t) ∼ u(z(t), t) + k
∂

∂x0
U (ǫ)(x0, t)

∣∣∣∣
x0=x∗(t)

(x− z(t))
1
2 + O (x− z(t))

3
2 ,

for x ∼ z(t) (where k =
√
2

√

t d2

dx2
0
W

(ǫ)
0 (x∗(t))

). However, while for ǫ = 1 we had that

∂
∂x0
U (ǫ)(x0, t)|x0=x∗(t) 6= 0, for ǫ > 1 one finds1

∂

∂x0
U (ǫ)(x0, t)|x0=x∗(t) = 0,

∂2

∂x20
U (ǫ)(x0, t)|x0=x∗(t) 6= 0,

proving that the singularities have the algebraic degree 3
2
.

Peaked solutions After the time of formation of a singularity, one is usually

forced to introduce a jump in the solution. However, for the deformed models

we find that in some cases it is possible to define a weak solution for t > ts

that remains continuous but develops a peak, namely a discontinuity in its first

derivative. This kind of weak solutions are particularly relevant to some disper-

sive equations, in which case they can display a solitonic behaviour and are called

peakons Camassa & Holm [1993].

In the present case, the construction of these peaked solutions is not always

possible, but only if the singularity is the product of two branch points which

remain on the real x-axis for all times t > ts. For a real initial condition, this is

the case only if ǫ = (2n+1), n ∈ N. In Figure 2.8 we depict an example for ǫ = 3

and u0(x) =
1

1+x2 . Notice that for t > ts the solution has formed a multi-valued

profile with a self-crossing: the peak solution is obtained by excluding the closed

1 In fact from (2.16) one can check that

∂

∂x0
U (ǫ)(x0, t) =

(
1 + t d

dx0

W
(ǫ)
0 (x0)

)

(1 + iǫ−1ǫt(u′

0(x0))ǫ)
1

ǫ

u′

0(x0).

The numerator vanishes at x0 = x∗(t), and therefore the result is zero for all ǫ > 1. For ǫ = 1,
instead, this is compensated by the denominator because W (1)(x) = u0(x).
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Figure 2.8: Solution of the ǫ = 3 equation with u0(x) = 1
1+x2 at the time of

appearance of the second singularity t = ts,2 ∼ 0.64 > ts,1 ∼ 0.31. The vertical
line marks the location xs,2 ∼ −1.2. Notice that, around xs,1 ∼ 0.08, the solution
has branched into a multi-valued profile with a self-intersection.

loop in the profile. To gain an insight into the mechanism of formation of the

peak, it is useful to consider the relation between the solution u(x, t) and the

solution of the undeformed inviscid Burgers equation w(ǫ)(x, t) defined by (2.19).

From equation (2.19), we have that, at least formally,

ũ(x, t) = (ǫ− 1)−1ǫ
ǫ−2
ǫ−1

∫ x

w̃(y, t) dy, (2.28)

where we have denoted

w̃(x, t) := (w(ǫ)(x, t))
1

ǫ−1 , ũ(x, t) := iu(x, t)
ǫ

ε−1 . (2.29)

If t > ts, the profile of w(ǫ)(x, t) becomes multi-valued, and by making a suitable

change of variable, we can use (2.28) to obtain a corresponding multi-valued

profile for u(x, t)1. For example we can switch to the arc-length parameter s by

dx = ds/
√
1 +

(
∂
∂x
w(ǫ)(x, t)

)2
, where one should change the sign of the square

root every time one of the branch points is encountered. Let us suppose, for

simplicity, that w(ǫ)(x, t) and u(x, t) are positive, so that the branches in (2.29)

1 In fact, Figure 2.8 was obtained in this way.
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Figure 2.9: These two figures illustrate the mechanism of formation of a
self-crossing profile in real solutions of the deformed equation after the break-
ing time. A multivalued profile of the undeformed equation (left) is trans-
formed into a self-intersecting profile for ũ = iu

ǫ

ǫ−1 (right) according to (2.28).
The vertical line in the left plot preserves the area shaded by the graph of

w̃ = (w(ǫ)(x, t))
1

ǫ−1 . It corresponds to a self-intersection for the graph of ũ since

0 =
(∫ s2

s1
−
∫ s3
s2

+
∫ s4
s3

)
w̃(x(s), t)

∣∣dx
ds

∣∣ ds = ũ(x(s4), t)− ũ(x(s1), t).

do not pose additional complications. Then, as illustrated in Figure 2.9, the

multi-valued profile for ũ has a self-intersection precisely at the position where

one would trace a shock front for w̃ according to the equal-area prescription

explained in Section 2.1.3.

Finally, let us remark that in the more general case where a single branch

point crosses the real x-axis, this construction is not possible and the profile

would break, for both u and w(ǫ), after the singularity.

Other kinds of singularities As shown by (2.25), it is possible that the

gradient ux → ∞ at zeros of u. An example can be seen in Figure 2.10, where we

have taken an initial condition u0(x) =
x

1+x2 with an isolated zero at x = 0 and

we are considering ǫ = 3. Notice that the position of the zero remains fixed: this

is a simple consequence of (2.15). An isolated zero also corresponds to a zero of

the solution of the undeformed Burgers equation w(ǫ)(x, t) obtained by applying

the map (2.19). A simple scaling analysis of (2.19) shows that, if w(ǫ) develops

a singularity at t = tshock, then correspondingly ux → ∞. One can also easily
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Figure 2.10: Snapshots of the solution of the ǫ = 3 deformation with initial
condition u(x, 0) = x

1+x2 , shown at time t = 0 (red, dotted), t = 1.5 (blue,

dashed) and t = tshock =
1
3
(solid, black).

translate (2.11, 2.12) and find that

u(x, ts) ∼ (x− xs)
α+ǫ−1

ǫ , (2.30)

where α = 1
3
or 1

2
depending on whether w obeys (2.11) or (2.12), respectively.

Finally, we point out that in principle we could have singularities that do not

correspond to fixed zeros, but where ux → ∞ and u → 0 simultaneously as a

result of the evolution. Expression (2.20) shows that such singularities would

correspond to solutions of the equation

(G(x0)− iǫ t) = 0, (2.31)

whose images γ(x0, t) cross the real axis in the x-plane. Notice that, for ǫ > 1,

these singularities are distinct from the points of degeneracy of the characteristic

map. Equation (2.20) implies that, associated to (2.31), the solution would have

the behaviour:

u(x, t) ≃ (x− z)
ǫ−1
ǫ , x ∼ z, (2.32)

where z = γ(x0, t). However, we did not find examples of this kind of singularities.
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2. PT deformation of the inviscid Burgers equation

We have considered the initial condition u0(x) =
1

1+x2 for several values of ǫ, and

in all these examples the images of the roots of (2.31) in the complex x-plane

appear to stay safely away from the real axis1.

2.3 Summary of the results of this chapter

Let us summarise the main findings of this chapter.

- We have shown that one of the conclusions of the paper Bender & Fein-

berg [2008] is not correct. In fact, while in this work it was stated that the

PT-symmetrically deformed inviscid Burgers equation (2.15) does not exhibit

shocks for ǫ 6= (2n+1), n ∈ Z and real initial conditions, we argued (presenting

some explicit examples) that singularities can occur for any value of ǫ.

- Secondly, we gave a characterisation of the singularities, showing that, in the

generic case when u 6= 0 at the singularity, the solution approaches the profile

u(x, tc)− u(xc, tc) ∼ (x− xc)
3
2 , for x ∼ xc, (2.33)

(where tc and xc denote, respectively, the time and position at which the sin-

gularity is formed). This behaviour is the same for all ǫ > 1, and is markedly

different from the undeformed ǫ = 1 case, where singularities are (or are formed

by collisions of) simple square-root points in the x-plane.

- Finally, we have argued that the cases ǫ = (2n+1), n ∈ N are distinguished by

the fact that a real solution becomes multi-valued but remains continuous after

the singularity, forming a self-intersection. We saw how this suggests a natural

definition of weak solutions which remain continuous but develop a peak after

the singularity.

—————————————————

1 To be more precise, the images of some of the roots do cross the real x-axis at some values
of t, but not on the principal Riemann sheet. Therefore they affect only some distant branches
of the solution.
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Chapter 3

Numerical study of the

Rosenau-Hyman compacton

equations

In this chapter we introduce the second main topic of the dissertation: the dynam-

ics of one-dimensional PDEs with nonlinear dispersion, in particular equations

admitting compacton solutions. To introduce this topic, we will review some well

known results on a simple, nondispersive equation admitting dissipative com-

pactly supported solutions, the porous medium equation. This example is used

in particular to discuss a local relation between the behaviour of compactly sup-

ported solutions close to the endpoint of their support and the speed of motion

of this point. In the case of the porous medium equation this relation is the

famous Darcy’s law Darcy [1856], and we show how it can be simply generalized

to other models. Then we introduce the family of degenerate dispersive K(m,n)

equations of Rosenau & Hyman [1993] and review some of their properties. Fi-

nally we present some original numerical investigations on two equations of this

family, the K(2, 2) and the K(4, 4) equation. These numerical experiments serve

both to illustrate well-known properties of these equations and to make some new

observations.
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3.1 Solutions with compact support in degener-

ate equations

Compactly supported structures play an important role in the dynamics of degen-

erate quasi-linear equations, which are characterized by the fact that, for certain

values of of the dependent variable, the highest derivative term vanishes. In par-

ticular, we will be concerned with evolutionary equations 1 , namely equations of

the form

ut = f(u, ux, uxx, . . . , unx), n ∈ N. (3.1)

In this case, one can assume without great loss of generality that the degeneracy

occurs for u = 0. In the following, we will consider equations of the form

ut = A(u)unx +H(u, ux, . . . , u(n−1)x), A(0) = 0, (3.2)

where n ∈ N and A and H will be polynomials.

A first observation to make is that, around any point of the solution where

u = 0, one cannot apply standard results such as the Cauchy-Kovalevskaya theo-

rem (see Evans [2010]) to establish local existence, uniqueness and analyticity of

the solution. This is the reason why it is possible to glue together the constant

u = 0 solution with a piece of an ordinary solution obtaining a compactly sup-

ported (weak) solution. As stressed in particular in Li et al. [1999], the position

of the interface where these solutions can be joined together is defined only by

an intrinsic property of the equation, namely the vanishing of the highest deriva-

tive term. Therefore, these solutions can be seen as solutions in a stronger sense

than, for example, shock solutions of the inviscid Burgers equation, where the

position of the shock front is not intrinsically determined, but needs to be fixed

by a physical prescription (see Section 2.1.3). For this reason, the authors of

Li et al. [1999] refer to compactly-supported solutions to degenerate equations

as pseudo-classical solutions. Moreover, the breakdown of the standard proof of

1 Notice that many important phenomena are described by non-evolutionary equations.
A prominent example is the integrable Camassa-Holm equation, which describes water waves
beyond the KdV approximation Camassa & Holm [1993].
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local analyticity also indicates that any points where the value u = 0 is reached

are potentially singular – we will see many examples of these singularities in the

following.

In the next section we will consider the first example of equation of this form,

the porous medium equation.

3.2 The porous medium equation

The porous medium equation (PME) is a very well-studied degenerate equation

whose typical solutions have a compact support. In one dimension, it reads

ut = (um)xx (3.3)

where m > 1 and u(x, t) ∈ R.

This equation is also known in the literature as the equation of non-stationary

filtration or nonlinear heat equation, and was introduced in Muskat [1937], Leiben-

zon [1930] to describe the adiabatic propagation of an ideal gas through a porous

medium, where u(x, t) represents the density of the gas and the coefficient m is

related to the coefficient of adiabatic expansion γ by m = γ+11. In other words,

m characterises the relation between the density of the gas and its pressure P , as

in the equation of state

P ∝ um−1. (3.4)

The equation can be derived by using the fact that the propagation of the gas

through a porous medium obeys an empirical law known as Darcy’s law Darcy

[1856], stating that the flux q (the rate of flow of gas through unit cross-sectional

area) is proportional to the gradient of the pressure:

q ∝ −Px. (3.5)

1 The values of m relevant to this physical application are m ≥ 2. However, from the
mathematical point of view, the equation has a similar qualitative behaviour for all m > 1 and
for this reason we do not restrict m to be greater than 2.
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3. Nonlinear dispersion and compactons. Numerical studies

The equation (3.3) is then obtained (in appropriate units) as the conservation

equation ut = −(uq)x.

We refer the reader to the monograph Vázquez [2006] for a full treatment of

the porous medium equation, and in particular to Chapter 2 for the derivation

of the model in different physical contexts.
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Figure 3.1: The Barenblatt solution (3.7) of the porous medium equation with
m = 3, with the parameter choice β = 1, shown at times t = 1, t = 2, t = 3,
t = 4, t = 5. The support of the solution spreads as time increases.

Notice that (3.3) can be seen as a nonlinear deformation of the heat equa-

tion, which is recovered for m = 1. The crucial effect of the nonlinearity is to

make information propagate with a finite speed. This allows the porous medium

equation to sustain solutions with a compact support, in contrast to the linear

case, where it is well known that every compactly supported initial data spreads

instantly over the whole real axis.

Because u usually represents a density, a particularly interesting class of solu-

tions of (3.3) are the ones defined by a non-negative initial condition supported

on an interval:

u(x, 0) = u0(x), (3.6)

where u0(x) is continuous, u0(x) > 0 for x ∈ [a, b] and u0(x) = 0 for x /∈ [a, b],

with a, b ∈ R.
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An explicit solution of (3.3) which can be used as a paradigm for any solution

with an initial condition of the form (3.6) is the so-called Barenblatt solution

Barenblatt [1953]:

U(x, t;m, β) = Wt−
1

m+1

(
β2t

2
m+1 − x2

) 1
m−1

(3.7)

where W =
(

(m−1)
2m(m+1)

) 1
m−1

and β ∈ R is a free parameter. It can be proved

rigorously (see Oleinik et al. [1958], Kalashnikov [1967], Aronson [1969], Aronson

[1970a], Aronson [1970b], Knerr [1977], Vázquez [2006] and references therein)

that the generic solution of the Cauchy problem with an initial condition of the

form (3.6) behaves very similarly to the Barenblatt solution. Let us list some of

these results (a nice survey of all these properties is given in Knerr [1977]):

- The solution is defined globally for all times t > 0, and its support always

remains a connected interval:

supp u(x, t) = [−ζ1(t), ζ2(t)] . (3.8)

The sign of the solution are always preserved. The solution is smooth in the

interior of its support, but is in general singular at the interface points, and has

to be interpreted in the weak sense.

- The interface functions ζi(t), i = 1, 2 marking the position of the edges of the

support are always monotonically non decreasing.

For each endpoint of the support there exists a, possibly vanishing, waiting time

τi with 0 ≤ τi < ∞1 such that ζi(t) = ζ(0) for t ≤ τi and ζi(t
′) < ζi(t

′′) for

τi < t′ < t′′.

- The speed of motion of the edges of the support is related to the singular

behaviour of the solution at the interface.

1 For the Barenblatt solution, τi = 0 for i = 1, 2.
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In fact, the functions ζi(t), i = 1, 2 are differentiable for t > τi and satisfy:

d

dt
ζi(t) = − m

m− 1
lim

x→ ζi(t)
x ∈ supp

∂

∂x
um−1(x, t), (3.9)

Due to (3.4), the last relation can be seen as a microscopic version of Darcy’s

law at the edge of the support (and is sometimes also referred to as Darcy’s law).

We will refer to it as the edge equation. Notice that requiring the right hand

side of (3.9) to be nonzero implies that, for m > 2, the solution has ux → ∞ at

the interface (see equation (3.18) below). On the other hand, when the solution

has enough regularity at the edge, its support remains fixed. This explains the

occurrence of a positive waiting time, which is the time required for the solution

to steepen until it reaches a critical edge behaviour. As we will see below, these

is a generic feature of degenerate equations.

3.2.0.1 Heuristic derivation of the edge equation

Let us now present a small heuristic derivation of Darcy’s law (3.9). Although

this argument is not rigorous, it will be useful in the rest of this work since it

is easy to generalise to a more general degenerate equation. Let us consider a

trajectory yǫ(t), t > 0, yǫ(t) ∈ supp(u(·, t)), defined by the condition

u(yǫ(t), t) := ǫ, (3.10)

where 0 < ǫ << 1. Differentiating (3.10), we find

d

dt
yǫ(t) = − ut(x, t)

ux(x, t)

∣∣∣∣
x=yǫ(t)

= −
∂2

∂x2u
m(x, t)

ux(x, t)

∣∣∣∣∣
x=yǫ(t)

. (3.11)

We will suppose that one of the interface functions ζi(t) is recovered as the limit

limǫ→0+ yǫ(t) = ζi(t). Interchanging the time derivative with the ǫ → 0+ limit,
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we find

d

dt
ζi(t) = − lim

ǫ→0+

∂2

∂x2u
m(x, t)

ux(x, t)

∣∣∣∣∣
x=yǫ(t)

= − lim
x→ζi(t)

∂2

∂x2u
m(x, t)

ux(x, t)
(3.12)

= −m lim
x→ζi(t)

(
(m− 1)

ux(x, t)

u2−m(x, t)
+

uxx(x, t)

ux(x, t) u1−m(x, t)

)
. (3.13)

We are interested in the case of a moving interface, 0 6= d
dt
ζi(t) ∈ R. We shall make

the assumption that the two terms on the rhs of (3.13) both have, individually,

a finite and nonzero limit 1: for m 6= 2, this is possible only if ux vanishes (for

1 < m < 2) or diverges (for m > 2) at the interface. Then, by l’Hopital’s

theorem 2 , we have (for m 6= 2),

lim
x→ζi(t)

ux(x, t)

u2−m(x, t)
= lim

x→ζi(t)

uxx(y, t)

(2−m)u1−m(x, t) ux(x, t)
, (3.14)

and (3.13) becomes

d

dt
ζi(t) = −m lim

x→ζi(t)
um−2(x, t)ux(x, t) = − m

m− 1
lim

x→ζi(t)

∂

∂x
um−1(x, t).

(3.15)

Invoking enough regularity, this can be rewritten as a one-sided derivative taken

in the interior of the support,

d

dt
ζi(t) = − m

m− 1

∂

∂x
um−1(x, t)

∣∣∣∣
x=ζi(t)

, (3.16)

1This excludes the possibility that uxx → ∞ while ux → b, b ∈ R \ {0}. We think this case
is not relevant.

2 In order to fulfil the conditions of the theorem, we assume that both u and its space
derivatives are nonzero in a one-sided open neighbourhood of the interface. This is in accordance
with the physical intuition about the simple, generic solutions we are trying to describe.
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and, by definition of derivative,

d

dt
ζi(t) = − m

m− 1

∂

∂x
um−1(x, t)

∣∣∣∣
x=ζi(t)

= − m

m− 1
lim

x→ζi(t)

um−1(x, t)

(x− ζi(t))
,

= − m

m− 1

(
lim

x→ζi(t)

u(x, t)

(x− ζi(t))
1

m−1

)m−1

. (3.17)

Equation (3.17) shows that, for x ∼ ζi(t), the solution has the shape

u(x, t) ∼
(
−(m− 1)

m

d

dt
ζi(t)

) 1
m−1

(x− ζi(t))
1

m−1 . (3.18)

Finally, let us point out that, as a shortcut to expression (3.15), one could

also start from the expression in (3.12) and apply l’Hopital’s rule “backwards”:

d

dt
ζi(t) = − lim

x→ζi(t)

∂2

∂x2u
m(x, t)

ux(x, t)
= − lim

x→ζi(t)

∂
∂x
um(x, t)

u(x, t)

= − m

m− 1
lim

x→ζi(t)

∂

∂x
um−1(x, t). (3.19)

Notice that this trick implicitly requires that the expression obtained after inte-

grating numerator and denominator is an indeterminate form. This is verified, a

posteriori, by expression (3.18), and is equivalent to the assumption that the two

terms on the rhs of (3.13) both have a finite, nonzero limit.

We will now turn to degenerate dispersive equations, where the dynamics will

be much richer than that of the porous medium equation.

3.3 The equations of Rosenau and Hyman and

compactons

The investigation of nonlinear dispersive effects was initiated by Rosenau and

Hyman in the seminal study Rosenau & Hyman [1993] (for a review, see also

Rosenau [2005]). They were motivated by the appearance of nonlinear dispersion

in the description of a number of strongly nonlinear regimes in fluid mechanics,

such as the formation of liquid drops and patterns on liquid surfaces. In their
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study they introduced a now famous family of KdV-like models, known as K(m,n)

equations:

K(m,n) : ut + (um)x + (un)xxx = 0. (3.20)

A crucial feature of (3.20) is that, due to the balance between nonlinear con-

vection and degenerate dispersion, travelling solutions with vanishing boundary

conditions as x ∼ ±∞ necessarily have a compact support for all m ≥ 1 and

n > 1. These solutions were named compactons in a reference to solitons. More-

over, Rosenau and Hyman discovered numerically that arbitrary initial conditions

appear to be resolved into a number of constituent compactons; furthermore,

compactons scatter in a near-elastic manner. Both these properties justify the

analogy with solitons and point out at the great stability of these solutions. In

particular, the fact that they appear in the decomposition of arbitrary initial data

resonates with the so-called soliton resolution conjecture, according to which, in a

vast class of semilinear evolution equations (both integrable and nonintegrable),

stable solitary waves play the role of nonlinear basis functions and dominate the

initial value problem. See Tao [2009] for a discussion of the conjecture.

3.3.1 Compacton solutions

Let us consider compacton solutions in more detail. By making the substitution

u(x, t) = v(z), z = x− ct, (3.21)

(where c is the speed), one finds – after two integrations –

(vz)
2 = − 2

n(n +m)
v2+m−n +

2c

n(n+ 1)
v3−n +K1v

2−n +K2v
2−2n. (3.22)

To obtain compactly supported solutions which are not excessively singular at

the edge of the support, we have to take the integration constants K1 = K2 = 0.

Let us denote the compacton solution of K(m,n) with speed c as u(m,n;c)(x, t).
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For m = n, (3.22) can be solved explicitly and we find

u(n,n;c)(x, t) =

{ (
2nc
n+1

) 1
n−1 cos

2
n−1 (n−1

2n
(x− c t)), x ∈ supp( u(x, t) )

0, x /∈ supp( u(x, t) )
. (3.23)

The amplitude is related to the speed – taller compactons travel faster but,

contrary to the familiar case of solitary waves, the width of compacton solutions

is independent on their amplitudes. This is due to the symmetry of the K(n, n)

equations under:

x→ x, u→ Au, t→ Ant. (3.24)

Form 6= n, m,n > 1, the solution is not always expressible in terms of elementary

functions, and the width of its support does depend on the amplitude. However,

it is qualitatively similar, with a single maximum, and satisfying the same scaling

relation at the endpoints of its support, namely 1

u(m,n;c)(x, t) ∼ |x− e±(t)|
2

n−1 , for x ∼ e±(t), (3.25)

where we have denoted e± the endpoints of the support, namely e±(t) = ct± πn
n−1

.

Examples of single-compacton solutions are shown in Figure 3.2.

3.3.1.1 Compactons as weak solutions

Notice that, when n = 2 or n = 3, (3.23) can be considered almost as solutions

in the ordinary, classical sense since, despite the fact that some of their higher

derivatives are discontinuous across the endpoints of the support2, one still has

un ∈ C3 so that the dispersive term of (3.20) is well-defined.

For n > 3, one can prove that compacton solutions satisfy the following weak

1 This relation does not depend on the value of m > 1 since, close to the endpoints of the
support, the right hand side of (3.22) is dominated by the v3−n term.

2 In particular, u(m,2;c)(x, t) is only differentiable up to the first order (the second derivative
is discontinuous), while u(m,3;c)(x, t) is not differentiable (the first derivative is discontinuous
across the endpoints).
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Figure 3.2: The shapes of compacton solutions to the K(2, 2) equation (blue,
dotted), to the K(3, 3) equation (purple, dashed), and to the K(4, 4) equation
(black, solid). In all cases we took c = 1. The behaviour of these three solutions
close to the endpoints e± of the support is u2,2 ∼ |x− e±|2, u3,3 ∼ |x − e±|, and
u4,4 ∼ |x− e±|

2
3 , respectively.

formulation of (3.20):

∫ ∞

−∞

∫ +∞

0

dy dt

[
∂tf(y, t)u(y, t)− ∂yf(y, t) (u

m(y, t) +
∂2

∂y2
un(y, t))

]
= 0,

(3.26)

for every smooth and compactly supported f ∈ C∞(R×[0,+∞)). In fact, because

compactons are smooth in the interior of their support, it can be shown (for a

rigorous proof in a similar case see Simpson et al. [2007], Proposition 6) that the

only requirement in order to satisfy (3.26) is that

lim
x→ e±(t)

|x− ct| < πn
n−1

∂2

∂x2
(u(m,n;c)(x, t))

n = 0, (3.27)

which is satisfied by all solutions to (3.22). A heuristic explanation for (3.27) is

that this condition expresses the vanishing of the boundary terms arising from

the integration by parts of (3.26) with respect to the y variable.

For a rigorous definition of compactons as weak solutions of the travelling
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wave ODE, see also Li & Olver [1997].

However, we remind the reader that compactons appear to be solutions in a

stronger sense than just weak solutions Li et al. [1999]. It has been proved Li &

Olver [1997], Li & Olver [1998], although only in the case of the K(2, 2) equation,

that they can be obtained as a limiting case of a family of smooth ordinary

solutions. In fact, the above cited works show that travelling wave solutions with

asymptotics limx→±∞ u(x, t) = k 6= 0 are smooth, and reduce to compactons of

the same speed in the limit k → 0.

It would be tempting to conjecture that the most general solution of the equa-

tion is a piecewise analytic function supported on a finite collection of intervals,

satisfying (3.27). In fact, notice that any solution which were: a) continuous, b)

supported on a finite collection of intervals, c) piecewise analytic in the interior

of its support and d) satisfying the singularity bound (3.27) at every edge point,

would be a well-defined weak solution in the same sense as (3.26). However, this

class of functions appears too limited to describe the dynamics of these models.

In particular, it is known Defrutos et al. [1995] that the evolution can lead to the

formation of shocks. A precise mathematical formulation of these equations is

still lacking. A more detailed discussion about these issues and on singularities

is presented below and in Section 3.3.2.

Possible issues of ill-posedness Finding a good mathematical theory for

compacton equations is a very important open problem. In particular, there are

no results guaranteeing that the solution is globally defined in an appropriate

function space. To the best of our knowledge, this holds true for degenerate

dispersive equations in general, apart from exceptional cases where integrability

plays a role such as the Camassa-Holm equation. The only available results are

short-time existence results, valid as long as the solution remains bounded away

from zero . Even more discouraging, it has been suggested that, for data close to

zero, the K(2, 2) equation might be ill-posed Ambrose et al. [2012]. We remind the

reader (see Evans [2010] for a complete treatment) that the initial value problem

of a PDE is well-posed in a normed space of functions if the solution depends

continuously on the initial data, while an equation is said to be ill-posed if its

solutions do not depend continuously on the initial data, even for arbitrary short
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times. It would be very problematic if the equation were not well-posed in any

sense, and in particular this would make the numerical study of the equation

meaningless. In Ambrose et al. [2012], the authors demonstrate numerically ill-

posedness of the K(2, 2) equation in H2 1. This is a serious issue to keep in

mind when trying to interpret the numerical results. However, since the space

H2 is rather regular (in particular, it does not include solutions with shocks), a

possible hopeful point of view is that the equation might still be well-posed in a

more general function space.

3.3.2 Interactions of compactons

In Rosenau & Hyman [1993], Rosenau and Hyman performed an extensive nu-

merical study of some of the equations (3.20) with n ≤ 3, in particular equation

K(2, 2), and made several important observations. First, they observed that the

evolution of an arbitrary compactly supported initial condition yields its decom-

position in a number of compactons (the decomposition process may also involve

negative-amplitude compactons, known as anti-compactons). Moreover, they ob-

served that collisions between two initially separated compactons travelling with

different speeds are remarkably close to being elastic. In particular, compactons

are able to pass through each other and separate again regaining – at least in

the case of the K(2, 2) equations – exactly their original shapes and amplitudes.

The process is not fully elastic because a third compact structure is left in the

wake of the interaction. Typically, this ripple has a much lower amplitude than

the two colliding compactons, and has both a positive and a negative part. The

center of momentum of this structure appears to remain fixed, while it slowly de-

composes into pairs of compactons and anti-compactons of very small amplitude.

In Defrutos et al. [1995], it was also shown that the ripple typically develops a

shock layer. This process is illustrated in Figures 3.3 and 3.11 for the K(2, 2) and

K(4, 4) equations, respectively.

Although these robustness properties resemble strongly the properties of soli-

tons in integrable models, it is important to remark that none of the K(m,n)

1 The Hs-norm (s ∈ N) is defined as ||u(·, t)||Hs =
∑s

i=1 || ∂i

∂xiu(·, t)||L2 , where derivatives
up to the s-th order are supposed to exist in the weak sense.
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models with m,n > 0 are integrable. In particular, it was recently proved in

Vodova [2013] via a symmetry classification approach that the K(n, n) model

admits only four local conservation laws of the form

∂tρi = ∂xσi, (3.28)

given by

ρ1 = u, σ1 = (un)xx + un, (3.29)

ρ2 = un+1, σ2 = nu2n−1uxx +
n(n− 2)

2
u2xu

2n−2 +
1

2
u2n, (3.30)

ρ3 = u sin(x), σ3 = (un)xx sin(x)− ux cos(x), (3.31)

ρ4 = u cos(x), σ4 = (un)xx cos(x) + ux sin(x). (3.32)

It is unclear if other, non-local conservation laws may play a role in explaining the

exact preservation of the amplitudes of interacting compactons after the interac-

tions. This peculiar property appears to hold for equations K(2, 2) and K(4, 4),

and possibly for all equations of the form K(2m, 2m), m ∈ N. In other models,

compacton collisions are still very robust interactions, but compactons may re-

emerge with slightly different amplitudes: in the case of the K(3, 3) equation, for

instance, this is implied by the presence of the positive-defined conserved quan-

tity
∫
dx u4; after the creation of the ripple, the outgoing compactons must have

lower amplitudes in order for this quantity to be preserved.

Further numerical studies of compacton collisions for members of the K(m,n)

family were presented in Defrutos et al. [1995]; Ismail & Taha [1998]; Mihaila

et al. [2010b]. Other quasi-linear dispersive equations, such as the so called

L(l, p) equations

L(l, p) : ut + ul−2ux − p
(
up−1(ux)

2
)
x
+ 2α (upux)xx = 0, (3.33)

(l, p ∈ N, p ≥ 1, l ≥ 2)

introduced by Cooper-Shepard-Sodano in Cooper et al. [1993], were also studied

numerically Mihaila et al. [2010a]. Interactions of compactons in quintic equations

were studied in Cooper et al. [2001]. Although there are subtle differences in the
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shape of the ripple left after the interaction (in particular, see Mihaila et al.

[2010a] for a comparison between the Cooper-Shepard-Sodano equation and the

K(m,n) models), the general characteristics of compacton collisions were found

to be the same in a vast class of models, and in all these cases these solutions

appear to be extremely robust.

Finally, let us mention that interactions among compactons of positive and

negative amplitude (the so-called anti-compactons) are very different, and do not

show any signs of elasticity Cardenas et al. [2011]; Rosenau & Hyman [1993].

In the case of the K(m,n) equations, it has been showed that they lead to the

formation of very strong shock singularities, and it has been suggested that they

may lead to a blow up of the equation.

Before presenting our numerical results, let us discuss some general properties

of the equations.

3.3.2.1 Other general properties

Behaviour at the edge of the support Let us show how the edge equation

(3.9-3.16) can be generalized in the case of the K(m,n) equations. Repeating the

heuristic argument 1 introduced in Section 3.2.0.1, we expect that, for compactly-

supported solutions that are sufficiently regular close to the endpoints of the

support, the position of the edge ζ(t) satisfies:

d

dt
ζ(t) = − lim

x→ ζ(t)
x ∈ supp

ut(x, t)

ux(x, t)
= lim

x→ ζ(t)
x ∈ supp

um(x, t) + ∂2

∂x2 (u
n(x, t))

u(x, t)

= lim
x→ ζ(t)
x ∈ supp

∂2

∂x2 (u
n(x, t))

u(x, t)
. (3.34)

Notice that in the last line we have omitted the contribution of the convective

term, since we are assuming m > 1. Assuming that the limit in (3.34) exists, we

1In the second equality of (3.34), we apply l’Hopital’s rule backwards. As discussed in
Section 3.2.0.1, this is justified heuristically because the resulting expression is seen a posteriori
to be an indeterminate form.
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have that, for x ∼ ζ(t):

u(z, t) ≃
(

(n− 1)2

2n(n + 1)

d

dt
ζ(t)

) 1
n−1

|z − ζ(t)| 2
n−1 . (3.35)

Notice that this is the same behaviour of (3.25) but with c replaced by d
dt
ζ(t).

However, to the best of our knowledge, it has never been pointed out that, at

least in sufficiently regular cases, the same behaviour should also hold for more

general solutions with a nonconstant speed.

Singularities Finally, we would like to make a comment on the development

of singularities for degenerate equations, as an introduction to the numerical data

presented in the next section. In particular, we would like to point out that, as

proved in Ambrose & Wright [2010]; Ambrose et al. [2012]; Wright & Ambrose

[2012], the approach of the value u = 0 is intimately connected to the loss of

smoothness. For example, in Wright & Ambrose [2012] (see Section 5 of that

paper), is proved that an initially smooth and positive solution cannot reach the

value u = 0 without, at least, causing the divergence of the H4-norm.

The results of Ambrose & Wright [2010] show that, for sufficiently smooth

solutions to a degenerate equation, the measure of the support is invariant. In

particular, Theorem 8 of that paper is particularly interesting. It states that

compactly-supported solutions that are supported on intervals and that are at

least piecewise-C3 on their full support (including at the edge points) cannot

change their sign. As remarked in that paper, since in many simulations it is

observed that sign changes do take place, this demonstrates that singularities

must be formed in conjunction with the development of a negative part.

We will see some examples in the numerical simulations of the following sec-

tion. For instance, as discussed below, during the collision of two compactons,

the creation of a shock layer across the point where the solution changes sign

creating a negative part is always observed (a phenomenon first described in De-

frutos et al. [1995]). Notice that this happens also for equations – such as K(2, 2)

– where compacton solutions are still quite regular at their edges. We remark

that, although this appears to be always the case for the K(m,n) equations, the

76



3. Nonlinear dispersion and compactons. Numerical studies

singularity may in principle not be associated to a shock. For example the re-

sults of Mihaila et al. [2010a] on the CSS equations appear to be consistent with

the development of gradient singularities (see Figure 8 in that paper), but the

formation of shocks was never observed.

Finally, the behaviour of the solution around points where u = 0 may be very

different depending on the sign of ux. In fact, our numerical observations indicate

that no singularity is formed when a smooth piece of the solution changes sign

crossing the line u = 0 with ux < 0. Similarly, for positive compactly-supported

solutions, no singular behaviour is observed close to the edge where ux < 0.

On the contrary, points where ux > 0 are potentially very critical, and appear

to be always associated to singularities. This was first pointed out in Defrutos

et al. [1995] based on numerical observations as well as a rigorous argument. The

authors of the latter paper also point out that an intuitive explantion comes from

expanding the dispersive term of (3.20):

ut = −3n(n− 1)un−2uxuxx + . . . . (3.36)

For u > 0 , ux > 0, the term on the right hand side acts like a backwards heat

operator, which is a dangerous possible source of instability.

3.4 Numerical study of the K(2, 2) and K(4, 4)

equations

In this section we will present some numerical investigations on two models of the

Rosenau-Hyman family, the K(2, 2) and K(4, 4) equations. The K(2, 2) model has

been considered by many authors Defrutos et al. [1995]; Mihaila et al. [2010b];

Rosenau & Hyman [1993]; Rus & Villatoro [2007a]. The main reason to consider

the K(4, 4) equation in detail is that it has the same degree of nonlinearity as

the integrable equation (4.10), which will be the object of the next chapter. We

will study this integrable equation numerically using the same method as for the

Rosenau-Hyman models. The results of this chapter therefore serve also as a test

of the numerical method.
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3.4.1 General description of the numerical method

The numerical solution of degenerate equations has to deal with the difficult prob-

lem of representing non-smooth solutions. Some of the numerical techniques used

to solve compacton equations include pseudo-spectral methods Rosenau & Hyman

[1993], finite-difference methods Ismail & Taha [1998], methods based on Padè

approximants Defrutos et al. [1995], finite-element methods Levy et al. [2004],

particle methods Chertock & Levy [2001] or adaptive-grid methods Saucez et al.

[2004]. For the numerical studies presented in this and in the following chapter,

we have adapted the Padè finite-difference method introduced in Defrutos et al.

[1995]. This method was originally used to solve the K(2, 2) equation and was

applied in Mihaila et al. [2010a,b] to the study of the K(m,n) and CSS models.

Let us give a general description of the method, referring to Appendix B for more

details. The equation is solved numerically on a domain I × [0, T ], where T ∈ R,

[0, T ] is the time domain and the space domain I is a finite interval. We always

apply periodic boundary conditions on I, although in most of our simulations the

support of the solution is, within numerical precision limits, strictly contained

in I. The space domain is discretized with a constant step ∆x and the space

derivatives are approximated with the 4th order Padè approximant formulae of

Defrutos et al. [1995]; Rus & Villatoro [2007a]. The detailed expressions are listed

in Appendix B. The original PDE is then replaced by a system of ODEs for the

time evolution of the solution vector sampled at the grid points, which is inte-

grated with an appropriate ODE solver. Because this system of ODEs is stiff (see

Iserles [2009], Press et al. [1990]), the method used for the time integration must

be implicit.

In general, we observe that the time integration does not pose great accuracy

or convergence problems. Usually we use a simple Crank-Nicolson method, which

is 2nd order accurate; the difference between this method and a 4th order implicit

Runge-Kutta method would not be appreciable on the scale of any of the Figures

presented in this thesis.
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The space discretization is a much more critical aspect, both for the accuracy

and for the convergence of the numerical scheme. In fact, a common problem

encountered when integrating compacton equations with a fixed-grid method is

the introduction of spurious modes in the numerical solution. Typically, these

spurious oscillations start localized around the trailing edge of compacton pro-

files. Even when trying to reproduce the simple one-compacton solutions, these

disturbances tend to grow unstable due to nonlinear effects and can rapidly de-

stroy the simulation. This problem can be controlled by applying an appropriate

smoothing procedure. In the case of pseudo-spectral methods, one typically uses

a frequency cut-off to remove the fastest oscillations, while in the case of finite-

difference-based methods the common recipe is to introduce a small amount of

dissipation. Namely, rather than (3.20), we discretise the equation

ut + (um)x + (un)xxx = η2 uxx − η4 uxxxx, (3.37)

where 0 < ηi << 1 are assumed to be very small. Typically, we take η2 = 0 and

observe that the numerical scheme is stable, for most of the data presented in this

chapter, for values of η4 as small as 10−5. Notice that the amount of dissipation

needed to stabilize the numerics depends on the step size ∆x: for smaller values

of ∆x, the scheme is stable with a lesser amount of dissipation.

The dissipation has some visible effects on the solution (see Abassy et al.

[2009] for a specific study): the sharp edges of compactly supported solutions

are replaced by exponential tails, the amplitude of compacton solutions is slowly

damped, and low-amplitude numerical radiation is emitted Rus & Villatoro [2007b].

For improvements of the numerical method that can minimize these effects, see

Garralón et al. [2013].

Finally, let us mention that in other, more sophisticated approaches, such

as particle1 methods Chertock & Levy [2001], finite element methods Levy et al.

[2004] and adaptive-grid methods Saucez et al. [2004], there is apparently no need

for adding dissipative terms as in (3.37).

1 However, we point out that particle methods have an important limitation, since they
preserve the sign of the solution. Therefore, they are unsuited to study equations where sign
changes can take place, which is the case for the Rosenau-Hyman models.
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In all the simulations presented below, we verified that the conserved quanti-

ties

Fi ≡
∫
dx ρi(x), i = 1, . . . , 4, (3.38)

with ρi defined in (3.29-3.32) are preserved as long as the solution does not

develop shock singularities, although they are slowly dissipated due to the added

viscosity. In all the simulations presented below, this dissipation rate did not

exceed a fraction of 0.1% of the total for each conserved charge, for unit time.

Notice that the conservation of F1 is automatically enforced numerically since

the numerical scheme is conservative, however the preservation of the other three

quantities is a nontrivial test of our numerics. After shocks are formed, the

conserved charges Fj are no longer exact with j ≥ 2, due to boundary conditions

across the shock front.

3.4.2 Numerical experiments: the K(2, 2) equation

Let us present some numerical experiments on the K(2, 2) equation. In particular

we will present three types of phenomena:

- The collision of two compactons.

- The decomposition of a generic compactly-supported, positive initial profile.

- The development of a singularity in a solution initially smooth and strictly

positive.

Collision The collision among two compactons with speeds c1 = 3, c2 = 1

is illustrated in Figure 3.3. This simulation was obtained with ∆x = 50/2048 ∼
0.024 and by adding the dissipation η2 = 0, η4 = 10−3. Our choice of initial

separation is such that the supports of the two compactons merge at time t =

0.217. After the interaction, the fastest compacton appears to re-emerge around

time t = 12., while the second separates form the residual “ripple” around time

t = 22. Both appear to regain exactly their amplitudes. In the case of the

smaller compacton, the relative amplitude drop is less than 0.3 percent after the
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Figure 3.3: Numerical solution of the K(2, 2) equation showing the scatter-
ing among two compactons of speeds c1 = 1 and c2 = 3. This simulation was
performed with η2 = 0 and η4 = 10−3.
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Figure 3.4: Detail of the ripple left by the collision of two compactons, for the
same data shown in Figure 3.3. The compacton on the right of the picture is the
c = 1 compacton after its emergence from the interaction.

interaction (which we believe is due to the rather large added dissipation used

for this set of data), while the agreement is even better for the taller compacton.

We observe that the separation of the emerging compactons from the part of

the solution that is left behind is very regular and no singularities are formed at

the point where the support splits.

It is interesting to describe in detail the creation of the ripple, which starts to

form around the left endpoint of the support of the solution during the interaction

of the two compactons. In this example, roughly around time t ∼ 1.9, the solution

bends down and starts to become negative at the left edge of the support. The

interface between the negative and the positive parts of the solution is a shock,

which is visible starting from the third panel in Figure 3.3. The shock layer

initially moves to the right, disclosing the negative part of the ripple in its wake.

Then it slows down and appears to stop moving around time t ∼ 10.: at this

point, the positive part of the ripple starts to be revealed to the right of the

shock layer, as the compacton with speed c = 1 moves away. Notice that, on the

time scale of the emergence of the two compactons, the ripple appears essentially
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still. The shape of the ripple left at the interaction site can be seen in Figure 3.4,

where in particular the shock layer connecting its negative and positive parts is

clearly visible. The amplitude of the ripple is of order ∼ 0.07− 0.08.

Considering several other choices of speeds for the colliding compactons, we

observed that the formation of the ripple is qualitatively very similar in all cases.

In particular, we always observed the formation of a single shock layer. As a last

observation, we did not notice a simple relation between the amplitude of the

ripple and the speeds of the colliding compactons. For example, colliding two

compactons of speeds c1 = 3, c2 = 2.5, the ripple had roughly half the amplitude

as in the previous example; colliding two compactons with amplitudes c2 = 3,

c1 = 0.2, the amplitude of the ripple was ∼ 0.03.

Decomposition of compact initial data In a second experiment, we con-

sider the decomposition of a positive, compactly supported initial condition. In

particular, we considered several conditions of the form

u(x, 0) =

{
cos4( πx

2W
), |x| < W

0, |x| > W
, (3.39)

for different values of W . The data relative to W = 6π are represented in Figure

3.5. This simulation was obtained with a step size ∆x = 60/2048 ∼ 0.03 and

with added viscosity η2 = 0 and η4 = 10−3.

The Figure illustrates the emergence of one compacton by time t ∼ 7. ; a sec-

ond compacton structure of smaller amplitude ∼ 0.19 was clearly formed (how-

ever it had not completely separated from the residual part of the data) when we

stopped the simulation at time t = 25. Notice also the small shock layer visible

close to the left edge of the solution. This is a general feature of the decompo-

sition of compactly supported positive initial data. In several simulations with

initial conditions of the form (3.39) we observed the development of fast oscilla-

tions close to the left edge of the support, leading to the formation of a sequence

of shocks. We believe this is not a numerical artefact. A similar phenomenon was

first observed in the case of the K(3, 3) equation in Levy et al. [2004], although

in that case no comments were made on the evolution of the oscillations into

shocks. In the present case, we observe the following general characteristics of
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Figure 3.5: K(2, 2) equation: evolution of the initial condition u(x, 0) =
cos4(x

6
)χ[−3π,3π](x) . The data in the plot were obtained by adding the viscos-

ity η2 = 0 and η4 = 10−3.

the sequence of shock layers: the discontinuities always form across the line u = 0,

jumping between a region with u < 0 at the immediate left of the shock layer

and u > 0 at its immediate right. The shock layers are connected by apparently

smooth pieces of the solution crossing u = 0 with ux < 0. This “radiation” shows

a tendency of moving leftwards. However, the precise structure and evolution

of these oscillations is difficult to follow, since the added dissipation needed to

stabilize the numerical method tends to eventually dissipate these oscillations.

An interesting dynamics can be observed in the case of initial data with a

very narrow support. In Figure 3.6 and 3.7 are shown aspects of the evolution of

data of the form (3.39), whose initial support has width W = 2
3
π (we remind the

reader that the width of a traveling compacton solution is 2π). It was already
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π](x), showing a sequence of shocks formed close to the

left endpoint of the support. The simulation was done with added dissipation
η4 = 10−3.
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Figure 3.7: Evolution of the same data as in Figure 3.6, for larger times.
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Figure 3.8: Illustration of the steepening at the right edge of the support for the
same data as in Figure 3.5.

observed in Rosenau & Hyman [1993] that the evolution of very narrow initial data

leads to very strong shock singularities. The shape of the radiative oscillations

described above is clearly visible in the Figures. The data were obtained with

∆x = 12/1024 = 0.012 and with dissipation specified by η4 = 10−3. We observe

that, as a result of the dissipation, all the shock layers to the left of the largest,

rightmost one gradually shrink and disappear. The numerical solution then has

developed a negative part on the left of this shock layer and the support starts

expanding in both directions; eventually, for later times than those shown in

the figures above, compactons and anticompactons are emitted from the shock

layer. These data appear to show that even narrow initial data can decompose

into compactons and anticompactons and that there is no blow-up. However,

the transition described above to a profile with a single shock layer may also be

simply a product of the addition of dissipation. Similar observations were made

in Mihaila et al. [2010b].

As a final comment, we always observed that the behaviour close the right edge

of the support is very regular. We observe that there is a waiting time, during

which this endpoint remains motionless, while the solution gradually steepens
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until it attains the scaling u ∼ x2. This process is very smooth, as can be seen

in detail in Figure 3.8.

Data initially bounded away form zero Let us now illustrate how initial

data smooth and bounded away from zero can reach the value u = 0 and develop

a singularity. In Figure 3.9 we show the evolution of the smooth periodic initial

profile

u(x, 0) = sin(
πx

3
) + 1.1. (3.40)

The simulation was performed with a step size ∆x = 60/4096 ∼ 0.015 and

with added dissipation defined by η2 = 0, η4 = 10−3.

The profile bends towards the line u = 0 reaching it around time t ∼ 0.036.

Judging from the data, the solution appears to form a cusp with finite value of

ux on both sides but with uxx → ∞ as it touches zero. A detail is shown in

Figure 3.10. After it crosses the line u = 0, the solution appears to develop a

shock layer, shown in the last three panels of Figure 3.9. Notice that the addition

of dissipation with η4 = 10−3 is needed for the simulation to converge after the

singularity time. However, for times t ≤ 0.036, when the solution is still strictly

positive, there is no need for any added viscosity. In Figure 3.10 is shown that

the solution obtained with η4 = 10−3 and with η4 = 0 display a perfect agreement

up to the time of singularity formation.

Finally, notice that data which vary on a larger scale appear to remain smooth

for longer times. In particular, we have considered the evolution of an initial pro-

file specified by stretching u(x, 0) = sin(2πx
15

) + 1.1: the solution remains smooth

and positive at least until time t = 25. The evolution of this profile shows the

emergence of three smooth structures that travel across the periodic domain dis-

playing an apparently recurrent behaviour and, during this time span, the solution

does not approach the line u = 0 significantly.
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Figure 3.9: K(2, 2) equation: evolution of the initial condition u(x, 0) = sin(πx
3
)+

1.1. The profile crosses the critical line u = 0 around time 0.036, developing a
shock discontinuity for later times.
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Figure 3.10: Detail of the approach to singularity for the same solution to the
K(2, 2) equation as in Figure 3.9. Dots (black) represent the numerical solution
obtained without adding any dissipative term, while the continuous (light-blue)
line was obtained with η4 = 10−3 (the two curves are almost indistinguishable in
the plot).

3.4.3 Numerical experiments: the K(4, 4) equation

Let us now present some numerical experiments on the K(4, 4) equation, in the

same dynamical regimes previously analyzed for the K(2, 2) model. We find

that, apart from local differences, the behaviour is overall very similar. This also

demonstrates that the numerical method works rather well also in describing this

more singular equation.

Collision among compactons Similar to the K(2, 2) case, collisions among

compacton solutions to the K(4, 4) equation are very robust. In Figure 3.11

we show the collision among two compactons with speeds c1 = 2 and c2 = 1,

whose supports come in contact at time t ∼ 0.6. This simulation was obtained

with a step size ∆x = 35/1024 ∼ 0.034 and with added viscosity η2 = 0 and

η4 = 3× 10−5.
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The mechanism of formation of the ripple left as a residual of the interaction

is very similar to the K(2, 2) case, and leads to the formation of a single shock

layer across the line u = 0. In the present case this structure has a rather small

amplitude as can be seen in Figure 3.12.

 0

 1

-15 -10 -5  0  5  10  15  20

u(
x,

t)

x

t=0.

 0

 1

-15 -10 -5  0  5  10  15  20

u(
x,

t)

x

t=1.

 0

 1

-15 -10 -5  0  5  10  15  20

u(
x,

t)

x

t=2.

 0

 1

-15 -10 -5  0  5  10  15  20

u(
x,

t)

x

t=3.

 0

 1

-15 -10 -5  0  5  10  15  20

u(
x,

t)

x

t=5.

 0

 1

-15 -10 -5  0  5  10  15  20

u(
x,

t)

x

t=6.5

Figure 3.11: K(4, 4) equation: collision among two compactons with speeds
c1 = 2 and c2 = 1. This simulation was obtained with added viscosity η2 = 0 and
η4 = 3× 10−5.
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Figure 3.12: The figure shows two later snapshots of the evolution of the same
data as in Figure 3.11, showing the separation of the c = 1 compacton from the
residual left at the site of the interaction (notice that the faster, c = 2 compacton
has been removed and is not visible in the plot).

Decomposition of compact initial data In Figure 3.13 is displayed the

evolution of the profile

u(x, 0) =

{
cos(πx

20
), |x| < 10

0, |x| > 10
.

These numerical data were obtained with ∆x = 50/1024 ∼ 0.049 and with

added dissipation η4 = 10−4. In the Figure is clearly visible the emergence of

two individual compactons. In analogy to the K(2, 2) case, we observe that

the steepening of the solution close to the right endpoint of the support is very

smooth, while several oscillations are formed close to the left edge.

Looking more closely at the shape of the oscillations formed close to the left

edge, we see that, when the solution first touches u = 0 at its inflection point,

it forms an infinite derivative spike. This is illustrated (for a different initial

condition) in Figure 3.14. After the solution becomes negative, they appear to

evolve into a number of shock layers connected by pieces of the solution that cross
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Figure 3.13: K(4, 4) equation: decomposition of the compactly supported initial
data u(x, 0) = cos(πx

20
)χ[−10,10](x). Data obtained with added dissipation η4 =

10−4.

u = 0 with ux = −∞. Our data are not clear on the fate of these oscillations.

Similar to the K(2, 2) case, the smaller oscillations are eventually dissipated by

the added viscosity necessary to stabilise the simulation. However, we point out

that, at least for the duration of our simulation of Figure 3.13, the left endpoint

of the support of the solution does not seem to be able to expand beyond its

initial position. Finally, let us stress that the numerical solution appears to be

very reliable to the right of the rightmost shock layer visible in Figure 3.13. In
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Figure 3.14: Initial phase of the decomposition of the profile u(x, 0) = u(x, 0) =
cos4(πx

20
)χ[−10,10](x), showing in detail the spiky oscillations formed close to the left

edge of the support. As compared to the data in Figure 3.13, the oscillations are
more pronounced, but appear to have the same shape. These data were obtained
with η2 = 0 and η4 = 10−4.

particular we have checked that this part of the plot, as well as the position of

this largest shock front, are robust against decreasing the value of η4.

Singularity in initially positive data Finally, we consider also for the

K(4, 4) equation the evolution of initial data bounded away from zero and we

find clear evidence that for some choices of initial condition, the solution touches

down reaching the value u = 0 and develops a singularity. Here we consider

u(x, 0) = 1.1 + sin(πx
10
), with periodic boundary conditions. As illustrated in

Figure 3.15, the solution approaches u = 0 around time t ∼ 0.37. These data

were obtained with ∆x = 20/512 ∼ 0.040 and with no added dissipation η4 = 0.

The singularity formed appears to have again the shape of a sequence of spikes

with an infinite derivative.
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Figure 3.15: K(4, 4) equation: evolution of the smooth positive profile u(x, 0) =
1.1 + sin(πx

10
). It is shown how this profile approaches the line u = 0 forming a

number of singular spikes. Data obtained with η2 = η4 = 0.

3.5 Summary of the results of this chapter

In this chapter we presented new numerical investigations of the behaviour of

the K(2, 2) and K(4, 4) equations. Most of these findings are a confirmation of

previous studies such as Defrutos et al. [1995]; Levy et al. [2004]; Mihaila et al.

[2010b]; Rosenau & Hyman [1993]; Rus & Villatoro [2007a]. In these studies,

the K(4, 4) equation was not considered in the same detail, but our simulations

indicate that – apart from the local characteristics of the singularities – its dy-

namics is extremely similar to that of the K(2, 2) model. Our numerical results

confirm that, for both the models considered, colliding compactons are able to

re-emerge from the interaction unscathed, leaving behind a small ripple with an

internal shock layer. We also investigated the evolution of positive, piecewise-

smooth initial conditions supported on a single interval, making the following

observations:
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- Close to the right edge, the solution remains smooth in the interior of the sup-

port. If the solution has initially a mild behaviour close to the edge point,

a waiting time ensues1, during which the interface steepens without develop-

ing oscillations; afterwards, the support starts expanding rightwards. We are

unaware of other numerical observations of this behaviour.

- As reported in many works starting from Rosenau & Hyman [1993], a number

of right-moving compactons emerge and completely separate from the initial

condition.

- Close to the left edge of the support, the solution develop oscillations that grow

singular forming a sequence of shocks. These oscillations were also observed in

Levy et al. [2004] in the case of the K(3, 3) equation. In Rosenau & Hyman

[1993], it was reported that solutions of the K(2, 2) equation with an initial

support narrower than the width of a travelling compacton develop very strong

singularities. However this was not analysed further. Our simulations indicate

that these singularities are present for any initial width, although they are more

pronounced in the case of a narrow initial support. In general the numerical

evolution with the addition of viscosity is stable, leading to the development of

a negative portion of the solution, which decays into a number of leftmoving

anticompactons. This has also been observed in Mihaila et al. [2010b].

In agreement with Defrutos et al. [1995], we found that the formation of shocks

appears to occur only at points where u = 0 and ux > 0 2. It appears that

the only case in which a shock is not formed at such points is the edge of exact

compacton solutions.

A numerical observation which we did not find elsewhere in the literature is

that initial conditions bounded away from zero can touch down reaching the value

u = 0. Theorem 8 of Wright & Ambrose [2012] implies that they then develop a

singularity; this was clearly visible in our data.

1 As required by the theorems of Ambrose & Wright [2010].
2 This is in a way reminiscent of the breakup results for the Camassa-Holm equation (see

the Steepening Lemma in Camassa et al. [1994]).
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Finally, in Section 3.2.0.1 and Section 3.3.2.1 we have presented a heuristic

argument to determine the shape of a compactly-supported solution close to a

moving edge of the support.
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Chapter 4

Numerical study of stability for

an integrable compacton equation

Since their discovery in Rosenau & Hyman [1993], the soliton-like properties of

compactons have been intensively investigated. However, as this research has

been almost entirely based on numerical exploration, a deep understanding of

these solutions and their stability is still lacking. In comparison, the properties of

peakon solutions Camassa & Holm [1993] occurring in non-evolutionary equations

are much better understood, due to the paradigm set by at least two completely

solvable examples Camassa & Holm [1993]; Degasperis & Procesi [1999]. The ex-

istence of an integrable equation modeling the interaction of compactons would

be a major step forward in understanding this class of solutions to nonlinear

dispersive equations. A parallel, still unsettled question is whether integrability

(or perhaps an approximate form of integrability) plays any role in explaining

the quasi-elasticity of compacton interactions. In this chapter we study numeri-

cally an integrable nonlinear dispersive equation supporting compacton solutions.

This equation was introduced by Rosenau in Rosenau [1996] where it was shown

that it is linked to the MKdV equation through a non-local change of variables,

and admits both travelling and stationary compactly supported solutions. As

we describe below, numerical studies of the equation 1 suggest that only station-

ary compacton solutions are stable. Despite the fact that the original goal of

1This equation was already studied numerically by Hyman and Rosenau, in an unpublished
work cited in Rosenau [2006].
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finding an integrable paradigm for the dynamics of the K(m,n) models was not

accomplished, the observation of unstable compacton solutions is interesting in

itself. An intuitive explanation – which can be found already in Rosenau [2006]

– comes from the structure of the phase space of travelling wave solutions: the

model admits infinitely many distinct compactly-supported travelling solutions

with the same speed. Introducing a deformation of the equation interpolating

between the integrable case and the Rosenau-Hyman K(4, 4) model, this heuris-

tic criterion can be used to determine the value of the deformation parameter at

which the exchange of stability properties between stationary compactons and

travelling compactons takes place. A similar exchange of stability between sta-

tionary leftons and travelling peakon solutions was discovered in Holm & Staley

[2003]1 in a one-parameter family of equations arising in water wave theory; this

result has been rigorously established in Hone & Lafortune [2014].

After this work had been completed, we learnt that the main results of this

chapter are already contained in Rosenau [2006]. However, since the numerical

work of Hyman and Rosenau is unpublished we believe that the present work is

a useful complement. In Section 4.4 we list in detail which claims of this work

are believed to be new.

4.1 Integrable quasi-linear equations, hodograph

transformations and the Lagrange map

Several examples of integrable compacton-supporting equations have been pointed

out in the literature, for instance see Fokas et al. [1997]; Olver & Rosenau [1996];

Rosenau [1996]; Sakovich [2003]. In this section we will review these results us-

ing the perspective of Clarkson et al. [1989] on the classification of integrable

quasi-linear equations.

The problem of classifying all the integrable equations of a given form is one

of the main topics the theory of integrable systems, and different perspectives

exist, such as the symmetry approach Mikhailov & Sokolov [2009]; Mikhailov

1The expression “exchange of stability” is quoted from this paper
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et al. [1987, 1991] or Painlevé tests (see Hone [2009]; Kruskal et al. [1997] for

reviews).

For 3rd order evolutionary semilinear equations, namely equations of the form

ut = uxxx +G(uxx, ux, u), (4.1)

where G denotes a generic function, this problem was solved in Svinolupov &

Sokolov [1982]; Svinolupov et al. [1983], proving that an equation of this type is

integrable if and only if it can be transformed, through a local change of variables,

to one of the following eight equations:

1. ut = uxxx + γux (Linear Third Order Equation)

2. ut = uxxx + uux + γux (KdV Equation)

3. ut = uxxx + u2ux + γux (MKdV Equation)

4. ut = uxxx − 1
8
u3x + (α1e

u + α2e
−u + γ)ux (CDF Equation)

5. ut = uxxx − 3
2
uxu

2
xx(1 + u2x)

−1 − 3
2
P(u)(u2x + 1)ux + γux

6. ut = uxxx − 3
2
u2xxu

−1
x + αu−1

x − 3
2
P(u)u2x + γux

where P(u) denotes one of Weierstrass’ elliptic functions and α1, α2, α, γ are

free parameters. By local change of variables, we mean one that transforms

separately the coordinates (x, t) and the dependent variable u, plus possibly a

potential transformation u = fx or ux = f .

The classification of quasi-linear equations, namely equations that can be

written in the form

∂tu = g(u)∂nxu+ f(u, ∂xu, . . . , ∂
n−1
x u), (4.2)

(where g and f are generic functions of their arguments) is in general much more

difficult. In particular, it is known that Painlevé tests, which are the simplest

algorithmic method to scan for the integrability of equations of a given class,

are appropriate only for semi-linear equations (see Clarkson et al. [1989] for a

discussion). To overcome this problem, the authors of Clarkson et al. [1989] point
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out that a quasi-linear equation of the form (4.2) can sometimes be transformed

into the semi-linear equation:

∂τw = ∂nyw + h(w, ∂yw, . . . , ∂
n−1
y w). (4.3)

through a non-local change of variables defined as follows:

τ = t

y =

∫ x

φ(u(x′, t)) dx′

w(y, τ) = u(x, t), (4.4)

where φ(u) is related to the function g(u) in (4.2) by φ(u) = (g(u))−
1
n . The trans-

formation (4.4) is known as extended hodograph transformation. The proposal of

Clarkson et al. [1989] is that a quasi-linear equation is integrable if and only if

it can be mapped to an integrable semi-linear equation. An important point to

stress is that the extended hodograph transformation is not always applicable,

in the sense that in general (4.4) could lead to a non-local (integro-differential)

equation, rather than to a semi-linear PDE as in (4.3). According to the pro-

posal of Clarkson et al. [1989], all these cases are non-integrable. In order for the

hodograph map to yield a local semi-linear PDE, a precise condition on the form

of (4.2) must be met. For third order equations, the condition can be found in

Proposition 2.2 of Clarkson et al. [1989], and reads:

f(u, ux, uxx) (4.5)

=
∂

∂u
B(u, ux)ux +

∂

∂ux
B(u, ux)uxx +

(
g′′(u)

g′(u)
− 4

3

g′(u)

g(u)

)
B(u, ux)

+

(
g′′(u) g(u)

g′(u)
− g′(u)

3

)
uxuxx,

where B(u, ux) is an arbitrary function and g(u) is the same function as in (4.2).

It is worth remarking that the Rosenau-Hyman K(m,n) equations for n,m ∈ N,

as well as the compacton equations introduced in Cooper et al. [1993] by Cooper,

Shepard and Sodano (CSS), are not in this form and therefore not integrable.
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Let us now apply the hodograph transformation to the following generic equa-

tion:

ut = u3uxxx + α u2uxuxx + β uu3x + ur+1ux, α, β, r ∈ R. (4.6)

For r > −1, all of these equations admit compactly supported travelling wave

solutions, as a result of the relative positive sign between the highest derivative

term and the convective term. Notice that the class of equations (4.6) is quite

general: since we can change the power of the non-linearity of the dispersive term

by a transformation of the form u → u′ = um, this ansatz encompasses all cases

in which the dispersive term is a homogeneous polynomial. The reason for the

choice of g(u) = u3 is that it will simplify some expressions later.

According to (4.5), the hodograph method is applicable only if β = 0 1. In

that case, applying (4.4) yields

wτ = wyyy +
(α− 3)

2

(
w2

y

w

)

y

+
r + 1

r
wrwy for r 6= 0, (4.7)

wτ = wyyy +
(α− 3)

2

(
w2

y

w

)

y

+ (w lnw)y for r = 0. (4.8)

A complete classification of the integrable equations in (4.7) could be attacked for

example with Painlevé analysis. This task is partially accomplished in Clarkson

et al. [1989], where it is proved that, if one drops the convective term, then the

equation is only integrable for α = 3, α = 3
2
and α = 0. For these particular

values of α, it is easy to complete the classification:

- For α = 3, (4.7) becomes the generalized KdV equation, which is known to be

integrable if and only if r = −1, r = 1 or r = 2. These cases are related to

the linear third order equation, the KdV equation and the MKdV equation,

respectively.

- Secondly, the case α = 3
2
can be immediately obtained using a symmetry of

the equation noticed in Clarkson et al. [1989]. In fact (4.7) is invariant for

w → w′ = (w)α−1, r → r′ = r
α−1

, x → x′ =
√

r+1
r+α−1

x, τ → τ ′ =
(

r+1
r+α−1

) 3
2 τ ,

1 Notice how this rules out, in particular, the K(4, 4) equation.
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α = 3
r = −1 r = 1 r = 2
linear KdV MKdV

α = 3/2
r = −1/2 r = 1/2 r = 1
linear KdV MKdV

α = 0
r = −1 r = 1 r = 2
MKdV CDF CDF

Table 4.1: The table shows nine choices of α, r, with β = 0, that make equation
(4.6) integrable, indicating the related integrable semi-linear equation.

α → α′ = α
α−1

. This relates the case α = 3 considered above to α = 3
2
, and we

find that the α = 3
2
equation is integrable if and only if r = −1

2
, r = 1

2
or r = 1.

- Finally, for α = 0, (4.6) becomes the Harry Dym equation modified by a con-

vective term. This case was analysed in Example 2.3 of Clarkson et al. [1989],

showing that the only integrable cases are: r = −1, or r = −2, r = 2. For

r = −1, the equation can be mapped to MKdV after applying an additional

Cole-Hopf transformation: q = wx

w
. The latter two equations are examples of

the Calogero-Degasperis-Fokas (CDF) equation.

These nine integrable cases are summarised in Table 4.1. It is tempting to

conjecture that these are the only integrable cases in the class (4.6), although this

would require a more rigorous analysis which is outside the scope of the present

work.

Finally, let us remark that, when g(u) = u3, the hodograph transformation

becomes particularly simple. In particular, in this case the inverse transformation,

which is a map from a semi-linear (4.3) to a quasi-linear equation (4.2) with

g(u) = u3, is the so-called Lagrange map, introduced by Rosenau in Rosenau

[1996]. This transformation is defined by

x =

∫ y

w(y′, τ) dy′,

t = τ. (4.9)
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4.2 An asymptotically stationary compacton

equation

The focus of the rest of this chapter will be on the equation corresponding to

α = 3, r = 2. In order to be more uniform with the conventions of Chapter 3, let

us make the substitution t→ −t. Then the equation reads:

0 = ut + u3uxxx + 3 u2uxuxx + u3ux, (4.10)

and is related by the Lagrange map (4.9) to the modified KdV (MKdV) equation

in the form:

0 = wt + wyyy +
3

2
w2wy. (4.11)

The MKdV equation is exactly solvable for any initial condition through the in-

verse scattering method Ablowitz & Segur [1981]; Gardner et al. [1967]. However,

as pointed out in Rosenau [1996] it is not always possible to translate solutions of

the MKdV equation into solutions of (4.10) , since in the presence of sign changes

the Lagrange map is ill-defined, leading to a multi-valued profile for u. This prob-

lem is relevant since typical solutions of the MKdV equation do not preserve their

sign. Moreover, we are particularly interested in studying solutions of (4.10) with

a compact support. In general, they would correspond to solutions (4.11) defined

on an interval with non trivial boundary conditions.

Let us consider in more detail some properties of the transformation (4.9).

The simplest case is the one in which w(·, t) is smooth and rapidly decaying at

infinity. Then, I =
∫
w dy is a conserved quantity. Assuming that w(·, t) is

non-negative, the image of such a solution through (4.9) is supported on a fixed

interval of width precisely equal to I. In particular, if w(y, t) is exponentially

decaying:

w(y, t) ∼ e−k2|y| y ∼ ±∞, (4.12)

then we find that u(x, t) defined by (4.9) has a linear behaviour at the edges of

103



4. Studies of stability for an integrable compacton equation

its support:

u(x, t) ≃ k2|x− e±|, x ∼ e±, (4.13)

where e− and e+ = e− + I are the endpoints of the support.

Another relevant example is the case when w(y) touches zero quadratically at

a point a, namely

w(y) ∼ (y − a)2, y ∼ a. (4.14)

(where we have omitted the time dependence for clarity). Then it can be checked

that a is mapped into a point b where the solution to (4.10) has the behaviour

u(x) ∼ (x− b)
2
3 , x ∼ b. (4.15)

Notice that (4.14) is the typical behaviour found when an initially positive so-

lution of the MKdV equation crosses the w = 0 line and changes its sign. The

corresponding solution to (4.10) approaches the line u = 0 forming a spike with

the behaviour (4.15). This is illustrated in Figure 4.1. We point out that, given

the fact that the equations share the same degree of nonlinearity, it is natural to

speculate that the same shape characterises the spikes formed by solutions of the

K(4, 4) touching zero (see Figure 3.14 and Figure 3.15 in the previous chapter).

For completeness we report the zero-curvature condition for (4.10), which can

be derived directly from the corresponding formulation for the MKdV equation,

and was written down in Sakovich [2003]. It can be checked that (4.10) arises

as the compatibility condition (namely, ∂tU − ∂xV + [U, V ] = 0) of the linear

problem

Ψx = UΨ, (4.16)

Ψt = VΨ, (4.17)
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Figure 4.1: Numerical solution of the equation (4.10) with initial condition
u(x, 0) = 1.1 + sin(π

3
x). The solution approaches the line u = 0 forming spikes

with the shape (4.15).

where Ψ = Ψ(x, t) is a two-component vector and

U =

(
λu−1 i

2
i
2

−λu−1

)
, (4.18)

V = −
(

−λ(uuxx + u2x) + 4λ3 2iλ2u+ iλuux
2iλ2u− iλuux λ(uuxx + u2x)− 4λ3

)
, (4.19)

where λ is the spectral parameter. Notice that, as one can see in (4.18), the linear

problem is strongly singular in correspondence of initial data that come close to

u = 0, in particular for compactly supported initial data. Despite this difficulty,

studying (4.10) directly with the method of the inverse spectral transform would

naturally be very interesting.

4.2.1 Special solutions

Some important explicit solutions to (4.10) were found in Rosenau [1996]. In

this section we review these results. The first solution is a stationary compacton
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Figure 4.2: Snapshots of an asymptotically stationary two-compacton solution.
The two constituent solitons in the related solution to MKdV have momenta
k1 = 2, k2 = 1.

solution:

u(x, t) =

{
A cos(x−x0

2
) |x− x0| < π

0 |x− x0| > π
, (4.20)

with x0, A ∈ R. This is the image of the one-soliton solution of the MKdV

equation under the Lagrange map.

Secondly, since multi-soliton solutions of the MKdV equation are everywhere
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positive, one can similarly apply the Lagrange map obtaining multi-compacton

solutions. The form of these solutions can be found in Rosenau [1996]. The evo-

lution of this asymptotically static N -compacton solution has been described in

Rosenau [1996] and is illustrated in Figure 4.2. The dynamics consists uniquely

in the rearranging of the maxima of the solution. As t → ±∞, the solution ap-

proaches a train of N stationary compactons of the form (4.20), ordered accord-

ing to their heights, increasing from left to right (from right to left) for t→ +∞
(t → −∞, respectively). Notice that the support of the solution remains fixed

during the whole evolution and is precisely equal to

IN = 2Nπ. (4.21)

Finally, in Rosenau [1996] is shown that (4.10) admits the following travelling

compacton solution:

u(x, t) =

{
2 (−c) 1

3 cos
2
3 (3

4
(x− x0 − ct)) |3

2
(x− x0 − ct)| < π

0 |3
2
(x− x0 − ct)| > π

, (4.22)

where x0 ∈ R is an arbitrary displacement and c ∈ R is the speed. This solution

is the image, under the Lagrange map, of a single period of a stationary and spa-

tially periodic solution to (4.11). Notice that the travelling compacton solution

with positive amplitude has a negative speed: therefore it moves in the opposite

direction with respect to the component compactons in the asymptotically sta-

tionary solution of Figure 4.2, which rearrange themselves shifting from left to

right.

Instability of travelling compactons The numerical observations discussed

in Section 4.3 confirm that – as was already reported in Rosenau [2006] – trav-

elling wave compacton solutions (4.22) do not appear to play any role in the

evolution of generic initial data. This points out that they are not stable (see

Tao [2009] for different definitions of stability). On the contrary, as discussed in

the previous chapter, compacton solutions of the K(m,n) equations appear to

resolve arbitrary initial conditions, akin to the behaviour expected from stable

solitary wave solutions in semilinear equations (a discussion of the last statement,
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which is sometimes referred to as the soliton resolution conjecture, can be found

in Tao [2009]).

Let us remark that the high degree of singularity of (4.22) at the endpoints of

the support is not sufficient to explain this instability. In fact, the singularity of

(4.22) is the same as that of travelling compacton solutions of the K(4, 4) equa-

tion, which certainly appear to be stable in all numerical studies (see Dey & Khare

[1998] for arguments towards a proof of stability of the K(n, n) compactons). Be-

sides, in Section 4.3 we do find examples of stable – but not travelling – solutions

with the same degree of singularity as (4.22) at one of the edges of their support.

In the next section we present a heuristic explanation for the instability of (4.22).

This observation was made in Rosenau [2006], although it was not directly linked

to instability.

4.2.2 A heuristic argument for the instability of travelling

compactons

Let us consider a general travelling wave solution to (4.10). Making the substi-

tution u(x, t) ≡ v(x− ct) in (4.10) one finds:

c vx = ∂x

(
v3 vxx +

1

4
v4
)
, (4.23)

and integrating the equation twice yields:

(vx)
2 =

1

v2

(
a1
2

− 2 c v + a2 v
2 − 1

8
v4
)
, (4.24)

where a1, a2 are two arbitrary constants. The solution (4.22) is found after setting

a1 = a2 = 0. However, notice that, a priori, for a fixed value of c 6= 0 equation

(4.24) has an infinite family of solutions depending on a1 and a2, and it can be

proved that they are all supported on an interval. For the details of this proof

see Appendix C. Let us consider the behaviour close to the edge points of the

support where v → 0:

vx ∼ ±1

v

√
a1
2

− 2 c v + a2 v2. (4.25)
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Clearly, the singularity is strongest for solutions with a1 6= 0, and this justifies

setting this constant to zero (while we do not address this question rigorously, we

point out that solutions to (4.24) with a1 6= 0 are very singular and may not be

well-defined even in the weak sense). On the contrary, as long as c 6= 0, the leading

singular behaviour is independent of a2, and the infinitely many solutions labelled

by a2 are all equally acceptable. These solutions have all the same singular edge

behaviour as (4.22).

We can contrast this situation with the case of the K(4, 4) equation. In this

case, the equation determining the shape of travelling waves is:

(vx)
2 =

1

v2

(
K1 +

K2

v4
+
c v

10
− v4

16

)
, (4.26)

where u(x, t) = v(x− c t) is a solution to 0 = ut + (∂xxx + ∂x)u
4 and K1, K2 are

integration constants. It is easy to see that the structure of (4.26) forces us to

take K1 = K2 = 0 in order to avoid exceedingly strong singularities, therefore

the solution is uniquely defined.

Hence, in the case of the K(4, 4) equation we find that travelling compacton

solutions are uniquely determined by their speed, in analogy to the familiar case

of solitons in semilinear equations (equivalently, there is a one-to-one relation

between the speed and amplitude of travelling waves). On the contrary, in the

case (4.10) there are infinitely many distinct travelling wave solutions with the

same speed, which appears to be a clear sign of instability.

4.2.2.1 A family of deformations

In order to test this idea, let us consider a family of equations defined as follows:

0 = ut + ∂x

(
u3 uxx + δu2 u2x +

1

4
u4
)
, (4.27)

where δ is a parameter that interpolates between the two case studies we have just

presented, i.e. the integrable equation (4.10) for δ = 0 and the K(4, 4) equation

for δ = 3.

In Appendix C we study the travelling wave solutions of (4.27), and find that

the separation between these two cases appears to be at δ = 1
2
. Denoting a

109



4. Studies of stability for an integrable compacton equation

travelling solution as u(x, t) = v(x− c t), we find that:

a) For δ > 1
2
and a fixed value of c 6= 0 , there is one and only one 1 compactly

supported solution with the scaling behaviour:

v(z) ∼ L|z − e±|
2
3 as z ∼ e±, z ∈ supp, (4.28)

where L ∈ R and e± denote the two endpoints of the support. This solution

satisfies

L =

(
9c

4δ − 2

) 1
3

, (4.29)

and its amplitude Ū is given by

Ū = +

(
c

(δ + 1)

(δ − 1/2)

) 1
3

. (4.30)

Moreover this orbit can be obtained as the limit of a family of smooth periodic

orbits as their minimal distance from the line v = 0 vanishes.

b) For δ = 1
2
, the equation does not admit any compactly supported travelling

solutions with c 6= 0.

c) For all values of δ < 1
2
and c 6= 0 , there are infinitely many compactly

supported solutions with the same speed c and with the same edge behaviour

specified by (4.28) and (4.29).

The proof of these properties can be found in Appendix C. Based on the qual-

itative difference between these two phases, it is natural to make the following

conjecture:

1) For δ < 1
2
, travelling compacton solutions are unstable, while the dynamics is

dominated by stationary compacton solutions.

2) For δ > 1
2
the behaviour is more similar to the K(m,n) equations and trav-

elling compactons dominate the initial value problem. We expect stationary

compactons to be unstable in this region.

1 modulo translations v(z) → v(z + z0), z0 ∈ R
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Notice that the stable stationary solution of (4.27) for δ < 1
2
can be found

explicitly:

u(x, t) =

{
A cos

1
1+δ (

√
1+δ
2

(x− x0)) |x− x0| < π√
1+δ

0 |x− x0| > π√
1+δ

, (4.31)

with x0, A ∈ R. Notice that, for δ > 1
2
, (4.31) is still formally a solution; however,

its edge behaviour is more singular than (4.28).

We point out that in Rosenau [2006], Rosenau already arrived at the conclu-

sions of this section considering a slightly more general family of models 1.

4.2.3 Conservation laws and behaviour at the edge of the

support

In this section, we make some further observations on the integrable structure

of the equation and on its infinite hierarchy of conservation laws. In particu-

lar, we show that these classical conservation laws are not necessarily true for a

generic weak solutions of the equation, and in particular that an infinite number

of conservation laws is violated by any solution with a dynamic support.

In the case of (4.10), there is an infinite family of polynomial conservation

laws, which can be constructed, for instance, exploiting the existence of a bi-

Hamiltonian structure Magri [1978]. Let us review the bi-Hamiltonian formu-

lation of (4.10), discussed in Olver & Rosenau [1996]. Making the substitution

u = 1/q, (4.10) can be written as

qt =
1

2
(∂x + ∂xxx)(1/q

2), (4.32)

1 Rosenau considered the family of equations

ut + (um)x +
1

b
(ua(ub)xx)x = 0,

and, by a reasoning very similar to that described above, concluded that travelling (stationary)
compactons dominate the dynamics for ω ≡ 1 + b− a > 0 (ω ≤ 0, respectively).
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which can be presented in Hamiltonian form in two equivalent ways:

qt = Ji
δ

δq
Hi, i = 0, 1, (4.33)

where δ
δq

denotes functional differentiation, the two Hamiltonians are

H0 =

∫
dx 1/q, H1 =

∫
dx

1

4

(
qxx
q4

− 1

q3

)
, (4.34)

and the two skew-symmetric operators Ji (i = 1, 2) defining two compatible

Hamiltonian structures are given by 1

J0 = −1

2
(∂x + ∂xxx), J1 = −1

2
∂xq ∂

−1
x q∂x. (4.35)

As explained in Magri [1978], one then has a semi-infinite sequence of local

conserved quantities Hi, i ∈ N of the form

Hi =

∫
dx hi, (4.36)

where hi is a function of q and its space derivatives, defined by the recursion

δ

δq
Hi = (J1)

−1
J0
δ

δq
Hi−1 i ≥ 0, (4.37)

and satisfies a local conservation law of the form

∂thi = ∂xji, i ≥ 0, (4.38)

where the currents ji can be computed by solving the relation

(
δ

δu
Hi)ut = (

δ

δu
Hi)(u

3uxx +
1

4
u4)x = ∂xji, (4.39)

1Notice that the bi-Hamiltonian structure defined by (4.35) is the same, after rescaling and
sending x → ix, as the one for the Fokas-Olver-Rosenau-Qiao (FORQ) equation, a nonevolu-
tionary integrable equation with cubic nonlinearity derived in Fokas [1995]; Olver & Rosenau
[1996]; Qiao [2006]. See Hone & Wang [2008] for a precise formulation of the bi-Hamiltonian
structure for this model. This imaginary-x version of the FORQ equation is therefore a sym-
metry of (4.10). More precisely, it can be associated with the first of its nonvanishing negative
flows, namely qt = J1

δ
δq
H−1, with H−1 given in (4.42).
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and are, in turn, polynomials in u and its derivatives.

Written in terms of the original variables of (4.10), the first two local conserved

quantities are

H0 =

∫
dx u, (4.40)

H1 =

∫
dx (uu2x −

1

2
u2uxx −

1

2
u3), (4.41)

...

Equation (4.37) defines also a sequence of non-local charges for i < 0, which can

be generated starting from

H−1 =

∫
dx′ dx′′q(x′) sin(|x′ − x′′|)q(x′′). (4.42)

However, the conserved charges with i < 0 appear irrelevant for our discussion,

since we are mainly interested in vanishing boundary conditions for u = 1/q and

in particular in u compactly supported, and integrals such as the one defining

H−1 above would be divergent.

Let us make an additional observation on the local conservation laws. Equa-

tions (4.38) imply that the quantities Hi are conserved for any smooth classical

solution decaying fast enough at infinity. However we must be cautious when

considering compactly-supported solutions, which are potentially singular at the

endpoints of the support. To understand this issue, let us consider a solution

that, as is the typical case in compacton equations, is supported on the interval

[e−(t), e+(t)] smooth in the interior of its support and continuous, so that u→ 0

as x→ e±(t). Then we find

d

dt
Hi = ji|x=e+(t) − ji|x=e−(t) . (4.43)

This shows that the invariance of Hi depends crucially on the edge behaviour of

the solution.

It is useful to make some dimensional considerations. The quantities hi and

ji can be seen as polynomials in u and in the derivative operator ∂x. From (4.37)
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and (4.38), we see that

• hi is homogeneous of degree 1 + 2i in u and has a maximum degree 2i in

∂x.

• ji has a homogeneous degree 4+2i in u and has a maximum degree 2(i+1)

in ∂x.

These relations show that, if u vanishes and all its derivatives remain bounded

at the edge points, as is the case for the asymptotically stationary multi-compacton

solution described in Section 4.2.1, then the right hand side of (4.43) vanishes,

simultaneously, for all i ∈ N+. This guarantees that the local conservation laws

are all simultaneously satisfied.

However, we expect that, in the case of an equation with a nonlinear dis-

persive term which has a fourth-order non-linearity, more singular fronts can be

formed. If the space derivatives of u diverge at the edge points, then dimensional

considerations above show that, for higher values of i, it is increasingly difficult

that the quantities hi and ji will be well defined.

The first currents in particular are

j0(u, ux, uxx) = −u3uxx −
1

4
u4, (4.44)

j1(u, ux, uxx) = 2 u3
(
uxx +

1

4
u

)(
uuxx + u2x +

1

2
u2
)
, (4.45)

...

Requiring that j0 vanish at the edge points, we obtain the condition

lim
x→e±(t)

u3 uxx = 0. (4.46)

Under the assumptions we made on the solution, this is equivalent to

u(x, t) = o
(
|x− e±(t)|

1
2

)
, x ∼ e±(t). (4.47)

114



4. Studies of stability for an integrable compacton equation

However, the vanishing of j1 requires that

lim
x→e±(t)

u2 uxx = 0.

The heuristic arguments presented in Section 3.2.0.1 and Section 3.3.2.1 show the

same term should be related to the speed of motion of the interface. Following

the same reasoning we conjecture the relation:

d

dt
e±(t) = lim

x→ e±(t)
x ∈ supp

u2(x, t) uxx(x, t), (4.48)

which implies that an interface sufficiently regular close to the edge of its support

should have, locally, the shape

u(z, t) ∼
(
−9

2

d

dt
e(t)

) 1
3

|z − e(t)| 23 , (4.49)

as z ∼ e(t), z ∈ supp(u(·, t)). This is indeed the scaling behaviour of the travelling

solution (4.22). Although this solution appears to be unstable, our numerical

results show the existence of stable solutions with movable fronts. We conclude

that for such solutions H1 is not a conserved quantity, but instead satisfies the

differential equation

d

dt
H1 = −2

(
(
d

dt
e+(t))

2 − (
d

dt
e−(t))

2

)
. (4.50)

This equation can be obtained from (4.43) plugging in (4.49). In the next section

we evolve numerically different initial conditions and find several examples of

stable solutions with a dynamic support. For positive initial data supported on

an interval, we find that in general d
dt
e−(t) < 0, while d

dt
e+(t) = 0. In all these

cases (4.50) can be verified numerically.

In the presence of interfaces with the scaling (4.49), the other local conserved

charges Hi, i ≥ 2 are ill-defined.
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4.3 Numerical study

Numerical method To solve (4.10) and its deformations (4.27) numerically,

we used a 4th order Padè numerical method, similar to the one used in the

previous chapter to study the K(2, 2) and K(4, 4) equations. We refer the reader

to Section 3.4.1 for a general description of the method, and to Appendix B

for details. The errors in reproducing the exact asymptotically stationary two-

compacton solution are reported in Table 4.2 for different values of the step size.

t = 1.6 t = 8. t = 16. t = 32. t = 48.
∆x = 16./1024 8.4× 10−4 9.9× 10−3 7.7× 10−3 8.9× 10−3 9.0× 10−2

Table 4.2: Values of the error estimate err(t) =
∑

i |ui(t) − u(xi, t)|∆x for the
numerical computation of the two-compacton solution of Figure 4.2.

As explained in the previous chapter, numerical schemes based on finite dif-

ferences usually require the addition of a small dissipative term η2uxx − η4uxxxx

to prevent against numerical instabilities. We observe that, for the same ∆x and

initial condition, the values of η4 and η2 required for stability are much less in

the case of (4.10) than for the K(4, 4) equation, by a factor of at least 103. This

reflects the fact that (4.10) is less singular and does not seem to develop any

shock-type singularities. However, we observe that the addition of dissipation

has the undesirable effect of distorting the stationary solutions (4.20) and induce

them to slowly drift away from their stationary position. The magnitude of the

dissipation-induced speed is listed in Table 4.3 for different choices of η2, η4.

η2 0.5× 10−3 0.5× 10−4 0.5× 10−5

speed 0.005 0.002 0.0005

η4 2× 10−5 2× 10−6 2× 10−7

speed 0.004 0.002 0.001

Table 4.3: Magnitude of the dissipation-induced speed of a initial profile
u(x, 0) = cos(x

2
) for different values of η2, η4.

Notice that this speed is positive for positive-amplitude solutions. This makes

its numerical origin clear, since genuine travelling compacton solutions have the

116



4. Studies of stability for an integrable compacton equation

opposite direction. This motion is very small, but is however an undesirable

feature of the numerical scheme, which becomes particularly visible for long-time

simulations.

To avoid this effect, our simulations of (4.10) were performed with η2 = η4 = 0.

To ensure stability, we applied a smoothing filter in Fourier space. Moreover,

in order to be completely confident on our numerical results, we limited our

simulations to positive initial data and to rather short times.

4.3.1 Decomposition of positive initial data

We have performed several numerical experiments on the evolution of positive

compactly-supported initial data. Before describing in more detail our results,

let us list our main observations:

- The long-time outcome of every simulation is a stationary configuration, con-

sisting of a train of stationary compactons, analogous to the t → ∞ limit of

the multi-compacton solutions presented in Section 4.2.1.

- The support appears to remain connected for all times, but, when it is not

an exact multiple of 2π (the width of a stationary compacton solution) it can

expand at its left edge, forming a sharp front obeying equation (4.49). The

transition from the initial condition to this expanding profile appears to be

non-smooth in some cases due to oscillations formed close to the left edge, and

we suspect that this process is essentially of numerical origin.

- We did not observe any coherent travelling solution emerging from the initial

data.

- When the exact solution (4.22) is used as an initial condition, then the addition

of even a very small amount of smoothing causes the profile to relax, also in

this case, towards an asymptotically static solution. On the contrary, if no

smoothing is applied, the numerical solution appears wobbly and unstable.

We believe these observations are a strong indication that (4.10) has no stable

travelling compacton solution. Let us now discuss some examples in more detail.
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Figure 4.3: Decomposition of the initial condition u(x, 0) = cos(π
4
(x−2))χ[0,4](x).

The solution develops a moving interface expanding leftwards and approaches a
stationary compacton solution (4.20) as t→ ∞.

We have considered several profiles of the form:

u(x, t) =

{
cos(π x

W
) |x| < W

0 |x| > W
, (4.51)

with different values of the parameter W . When the initial support is an exact

multiple of the width 2π of the stationary compacton solution (4.20), we observed

that none of its two edges moves in the evolution. For a generic value of W ,

the support readjusts itself with a characteristic mechanism, illustrated in two

examples in Figures 4.3 and 4.4. First, there is a relatively quick transition during

which the profile acquires the shape

u(x) ∼ |x− ζ0|
2
3 (4.52)

at the left endpoint of the support (denoted by ζ0). We argue that this transition

is essentially numerical, as we will explain more precisely below. However, once

the interface (4.52) is formed, the solution appears to be stable. The left endpoint

of the support starts moving leftwards, following (4.48). The trajectories traced
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Figure 4.4: Decomposition of the initial condition u(x, 0) = cos(π
8
(x−4))χ[0,8](x).

The solution appears to approach a train of two stationary compacton solutions
for large times.

by the left edge of the support and by the maximum of the solution are illustrated

in Figure 4.5 for the same data of Figure 4.3. Eventually, this motion slows down

as the length of the support approaches the closest greater integer multiple of 2π,

and the solution relaxes towards a sequence of stationary compactons. Notice

that, as can be seen in Figures 4.3 and 4.4, the right edge of the support does

not move during the entire evolution.

Let us make a comment on the formation of the interface for initial conditions

of the form (4.51). This steepening process is not smooth, due to the presence of

small oscillations close to the left edge. Viewed through the lens of the Lagrange

map, these oscillations correspond to the radiation formed in the corresponding

solution of the MKdV equation1. In practice, these oscillations occur on a very

small scale and accumulate towards the endpoint, and are not resolved by our

program, which transitions to a solution with the interface (4.52) and no oscil-

lations. The only remnant of the original oscillations is sometimes visible in the

simulations as a very tiny irregularity close to the interface, barely visible in Fig-

ures 4.3 and 4.4. In conclusion, we do not know if the initial problem with initial

1 Notice that, since this radiation usually develops a negative part, they are potentially
singular when transformed to the variables of equation (4.10).
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Figure 4.5: Space-time trajectories of the maximum of the solution (blue, dotted
line) and of the left edge point of the support (black, dashed line) for the solution
represented in Figure 4.3. The trajectory traced by the edge point matches
precisely the prediction of (4.50) (represented by red crosses).

data (4.51) is well-posed and whether our numerical data reflect the solution of

this problem rather than another, stable solution. However, we remark that the

shape of the interface and its subsequent evolution is independent on any details

of the numerical method. In Figure 4.5 is also shown a non-trivial test of our

numerics. We have measured numerically the quantity H2 at every time step of

the simulation, and computed the left hand side of equation (4.50). The resulting

prediction for the trajectory of the endpoint matches very well the one measured

from our simulation.

We also have tested the evolution of initial profiles of the form:

u(x, 0) =

{
(x− a)

2
3 (b− x), x ∈ [a, b]
0, x /∈ (a, b)

. (4.53)

In this case no oscillations were seen forming close to the left edge, and the

evolution is similar to that of the profiles displayed in Figures 4.3 and 4.4.
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Figure 4.6: Numerical solution of the integrable δ = 0 equation with initial
condition u(x, 0) = 2 cos2((x− 2) π

12
)χ[−4,8](x).

Finally, we have considered the case of positive initial data with the scaling

u(x, 0) =

{
cos

2
3 (Wx), x ∈ [− π

2W
,+ π

2W
]

0, x /∈ [− π
2W
,+ π

2W
]
, (4.54)

and we find that, as soon as any amount of smoothing is added, the gradient

ux instantly becomes finite at the right interface, so that this endpoint of the

support never moves and the evolution is very similar to that of Figure 4.3.

Notice that this relaxation happens, in the presence of smoothing, even when the

initial condition is the exact solution (4.22).

4.3.2 Comparison with other equations with δ 6= 0

Finally, we have tested other equations in the family (4.27). Figures 4.6, 4.7 and

4.8 present the decomposition of an initial condition u(x, 0) = 2 cos2(π
6
x) for

δ = 0, 1/4 and 3/4, respectively. The resulting evolution is very similar in the

three cases. A solitonic structure is formed on the right part of the support. We

stopped the simulation when this structure was well-resolved, and checked that it

matches very well the stationary compacton solution (4.31) for δ = 0 and δ = 1
4
,

and the travelling solution described by (4.28-4.29, 4.30) for δ = 3
4
, confirming our
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Figure 4.7: Numerical solution of the deformed δ = 1/4 equation with initial
condition u(x, 0) = 2 cos2((x − 2) π

12
)χ[−4,8](x). The structure emerging on the

right fits very well with the shape of a stationary compacton solution.

expectation. The steepening appears to be smooth, with the solution remaining

monotonic in a fixed neighbourhood of the edge point. In the case δ = 0, ux

reaches a finite value at the right endpoint, while it diverges in the remaining

two cases. For δ = 0, the right edge of the support does not move from its

initial position, while for δ = 1
4
we observed a small rightwards displacement. For

δ = 3/4, the solution approaches a constant speed, while in the remaining two

cases it slows down and appears to comes to rest asymptotically.

Notice that this structure cannot be mistaken for a travelling compacton. In

fact, positive amplitude travelling compacton solutions for δ < 1
2
move with neg-

ative speed according to (4.28-4.29): therefore, if these solutions were stable, we

would expect them to emerge from the left edge of the initial data. Instead, we

observe that, in all three cases, oscillations are formed close to the left edge: com-

pared to the case of a linear behaviour at the edge point (4.51), these oscillations

occur on a much larger scale and appear to be stable, persisting for the duration

of the simulation. In all cases we have considered, no travelling structure was

seen emerging from the left endpoint.
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Figure 4.8: Numerical solution of the deformed δ = 3
4
equation with initial

condition u(x, 0) = 2 cos2((x − 2) π
12
)χ[−4,8](x). The structure emerging from the

right is a travelling compacton solution with speed approximately c ∼ 0.60.

4.4 Summary of the results of this chapter

In this chapter we have discussed the integrable equation (4.10) and presented

a numerical study of the evolution of compactly-supported initial data. The

equation was also studied numerically in an unpublished work by Hyman and

Rosenau, cited in Rosenau [2006]. Our results confirm the discovery made in the

latter paper that the initial value problem is dominated by stationary compacton

solutions of the shape (4.20). On the contrary, travelling compactons do not

contribute to resolve generic initial conditions.

We described the fact that travelling compacton solutions to this model do

not admit a unique relation between speed and amplitude, and we argued that

this can be seen as a heuristic signal of instability. We discussed how, based on

this criterion, one can recognize two phases in the one-parameter family of models

(4.27), separated at the parameter value δ = 1
2
.

In one sentence, this stability conjecture is as follows:

For δ ≤ 1
2
, the models (4.27) do not have stable travelling compacton solu-

tions, while stationary compacton solutions are stable; for δ > 1
2
, these stability

properties are exchanged.
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This statement – apart from the different formulation – is not original, as it is

implied by the results of Rosenau [2006], where a slightly more general parametric

family of models is considered. Also the nonuniqueness of the relation between

speed and amplitude of compactons was observed in that paper, see Section 3.2

therein.

However some of the results of the present work are new. They are listed

below:

- In the work of Rosenau, it was observed that, in the parametric region where

the evolution is dominated by stationary compactons, their edge behaviour is

milder than that of travelling compactons, and vice versa.

Quoting from (Rosenau [2006], page 2):

“A selection principle seems to be at work: among different patterns for com-

pactification, the least singular pattern is the one to emerge.(. . . ) numerical

simulations show that the only compactons to emerge are the ones with maxi-

mal smoothness (or, which amounts to the same, minimal singularity).” (italics

in original)

However, since the numerical results are described very briefly, in Rosenau

[2006] it is not clarified whether all solutions with the most singular scaling are

necessarily forbidden.

Our data (see Section 4.3) clearly show that this is not the case, and that

the instability is specific to exact travelling compacton solutions. In fact we

showed that equation (4.10), despite not having stable travelling compacton

solutions, admits stable solutions with the scaling u ∼ x
2
3 – the same scaling

as for travelling compactons – at the left edge of the support. These solutions

are associated to the evolution of initial conditions with support not an exact

multiple of 2π, and have a dynamic support.

- A second original observation of this chapter is that, for any solution of (4.10)

with a dynamically evolving support, all the local conservation laws of this

integrable equation are violated due to singular boundary terms across the

edge of the support.
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Finally, we remark that the stability conjecture stated above is reminiscent of

the exchange of stability between peakons and leftons studied in Holm & Staley

[2003]; Hone & Lafortune [2014] for a one-parameter family of equations arising

in water wave theory.
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Chapter 5

Conclusions

In the first part of the thesis, we have reported the content of the two papers

Cavaglià et al. [2011], Cavaglià & Fring [2012]. In Chapter 1, we analysed several

travelling solutions to the complex KdV equations and its PT-symmetric defor-

mations. These examples illustrate the rich behaviour displayed even by such

simple solutions as a consequence of their extension to the complex domain. In

Chapter 2, we have addressed more specifically the questions raised in Bender

& Feinberg [2008] on the effect that a PT-symmetric deformation has on the

shock phenomenon in the inviscid Burgers equation. We were able to describe

in detail how the properties of this singularity are altered by the deformation,

contradicting some of the conclusions of Bender & Feinberg [2008].

In the second part of the thesis, we focused on the properties of compacton

solutions to degenerate dispersive equations. Chapter 3 is an introduction to

the subject, and presents original numerical investigations of the properties of

two equations in the Rosenau-Hyman family, the K(2, 2) and K(4, 4) equations.

These numerical experiments, on the one hand, confirmed the observations of

other authors on the properties of these equations; on the other hand, they served

as a term of comparison for the studies of the Chapter 4, where we investigated

numerically one of the few known compacton-supporting integrable equations.

This equation, which was introduced in Rosenau [1996] and shown to have both

stationary and travelling compacton solutions, reads

0 = ut + u3uxxx + 3 u2uxuxx + u3ux. (5.1)
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This model was studied numerically by Hyman and Rosenau in an unpublished

work. As discovered in Rosenau [2006], it displays a radically different behaviour

as compared to the K(m,n) equations, and the initial value problem is dominated

by asymptotically stationary solutions. We confirmed this claim with an inde-

pendent numerical study, arguing that the underlying reason for this behaviour

is the instability of travelling compacton solutions. This is signalled by the fact,

already noticed by Rosenau, that the relation between speed and amplitude of

travelling compacton solutions to this equation is not unique. We made some new

observations: we demonstrated numerically the existence of solutions with an ex-

panding support, and pointed out that, for such solutions, almost all the local

conservation laws of this integrable model are spoiled due to singular boundary

terms across the edges of the support.

Let us comment on some open directions of research related to this work.

First, it would be very desirable to establish rigorously the stability conjecture

described above, which is still supported only by a limited amount of data.

Furthermore, the dynamics of equation (5.1) – which can be regarded as an

interesting integrable model in itself – is far from completely understood. As we

pointed out in Section 4.2, it is not even clear whether solutions can be globally

defined in time, since the Lagrange map between this model and the MKdV

equation indicates that singularities are formed for a very general class of initial

conditions. On the numerical side, it would be very interesting to carry out a more

detailed investigation. This may require adopting a different numerical method,

in order to circumvent the limitations described in Section 4.3. In particular,

the addition of dissipation required in all finite-difference-based schemes appears

to yield drastic distortion effects. This has unfortunately prevented us from

considering longer times in the simulations and explore all the regimes that were

considered for the Rosenau-Hyman equations in Chapter 3. One could also try to

study the initial value problem for (5.1) more directly using the inverse spectral

method or exploiting more effectively the nonlocal transformation between this

equation and the MKdV equation. The general initial value problem for initial

conditions close to zero has not been studied, to the best of our knowledge, for

any integrable equation that supports compacton solutions.
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Most likely, since it describes a different dynamical phase, equation (5.1) is

not directly relevant to the study of the most interesting properties of compactons

in the Rosenau-Hyman equations and similar models. Establishing whether inte-

grable equations with stable travelling compacton solutions exist is, in our opin-

ion, an important open problem. For evolutionary equations, the most direct

approach would be to study numerically other candidate models – such as the

ones listed in Table 4.1. None of these equations have been thoroughly inves-

tigated in the literature; besides, there may be other, yet unknown, candidate

equations, and it would be useful to complete the classification of Section 4.1.

As a last note, we point out that the heuristic argument of Section 4.2.2, which

we used to argue the instability in the case of (5.1), does not directly depend on

the specific degree of the convective term of the equation. Therefore, the same

reasoning would suggest that travelling compactons are not stable in any of the

models with α = 3 in Table 4.1.
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Appendix A

Classification of two-dimensional

stationary points

In this Appendix we recall the ten similarity classes characterizing the behaviour

of the nondegenerate two-dimensional linear system:

d

dt
v(t) = J.v(t), (A.1)

where v(t) is a real 2-vector and J is a real 2 × 2 matrix with det( J ) 6= 0.

Denoting by j1 and j2 the roots of the eigenvalue equation det(J − ji) = 0, the

possible behaviours are classified as follows:

ji ∈ R j1 > j2 > 0 unstable node
j2 < j1 < 0 stable node
j2 < 0 < j1 saddle point

j1 = j2, diagonal J ji > 0 unstable star node
ji < 0 stable star node

j1 = j2, nondiagonalizable J ji > 0 unstable improper node
ji < 0 stable improper node

ji ∈ C Reji > 0 unstable focus
Reji = 0 centre
Reji < 0 stable focus
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The system (A.1) arises from the linearisation of a nonlinear two-dimensional

system around a stationary point, where J is the Jacobian at this point. Pro-

vided Re(j1) 6= 0 or Re(j2) 6= 0, the qualitative behaviour of the system around

the stationary point is the same as that of its linearisation (see Theorem 7.1 in

Hartman [1964]).
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Appendix B

Details on the numerical schemes

used to integrate compacton

equations

In this Appendix we present the detailed form of the numerical schemes used

for the integration of the K(2, 2) and K(4, 4) models and for equation (4.10) in

Chapters 4 and 5. Let the interval I be the space domain. We discretize it

by introducing a regular grid xi, i = 1, . . . , N , with xi+1 − xi = ∆x = |I|/N .

The numerical solution is represented as a N -dimensional vector ui(t) ≃ u(xi, t),

i = 1, . . . , N .

The method is based on the 4th order Padè approximant formulae introduced

in Defrutos et al. [1995].

Padè approximant formulae Borrowing the notation of Mihaila et al. [2010a],

we use the symbol E for the shift operator such that: Ef(x) = f(x+∆x).

Let us introduce the finite difference operators:
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A(E) =
E−2 + 26 E−1 + 66 + 26 E1 + E2

120
, B(E) =

−E−2 − 10 E−1 + 10 E1 + E2

24 ∆x

B̃(E) =
E−2 − 8 E−1 + 8 E1 − E2

12 ∆x
, C(E) =

−E−2 + 2 E−1 − 2 E1 + E2

2 ∆x3

S(E) =
E−2 + 2 E−1 − 6 + 2 E1 + E2

6 ∆x2
, S̃(E) =

−E−2 + 16 E−1 − 30 + 16 E1 − E2

12 ∆x2

D(E) =
E−2 − 4 E−1 + 6− 4 E1 + E2

6 ∆x4
. (B.1)

Then for f(x) ∈ C4 we have the Padè approximant formulae:

fx(x) = B̃(E)f(x) + O (∆x)4,

A(E)fx(x) = B(E)f(x) + O (∆x)4,

fxx(x) = S̃(E)f(x) + O (∆x)4,

A(E)fxx(x) = S(E)f(x) + O (∆x)4,

A(E)fxxx(x) = C(E)f(x) + O (∆x)4,

A(E)fxxxx(x) = D(E)f(x) + O (∆x)4.

Notice that, with a slightly different notation, these are the same formulae

listed in Mihaila et al. [2010a]. However, we point out that there is a typo in this

paper in the expression for B̃.

Numerical scheme used for the K(m,n) equations To discretise the

K(m,n) equation with the addition of two dissipative terms:

ut + (un)xxx + (um)x − η2uxx + η4uxxxx = 0, (B.2)

we use the finite-difference expression:

A(E)(
d

dt
uj(t))−B(E)

(
umj
)
− C(E)

(
unj
)
− η2S(E)(uj) + η4D(E)(uj) = 0. (B.3)
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This is precisely the scheme denoted as F[444] in Defrutos et al. [1995].

Numerical scheme used for equations (4.27) of Chapter 4 To represent

the family of equations

ut − ∂x

(
u3uxx + δu2u2x +

1

4
u4
)
− η2uxx + η4uxxxx = 0, (B.4)

it is not possible to obtain a 4th order accurate scheme using only five points as

in the case of the K(m,n) equations.

A scheme based on nine points and fourth-order accurate in space is:

A(E)(
d

dt
uj(t)) = B(E)

(
1

4
u4j + p(∆x)u3j S̃(E)(uj) + δu2j (B̃(E)(uj))

2

)

+η2S(E)(uj)− η4D(E)(uj). (B.5)

This is the scheme used ot obtain the results presented in Chapter 5. Notice that

the formula contains a function p(∆x) = −2
3
sin2(∆x

2
)(cos(∆x)−7) = 1+O(∆x)4,

which is inserted in order to guarantee that, in the undeformed δ = 0 case, the rhs

is exactly zero when evaluated for the stationary solution u(x) = sin(x) . This

ensures that, at least to machine precision, the stationary solution is exactly

preserved.

Time integration The system of ODEs presented above can be written schemat-

ically as

A(E)(
d

dt
ui(t)) = Z(E)(ui(t)) (B.6)

where Z(E) is a symbol for the finite difference operators appearing on the rhs

of equations (B.3) or (B.5).

Denoting a small time step as ∆t the Crank-Nicolson integration scheme is

A(E)(ui(t+∆t)− ui(t)) =
∆t

2
(Z(E)(ui(t)) + Z(E)(ui(t+∆t))) (B.7)
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The computation of ui(t+∆t), i = 1, . . . , N from the knowledge of ui(t) requires

the solution of a system of algebraic equations at every time step. This can

be achieved by applying Newton’s iterative method. The numerical routines

presented in Press et al. [1990] were extremely useful for this purpose.
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Appendix C

Study of the

compactly-supported travelling

solutions of the equations (4.27)

In this Appendix we will analyze the traveling wave reduction of the family of

equations (4.27), proving properties a), b) and c) stated in Section 4.2.2.1.

The equation for traveling waves u(x, t) ≡ v(x− ct) becomes, after one inte-

gration:

c v = v3 vzz + δ v2 v2z +
1

4
v4, (C.1)

where z ≡ x− ct and we have set one integration constant to zero. This excludes

compactly supported solutions which would be too singular close to the edges of

the support.

We will assume that c < 0, since the general case can be recovered using the

symmetry (v, c) → (−v,−c). Equation (C.1) can be seen as a dynamical system

in the (v, ∂zv) plane, where we have to pay special attention to the singular line

v = 0. Therefore, we will consider the cases v > 0 and v < 0 separately. Finally,
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using the translation invariance of (C.1), let us add a further boundary condition:

vz(0) = 0. (C.2)

We will see that every orbit crosses the line vz = 0 at least once, so that we are

not missing any solutions by imposing (C.2).

C.1 Case v > 0

Let us introduce a useful change of variables. We define:

ζ(z) =

∫ z

0

v−
1
2 (s) ds, (C.3)

and denote

U(ζ) ≡ v(z). (C.4)

This change of variables is convenient because it allows to discriminate simply

between compactly-supported orbits with the edge behaviour1

v(z) ∼ L|z − e±|
2
3 , z ∼ e±, L ∈ R, (C.5)

(where supp(v(z)) = [e−, e+] ), (C.6)

and more singular orbits. In fact, notice that

Uζ(ζ) = v
1
2 (z)vz(z). (C.7)

Due to l’Hôpital’s theorem, if v(z) is smooth within its support close to e±,

1 As we have discussed in the rest of the thesis, the behaviour (C.5) has to be expected
from traveling solutions to equations with a dispersive term of the form u3uxxx + . . .
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we have

lim
z → e±
z ∈ supp

Uζ(ζ(z)) = lim
z → e±
z ∈ supp

v(z)
1
2 vz(z) =

2

3
lim

z → e±
z ∈ supp

v(z)
3
2

(z − e±)
. (C.8)

Therefore v(z) has the behaviour (C.5) precisely if Uζ remains finite as ζ ap-

proaches the endpoints, and we have

lim
z → e±
z ∈ supp

Uζ(ζ(z)) =
2

3
L

3
2 . (C.9)

We refer to such solutions as “regular”, while “singular” compacton solutions will

be the ones characterized by the divergence of Uζ . In terms of the new variables,

(C.1) can be rewritten as:

U ∂ζζU + (δ − 1

2
)(∂ζU)

2 − c+ U3 = 0. (C.10)

It is useful to notice that the following quantity

G+(U, Uζ) =
1

2
U2δ−1

(
U2
ζ − c

(δ − 1
2
)
+

U3

(δ + 1)

)
, (C.11)

is constant along every solution of (C.10). Therefore, the orbits must lie on the

level sets of G+(U, Uζ). Moreover, because

∂

∂U
G+(U, 0) = (−c)U2δ−2(1 + U3/(−c)) > 0, (C.12)

we have that every orbit crosses the Uζ = 0 axis at most once.
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Figure C.1: Depiction of the orbits of equation (C.10) with c = −1, U > 0 for
different values of δ. Left: δ = 1.5, Right: δ = 0.

v > 0 and δ ≥ 1
2: singular compactons

Let us consider the case δ ≥ 1
2
first. Then we have that Uζζ < −U2 < 0 in the

whole half-plane U > 0. This shows that every orbit crosses the line Uζ = 0.

Moreover, from (C.10) we also see that

∂ζζU < +
c

U
, (C.13)

and this shows that every orbit flows from (0,∞) to (0,−∞) in the (U, ∂ζU)

plane. The phase space is depicted in the left panel of Figure C.1. Using the

previous estimates one could also show that these orbits have compact support.

Because the limit (C.8) is infinite, we have found that all these orbits are more

singular than (C.5).

Summarizing, we have shown that For δ ≥ 1
2
, c > 0, all the positive solutions

to (C.1) are compactly supported and the behaviour of the solutions at the edge

of their support is more singular than (C.5).
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v > 0 and δ < 1
2: degenerate family of regular compactons

Now, suppose δ < 1
2
. We consider a solution crossing the Uζ = 0 axis at ζ = 0.

The orbit cannot cross the Uζ = 0 axis at any other point, because of (C.12).

From (C.10) we see that Uζζ < 0 on the Uζ = 0 axis, and therefore Uζ < 0 for

ζ > 0 and Uζ > 0 for ζ < 0. Moreover, from (C.10) we see that, as long as the

solution is in the region U2
ζ <

c
δ− 1

2

, Uζζ is strictly negative. Therefore the orbits

move out of this strip in a finite “time”, and |Uζ | is bounded from below for

sufficiently large |ζ |. This shows that the solution must have a maximal domain

of existence [−ζ∗, ζ∗] (where 0 < ζ∗ < ∞ is a parameter that can depend on the

orbit), and

lim
ζ→±ζ∗

U(ζ) = 0.

Requiring that G+(U, Uζ) remains constant in the U → 0 limit, we immedi-

ately find that

lim
ζ→±ζ∗

∂ζU(ζ) =

√
−c

1
2
− δ

. (C.14)

This case is depicted in the right panel of Figure C.1 for δ = 0.

Translating this result in terms of the original variables we have found that

For δ < 1
2
, c < 0, all the positive solutions to (C.1) are compactly supported, and

they have the scaling behaviour (C.5) at the edge of their support, with

L ≡
(

9c

4δ − 2

) 1
3

. (C.15)
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C.2 Case v < 0

In the case v < 0, we make a change of variable similar to (C.3):

ζ(z) =

∫ z

0

(−v)− 1
2 (s) ds, (C.16)

and equation (C.1) becomes:

U ∂ζζU + (δ − 1

2
)(∂ζU)

2 + c− U3 = 0, (C.17)

with U(ζ) ≡ v(z). This dynamical system is characterised by the presence of a

centre at (UcU0, 0), where

Uc = +c
1
3 < 0. (C.18)

The quantity

G−(U, Uζ) =
1

2
(−U)2δ−1

(
U2
ζ +

c

(δ − 1/2)
− 1

(δ + 1)
U3

)
, (C.19)

is constant along every solution to (C.17).

v < 0 and δ > 1
2: unique regular compacton solution

Let us start by considering δ > 1
2
. In this case, every initial condition of the form

U(0) = u0, ∂ζU(0) = 0, with Uc < u0 < 0, (C.20)

defines a periodic orbit encircling the center. Let us now prove that this family

of orbits has a well-defined limit as u0 → 0−, and that this limit orbit defines

a compacton solution. The limits exists because all periodic orbits are non-

intersectingand are confined to a rectangle, therefore the limit exists pointwise by
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Figure C.2: The orbits of (C.10) with c = −1, U < 0, for different values of δ.
Left: δ = 1.5, Right: δ = 0. The black dashed curve on the left is the stable
compacton orbit obtained as a limit of a family of periodic orbits.

compactness. To see this notice that, for all initial conditions (C.20), G−(u0, 0) <

0, and (C.19) immediately implies |Uζ | < 2
3
|L| 32 (with L as in (C.15) ). Moreover,

let us define Umin = Umin(u0) as the lowest value of U reached along a solution

defined by the initial condition (C.20). It is easy to see that limu0→0G−(u0, 0) = 0.

Evaluating this expression at the second inflection point of the orbit where Uζ = 0

and U = Umin(u0), we have

G−(u0, 0) = −1

2
|Umin(u0)|2δ−1

( −c
(δ − 1/2)

+
1

(δ + 1)
U3
min(u0)

)
, (C.21)

and therefore

lim
u0→0−

Umin(u0) = −|c| 13
(
δ + 1

δ − 1
2

) 1
3

≡ Ū . (C.22)

This proves that the limit orbit exists and has a negative amplitude given by

Ū . Clearly, it must be made of two pieces: a vertical segment running from

(0,+2
3
|L| 32 ) to (−2

3
|L| 32 , 0), which we can discard, and an arc connecting the
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points (0,−2
3
|L| 32 ) and (0,+2

3
|L| 32 ), where L is given by (C.15). Therefore, this

limit defines precisely a compacton solution with the edge behaviour (C.5), (C.15).

The amplitude of this solution is given by Ū in (C.22).

Finally, notice that all solutions defined by an initial condition of the form

U(0) = u′, ∂ζU(0) = 0, with u′ < Ū < 0, (C.23)

must have G− > 0, and considering (C.19) we see that they must satisfy Uζ →
±∞ as U → 0. Therefore by the same arguments of section C.1, we know that

their edge behaviour is more singular than (C.5).

Summarizing, we have proved: For δ > 1
2
, c < 0, the negative solutions to

(C.1) can be either periodic and smooth or compactly supported. There is a unique

regular compactly supported solution with the edge behaviour (C.5), and this orbit

can be seen as the limit of a family of periodic solutions as their amplitudes

approach a critical value. All other compactly supported solutions have a more

singular behaviour at the edge of their support.

v < 0 and δ ≤ 1
2: periodic solutions

Finally, in the case δ ≤ 1
2
, U < 0, the level sets G−(U, Uζ) are closed curves

circling around the centre as shown in Figure C.2:

For δ ≤ 1
2
, c < 0, all negative solutions to (C.1) are smooth periodic orbits

bounded away from zero.
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