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ABSTRACT 
 

There is a significant need for the development and use of numerical methods to simulate 

advance and complex optical biosensor structures. Finite Element Method (FEM) has been 

established as one of the most powerful and versatile numerical method and has been 

implemented in this thesis to characterize, analyse  and optimise label-free  optical 

biosensors for the detection of micron size biological objects like bacteria such as E.coli and 

nanometre size biomolecules such as antibody, nucleic acids and proteins. These sensors are 

all suitable for deep-probe sensing as large evanescent field can be excited in the sensing 

medium with substantial penetration depth achieved by techniques like Surface Plasmon 

Resonance (SPR) and sensor architectures based on nanowires and slot waveguides. 

This thesis presents three different architectures of label-free optical biosensors. First, a fiber 

optic surface plasmon resonance (SPR) biosensor for the detection of E.Coli is optically 

modeled by using the finite-element approach in conjunction with the perturbation technique 

which is computationally more efficient and can be used for waveguides with low or medium 

loss values. The same sensing architecture is used when surrounding index is varied from 1.30 

-1.44 to cover most of the biological elements that are used in the biosensing applications. 

Second one is based on evanescent-wave guiding properties of nanowire waveguides a 

theoretical investigation of silica nanowires employing a wire assembled Mach-Zehnder 

structure to detect the presence of E.Coli is studied second. Finally, a slot-waveguide based 

micro-ring resonator is investigated for the detection of DNA Hybridization using H-field FEM 

based full-vector formulation. It is found that all of the numerical methods provide good 

agreement with the experimental sensitivities and detection limits. 

 



1 
INTRODUCTION  

  
1.1 Introduction 

Biosensors are increasingly becoming important bioanalytical tools in the biotechnology, 

pharmaceutical, food control, environmental monitoring and other consumer-oriented 

industries. The development of biosensors is one of the active areas of analytical research 

currently. With their high specificity, high sensitivity, portable size and low cost, biosensors 

hold considerable promise and potential for various analytical purposes.  

Infectious disease remains one of the greatest challenges to global health. Today, infectious 

diseases cause 40% of all deaths worldwide (approximately 20 million deaths a year) [1]. 

Especially in many developing countries microbial diseases constitute the major causes of 

death. An estimated 1 million people suffer from food-borne illness each year in the UK. Food-

borne illness costs the UK economy an estimated £2 billion each year [2]. Salmonella and E.coli 

are especially dangerous for humans and can cause death. It is extremely important to control 

the spreading of infectious diseases. In diagnosing and monitoring of infectious diseases 

molecular techniques has initiated a revolution. The molecular techniques can detect specific 

nucleic acids or microbial proteins directly in body fluids. Nucleic acid hybridization [3] is one 

such method which has potential for achieve high sensitivity, specificity, and detection of 

nucleic acids or proteins. Thus the important demands for a sensor for bacterial detection are 

high sensitivity and rapid detection.  
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Intensive research in developing biosensors for fast and sensitive detection has been 

conducted over several decades and has resulted in various techniques. Especially optical 

techniques have proven interesting for biosensing due to the possibility of rapid and direct 

(unlabelled) detection. The research in optical biosensors has resulted in a number of sensor 

devices which have been applied for biosensing and reported for detection of bacterial 

pathogens including surface plasmon resonance sensors [4] micro ring resonator sensor [5] 

and various interferometers [6]. These sensors give rapid and sensitive detection, however 

some of the sensors are only suitable for sensitive measurements of objects on a size scale up 

to 100 nm like DNA, proteins and viruses. The beneficial impact on society as a result of 

availability of such systems is immense therefore investigating any strategy that could reduce 

development times, costs and reveal alternative designs is of utmost importance. In particular, 

mathematical modelling and simulation is relatively inexpensive and yet powerful tool for 

scientific analysis and prediction. 

1.2 Aims and objectives 

The aim of this thesis is to develop numerical tools which can be used to model, design, and 

optimise optical biosensor devices at optical frequencies. 

  
The developed numerical tools are applied to analyse the effects of various design parameters 

of optical biosensor devices such as diameter, metal thickness, biolayer thickness, slot width, 

guide width, guide height by varying and resolving the problem repeatedly, while an 

appropriate output metric such as effective index, sensitivity, detection limit, coupling length, 

power confinement is recorded.  

 
The design and optimisation of optical biosensor devices based on micro and nanotechnology 

are difficult to fabricate and visualise due to their small size, arbitrary geometry and different 

scales. The way to design and optimise these complicated structures efficiently is to therefore 
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carry out numerical analysis, as an approximation to the exact solutions. Finite Element 

Method (FEM) is a versatile numerical technique that is found to be advantageous in these 

applications. Its success is mainly due to its versatility and flexible abilities in meshing which 

allowed its operation in different scales of length in an effective manner. 

 
The developed numerical tools based on finite element formulation are successfully applied 

to design, characterize and optimise three optical biosensor structures based on metal-clad 

fibre, silica nanowire and slot-waveguide with a specific objective summarised as: 

• To design, characterize and optimize the metal clad fibre biosensor based on surface 

plasmon resonance technique for detection of E.coli, acetone and refractive index 

range 1.30 -1.5 usually used in biosensing applications.  

• To simulate a Mach-Zehnder silica nanowire biosensor for detection of nanometre 

size biological elements aimed towards achieving the higher sensitivity and improving 

the power confinement in the sensing area of the device. 

• To use the numerical method for modelling, characterization and optimization of slot-

waveguide biosensor for detection of DNA hybridisation with high sensitivity and 

better detection limit. 

  1.3 Structure of the thesis 

 The discussion given in this section provides an outline of the structure of the thesis. The 

 work presented in this thesis is based on the research carried out by the author into the  use 

 of numerical methods for modelling and characterisation of label free biosensors. Beginning 

 with a general introduction, the first chapter introduces the reader need for biosensor 

 technology. Several key areas of application have been identified which have the 

 potential to provide a significant enhancement of the areas of everyday application.  

Chapter 2 provides a detailed insight into optical biosensing and immobilisation of 

biorecognition elements. The chapter begins with an introduction of optical biosensors and 
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the suitability of an optical biosensor for a particular application depends upon its 

performance across a variety of metrics. Furthermore discussion goes to optical biosensor 

methods, and immobilistaion of biorecognition  elements onto optical surface. Based on this 

general introduction of optical biosensing the focus is aimed at optical biosensors for deep 

probe sensing. 

The theoretical formulation of the Finite Element Method as a powerful numerical tool in 

analyzing optical biosensors is described in Chapter 3. First a brief overview of the numerical 

techniques commonly used in waveguide analysis is presented outlining their advantages and 

limitations in analysing any type of fibre and waveguide. A brief history of the finite element 

method is also presented focusing on their importance in analysing waveguide problems. The 

fundamental mathematical relations derived from Maxwell’s equations for the application of 

this approach in the solution of waveguides is also derived. Further, a comparison of several 

variational formulations is presented with an emphasis on the vector H-field finite element 

formulation. The utilisation of triangular elements, the shape functions, and the infinite 

elements is undertaken in order to obtain the propagation constants and the field profiles of 

various modes supported by a uniform waveguide. The problem of spurious solutions is also 

investigated and the penalty function method is implemented to avoid the appearance of non-

physical solutions.  

In chapter 4 the metal-clad biosensors are presented. The metal-clad biosensors are 

evanescent wave sensors using surface plasmon resonance as sensing principle. Single mode 

operation of surface plasmon resonance based fibre optic biosensor design is numerically 

optimised for the maximum penetration of field in the sensing region using finite element 

based full-vectorial H-field formulation in conjunction with the perturbation technique. 

Practical metallic elements are not perfect conductors, but suffer a small amount of loss and 

therefore a rigorous model, which accounts for the modal loss is essential. Therefore H-field 
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FEM based full-vector formulation, in conjunction with the perturbation technique, has been 

used for the solution of the metal-clad waveguide modes. The alternative approaches such as 

classical Sommerfeld waveguiding principle to metal waveguides, 3-D time-harmonic 

simulation using the finite element method (FEM), FEM solution in terms of the transverse 

magnetic field Ht formulation and Finite-Difference Time-Domain (FDTD) are computationally 

very expensive and requires very large computational resources. The influence of the various 

parameters in the waveguide configurations will be discussed in connection with optimum 

sensitivity and detection ranges of the sensors. The effect of coupling length, modal 

confinement and modal loss are studied with and without the presence of E.coli for deep-

probe sensing. By studying these parameters we search for the optimal design to obtain the 

best sensing performance in order to enhance the sensitivity and lower the detection limit. 

Chapter 5 presents the nanostructure biosensors based on nanowire and slot waveguide 

structures. The finite element simulation presented here show the detailed dynamics of mode 

formation, change in mode effective refractive index, power confinement and sensitivity in 

nanometre scale guiding structures. The optical properties of silica nanowires in a Mach–

Zehnder based optical sensor for detecting biomaterial specimens have been studied. Then 

we analyse the proposed slot waveguide micro ring resonator for the detection of DNA 

hybridisation. This structure takes advantage of the remarkable property of slot-waveguides 

to provide high optical intensity in a slot-region which is subwavelength size low refractive 

index region sandwiched between two high refractive index regions i.e. between two rails or 

strips. This permits a very high interaction between the slot-waveguide mode probe and a 

liquid analyte. As a result, the reported slot-waveguide sensor exhibited a bulk ambient 

sensitivity twice as large as that exhibited by ring resonator optical sensors based on 

conventional strip waveguides. 
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 Finally in Chapter 6, general conclusions derived from this research work are summarized 

 and explored further. Possible future prospects for this work are also suggested. The thesis 

 concludes with a list of relevant publications in major international journals by the 

 author followed by a list of references cited in this work. 
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2 
LITERATURE REVIEW 

 
2.1 Introduction of biosensor 
A biosensor is defined by the International Union of Pure and Applied Chemistry (IUPAC) as a 

“detecting device that uses specific biochemical reactions mediated by isolated enzymes, 

immunosystems, tissues, organelles, or whole cells to detect chemical compounds by optical, 

electrical or thermal signals” [7]. 

The key component of a biosensor is a biological element, such as an antibody, a single 

stranded nucleic acid, an enzyme, a membrane receptor, or even a whole cell that form a 

recognition layer which is immobilised on the surface of a suitable transducer (Figure 2.1).  

 
Figure 2.1: Schematic of a biosensor setup [8] 
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The biological elements are biological molecular species that utilizes a biochemical 

mechanism for recognition of bioanalytes. The biological element specifically recognizes the 

analyte in the sample generally via the formation of lock-and-key complexes such as enzyme-

substrate, antigen-antibody, single stranded DNA-complementary DNA and so on (Table 2.1). 

When an analyte (target molecule) interacts with the immobilized biological element 

(bioreceptor molecules) on a biosensor surface a physical, chemical or biological change is 

observed [8]. This change is converted to a measurable signal by a detecting device which is 

called, a transducer. 

Element                                                                                                 Complementary 

Antibody                                                                                                                            Antigen 

Enzyme                                                                                                                           Substrate 

ssDNA                                                                                                         Complementary DNA 

Carbohydrates                                                                                                              Receptors 

Cells                                                                                                                                Receptors 

Drug                                                                                                                               Receptors 

Metal ions                                                                                                                 Amino acids 

Table 2.1: shows the specific molecular interactions which are commonly used in biosensing devices to 
increase specificity and discriminate between different substances exist in the sample [11]. 

A key issue in the development of any biosensor is to assure a high functional activity of the 

biological element immobilized on the transducer surface. The transducer surfaces are 

miniaturized to a micro or nanometre size scale (Figure 2.2) because of the small amount of 

biological element that can be deposited thereon. 
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Figure 2.2: Size of biorecognition elements 

 

 Directly attaching the biological element to the sensor surface, although sometimes possible, 

is usually unwise because newly formed chemical linkages can affect the molecule's affinity 

for the analyte. A linker molecule is commonly used, one end of which has a moiety to anchor 

to the sensor surface, and the other has a carefully chosen functional group chosen to react 

with the biological element without damaging it [9, 10, 11, and 12]. 

2.2 Biosensor classification 
Biosensors can be classified either according to their biorecognition element or operating 

principle of transducer as shown in the Figure 2.3. 

 
Figure 2.3: Classification of biosensors [13]. 
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2.3 Classification of biosensors according to recognition element 
Generally, there are three different biosensors groups classified based on the biorecognition 

element. The three groups are distinguished from one another by the nature of the process 

and in terms of their biological element, e.g. biocatalytic (i.e., enzyme), bioaffinity (i.e., 

antibody and nucleic acid) and microbial (i.e., bacteria, virus) as shown in the Figure 2.3. 

i. Bio-catalysis based biosensors 

These biosensors use enzymes as their biological element. Enzymes have the ability to 

specifically recognize to their substrates and to catalyse their transformation hence are 

proven to be efficient biocatalysts [14]. 

The bio-catalysis biosensors have two mechanisms of action for operation. The first action 

involves the catalytic conversion of the analyte by the enzyme. This action can be explained 

using the following equation: 

    S + E →←
−1k ES → 2k

E + P           (2.1) 

Where  

S = Substrate  

E = Enzyme  

ES = Enzyme-substrate complex 

P = Product 

k1 = Rate of enzyme-substrate complex formation 

k-1 = Rate of enzyme-substrate complex dissociation 

k2 = Rate of dissociation of enzyme-substrate complex to products 

 

 

K1 
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The second mechanism involves detection using the inhibition of the enzymatic activity by the 

target analyte [14]. 

The detection limit of these biosensors is mainly determined by the enzyme’s activity. 

However, the major limitation with enzyme-based biosensors is the stability of the enzyme 

which depends on various conditions such as the pH, ionic strength, chemical inhibitors, and 

temperature. 

ii. Bio-affinity based biosensors 

Bio-affinity biosensors use antibodies and nucleic acid as their biological elements and are 

also known as Immunosensor and DNA biosensor respectively. 

The mechanism of action with Immunosensors is based on the ability of an antibody to form 

complexes with the corresponding antigen [15]. The antibody-antigen reaction is highly 

selective, and is analogous to a lock and key fit. Antibodies can be chemically conjugated to 

many different reporter molecules, and they can be coated onto many different surfaces. They 

can be raised against nearly any biological element, from single stranded (ss) DNA to protein. 

For these reasons, antibodies have long been an invaluable tool in research and diagnostics of 

biosensing applications [16]. Though these systems are more specific and sensitive than 

enzyme-based systems, they face limitations in that they are complex and require multi-step 

assay configurations [17]. 

DNA biosensors are made by immobilizing a single stranded DNA probes onto the transducer 

whose sequence is complementary to the target DNA strands. The detection of specific 

segments of nucleic acid by complementary probe sequences provides the basis for all nucleic 

acid probe based biosensors including those for infectious disease monitoring. The specificity 

of the interaction is dependent on the ability of different nucleotides only to form hydrogen 

bonds with the appropriate (complementary) partner [18].  
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iii. Microbe based biosensors 

These biosensors utilize microorganisms as their biological element. Their mechanism is based 

either on the consumption of oxygen and carbon dioxide or the measurement of metabolism 

of the microorganism [19].  

Microbial cells are cheaper than antibodies or enzymes [20]. They can be more stable, and can 

carry out several complex reactions involving enzymes. However, they are less selective than 

enzymes. They have longer recovery and response times, [20] and may require more frequent 

calibration. 

2.4 Classification of biosensors according to transducer 

Based on the kind of signal or parameter the biological event creates or alters is measured by 

the transducer. Therefore, biosensors can be classified into four different kinds according the 

transduction methods they utilize; optical transducers, electrochemical transducers, 

mechanical transducers and thermal transducers as shown in the Figure 1.3. Special emphasis 

is placed on describing the optical transducers because research work presented in this thesis 

is based on the optical transducers.  

2.4.1 Electrochemical transducers 
When an immobilized biomolecule binds with the target analyte onto an electrochemical 

transducer ions or electrons are produced or consumed, which affects measurable electrical 

properties of the solution, such as electric current or potential [21]. There are several 

approaches used to detect electrochemical changes hence electrochemical transducers are 

further classified into: potentiometric, amperometric and conductometric. 

i. Potentiometric 
Potentiometric sensors measure potential between the reference electrode and working 

electrode at zero current. A logarithmic relationship exists between the potential generated 

at the electrode surface and the activity of the ion of interest [22].  
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Most electrodes are made of metals like platinum, gold, silver, and stainless steel, or carbon-

based materials that are inert at the potentials at which the electrochemical reaction takes 

place. However, because some species react at potentials where other species are present, 

either a selective membrane is used or an electron mediator that reacts at lower potential is 

incorporated into the immobilization matrix or to the sample containing the analyte [22]. 

The main advantage of these transducers is their wider detection limits, however the 

requirement of a very stable reference electrode have limited their application [23]. Nearly all 

potentiometric sensors, including glass electrodes, metal oxide based sensors as well as ion-

selective electrodes, are commercially available. 

ii. Amperometric 
The measurement of electric current flowing at constant potential is the principle behind 

amperometric biosensors, which typically utilize electrodes coated with an enzyme which 

enables the analyte to undergo oxidation or reduction, resulting in a detectable current. The 

magnitude of the catalysis generated current has been shown to be proportional to the 

substrate concentration [24]. 

Each amperometric biosensor is designed for detection of only one or maybe a few molecular 

species, depending on the specificity of the enzyme. The definitely most commonly used 

biosensor is the single-use amperometric glucose oxidase based sensor for home glucose 

assays by diabetic patients. Another common type is sensors for hydrogen peroxide detection 

in flow systems. Immunoassays can also be performed with amperometric detection, where 

secondary antibodies are labelled with an enzyme whose product is oxidized at the electrode 

[25]. 

iii. Conductometric 
Conductometric sensors measure the change in electrical conductivity of the solution due to 

a change in the ionic strength [26]. The solution conductivity is changed when an enzyme 
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reaction generates a net change in the concentration of some ionized species. Thus 

conductometric biosensors can detect any reactive change occurring in the solution. The 

measured parameter when using this transducer is the electrical conductance/resistance of 

the solution. The inverse value of resistance is called conductance and thus the name 

conductometric has been used. Examples of conductometric biosensor are whole cell 

Chlorella vulgaris microalgae for alkaline phosphatase activity (APA) analysis [27], 

conductometric biosensor for creatinine determination [28] and the use of conductometric 

biosensors for biosecurity [29]. 

2.4.2 Mechanical Transducers 
When an electric field is applied across a piezoelectric material, such as quartz crystal, it 

induces a mechanical stress in the material and creates an oscillating motion of a certain 

vibrational resonant frequency. The frequency is depending on the mass on the surface of the 

oscillator and decreases upon increased mass on the surface. Piezoelectric materials have the 

ability to generate and transmit acoustic waves in a frequency-dependent manner. These 

waves can propagate on the surface, i.e., surface acoustic wave (SAW) or in the bulk of the 

resonator, i.e., bulk acoustic wave (BAW). When a piezoelectric sensor surface, which has 

been coated with a biological substance (i.e., antibody), is placed in a solution containing the 

virus /bacteria, the attachment of the agent to the antibody coated surface results in an 

increase in the crystal mass, and this gives rise to a corresponding frequency shift. 

The quartz crystal microbalance, QCM, and is undoubtedly the oldest and the most recognized 

acoustic sensor. QCM technique involves a vibrating crystal which generates the electric 

current. The mass of material adsorbed on its surface affects the frequency of vibration, which 

could be related to changes in a reaction [30]. Biosensors based on piezoelectric quartz crystal 

have been widely investigated and several applications are reported including DNA 

hybridization, enzyme detections and gas phase biosensors [31]. 
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Other type of a mass-sensitive biosensor is a microcantilever. This sensor detects the changes 

in cantilever bending or vibrational frequency. The principle of this detection is based on the 

transduction of specific molecular interactions on a cantilever surface into the mechanical 

response change of a cantilever [32]. More recently, the microcantilevers operated in 

vibration mode (oscillation) using RNA aptamers as receptor molecules were fabricated for 

label free detection of hepatitis C virus (HCV) helicase [33]. 

2.4.3 Thermal Transducers 
These sensors are also referred to as thermal or calorimetric biosensors. Most of the 

biochemical reactions involve the generation or absorption of heat. These sensors are based 

on the measurement of heat which can be related to the amount of analyte present [34]. 

Once the analyte comes in contact with the immobilized biological element onto temperature 

sensor a heat reaction is measured which is proportional to the concentration of an analyte. 

The total heat produced or absorbed is proportional to the total number of molecules in the 

reaction and the molar enthalpy (transfer of heat in a reaction per mol). The measurement of 

the temperature is via a thermistor, and such devices are called as enzyme thermistors. 

Thermal biosensors are insensitive to the optical and electrochemical properties of the sample 

and do not require frequent recalibration [35]. Calorimetric biosensors were used for food, 

cosmetics, pharmaceutical and other component analysis [36]. 

2.4.4 Optical transducers 
Optical transducers are one of the most common types of transducers used in biosensors 

which are based on measuring changes in light. After the interaction of the target molecules 

and probe molecules, a change in light intensity, polarization, phase, peak position, and 

angular wavelength will be observed and this change can be measured by optical transducers 

[37]. The optical transducer is generally represented by an optical waveguide (e.g., optical 

fibre, slot-waveguide, photonic crystal waveguide, photonic nanowire waveguide). By this 
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way, this photonic device has to satisfy different parallel functions. The first one consists in 

guiding the light from the optical source (e.g. Laser), to the sensing area. Consequently, the 

optical waveguide has the rule of transducer, enhancing the interaction between the 

chemical/biochemical process and the optical signal. By this way, the chemical information 

can be properly transduced into an optical one. In this context, the transducer can be 

considered as an engineering prerogative, because several technical solutions have to be 

implemented in order to maximize the confinement of the optical field in the sensing area 

[38].  

Compared with other transduction methods, optical sensing encompasses the largest number 

of sub-categories and can be classified as two major types based on the sensing mechanism 

and the sensing architecture [39]. Moreover, optical biosensors can be classified according to 

the detection protocols: label-based detection and label-free detection. 

2.5 Types of sensing mechanisms 

i. Fluorescence 

Fluorescence requires an external light source to initiate electronic transitions in a 

biomolecule immobilized on a waveguide. When a biomolecule absorbs an electromagnetic 

energy, it reaches to an excited energy level depending on the incident radiation wavelength. 

The biomolecule from an excited state tends to reach a lower energy level. Relaxation of the 

biomolecule from the excited state may take place by emission of a photon and this transition 

is known as fluorescence.  Therefore, fluorescence is generated when a substance absorbs 

light energy at a short (higher energy) wavelength and then emits light energy at a longer 

(lower energy) wavelength [40]. In fluorescence based detection, either target molecules or 

biorecognition molecules are labelled with fluorescent tags, such as dyes. The intensity of the 

fluorescence emitted indicates the strength in interaction between the target and the 

biorecognition molecules [41].  
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Typical examples of these sensors are the ones used in the detection of the carcinogen 

benzo[a]pyrene (BaP) or those used to differentiate BaP and benzopyrene tetrol (BPT) [42]. 

These sensors are also used in DNA sequencing because of their high read out speed [43]. 

ii. Raman spectroscopy 

Raman spectroscopy is based on the scattering of light. The scattering of light by molecules 

results in exchange of energy between incident photon and scattering molecules. This energy 

is either transferred from the scattered photon to the incident photon or vice versa. When 

the scattered photon has less energy than the incident photon, the method is remarked as 

Raman to Stokes scattering. Once the scattered photon has a lot of energy than the incident 

photon, the method is thought as Raman to anti-Stokes scattering [44].  

In case of Raman to Stokes scattering, the molecule is at all-time low energetic level. Once a 

photonic beam of light interacts with the sample, the molecule passes to a higher energetic 

level then it returns to a lower energetic level by emitting a photon. The difference between 

incident and emitted photon energy is employed to change the vibration state of the 

molecule. In case of Raman to anti-Stokes scattering, the molecule at the start is found at 

higher energetic level and, after the photonic beam interacts with the sample, it reaches the 

lowest energetic level with a photon emission [45]. 

Raman signals  are very weak and need high precision optical receptors and powerful 

sources. The advantage of using this kind of sensors is that it overcomes some of the 

shortcomings of fluorescence sensing such as the ability to sense analytes which do not exhibit 

fluorescence [46]. It finds application in HIV detection [47] and DNA sequencing [48]. 

iii. Optical absorption 

Absorption is a process in which the energy of a photon is transformed to other forms of 

energy, such as heat. The absorbance of a molecule at a specific wavelength can be used to 

determine the concentration according to Beer-Lambert law. The Lambert-Beer law states 
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that optical absorption (A) is directly proportional to the concentration of the analytes present 

(C) and the length of the optical path (L), i.e. A α LC. This equation is used to calibrate the 

presence of analytes in a solution. A common configuration to measure the absorbance is to 

direct a beam of radiation at the sample and detect the intensity of the radiation that passes 

through it. This is a very effective and simple method of sensing since most of the analytes are 

absorbing. This mechanism is used in some optical biosensors to sense biological pathogens 

or gases such as oxygen or carbon dioxide concentrations and to measure pH in solutions [49] 

iv. Evanescent field sensing 

For most types of optical biosensors, a solid material medium confines an electromagnetic 

wave in such a way that the wave has the opportunity to interact with immobilised biosensing 

element. The electromagnetic wave may be in the form of a traveling wave or a standing wave, 

depending on the sensor configuration. For light to be guided by the sensor structure but 

concurrently interact with the external environment, the structure must be designed so that 

the light wave can extend from the sensor surface into biorecognition layer. With this 

configuration the change in the optical properties of the surrounding medium is probed by 

the evanescent tail of the mode propagating along the waveguide structure. An interaction 

with the surrounding medium will both alter the tail’s propagation speed, caused by a change 

in refractive index, and alter its attenuation, effected by a change in the absorption 

coefficient. These alterations would then also be detectable as a corresponding change in the 

phase velocity of the guided wave. 

The phase velocity vp can be used in combination with the speed of light c to introduce a new 

quantity, the effective refractive index neff 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼 = Speed of Light
Phase Velocity

    or  
p

eff v
cn =                (2.2) 

Since it is obvious that the molecules in the surrounding medium will interact with the 
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evanescent field, it is easily understood that the result will be a phase velocity v1 smaller than 

the speed of light. The binding of antigens with antibody further alters the optical properties 

of the surrounding medium. This causes a change in the phase velocity v2 which can be 

compared to v1 to obtain a change in the effective refractive index ∆neff. 

The evanescent field biosensors have proven to be a highly sensitive tool for interactions in 

the close vicinity of the sensor surface. Figure 2.4 (a) represents conventional evanescent field 

biosensor which shows the biomolecular interaction takes place on the waveguide surface 

inside the evanescent area, which influences the effective refractive index Neff of the 

transmitted mode light. n: Refractive index. ne: External. nc: Core. ns: Substrate. When target 

molecules bind to the receptor molecules in the sensor window, the change in local refractive 

index is felt by the evanescent tail of the optical waveguide mode and shifts the phase velocity 

of the guided light (Figure 2.4 (b)). Figure 2.4 (c) shows the dashed lines represent the top and 

bottom extents of the waveguide core.  The top surface of the waveguide exposed to the 

chemical reactions is at x = 0 µm.  

Figure 2.4 (a) Scheme representing evanescent field sensing. (b) A cross section of a silicon photonic 
waveguide and the optical electric field distribution of the vertically polarized mode are shown. (c) 
Cross-sectional plot of the evanescent field intensity of optical waveguide [50]. 

The evanescent field intensity decays exponentially with distance from the transducer surface, 

with a decay length of approximately λ/2π, where λ is the wavelength of light. When we 

consider light for optical biosensors in the typical wavelength range of λ = 600 –1550 nm, the 
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evanescent field extends only ∼100–250 nm (Figure 2.5 (a)) into the test sample. Because the 

evanescent field distance is so short, the biosensor only interacts with material in direct 

proximity to its surface, such as DNA, antibody, proteins that are chemically attached to the 

surface, while being unaffected by unbound material such as bacteria or eukaryotic cell 

suspended in solution. Different designs for optical biosensors can manipulate the 

characteristics of the evanescent field so that it either extends deeply into the test sample or 

is confined tightly to the sensor surface (Figure 2.5 (b)). One key to high sensitivity sensor 

design is to match the regions of greatest biochemical binding to those regions with the 

highest evanescent field intensity [51]. 

Many label-free optical biosensors are based on refractive index changes that results from 

interactions of biomolecules with evanescent waves. For example, the widely used, state-of-

the-art surface plasmon resonance (SPR) sensor uses the evanescent wave of a surface 

plasmon mode, which is a collective electron oscillation wave existing at the interface 

between metal and dielectric materials [52, 53]. Several other types of evanescent wave 

biosensors have been demonstrated on silicon or silica platforms, including fibre optic sensors 

[54, 55], planar waveguide sensors [56], and, more recently slot-waveguide micro- ring 

resonator and silicon nanowire sensors [57-58]. The slot-waveguide micro-ring resonators 

achieve high sensitivity detection through more interaction with analyte molecules binding to 

the waveguide surface in the slot region and design of very high quality factor resonant 

structures that allow the evanescent field to interact with biomolecules over multiple cycles 

of the confined wave. The silicon nanowire waveguide design enables improved detection 

sensitivity over traditional slab waveguide sensors by utilizing a thinner waveguide core that 

with biomolecules immobilized on the core a greater fraction of the electric field to leak out 

into the cladding and interact with biomolecules immobilized on the core surface. Arranged 

in a Mach-Zehnder configuration, silicon wire waveguides also benefit from longer field-

molecule interaction lengths [59]. 
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Figure 2.5 (a) Limited evanescent field of the conventional evanescent field sensors of 250 nm (b) 
Increase in evanescent field of the deep-probe evanescent field biosensor of 1µm [60]. 

 

2.6 Optical biosensor architectures  
Following optical sensor configurations represent widely used architectures in optical label-

free sensor development:  

• surface plasmon resonance based biosensors  

• fibre optic based biosensors 

• interferometer based biosensors 

• micro ring resonator based biosensors 

2.6.1 Surface Plasmon Resonance based biosensors 

Introduction 

Surface Plasmon resonance (SPR) is one of the successful optical techniques which has 

applications in chemical and biochemical sensing [61]. In SPR technique, a transverse 

magnetic polarized light causes the excitation of oscillations of electron density at the metal-

dielectric interface [62]. This oscillation of electrons produces a wave known as surface 

plasmon wave (SPW). When the incident light (which carries energy as well as momentum) 

and the surface plasmon wave match a resonance occurs which results in a sharp dip in the 
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reflected light intensity as represented in Figure 2.6.  

 

Figure 2.6: The changes in the refractive index in the immediate vicinity of a surface layer are detected 
with a sensor chip. The plasmonic resonance is observed as a sharp shadow in the reflected light at an 
angle that depends on the mass of material at the surface – this angle shifts if biomolecules bind to the 
surface [62]. 

The resonance condition depends on the angle of incidence, light beam wavelength and the 

dielectric properties of metal as well as substrate. An angular interrogation takes place when 

the wavelength is kept constant and the angle of incidence is varied which results in a sharp 

dip at the particular angle. A spectral or wavelength interrogation takes place when the angle 

of the incident beam is kept constant and the wavelength is varied which results in resonance 

at a particular wavelength. The angle of incidence or the wavelength depends on the 

refractive index of the dielectric medium. Change in refractive index changes the value of the 

angle of incidence or the wavelength. To excite surface plasmons, generally, a prism is 

employed [63-70]. The prism based SPR sensing device has variety of shortcomings like its 

large size, no remote sensing and also the presence of varied optical and mechanical moving 

elements. To overcome these shortcomings introduction of optical fibre is used in place of 

prism. The optical fibre SPR probe can be miniaturized which can be advantageous for 

samples, which are costly and are available in minute quantity. Due to these advantages the 

surface plasmon resonance based optical fibre sensors have drawn a lot of attention [71-81] 

and are discussed in section 2.6.2.  

2.6.2 Fibre optic SPR based biosensors 
In case of optical fibre based SPR sensor evanescent wave is required to excite the surface 

plasmons. The evanescent wave is resulted due to total internal reflection taking place at the 
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core-cladding interface as shown in Figure 2.7 (a). To design a SPR based fibre optic sensor, 

the silicon cladding of the fibre is replaced with a thin metallic layer which is further 

surrounded by a sensing layer. The guided light is launched into one of the end of the optical 

fibre to produce an evanescent field which excites the surface plasmons at the metal-dielectric 

sensing layer interface (Figure 2.7 (b)). The coupling (Figure 2.7 (c)) of evanescent field with 

surface plasmons strongly depends on wavelength, fibre diameter, metal layer properties and 

probe geometry.  The intensity of the light transmitted after passing through the SPR sensing 

region is detected at the other end of the fibre as a function of wavelength.  

 
Figure 2.7 (a) An evanescent wave corresponds to a TM-mode that propagates along the interface of a 
metal and a dielectric, where the z-component of the electric field decays exponentially (b) Spatial 
distribution of the magnetic intensity for a surface plasmon at the interface between metal and a 
dielectric (c) A combination of surface plasmons and waveguide modes is possible [84]. 
 

Biomolecular recognition elements immobilized onto the metal surface recognize and bind 

with an analyte present in a liquid sample producing a local increase in the refractive index at 

the metal surface. The increase in the refractive index gives rise to an increase in the 

propagation constant of surface plasmon wave (SPW) propagating along the metal surface 

which can be accurately measured by optical transducer. The increase in the propagation 

constant of the SPW is the underlying physical principle of affinity SPR biosensors (Figure 2.7). 
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Figure 2.7: Principle of SPR biosensing [85]. 

 
SPR Probe Designs  

Numerous designs of fibre optic SPR probe are considered to achieve high sensitivity, 

detection accuracy, reproducibility and operating range of the sensor. The sensitivity and the 

detection accuracy are determined in the same way as determined in the case of angular 

interrogation.  

 

Choice of Metals 

Gold or silver is used as a choice of metallic coating on the fibre core. Real and imaginary part 

dielectric constant of gold and silver plays a vital role in achieving sensitivity and detection 

accuracy. Gold has higher value of the real part of the dielectric constant which results in 

higher shift of resonance parameter to change in refractive index of sensing layer. Silver, on 

the other hand has higher value of the imaginary part of the dielectric constant which result s 

in a narrower width of the SPR curve causing a higher SNR or detection accuracy. Gold is 

chemically stable while as chemical stability of silver is poor due to its oxidation. The oxidation 

of silver occurs as soon as it is exposed to air and especially to water, which makes it difficult 

to give a reproducible result and hence the sensor isn’t reliable for practical applications [86]. 

The ability of other metals to be used for a SPR sensor applications are copper (Cu) and 

aluminium (Al). Copper is chemically vulnerable against oxidation and corrosion, therefore it 

isn’t widely used as metal for SPR sensor [86]. 
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Effect of Dopants 

A theoretical modelling and analysis of SPR based fibre optic sensor has been carried out in 

[87] to evaluate the effect of dopants on the sensitivity and SNR [87]. Commonly used dopants 

for pure silica are germanium oxide (GeO2), boron oxide (B2O3), and phosphorus pent-oxide 

(P2O5) which can enhance the sensitivity of the sensor. 

Side Polished Fibre  

The common sensor configuration among fibre optic SPR probes is the surface plasmon 

resonance sensor using side polished single mode optical fibre and a thin metal over layer 

[88]. In this configuration, the guided mode propagating in the fibre excites the surface 

plasmon wave at the interface between the metal and a sensing medium (Figure 2.8). The 

resonance occurs if the two modes are closely phase matched. Therefore, variations in the 

refractive index at the sensor surface induced by the interaction between target analyte 

molecules and bimolecular recognition element such as antibodies immobilized on the sensor 

surface may be observed as changes in the resonant wavelength. The single-mode optical 

fibre based SPR sensor is more sensitive and accurate in comparison to those with multi-mode 

optical fibre based SPR sensor. However, fabrication of single-mode optical fibre based SPR 

sensor is much more complex and sophisticated compared with those that use multi-mode 

fibres [89]. Figure 2.8 shows SPR sensing structure based on a side-polished single-mode fibre. 

 

Figure 2.8: SPR sensing structure based on a side-polished single-mode fibre [88]. 
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The side polished multimode optical fibre sensors have been reported [89]. In these sensors 

the fibre was side polished which increases the sensing area, hence an advantage.  

In addition to side polished single mode fibre, D-type single mode optical fibres have also been 

used for sensing applications utilizing SPR technique with improved sensitivity [90-94]. The 

other designs for SPR based fibre optic sensor includes SPR probe at one of the ends of the 

fibre with the reflecting end face [95, 96] and a fibre tip [97, 98]. The photonic band-gap fibre 

based SPR sensors have also been reported very recently [99]. 

2.6.3 Interferometer based biosensors 

Interferometer based sensors are widely used to detect the phase shift occurred by change in 

effective index of mode due to interaction between the sample and the guided light 

propagating in the sensor. Among the interferometer architectures, Mach-Zehnder approach 

is highly sensitivity for label-free optical biosensing. In these sensors, the guided light interacts 

with the analyte through its evanescent field or, alternatively, the analyte can propagate in 

the core of the waveguide if hollow or slot waveguides are employed.  

The Mach-Zehnder interferometers are composed of an incident waveguide that is split in two 

single mode waveguide branches containing a sensing arm and reference arm [100] as 

represented in Figure 2.9. 

 

Figure 2.9: Scheme of an integrated Mach–Zehnder interferometer 
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 In an MZI the incident coherent light is split into two separated single mode waveguides. 

 One of these waveguides - the sensing arm - has no cladding. Changes of the optical 

 properties in the region (e.g., bulk superstrate index changes or the addition of a thin 

 biolayer) the evanescent field lead to a change of the effective index (∆neff) of the 

 waveguide mode which introduces a phase shift in the light traveling in this arm of ∆neff k0 L, 

 where k0 = 2π/λ is the free space wave number, L the length of the sensor window. The 

 other waveguide - the reference arm - is covered with a cladding and thus isolated 

 from changes of the surrounding media. At the MZI output, where the sensing and the 

 reference arm are recombined, interference occurs due the relative phase shift φ

 induced by the difference of the effective indices. The interference translates this phase shift 

 into a modulation of the optical output Intensity satisfying the condition   
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 where IOUT/IIN is the ratio between optical output and input intensity of the MZI. The phase 

 shift φ is defined as 
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 where k0 = 2π/λ is the free space wavenumber, L the length of the sensor window, and 

 (neff
S, − neff

R) the effective index difference between the sensing and reference arm. 

 Any change in the effective index within the region penetrated by the evanescent field of the 

 light guided in the sensing arm irrespective whether it arises from a refractive index change 

 of the analyte acting as cladding (homogeneous sensing) or from a refractive index change 

 of a thin sensitive film on top of the core layer (surface sensing) leads to a change of the 

 relative phase shift Δφ and thus to a change of the output signal. 
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 The input optical power IIN is split into two optical beams with an half power IIN/2 in the 

 sensing and reference arm respectively. If any optical phase delay is applied to the guided 

 mode in the sensing arm (Δφ = 0), light will be combined at the output Y-branch exhibiting 

 an output optical power IOUT = IIN. In all different cases (Δφ ≠ 0 in sensing arm), the optical 

 output power will be different from the input one (IOUT ≠ IIN), according to  
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Typically, increasing the length of the sensor increases the sensing signal. One of the penalty 

of using the MZI device as a sensor is a cosine-dependent intensity function whereby signal 

change is not easily resolvable near the maximum and minimum of the cosine function as 

compared to sensors that have a linear intensity response. 

 The sensitivity S of sensors based on Mach-Zehnder interferometer can be expressed as; 

      wSS
λ
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where Sw is the waveguide sensitivity, defined in case of homogeneous sensing, as 
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 and, in case of surface sensing, as: 
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where neff is the effective index of optical mode propagating in guiding structure, nc is the 

cover medium refractive index and ρ is the thickness of molecular layer deposited on guiding 

cover medium interface. The sensitivity of an integrated optical sensors adopting Mach-

Zehnder architecture depends on sensing arm length, L. An undesired shift in propagating 
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mode of an effective index may be introduced due to for example because of change in 

temperature which can affect the sensitivity. Thus, a trade-off between device length and 

device sensitivity has to be usually achieved [101]. 

Recently nanowire sensor employing a wire assembled Mach-Zehnder interferometer was 

developed for optical sensing. Several different types of nanowire, either metallic [102] or 

drawn from bulk glasses [103], as well as chemically grown nanoribbons [104], have been 

successfully fabricated and used as building blocks for potential future micro or 

nanophotonics applications in fields such as biosensing and nonlinear optics [105]. Further, 

the combination of nanotechnology, biology, chemistry, and photonics allows the exploration 

of new opportunities for the development of optical sensors with subwavelength or 

nanometer structures. Silica nanowires [106] offer several advantages over other types of 

nanowires since they are based on materials used in the most important photonic and opto-

electronic applications within the visible and the near-infrared ranges and as a result their 

optical properties are familiar. Light guided along such a nanowire leaves a large fraction of 

the guided field outside the wire as evanescent waves [107, 108], making it highly sensitive to 

the index change of the surrounding medium.  

 

 2.6.4 Micro Ring Resonator based biosensors 
Optical microring resonators are an emerging biosensing technology that has recently been 

under intensive investigation [109 - 113] for achieving higher sensitivities and finding 

application in multiplexed analysis. The device size reduction by some orders of magnitude 

without compromising the device sensitivity is due to large photon lifetime within the 

resonator at resonance which provides a long interaction length to achieve a detectable phase 

shift, makes micro-resonators an ideal optical biosensors. 
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Recently, a slot-waveguide based ring resonator has made a huge impact among biosensors 

due to the fact larger light analyte interaction is achieved in the slot through which 

biomolecules flow. The slot waveguide based micro ring resonator can be used as a biosensor 

by applying a proper surface chemistry to the waveguide surface. This will result in a thin layer 

on top of the waveguide that contains receptor molecules that are specific to the analyte. 

When the resonator is brought into contact with a fluid containing this analyte, the analyte 

will bind to the receptor molecules at the surface of the waveguide, causing a thickness 

change of the layer on top of the waveguide. A binding event will change the local refractive 

index, which results in a change of the effective refractive index of the optical mode and hence 

in a resonance wavelength shift which is expressed as; 
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=∆                  (2.9) 

 where ∆neff is the change of the effective index caused by the analyte binding, λres is the 

 initial  resonance wavelength, and ng is the group index of the slot waveguide at the 

 resonance wavelength and is given by; 
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 There are two important routes to improve the detection limit of the sensor: one approach 

 is to maximize the quality factor of the resonator, which will decrease the impact of noise on 

 the determination of the resonance wavelength [114]. Another approach is to maximize the 

 average resonance wavelength shift per binding event by increasing the interaction of light 

 and biomolecules that get attached to the waveguide surface. When using a normal 

 photonic waveguide with a rectangular cross section, only the evanescent tail of the 

 waveguide mode will interact with the biomolecules. By etching a narrow slot in the middle 

 of the waveguide, however, a vast fraction of the quasi-TE mode will be concentrated in that 
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 slot [115], causing it to have more interaction with analyte molecules binding to the 

 waveguide surface in the slot region and improving the sensitivity of the sensor.              

   

 Figure 2.10 (a) Schematic top view of the slot-waveguide based micro ring resonator (b) Cross-
 sectional view of the slot-waveguide based micro ring resonator 

 Figure 2.10 (a) shows a schematic top view of the slot-waveguide micro ring resonator. A 

 straight slot-waveguide is used to couple light into a slot-waveguide ring. Only one particular 

 wavelength of light called the resonance wavelength gets coupled into the slot-waveguide 

 ring and vice versa.  

 Figure 2.10 (b) illustrates a schematic cross section of the straight-ring slot waveguides 

 coupling region. Both straight and ring slot-waveguides consist of two strips (rails) on a 

 bottom cladding layer. The top of the whole device (cover) is exposed to the environment, 

 that is,  the top cladding region  (refractive index=nB) constitutes the sensing region.  

2.7 Comparison, advantages and disadvantages of sensor 
architectures 
The most common evanescent wave sensor is the Surface Plasmon Resonance (SPR) sensor 

[61]. The SPR biosensor has been used commercially because of its outstanding performance 

in evaluating complex bimolecular interactions [63]. However SPR sensors have a relatively 

large size and its miniaturization in lab-on-chip platforms is complex. Moreover, the sensitivity 

is usually limited to the nanomolar range, which is extremely useful in diverse applications 

[72] but not enough for applications requiring lower detection levels, which are usual in the 

clinical practice. In order to overcome these disadvantages, SPR-based optical fibre sensors 
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have attracted significant interest [94]. A fibre based sensing configuration allows for a 

compact sensing element and sample volume, the capacity for remote sensing and the 

potential for disposable miniaturized sensing devices. In the past decade, various fibre based 

SPR sensors have been proposed and demonstrated, including the use of either single mode 

fibres [96] or multimode fibres [97].  

Conventional SPR biosensors have a Detection Limit (DL) between 1×10−6 to 1×10−7 RIU and a 

mass surface density DL around 1 pgmm−2. The Detection Limit (DL) in optical fibre coupled 

SPR biosensor is typically around 10−5 to 10−6 RIU. A better DL of 5–7×10−7 RIU has been 

achieved by multiple peak SPR fibre optic sensors and by spectral interrogation in a side-

polished single mode fibre using depolarized light [89]. 

Mach-Zehnder based sensors are usually sensitive but are not as compact as micro ring 

resonator based sensors. The Mach-Zehnder based sensors require long structures whereas 

micro ring resonator based sensors have reduction in length of three orders of magnitude and 

exhibit a sensitivity which is comparable to that of Mach-Zehnder based sensors. The 

sensitivity of an integrated optical sensors adopting Mach-Zehnder architecture depends on 

sensing arm length L. An undesired shift in propagating mode of an effective index may be 

introduced due to for example because of change in temperature which can affect the 

sensitivity in Mach-Zehnder based sensors [100, 101]. The sensitivity of the Mach-Zehnder 

sensor based on silica nanowire is about 7.5/μm as compared with conventional Mach-

Zehnder sensors based on integrated planar waveguides is much lower, e.g., below 0.7/μm 

[209], showing that much higher sensitivity can be achieved when sensing with optical 

nanowires. 

The large photon lifetime within the micro ring resonator at the resonance provides a long 

interaction length to interact with biomolecules to achieve a detectable phase shift. 

Therefore, sensor configurations based on microring resonator show very important 
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advantages related to dimension reduction without significantly affecting the device 

sensitivity. Silicon slot waveguides has been emerged as very attractive nanometre ultra-

sensitive optical biosensors [109-115]. The slot-waveguide ring resonator showed a RI 

sensitivity of over 298nm RIU−1 and a DL of 4.2×10−5 RIU and an estimated protein DL of 

approximately 20 pgmm−2 as compared to 70 nm/RIU for a normal-waveguide-based ring 

resonator [215]. 

The ring resonators require a tunable laser source when the resonance wavelength is 

monitored, which increases instrumentation costs. They also do not offer a means for internal 

referencing for temperature drifts, wavelength drifts and non-specific binding of molecules. 

Mach-Zehnder devices can be used with a low cost, fixed wavelength diode laser source over 

a large dynamic range and offer internal referencing capabilities for the above parameters 

through the use of the reference arm. Therefore, the optimal choice of transducer design will 

depend on the application and acceptable instrumentation costs [101]. 

2.8 Label-based vs label-free detection 
Label-based systems use tags, dyes and probes to label biomolecules [116]. Labels are 

relatively small modifying agents that can be used to tag, dye and probe proteins, antibodies, 

nucleic acids and other molecules. These compounds often contain groups that provide 

sensitive detectability by virtue of some intrinsic chemical or atomic property such as 

fluorescence, visible chromogenic character, radioactivity, or bioaffinity toward another 

protein. Most probes can be designed to contain a reactive portion capable of coupling to the 

functional groups of biomolecules. After modification of a protein via this reactive part, the 

probe becomes covalently attached, thus permanently tagging it with a unique detectable 

property. Subsequent interactions that the labelled protein is allowed to undergo can be 

followed through the tag's visibility [117]. The most conventional label-based methods 

available are chromogenic, radioactivity and fluorescence based detection systems [118]. 
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In chromogenic detection antigen-antibody interactions can easily be detected by 

chromogenic reactions. A chromogenic substrate is a molecule which is catalysed by the 

enzyme linked to the antibody to provide a coloured product which can be easily detected 

[118].  

Radioactivity is a process by which certain elements spontaneously emit energy in the form of 

waves or particle by disintegrating the unstable atomic nuclei in to a more stable form. There 

are various applications where radioactivity labeling has been employed. Antigen-antibody, 

protein-protein, protein-DNA and protein-RNA interactions can be studied by using the radio 

labeled query protein on antigen that gives out radiation on binding to the corresponding 

target molecule [119]. 

Fluorescence is a phenomenon by which a substance absorbs radiation of one wavelength and 

emits another, usually longer wavelength and that is known as fluorescence. The fluorescent 

label uses a reactive derivative of a fluorescent molecule known as a fluorophore which 

chemically attaches to a biomolecule such as antibody, protein, or amino acid. The 

fluorophore selectively binds to a specific region or functional group on the target molecule 

before being exposed to probe molecules and serves as a marker or dye, or tag, or reporter 

for antibodies, peptides, nucleic acids [120]. A light source is then used to excite the 

fluorophores attached to the sensor; the fluorophores absorb photons of the excitation slight, 

which cause the fluorophores to emit light at a longer wavelength (e.g., fluorescent light is 

lower energy compared to incident light). The fluorescence is detected by a photodetector, 

which identifies the presence of the labeled target molecules [121]. 

The technique of bioconjugating fluorophores onto biomolecules is time consuming and low 

yield often results. Moreover, the fluorophore modification process can inhibit the 

biomolecular binding efficiency, adversely affecting the sensor performance. In addition, since 

the fluorescence intensity is typically weak and the lifetime is short, optical detection 
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instruments often must be of high quality [123]. Label-free biosensors that do not require the 

use of fluorescent molecules for biomolecule detection have the advantage of eliminating 

complex sample preparation techniques and improving reliability [124]. Optical label-free 

biosensors often operate based on a change in refractive index due to affinity binding events 

of biomolecules, such as DNA hybridization or antigen-antibody binding. 

The labelling of biomolecules exhibit interference with the binding site and often alter surface 

characteristics and natural activities of the query molecule. The labelling procedure is 

laborious, lengthy and limits the number and types of query molecules. Therefore, Label-free 

detection techniques are now attracting significant attention to overcome the issues with 

label based detection techniques.  The Label-free detection techniques simplify the bioassays 

by eliminating the need for secondary reactants. Label-free techniques avoid interference due 

to the tagging molecules.  Moreover, they provide quantitative information for the binding 

kinetics [122]. 

Label based detection methods are not suitable for portable or hand-held diagnostic devices 

because attaching the dyes is a complex exercise. Detecting the fluorescence requires 

expensive lab-based equipment. Label-free method of biosensing detect the binding of 

complex biomolecules directly using portable or hand-held devices requiring no expertise and 

are less costly [125]. 

2.9 Biosensor applications  

Applications of biosensors include medical, environmental, public security, and food safety 

areas. Medical applications include clinical, pharmaceutical and device manufacturing, and 

research. Environmental applications include spill clean-up, monitoring, and regulatory 

instances. Public safety applications include civil and military first responders as well as 

unattended monitoring. Food safety applications include monitoring of food production, 
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regulatory monitoring, and diagnosis of food poisoning. Biosensors allow multi-target 

analyses, automation, and reduced costs of testing. 

2.10 Characteristics of biosensors 
 The key characteristics of biosensors are the following: 

• Fast or real-time detection provides almost immediate interactive information about 

the sample tested, enabling users to take corrective measures before infection or 

contamination can spread.  

• Biosensors can be used for point-of-care or on-site testing where state-of-the-art 

molecular analysis is carried out without requiring a state- of-the-art laboratory.  

• Many biosensor technologies can be configured to allow continuous flow analysis. 

This is beneficial in food production, air quality, and water supply monitoring.  

• Biosensors can be miniaturized so that they can be integrated into powerful lab-on-a-

chip tools that are very capable while minimizing cost of use.  

• Biosensors can be integrated with on-line process monitoring schemes to provide 

real-time information about multiple parameters at each production step or at 

multiple time points during a process, enabling better control and automation of 

many industrial and critical monitoring facilities.  

 

2.11 Optical biosensor performance metrics 

The suitability of an optical biosensor for a particular application depends upon its 

performance across a variety of metrics including sensitivity, detection Limit, resolution, and 

sensor cost. In this section, we will define some of the methods used to compare optical 

biosensors. Some metrics, such as sensitivity or cost, can be defined numerically. Others, such 

as ease-of-use or instrument robustness, are subjective but can have a significant impact on 

the commercial success of an approach. 
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2.11.1 Sensitivity 

For optical biosensors, sensitivity is fundamentally determined by how efficiently the 

electromagnetic field associated with the optical transducer couples to biomolecules in 

contact with the sensor surface. The design goal for achieving high sensitivity is to produce a 

structure that allows as much of the electric field as possible to reside outside the transducer 

and within the surrounding media. Factors affecting the sensitivity of optical biosensors 

include electromagnetic field strength, penetration depth of evanescent field, optical power 

contained in the sensing region and geometric factors which include the metal thickness, 

length and diameter of core. 

In sensor development, sensitivity is an important parameter to evaluate the sensor 

performance. Fundamentally, sensitivity is determined by the strength of interaction between 

the light and sample, therefore, sensitivity is the magnitude of sensor transduction signal 

change in response to the change in analyte [126]. In most evanescent wave based sensors 

sensitivity is determined by the light intensity at the sensor surface or the fraction of light in 

solution.  

Sensitivity is defined as the ratio of the change in transducing optical parameters (∆λ in the 

resonant wavelength shift scheme and ∆I in the intensity variation scheme) to the change in 

the waveguide parameters affected by analytes. According to the definition the sensitivity S 

for four different combinations is listed in the Table 2.2. From the mathematical expressions 

sensitivity can be further divided into two parts, which are named as device sensitivity and 

waveguide sensitivity respectively. 

(a) Device Sensitivity 

Device sensitivity is defined as the ratio of the change in the transducing optical parameter to 

the effective index change. Device sensitivity only depends on device properties and it is 

related to the variation of transducing optical parameters, and thus depends on the 
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transducing method. For the resonant wavelength shift scheme, device sensitivity is expressed 

as; 

    effn/  ∂∂= λS                                           (2.11) 

             
g

res

n
λλ ⋅∂

=∂ effn                                      (2.12)              

Where ∂λ is the resonant wavelength shift, ∂neff is the change of the effective index caused 

by the analyte binding, λres is the resonance wavelength, and ng is the group index.  

While for the intensity scheme it becomes 

    effn/  ∂∂= IS                 (2.13)
          

From 2.11 and 2.12, device sensitivity will be enhanced by using longer resonant wavelength 

or smaller effective refractive index for either case. 

(b) Waveguide Sensitivity 

Waveguide sensitivity is defined as the ratio of the effective index change to the change in the 

waveguide parameter affected by analytes. Waveguide sensitivity is relevant to waveguide 

structures regardless of the type of devices. Waveguide sensitivity is determined by the 

effective index change resulting from the analyte-induced change in waveguide parameters. 

The effective index change is produced either by a change of cover medium refractive index 

or by a change of thickness of sensing layer which is immobilized on waveguide surface [127]. 

It varies with the sensing mechanism used and is expressed as   

   ceff n/n ∂∂  (homogeneous sensing)              (2.14) 

   t/neff ∂∂  (surface sensing)              (2.15)
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Table 2.2 Overall sensitivity S of a sensor is listed based on two sensing mechanisms and two 
transducing schemes 

 

(c) Homogeneous Sensing 

In homogenous sensing, the analytes are suspended in a fluid (gaseous or liquid) medium 

around the surface of the waveguide. When there is a change in the amount of 

homogeneously present analytes in the medium, the cladding index changes. This change in 

cladding index results in change in the effective index of the guided mode and moves the 

resonance wavelength. In this mechanism, all materials including the detected analyte in the 

solution can contribute to the effective-index shift, which leads to no specificity. To solve this 

problem, surface sensing can be employed. The sensitivity of a homogenous sensor can be 

defined as the ratio of change in cladding index (∂nc) to the change in resonance wavelength 

(∂λ), it is represented as; 

    cn/  ∂∂= λS                 (2.16) 

Figure 2.11 represents surface sensing diagrammatically; 
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Figure 2.11: Homogeneous sensing where analytes exist in the surrounding aqueous medium that 
serves as the top cladding [127].  

Homogeneous sensing enables to measure concentration of a wide spectrum of chemical 

species as glucose or ethanol, usually present in a solution. Moreover, this kind of sensing 

mechanism allows estimating some gas concentration changes because some polymeric 

materials have the refractive index sensitive to specific gas concentrations. In all these cases, 

a chemical analyte concentration change induces the refractive index change in a solid or a 

liquid material serving as cover medium in the guiding structure. For example, when glucose 

concentration in an aqueous solution changes, a shift of the solution refractive index is 

induced [128]. 

(d) Surface Sensing 

In surface sensing the exterior of the waveguide are treated with a layer which selectively 

attracts the analytes. Hence the analytes adhere to the surface of the waveguide. This solves 

the selectivity/specificity problem. When the analytes adhere to the waveguide surface, it 

increases the thickness of the waveguide and this layer of analytes is called the addlayer (t). 

The sensitivity of surface sensors is defined as the ratio of change in addlayer (∂t) to the 

change in resonance wavelength (∂λ). 

    t/  ∂∂= λS                 (2.17) 

Figure 2.12 represents surface sensing diagrammatically. 
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Figure 2.12: Surface sensing where analyte molecules adsorb on a sensor surface, which can be 
modelled as an ultrathin film [127]. 

Surface sensing is exploited in a wide range of biochemical applications, such as DNA 

sequencing by hybridization, antigen-antibody reactions study or pollution concentration 

measure in water. This kind of sensing is based on immobilization of an ultra-thin layer of 

receptor molecules on the guiding film surface. The interaction between analyte and receptor 

molecules produces a change of molecular adlayer thickness, affecting the effective index of 

propagating optical mode [129]. 

2.11.2 Detection Limit 
Sensor detection limit (DL) is another important parameter to characterize the sensor 

performance. The DL can be deduced by taking into account the noise in the transduction 

signal, σ, i.e., the minimum resolvable signal:  

     S /   σ=DL                (2.18) 

Where S is the sensitivity. Improvement in the DL can be accomplished by reducing the noise 

level or increasing the sensitivity. The sensitivity can be enhanced by increasing the interaction 

of light with the solution. The most commonly seen noise is from thermal expansion and 

temperature fluctuations in both sensor substrate and buffer solution which results in 

temperature dependent refractive index changes. To overcome the temperature related 

noise, non-specific binding and bulk RI change various methods are being employed to 

enhance the sensor performance by controlling these effects. The thermally induced noise 

can be reduced by implementing a temperature control, such as a thermoelectric cooler to 
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stabilize temperature. Another method is to balance the thermo-optic and thermo-mechanic 

effects. Third method is to employ a reference channel, which is either built into the same 

sensor or placed on a different sensor nearby to reduce so called common mode noise 

[130,131].   

2.11.3 Resolution (or Limit of Determination) 
Resolution is a critical performance criterion for detection of analytes present at low 

concentration or detection of adsorbed molecules with low molecular weight. To determine 

the resolution of a sensor, one must characterize the noise of the sensor when operated with 

its detection instrument. Noise can be easily characterized at a basic level by allowing the 

sensor to reach a steady-state condition and recording the measured output many times in 

sequence without any intentional change to the sensor. The noise is thus defined as the 

standard deviation, σ, of all the repeated measurements. If one defines a signal to be 

detectable if the signal has a magnitude of 3σ, then the limit of determination (LOD), defined 

as the smallest measurable mass density change of the sensor, is  

     S /  3  σ=LOD                 (2.19) 

The sensitivity and the resolution are related but are entirely different Figures of merit. 

Sensitivity is used to define the lowest value determined above zero concentration while the 

resolution describes the minimum resolvable difference between two measurements at any 

concentration. 

 

2.11.4 Sensor Cost 
Adoption of biosensor technology for most applications in diagnostics or pharmaceutical 

screening will be driven to some extent by the cost of performing an individual assay. For a 

primary screen used in the pharmaceutical research industry, for example, a screening 
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campaign to determine a set of candidate chemicals that has a desired affinity level for a 

protein can involve over 1 million assays. Researchers working on high-volume industrialized 

assays describe the need to minimize the cost per data point in such a campaign. Though 

optical biosensors offer tremendous advantage over labelled assay technologies by not 

requiring the use of tag reagents, the cost of the transducer in each assay must be low enough 

to compensate the cost of additional reagents. This cost goal challenges the wide acceptance 

of optical biosensors, which are often high-precision optical components fabricated from 

expensive materials (such as glass, silicon, or optical fibre) using highly exacting processes such 

as photolithography, dielectric or metal deposition, and plasma etching. Even if a sensor is 

inexpensive to fabricate, the cost of packaging and testing it must be efficient. 

Two main methods have been used to bring the cost/assay to acceptable levels. First, if a 

sensor is expensive to fabricate and package, it can be regenerated and used for several 

successive assays. Second, sensors can be designed to be compatible with mass production 

by using inexpensive materials and methods, so they can be used one time before disposal, 

much like typical labelled assays. 

2.12 Immobilisation of recognition receptors 
Immobilisation step is critical in the development of any class of biosensor. It makes the 

detection easier and more sensitive. A wide variety of biomolecules can be used as 

bioreceptors, i.e. antibodies, nucleic acid sequences, peptides, enzymes, cell receptors and 

many others. Optical biosensors exploit the evanescent wave phenomenon to characterize 

interactions between bioreceptors that are attached to the biosensor surface and analytes 

that are in solution above the surface. Binding of molecules in solution to surface immobilized 

bioreceptors alters the refractive index of the medium near the surface which results in a 

change of the effective refractive index of the optical mode and thus to a change of the output 

signal [132]. 
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The performance of a biosensor comes from its ability to immobilize bioreceptors while 

maintaining their natural activity, the bioavailability (accessibility) of the bioreceptors to 

targets in solution and a low nonspecific adsorption to the solid support. These specifications 

govern the specificity and sensitivity of such devices and can be tailored by an appropriate 

choice of the solid–liquid interface where the bioreceptors are immobilized. The chemical 

preparation of the surface is a key parameter. The physical and chemical properties of the 

interface play an important role in achieving optimal recognition of the target and limiting the 

nonspecific adsorption. Given the complexity and variability of biorecognition elements, there 

is no universal immobilization method. The choice of immobilization chemistry is therefore 

made based on the properties of a specific biorecognition element [133]. 

Several methods are used to biofunctionalize the sensor surface: (i) physical adsorption as a 

result of direct deposition of the biomolecule (ii) covalent binding of the biomolecule to the 

surface using a cross-linker previously immobilized on the surface (iii) noncovalent 

interactions to a previously deposited active layer, either by non-specific electrostatic 

interactions or by non-covalent affinity binding (i.e. biotin-avidin systems) (iv) physical 

entrapment in a polymer layer.  

 2.13 Physical Adsorption  
 Adsorption from solution takes place if the molecules interact with the surface by 

 means of attractive interactions. Therefore, part of the molecules goes to the surface and a 

 residual part remains in solution. A dynamic equilibrium is established where molecules in 

 solution adsorb at the surface, while adsorbed molecules leave the surface. The system is 

 equilibrated when the rate of adsorption and desorption are equal. The surface 

 concentration and residual concentration are related, the larger the concentration in 

 solution, the larger the adsorbed amount. The surface concentration is termed surface 

 excess; it is expressed in mol/m2. From a thermodynamic point of view, the standard 
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 chemical potential of the molecule at the surface is lower than that in solution, so that the 

 molecules are in a more favourable environment at the  surface [134]. There are several 

 drawbacks related to the immobilization by means of adsorption only. Adsorption depends 

 on the interaction of the biomolecule and the surface, so that the amount of adsorbed 

 molecules may vary from spot to spot. Release to the solution is possible when the solid 

 support is immersed in the analyte solution; this causes a loss of the signal and possible 

 cross contamination of the spots. The reversal of the roles of probes and target allows the 

 immobilization process to work again [135].  

 Physical adsorption of a biomolecule to a surface occurs via dipole-dipole interactions, van 

 der Waals forces or hydrogen bonding, depending on the nature of the substrate surface 

 and the absorbate. However, physical adsorption in general is not only strongly influenced 

 by changes in the ambient conditions, such as pH and the solvent used, but may also be 

 reversible process. Furthermore, adsorption may not provide as high density of immobilized 

 biomolecules as covalent immobilization. Physical adsorption is generally unspecific, random 

 and multi-oriented in nature, often resulting in the inaccessibility of the active binding site. 

 The adsorption of proteins on solid surfaces is influenced by the physical and chemical 

 characteristics of the real sample (blood, urine, waste water etc.). Changes in pH, ionic 

 strength or particular additives in the sample can cause desorption of the adsorbed proteins. 

 These problems can be overcome using covalent coupling procedures. 

 2.14 SAM (Self-assembled monolayers) 
The interface between the sensor surface and the biomolecules deposited onto the interface 

is a key component of optical biosensors. The sensor surface must have ability to attach to 

receptors without changing their native conformation and binding activity. This attachment 

must be stable over the course of a binding assay and sufficient binding sites should be 

presented to interact with the analyte. Most importantly the interface should be resistant to 

non-specific binding of the sample.  
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Self-assembly monolayers (SAMs) are organized layers of molecules which spontaneously 

forms on a solid surface. The process of self-assembly is governed by inter and intra-molecular 

forces that drive the molecules into a stable, low energy state. These forces include hydrogen 

bonding, electrostatic interactions, hydrophobic interactions, and van der Waals forces. These 

nanometer thick layers are easily fabricated from commercially available substances or can at 

least be synthesized with relative ease [136]. The first applications of SAM for biosensor were 

described in the late 1980s and originally developed for Biacore instruments [137].  

 Many coupling strategies use a chemical-linker layer between the sensor base (for example, 

 a gold layer) and the biological component to achieve these ends. Functionalized alkane 

 thiols and alkoxy silanes form stable, self-assembled monolayers on planar surfaces and act 

 as ideal linkers [138]. 

 Two of the most widely studied systems of SAMs are alkylsilane monolayers and 

 alkylthiolate monolayers.  

 (a) Alkylsilane Monolayers 

Alkylsiloxane monolayers are usually prepared by a covalent adsorption process of self-

assembling molecules, such as trichloro (R-SiCl3), trimethoxy (R-Si(OMe)3) or triethoxy silanes 

(R-Si(OEt)3), onto the surface of optical transducer. The self-assembling molecule consists of 

three parts: the head group, the alkyl chain and the terminal end group.  

The head group, i.e., trichloro-, trimethoxy or triethoxy silane, is responsible for the tie up of 

the biomolecule onto the sensor surface. Because of the strong interaction between the head 

group and the sensor surface, the molecules attempt to adsorb at all surface sites, resulting 

in a close-packed monolayer [139]. The alkyl chain provides the stability of the monolayer, 

due to van der Waals interactions, and influences the ordering of the SAM [140]. The terminal 

end group introduces chemical functionality into the monolayer system. The simplest terminal 

functionality is a methyl group however, the chain may be terminated with a number of 
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different groups (e.g., NH2, OH, or COOH), allowing SAMs to be tailored to a particular 

application. Functionalization of the end group also allows multiple layers to be adsorbed on 

top of the monolayers [141].  

 

Figure 2.13: Schematic representation of functionalization of alkylsilane self-assembly Monolayers 
[142]. 

 

The general formula of alkylsilane RnSiX(4-n) shows a dual behavior, organic and inorganic. R is 

organic moiety and X is a hydroxyl or a reactive hydrolysable group (–Cl, –OMe, –OEt, etc.) 

that reacts onto hydroxyl-terminated supports. Reaction of silane molecules to surface silanol 

groups of silica leads to the formation of quite stable siloxane bonds (Si–O–Si). The siloxane 

bond is thermally stable and is relatively chemically stable. 

 The functionality of silane is the number of reactive groups present at the silicon atom. 

 Monofunctional silanes (n = 3) having only one reactive group at the silicon extremity bind 

 to silica by means of a single bond. Multifunctional silanes (n = 1 or 2) bear several (2 or 3) 

 reactive groups the silicon atom and can bind to the surface by  several bonds. Binding by 

 several bonds is stronger but the reaction is more difficult to be controlled in a reproducible 

 manner [143]. 

 (b) Alkylthiolate Monolayers 

 The high affinity of thiols (R–SH), disulfides (R–S–S–R) and sulfides (R–S–R) for metals (gold, 
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 silver, copper, palladium, platinum, and mercury) drive the formation of well-defined 

 organic surfaces with useful chemical functionalities displayed at the exposed interfaces for 

 biosensor applications [144].  

Alkanethiol SAMs on metals, and particularly on Au, have attracted considerable attention 

due to its ease of preparation and to the strength of the S–Au bond [145]. The general formula 

of alkanethiols is HS(CH2)nX. A thiol molecule consists of three parts: the sulfur head, the 

hydrocarbon chain (of variable length), and the terminal group, which can have different 

functionalities. The thiol head group acts as an anchor group which is covalently bond to the 

gold. The carbon chain is referred as the backbone which is assumed to stabilize the SAM due 

to Van der Waals interactions. The end group (or tail group) in the simplest case consists of a 

methyl-group. However, a lot of other functionalized end groups have been attached so far 

and the possibility to chemically modify the end group makes SAMs a powerful system [146]. 

 Gold is usually the surface material of choice due to its chemical inertness and the well-

 defined structure of the obtained film (densely packed and ordered array of long chain 

 molecules). Gold does not oxidize at room temperature, does not react with atmospheric 

 oxygen and is biocompatible compared to silver that oxidizes readily in air and is toxic to 

 cells [146]. 
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Figure 2.14: Schematic representation of functionalization of alkylthiolate self-assembly monolayers 
[147]. 

 

 For biosensor application purpose, mixed SAMs are easily prepared. Mixed monolayers 

 allow to control the density of the reactive species (diluting), to increase its accessibility and 

 to bring chemical inertness to the underlying surface. 

 2.15 Covalent Immobilization 

 Currently, there is a growing interest in the covalent coupling of proteins, e.g. antibodies, to 

 solid substrates. The use of covalent coupling procedures in DNA or protein micro-array 

 technology and in enzyme-linked immunosorbent assay (ELISA) is increasing because of the 

 higher robustness of this approach. For immunosensor applications the affinity biosensor 

 interface consists of antibodies, which are preferably covalently attached onto the 

 transducer surface. In most cases, the surface should be activated before the attachment of 

 proteins [148].  

 Covalent immobilization method involves formation of a covalent bond between the sensor 

 surface and a biorecognition element such as a protein, enzyme, antibody or DNA. The   

 biorecognition elements cannot be coupled directly to the surface. Therefore, a chemical 

 modification of the surface is performed before the biomolecule immobilization step itself. 

 The surface modification often involves several steps, at least two. The most difficult step of 

 the grafting process is the binding of the biomolecule. Indeed it has to accommodate the 

 different constraints presented above: aqueous solvent, low concentration, low 

 temperature, etc. The strategy consists in choosing the grafting reaction of the biomolecule 

 first and adapting the surface functionalization to this choice. Once the chemical 

 functionality of the surface is chosen, a process is devised for attaching this reactive function 

 to the surface. The surface chemistry of the transducer is the next constraint to be managed. 

 Indeed, the transducer is not chosen for its ability to be grafted but for its sensitivity to the 
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 chemical signal. Typical  surfaces are inorganic materials such as silica, glass, gold, etc. There 

 is not so much choice regarding reactions and reagents for grafting organic molecules to 

 such inorganic surface.  The involved chemistry is often quite vigorous, that is, not 

 compatible with the functionality to be attached. For example, silanes cannot contain 

 carboxylic acid or hydroxyl group; primary amino group is compatible with ethoxysilane but 

 reacts strongly with chlorosilane. Because of this limitation, a coupling agent is often used in 

 a second step after the first derivatization step performed directly on the transducer 

 surface. A coupling agent is a difunctional molecule that reacts by one end to functionalized 

 surface and leaves its second group for  further reaction with the biomolecules. Coupling 

 agents (Figure 2.15) are either homodifunctional if the two reactive functions are identical 

 (e.g. phenylenediisothiocyanate) or heterodifunctional if they are different. The coupling 

 agent is used for functionalization of the surface and/or for the chemical modification of the 

 biomolecules as well [149]. 

  

 Figure 2.15: Main strategies of chemical grafting; (1) 

 direct reaction to active surface, (2) activation of the 

 surface with homodifunctional linker, and (3) activation 

 of the surface with heterodifunctional linker [149]  

 2.15.1 Main coupling strategies 
There are three main types of coupling chemistry, which utilize, respectively, amine (e.g. 

lysine), thiol (cysteine) or aldehyde (carbohydrate) functional groups on glycoproteins. All 

covalentcoupling methods utilize free carboxymethyl groups on the sensor surface. They can 

therefore be used for any of the sensor chips that have such carboxymethyl groups. If the 

protein to be immobilised has a surface exposed disulphide or a free cysteine, ligand-thiol 

coupling is probably the method of choice. Failing this, amine coupling should be tried in the 
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first instance. If amine coupling inactivates the protein, aldehyde coupling can be attempted, 

provided that the protein is glycosylated [150]. 

 

(a)  Amine Coupling 
Amine coupling is the most generally applicable covalent coupling chemistry used to 

immobilize protein ligands. Immobilization is via free primary amine groups such as lysine 

residues that are abundant in most proteins or the N-terminus of proteins and peptides 

[151]. This procedure has several advantages including: 

 Highly versatile as the vast majority of biomolecules may be immobilized without 

derivatization, or without requiring tags. 

 Produces a highly stable covalent bond that prevents ligand from leaching from 

the surface. 

 Is effective over a wide pH range 

 Does not require exposure of the biomolecule to harsh conditions 

 Immobilization conditions are easily controlled to prevent excessive cross-linking 

with the surface 

 Reagents may be prepared and stored frozen for a few months 

(b)  Thiol Coupling 
Covalent coupling strategies using thiol groups allow site-specific reactions. The sulfur 

atom of cysteine belongs to form a sulfhydryl (or thiol) group. The low likelihood of 

cysteine’s presence or accessibility in protein restricts the use of thiol groups to 

immobilization of native molecules [152]. This turns out advantageous in order to 

introduce solvent accessible reactive groups on protein surface. Cysteine residues 

involved in disulfide bonds can be chemically or enzymatically cleaved [153] before a 

subsequent reaction with activated surfaces. 
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Thiol groups allow very specific reactions because they are very reactive toward various 

chemical functions that are quite stable in water. The simplest approach is the reaction 

of thiol group onto supported thiol groups by formation of disulfide linkage. But disulfide 

bonds are unstable under reducing conditions. Alternatives involve formation of stable 

thioether bonds by Michael addition on maleimide groups or reaction with 

haloacetamide groups. 

Thiols are prone to self-oxidation. The reactions of oxygen with thiols in aqueous solution 

give disulfides quite easily (pH 7–9). Radiolytic oxidation is also possible [154]. 

(c)  Aldehyde Coupling 
Aldehyde coupling involves the formation of a hydrazone bond via condensation of 

hydrazide groups on the sensor surface with aldehyde groups on the ligand molecule. 

These aldehyde moieties may be native to the protein or introduced through mild 

oxidation of cis-diols present in the ligand molecule. Aldehyde coupling is particularly 

useful for site directed immobilization of glyco-conjugates, glyco-proteins, and 

polysaccharides, and may also be useful for orientation-specific immobilization of 

proteins containing functional groups that  may be converted to aldehyde moieties 

[155]. 

 2.16 Non-covalent Immobilization (Streptavidin–Biotin System) 
 The strong interaction between avidin and biotin was discovered as early as 1941 [156]. 

 Avidin  is a protein commonly purified from chicken egg white while biotin is a vitamin 

 found in all cells. Streptavidin, a bacterial homologous protein to avidin, isolated from the 

 actinobacterium Streptomyces avidinii, is more frequently used than avidin and is 

 commercially available also in a number of engineered forms [157]. 

The binding between avidin/streptavidin and biotin has long been regarded as the strongest, 

noncovalent, biological interaction known, having a dissociation constant, Kd, in the order of 
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4 x 10-14 M [4]. The bond formation between biotin and avidin/streptavidin is very rapid. Once 

bond is formed, it is unaffected by extremes of organic solvents, pH, temperature, and other 

denaturing agents [158]. 

 The strong interaction has led to a large number of research and diagnostic applications 

 using avidin-biotin or streptavidin-biotin technology. The strength and reliability of the 

 interaction underlie its importance in biotechnology, but the interaction is also a model for 

 high-affinity receptor ligand binding. In most assays, streptavidin is coupled to a solid phase, 

 such as a biosensor chip, while biotin is coupled to the moiety of interest, often a nucleic 

 acid, protein, or antibody [159] as shown in Figure 2.16. 

Streptavidin is a protein and has four high affinity binding sites for the small water soluble 

vitamin biotin. The Biotin can be combined to a variety of biomolecules including antibodies 

and many biotin molecules can be attached to a single molecule of protein. The biotinylated 

protein can thus bind to more than one molecule of Streptavidin [161]. 

                                

                            Figure 2.16: Schematic representation of Streptavidin–Biotin immobilization [160]. 

2.17 Physical Entrapment 
 In this method, the biorecognition element is entrapped within the body of a matrix such as 

 sol–gel processed glass. The sol–gel process has emerged as powerful approach to 

 immobilize heat sensitive and fragile biorecognition elements such as enzymes, proteins, 

 antibodies etc. This is due to its simplicity of preparation, low-temperature encapsulation, 

 easy for immobilization, chemical inertness, tunable porosity, optical transparency, 
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 mechanical stability, and negligible swelling behavior [162]. 

 The two major advantages with a sol–gel system is that it can retain a large content of 

 water; this feature makes the encapsulated bio-recognition agents or enzyme catalytic 

 centers long-term stable and the process can be performed at room temperature [163] 

 Furthermore, the use of a porous matrix such as a sol–gel processed glass, where the size of 

 porosity can be tailored, offers the opportunity to introduce size-dependent specificity 

 toward analytes [164]. A disadvantage of this method is that the biomolecules are randomly 

 oriented. Therefore, many of them may have their active sites buried in the matrix, thus 

 unavailable. 

 The sol–gel process involves hydrolysis of alkoxide precursors under acidic or basic 

 conditions, followed by condensation and polycondensation of the hydroxylated units, 

 which leads to the formation of a porous gel. The resulted sol–gel is an interconnected rigid 

 network with pores of sub-micrometer dimensions and polymeric chains whose average 

 length is greater than a micrometer [165]. 

 The Sol–gel processed glass containing the entrapped biorecognition elements have been 

 used in the forms of films, coatings, or monoliths. In recent biosensor work, the surface of an 

 optical sensing element (fibre, waveguide, or a  surface plasmon resonance device) has 

 been coated by a sol–gel processed film [166].  

2.18 Numerical Method Analysis 

Advances made in modern device fabrication techniques and the continuous emergence of 

novel exotic materials has resulted in fibre and integrated optic waveguides and related 

components used in today’s optical biosensors having an intricate geometry and having 

materials with complex refractive indices. A robust and highly accurate simulation method is 

often required to address the challenges in defining and characterizing such waveguides and 
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devices. Defining and characterizing such waveguides can be performed with various methods 

which can be classified into analytical approximation solutions and numerical solutions 

through computer aided simulations. Analytical approximation solutions are very widely used 

in many applications for the determination of the propagation characteristics of various types 

of optical waveguides, with relatively simple geometry. Such solutions are the Marcatili 

Method [167], the Effective Index Method [168], and the Equivalent Network Method (ENM) 

[169].  

For three dimensional waveguides which are more commonly used in today’s photonics 

systems and circuits, analytical solutions in compact form are not always obtainable. In 

addition, the analytical solutions do not always treat the modes in complex waveguides as 

hybrid modes but rather as purely of a single polarization. For that reason their accuracies are 

sometimes questionable in certain cases. Whenever exact analytical solutions are not 

available, approximate methods are often sought. Most engineering problems involve the 

derivation of partial differential equations, relating the variables of interest, which are based 

on physics and engineering principles. The development of approximate methods for the 

numerical solution of partial differential equations has attracted the attention of 

mathematicians, physicists and engineers for a long time. There are number of approximate 

theoretical and numerical technique that could be used to determine the useful 

characteristics of propagation in waveguides. 

2.19 Numerical Approximation Solutions 
The numerical solutions of waveguides can be classified into two groups. These are the 

domain solutions, also known as differential solutions, in which the whole domain of the 

optical waveguide is considered as the operational area, and the boundary solutions, also 

known as integral solutions, which include only the boundaries as the operational area. The 

Variational Method (VM), the Finite Element Method (FEM), the Finite Difference Method 
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(FDM), and the Multilayer Approximation Method (MAM) are some of the most commonly 

used domain solutions, while, the Boundary Element Method (BEM), the Point Matching 

Method (PMM) and the Mode Matching Method (MMM), are typical boundary solutions 

[170]. 

Most of the numerical solutions are concerned with methods of finding a numerical solution 

to the Helmholtz’s wave equation, which can be derived directly from Maxwell’s equations 

and can be expressed as [171]: 

                        022 =+∇ ϕκϕ                (2.20)                         

Equation (2.20) is valid over the entire cross section of an arbitrarily shaped waveguide, 

bounded by the closed curve. The equation is also subject to boundary conditions which can 

be of both Dirichlet and Nuemann type. In Dirichlet type, the boundary condition is enforced 

by forcing Φ = 0 whereas for the Nuemann type this is enforced by ∂Φ/∂n = 0 where Φ is the 

corresponding field (E or H), k is the wavenumber and n is the normal unit vector. 

2.19.1 The Variational Method 
 In the variational approach, a field solution of the optical waveguide problem, usually 

 based on the wave equation is assumed, where the unknown parameters are chosen to 

 match the assumed field to the actual field solution. The above solution is then expressed in 

 integral form, in terms of a functional satisfying the boundary conditions of the problem. By 

 minimizing the expression, the stationary value of the functional about the correct solution, 

 with respect to small variation of the field values, is achieved. Then by using trial functions 

 to represent the field solutions, the integral equations are reduced to a set of linear 

 equations which can be solved by standard numerical techniques. The accuracy of the 

 results depends on the choice of the trial functions [172], which must be sufficiently 

 differentiable and satisfy the boundary conditions. The variational method forms the basis of 
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 other fundamental numerical techniques, such as the Finite-Element and the Finite-

 Difference methods, which are  discussed in the following sections. 

2.19.2 The Finite Difference Method 
The finite difference method (FDM) [173] is one of the most rigorous and perhaps the most 

commonly used numerical method used for the solution of boundary value problems. In FDM, 

a finite cross-section is defined by enclosing the optical waveguide under investigation in a 

rectangular box, where the side walls may be either electric or magnetic walls, in order to 

include coupled structures. At the boundaries of the enclosing rectangular box, the fields are 

assumed to be negligibly small therefore infinite elements with an associated decay factor can 

be introduced, to approximate the infinite exterior region. The cross-section of any non-

homogeneous optical waveguide is implemented by a rectangular grid, where it is essential 

that all the dielectric boundaries must lie on points of the above grid. By considering any 

arbitrary nodal point of the rectangular grid, the corresponding nodal field value can be 

expressed in terms of the neighbouring nodes, in the two transverse directions, by the five 

point formula of infinite differences, which is based on a Taylor series expansion. The 

Helmholtz wave equation (shown earlier in equation (2.20), or a variational expression, can 

be arranged into a set of two coupled wave equations, one for each transverse direction Hx 

and Hy, which can be discritized in the five point finite difference form. By imposing the correct 

continuity conditions of the fields between the adjacent cells of the grid, an eigenvalue matrix 

equation of the type [A]x - λ [B]x = 0, can be formed (where λ is the eigenvalue), which can be 

solved by using sparse matrix techniques.  

The main disadvantage of finite difference methods are the lack of geometrical flexibility in 

fitting irregular boundary shapes, and in concentrating points in regions of the solution 

domain where the variable changes rapidly. Moreover, using the finite difference methods 
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difficulties also arise in treating singular points and when any boundary or interface boundary 

does not coincide with constant coordinate surfaces. 

2.19.3 The Beam Propagation Method 
The research on integrated optical circuits (IOC) and optical planar devices has emerged from 

the necessity of calculating the propagation of a light wave in an optical circuit having an 

arbitrary refractive index distribution. This type of field propagation can be simulated 

numerically by the beam propagation method (BPM), an approach that was developed in 

underwater acoustics and seismology before it was adapted to optical waveguide problems 

by Feit and Fleck [174]. Since then, it has been widely used for analyzing the performance of 

a light beam propagated in an optical planar circuit that has a nearly stripelike waveguiding 

structure and in which the refractive index varies smoothly compared with the wavelength. 

The main features of the BPM are that the electromagnetic fields are Fourier transformed 

with respect to the direction normal to that of light propagation and that a stepwise method 

is used for successively calculating the electromagnetic field along the axial direction. 

In the BPM, the optical field is transported within one propagation step, from the transverse 

 plane at the longitudinal coordinate z, to the transverse plane at z + ∆z. Calculations are 

 performed, to relate the optical fields at the input and output planes, which are based on 

 the assumption that the dielectric profile within one step, ∆z, remains unchanged [188]. As 

 the optical field propagates through a medium, it is subject to diffraction due to its wave 

 nature, and the light rays of the wave experience a certain amount of phase shift, depending 

 on their x; y positions. The above influences can be applied one at a time, provided that the 

 space along the path is subdivided into very small sections, ∆z. By doing so, the continuous 

 medium can then be realized as a series of lenses separated by short sections of 

 homogeneous space, where the contribution of the lenses in the phase shift is expressed in 

 the solution of the wave equation. For computational purposes, the wave between the 
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 lenses can be decomposed into its spectrum of plane waves by applying a Fast Fourier 

 Transform (FFT) algorithm, and then it is reconstructed halfway, (∆z / 2), before the next 

 lens, by applying the inverse FFT. The above process is repeated for each section along the 

 whole propagation path. The propagation step size ∆z, which must be at most one 

 wavelength of the light beam, must ensure that the contribution of evanescent waves, 

 which are part of the plane wave, is negligible, and that the rays associated to the wave, 

 travel parallel to the z-axis, with minimum phase shift. 

The BPM is widely accepted as the most powerful method for the analysis of non-uniform 

structures but it is not as efficient as the methods specifically developed for the analysis of 

uniform structures, where discretization’s in both the transverse and the longitudinal plane 

are required [175]. To handle the discretization in the transverse plane, two-dimensional 

methods can be employed, such as the FDM [176] and the FEM [177]. The latter can be used 

in many devices, such as directional couplers, optical fibres, bent optical waveguides, Bragg 

and diffraction gratings, tapered optical waveguides and optical Y-junctions. It can also be 

used in conjunction with other numerical techniques such as the Fresnel approximation [178]. 

 

2.19.4 Finite Element Method 
The finite element method (FEM) has emerged as one of the most successful numerical 

methods for the analysis of waveguides from low frequency to microwave to optical region. It 

is indeed capable of solving waveguide of arbitrary refractive index distribution. In the work 

presented in this thesis, a full-vectorial H field based FEM has been used to characterise 

waveguides operating at terahertz frequencies. Such methods are capable of handling a wide 

range of inhomogenous problems with greater ease. It is also capable of solving anisotropic 

problems. In this approach, any waveguide cross-section can be divided into a patchwork of 

triangular elements, where the appropriated field components are approximated by 
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polynomial expressions over these elements. Each element can have different dielectric 

material, which may be, anisotropic, non-linear or lossy. The FEM, which is based on the Ritz-

Galerkin approach, converts a continuous system into a discretized model. By applying the 

variational principle [179] to the functional of the system, the problem reduces to a standard 

eigenvalue matrix equation [A]x - λ [B]x = 0, which can then be solved by using standard matrix 

solver algorithms. The FEM can be used effectively for the analysis of various optical 

waveguides, with any shape, including 2D and 3D optical waveguides, axisymmetrical and 

non- axisymmetrical optical fibre, and non-linear optical waveguides.  

The FEM is based on the same principles as the FDM, therefore a comparison of the two 

methods can be attempted. Although in the FDM simpler matrix eigenvalue equations are 

formed, which are formulated with less computer programming, less computer memory 

storage and execution time, and the solution is free of spurious modes (Hx - Hy formulation), 

the above approach cannot be easily applied to structures with odd-shaped boundaries. The 

triangular elements used in the FEM can give a better fit to such structures and also the change 

of the density or the order of the elements, in regions where there is more rapid field 

variation, is performed more easily with the FEM. Additionally, in the FEM, the field is defined 

explicitly everywhere and this makes for easier manipulation, such as when evaluating spatial 

derivatives to give related fields [180]. 

 2.20 Summary 
This Chapter serves as the background knowledge of biosensors. The  discussion started with 

underlying principle of evanescent wave sensing phenomenon and performance criterion of 

optical biosensors including sensitivity, detection limit and sensor cost. The sensitivity is an 

important parameter to evaluate the sensor performance. The design goal for achieving high 

sensitivity is to produce a structure that allows as much of the field as possible to reside in the 

sensing medium. For this reason various architectures of optical biosensors are elaborated 
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that allowed interaction of guided mode with the sensing medium so that the minimum 

detectable change in the sensing medium changes the effective refractive index of mode and 

thus to a change of the output signal. Interface between the sensor surface and the chemical 

or a biological system is a key component of the optical biosensors. The physical and chemical 

properties of the interface play an important role in achieving optimal recognition of the 

target and limiting the nonspecific adsorption. Bioreceptors such as enzymes, antibodies, 

nucleic acids, proteins, peptides and carbohydrates, surface chemistry and strategies to 

immobilize bioreceptors on the functionalized surface are discussed. The performance of a 

biosensor comes from its ability to immobilize receptors while maintaining their natural 

activity, the bioavailability of the receptors to targets in solution and a low nonspecific 

adsorption to the solid support. These specifications govern the specificity and sensitivity of 

such devices and can be tailored by an appropriate choice of the interface where the 

bioreceptors are immobilized. 
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3 
 METHODOLOGY 

 

3.1 Introduction 

Computer simulation provides an easy way to predict the optical behaviour, optimize the 

biosensor’s performance and understand the physical principles behind the observed 

phenomenon in experiment. Biosensor modelling and simulation is a rich source of 

mathematical challenge. The main components of biosensors are based on well-understood 

physical processes as well as chemical and biological reactions, all of which are amenable to 

mathematical modelling using ordinary and partial differential equations. Finite Element 

Methods are well suited for solving partial differential equations. The objective of this chapter 

is to provide a foundation for mathematical and computational modelling of label free optical 

biosensors through the Finite Element Method with a view to optimising their design process. 

This chapter first describes simulation tool and parameters of optical biosensors then 

theoretical background of the Finite Element Method based on variational principle is 

presented. 

3.2 Simulation tool and modelling parameters 
FORTRAN programming is used to carry out the numerical modelling and simulation of optical 

biosensors. The Finite Element Method formulation of optical biosensor structures is applied 

in the program to perform modal analysis of these structures. The program includes mesh 

generation subroutine, finite element discretization for optical waveguides, assignment of 
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nodes, elements, and material index, boundary nodes for each layer, complex refractive index, 

transformation from polar to rectangular coordinates, material variation in the azimuthal 

generation, implementation of differential Maxwell’s equations, numerical equation for 

calculating modal parameters, input of waveguide and biomolecular parameters and 

generating 2-D and 3-D modal field profiles. 

The parameters used for modelling of label-free optical biosensors are shown below in the 

tabular form including waveguide parameters, device parameters, modal parameters and 

biomolecular parameters. The Finite Element Method based numerical technique is used to 

analyse the effects of waveguide and biomolecular parameters by varying and resolving the 

problem repeatedly, while an appropriate output metric such as modal and device parameters 

are recorded. Graphs are built relating the parameters to the results, from which optimum 

parameters are picked with fabrication limitations taken into consideration. 

Waveguide Parameters Device Parameters Biomolecular Parameters Modal Parameters 

guide width 

guide height 

slot width 

fibre diameter 

thickness of metal 

length  

bending radius 

device sensitivity 

detection limit 

coupling length 

RI of biomolecules 

thickness of biolayer 

thickness of linker 

thickness of DNA 

thickness of E.coli 

propagation 

constant 

effective index 

attenuation constant 

power confinement 

wavelength shift 

Table 3.1: modelling parameters of label-free optical biosensors 

3.3 Theoretical Background 

Mathematically, the FEM is a numerical technique for obtaining approximate solutions to 

boundary-value problems, and it is the extension of two classical methods, the Raleigh-Ritz 

variational method, and the Galerkin method of weighted residuals. A boundary value 

problem can be defined by a governing differential equation in a domain, together with the 
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boundary conditions on the boundary that encloses the domain. In the variational approach 

the boundary-problem is formulated in terms of variational expressions, referred to as 

functionals, whose minimum corresponds to the governing differential equation. The 

approximate solution is obtained by minimising the functional with respect to its variables 

[181]. The Galerkin method is based on the method of weighted residuals [180], in which the 

domain of the differential equation is discretized, and the solution is approximated by the 

summation of the unknown solutions for each subdomain weighted by known functions, 

relating them to the domain. The overall solution is obtained by minimising the error residual 

of the differential equation.  

Research on the application of the FEM to electromagnetic-wave engineering began during 

the last years of the 1960’s and since then, with the availability of larger and faster computers, 

it has been established as a very powerful tool dealing with the analysis of optical waveguides, 

particularly structures with arbitrary shapes, index profiles nonlinearities and anisotropies. 

A cross section of an arbitrarily shaped optical waveguide, Ω, in the x-y transverse plane, as 

shown in Figure 3.1, is considered, divided into a number of sub-domains, called elements, 

being composed of several different materials, each of which can be described by arbitrary 

permittivity and permeability tensors, ε(x,y) and µ(x,y) respectively. A uniform shape of the 

waveguide along the longitudinal z-axis, is assumed and time and axial dependencies are given 

by exp(jωt) and exp(-γz), where, ω is the angular frequency and the complex propagation 

constant, γ, given by: 

                                                         jβαγ +=                 (3.1) 

where α (Np/m) is the attenuation constant and β (rad/m) is the phase constant. 
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Figure.3.1 Arbitrarily shaped optical waveguide, divided into arbitrary sub-domains, each having 
different type of material. 

For the loss-free case the propagation constant is considered to be equal to the phase 

constant, jβ. The electric, E(x,y,z,t), and the magnetic, H(x,y,z,t) fields over the region of the 

waveguide can be expressed by: 

                              (3.2) 

                             (3.3) 

 

where H(x,y) and E(x,y), are the spatial time-independent electric and magnetic fields 

respectively. 

3.3.1 Basic Equations 

For the application of the FEM in the analysis of optical waveguide problems, some 

fundamental electromagnetic field equations should be considered, such as the Maxwell’s 

equations, the boundary conditions and the Helmholtz’s wave equations. 
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3.3.1.1 Maxwell’s Equations 

Maxwell’s equations comprise a set of four electromagnetic field vectors, which represent the 

governing laws of the electromagnetic wave phenomena. The four vectors are: the electric 

field intensity E (Volts/meter), the magnetic field intensity H (Amperes/meter), the electric 

flux density D (Coulomb/meter2) and the magnetic flux density B (Tesla). For source-free, time 

dependent fields they can be written in differential or integral form. Since, the FEM is a 

boundary-value problem which is defined by differential equations, Maxwell’s equations are 

presented in differential form as follows: 

 

 
0

t 
B E =+×∇

∂
∂   (Faraday’s law)  (3.4) 

0
t 
D H =−×∇

∂
∂   (Maxwell-Ampere law) (3.5) 

                                                    

                                         ρD =⋅∇              (Gauss’s law)           (3.6) 

 

 0B =⋅∇   (Gauss’s law-magnetic) (3.7) 

 

where ρ, is the (scalar) electric charge density (Coulomb/meter3). 

 

The associated constitutive equations for the medium can be written as: 

                εED =                                                                              (3.8) 
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                                                                               μHB =                                                                        (3.9) 

 

where ε, is the permittivity and µ the permeability of the medium and can be defined by: 

                                                           r0εεε =                                                                          (3.10) 

 

                       r0μμμ =                                                                        (3.11) 

where ε0, εr, µ0, µr are the permittivity of the vacuum (8.854 x10-12 Farad/meter) , the relative 

permittivity of the medium, the permeability of the vacuum (4π x 10-7 Henry/meter) and the 

relative permeability of the medium respectively. 

Additionally, the flow of energy carried by an electromagnetic field is expressed by the 

Poynting vector S (W/m2) and can be expressed by: 

                            HES ×=                                                       (3.12) 

3.3.1.2 Boundary Conditions 

Boundary conditions are conditions that must be met at the boundary surface when two 

different media 1 and 2 come into contact. If the unit normal vector n, is directed from 

medium 1 to medium 2, as shown in Figure 2.2, in the absence of any surface currents (J=0) 

and surface charges (ρ=0), the following boundary conditions apply: 

1) The tangential component of the electric field must be continuous 

                    0)E(En 21 =−×                                                       (3.13)  
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2) The tangential component of the magnetic field must be continuous    

    0)H(Hn 21 =−×                                                      (3.14) 

3) The normal component of the electric flux must be continuous    

    0)Dn.(D 21 =−                                                   (3.15) 

4) The normal component of the magnetic flux density must be continuous 

     0)Bn.(B 21 =−                                                     (3.16) 

 

 

 

 

 

Figure.3.2 Boundary between two media of refractive indices n1 and n2, where n, is the unit 
 vector normal to the interface. 

In certain cases, one of the two media can be considered, either as a perfect electric conductor 

or a perfect magnetic conductor. When one of the two media becomes a perfect electric 

conductor, an electric wall boundary condition is imposed as: 

   0En =×     or       0n.H =                     (3.17) 

Such condition ensures the continuity of the normal component of the electric field vector, E, 

and vanishes the magnetic field vector, H, at the boundary. When one of the two media 

becomes a perfect magnetic conductor, a magnetic wall boundary condition is imposed as:

   0Hn =×      or      0n.E =                  (3.18) 

n 

 

 

222 ,, HEn  

111 ,, HEn  

medium2 

medium1 
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The above condition, vanishes the electric field vector, E, and ensures the continuity of the 

normal component of the magnetic field at the boundary. 

3.3.1.3 Natural and Forced Boundary Conditions 

In the case of a closed surface, such as the boundary of an optical waveguide, additional 

boundary conditions are considered. These boundary conditions can be natural, in cases 

where the field decays at the boundary, therefore they can be left free. In some other cases 

they can be forced, in order to take advantage of the symmetry of a waveguide, to reduce the 

number of elements in FEM (and the order of the matrices), or to impose complementary 

symmetry to the waveguide, in order to achieve the required polarization. The above 

boundary conditions can be classified as follows [180]: 

     0=ϕ             (Homogeneous Dirichlet)                    (3.19) 

     κ=ϕ            (Inhomogeneous Dirichlet)                  (3.20) 

 

where ϕ can be the Electric (E), or Magnetic (H) field, and k is a prescribed constant value. 

                               0n/ =∂∂ϕ              (Homogeneous Neumann)               (3.21) 

where n is the unit vector normal to the surface. 

The Neumann boundary conditions represents the rate of change of the field when is directed 

out of the surface, and it can be used in the FEM to impose the field decay along finite-

elements, adjacent to the boundary elements of a waveguide structure. 
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3.3.1.4 Wave Equations 

In an isotropic lossless medium with no wave source (J=0, ρ=0), with uniform permeability 

µ=µ0, and uniform and constant permittivity, by eliminating the magnetic flux density in and 

the electric flux density components from Maxwell’s equations, (3.5) and (3.6) respectively, 

these can be written as : 

                 0EκE 22 =+∇                                            (3.22) 

     0HκH 22 =+∇                                      (3.23)

  

where the wavenumber, k (rad/m) is 

                             0εμωκ =                                                   (3.24) 

If ε=ε0, then the wavenumber k0, is called free space wavenumber and is defined by: 

                                         000 μεωκ =                                                       (3.25)

   

Equations (3.22) and (3.23) are known as vector Helmholtz wave equations [181] for 

homogeneous media, and in addition to the physical solutions, they also support non-physical, 

spurious solutions, since the condition ∇.H=0, is not satisfied. 

In a rectangular coordinate system, if only one component of the electric or magnetic field is 

considered, suppose Ex, vector Helmholtz wave equation can lead to the scalar Helmholtz 

wave equation as [171]: 

                          0EκE x
2

x
2 =+∇                         (3.26) 
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3.4 Variational Formulations 

The finite-element formulation is based on the variational or Raleigh-Ritz approach, therefore, 

several variational formulations have been proposed for the analysis of the optical waveguide 

problem. These can be in a scalar form [182], where the Electric or Magnetic field is expressed 

only in terms of one component, according to the predominant field component, or, can be 

in vector form, where the Electric or Magnetic field is expressed in terms of at least two of the 

constituent field components. 

It should be noted that most of the formulations applied in the finite element method, yield 

to a standard eigenvalue problem: 

                               0}λ[B]{}[A]{ =×−x              (3.27)             

where A and B are real symmetric sparse matrices, and B is also positive definite. The 

eigenvalue λ, can be chosen as β2 or k2, depending on the formulation, and the eigenvalues 

represent the nodal field values of the finite-elements. It is desirable for the above matrix 

equation to be of this canonical form, to allow an efficient solution. 

3.4.1 Scalar approximation 

Scalar approximation can be applied in situations where the field can be described as 

predominantly TE or TM and it can be expressed in terms of the longitudinal components of 

the above modes. It has been used for the solution of homogeneous waveguide problems 

[183], open boundary problems [184], and for the analysis of anisotropic waveguides [185]. 

For the quasi-TE modes over a region Ω, where the dominant field component is Ex, the 

formulation can be written as [183]: 
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∂
∂

∂
∂              (3.28) 

where, β is the propagation constant and n is the refractive index. For the quasi-TM modes, 

 where Hx is the dominant field component, the formulation can be written as [183]: 

  

  ∫∫
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
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111

∂
∂

∂
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            (3.29) 

3.4.2 Vector formulations 

The scalar formulation is inadequate to handle general anisotropic or inhomogeneous 

problems and it can be used only as an approximation in such cases. For a more accurate 

representation of general waveguide fields, a vector formulation, with at least two 

components is essential. Several vector formulations dealing with optical waveguide problems 

have been proposed by many authors. However, some of them are affected by non-physical 

spurious solutions, which appear mixed with the correct ones in the computations, and 

therefore several methods have also been proposed to overcome such problems. 

The Ez-Hz formulation which is one of the first formulations used in finite-element analysis 

[183] , [185] cannot treat general anisotropic problems without destroying the canonical form 

of the eigenvalue equation (3.27), and also some problems arise in enforcing boundary 

conditions for a waveguide with an arbitrary dielectric distribution. Additionally, this approach 

is based on the axial field components which are the least important of the E and H fields. 

A vector E-field formulation [186], [187], [188]  which can handle general anisotropy, but loss-

less problems, has also been applied to the solution of several types of optical waveguides. 

For such a formulation, the natural boundary conditions correspond to a magnetic wall, and 
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therefore it is essential to enforce the electric wall (n×E=0) as a boundary condition, which is 

difficult to implement for irregular shaped structures. 

The vector H-field formulation is more suitable for dielectric waveguide problems, because 

the magnetic field is continuous everywhere, and the natural boundary conditions  

correspond to those of the electric wall, therefore no forced boundary conditions at the 

boundaries are required. This formulation can be written as [189], [190]: 

                                    
( ) ( )

∫
∫ ×∇×∇

=
−

.HdΩμ̂.*H

dΩH.ε̂.*H
ω

1
2                             (3.30) 

where ω, is the natural frequency, Ω is the waveguide cross-section and εand µ are the 

permittivity and permeability tensors respectively. To obtain the stationary solution of the 

functional (3.30), the expression is minimised with respect to each of the variables, which are 

the unknown nodal field components Hx, Hy and Hz. This minimisation leads to a matrix 

eigenvalue equation as stated in equation (3.27), where [A] is a complex hermitian matrix and 

[B] is a real symmetric and positive-definite matrix. Because of the general 900 phase 

difference between the axial and transverse components of H [191] the Hermitian matrix [A] 

can be transformed to a real symmetric matrix for a loss-less problem. In general, the matrices 

[A] and [B] are quite sparse. The eigenvectors {x} represents the unknown field components 

at the nodal points for different modes with λ as their corresponding eigenvalues and also λ 

is proportional to ω2. In order to obtain a solution for a given wavelength, the propagation 

constant, β value has to be changed iteratively until the output eigenvalue corresponds to 

that wavelength. By varying β over the range of interest, it is possible to calculate the 

dispersion characteristics for the various modes. 

However, the above formulation (as well as the E-field), yields spurious solutions, because the 

divergence condition, ∇.H=0 is not satisfied, therefore alternative approaches, such as the 
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penalty coefficient method [190], [192] have been proposed to eliminate those non-physical 

solutions. This method will be discussed in a later section. 

3.4.3 Natural Boundary Conditions 

The term natural boundary condition arises in the calculus of variations, and since the finite 

element method is fundamentally one of minimisation of an error functional, the term arises 

also in this context. The boundary condition, which is automatically satisfied in the variational 

procedure, is called the `natural boundary condition'. In variational formulations these can be 

automatically satisfied, if left free. The scalar functional defined earlier in equation (3.28) has 

the continuity of ∂Ex/∂n as the natural boundary condition, and the functional defined in 

equation (3.29) has the continuity (1/n2) (∂Hx/ ∂n) as the natural boundary condition, where 

n is the outward normal unit vector. The vector H-field formulation described in equation 

(3.30), has the natural boundary condition of an electric wall, i.e. n · H = 0. Therefore there is 

no need to force any boundary condition on conducting guide walls. But for regular shaped 

waveguides and at the symmetric walls (if applicable) the natural boundary condition can be 

imposed to reduce the matrix problem size. However, it may be necessary to analyse the 

structure with complementary symmetry conditions to obtain all the modes, although the 

exploitation of the symmetry greatly reduces the computational cost. 

The key to using the finite element method is to find the solution of a complicated problem 

by replacing it with a simpler one. The differential operator equations which describe the 

physical problem are replaced by an appropriate extremum functional J, which is the 

variational for the desired quantity. The problem can be regarded as obtaining the solution H 

over a specified region in the transverse plane so that the boundary conditions and also the 

extremum requirement are satisfied. The axial dependence is assumed in the form e-jβz, and 

the transverse plane is used for the discretisation.                                                                                 
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Figure 3.3: Finite elements in two-dimension 

         3.5.1 Domain Discretisation 

The discretisation of the domain into sub-regions (finite elements) is considered as the initial 

in the finite element method. The shapes, sizes, number and configurations of the elements 

have to be chosen carefully such that the original body or domain is simulated as closely as 

possible without increasing the computational effort needed for the solution. Each element is 

essentially a simple unit within which the unknown can be described in a simple manner. 

There are various types of elements available for use in finite element formulations. These 

elements can be defined to be as one, two and three dimensional elements. When the 

geometry and material properties can be described in terms of only one spatial coordinate, 

then a one-dimensional element can be used. However, when the configuration and other 

details of the problem can be described in terms of two independent spatial coordinates, the 

two-dimensional elements shown in Figure 3.3 can be used. The simplest and indeed the most 

basic element typically considered for two-dimensional analysis is the triangular element. The 

size of the element also dictates the accuracy of the final solution as the higher order elements 
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tend to provide more accurate solutions. A typical representation of an arbitrary waveguide 

structure using triangular elements is shown in Figure 3.4. By dividing the waveguide cross 

section into triangular elements, the unknown H             

                        y 

 

                                             x                                                                                   

Figure 3.4: Finite element discretisation of a waveguide with triangular elements 

is discretised into corresponding sub-regions. These elements are easier to analyse rather 

than analysing the distribution over the whole cross section. As shown in Figure 3.4, the 

transverse plane is covered with a grid of discrete nodes which are the vertices of each 

triangular element. The values of H at these nodal points are the basic unknowns. The 

intersections of the sides of the triangular elements are called the nodal lines. 

3.5.2 Shape Functions 

In two-dimensional problems, the element assumes a linear interpolation between the field 

values at the vertices of the triangle. Within each element the unknown field H, is 

approximated by means of suitably chosen set of polynomials. These functions are called 

shape functions. For a simple triangular element the interpolation polynomial should include 

a constant term and both the x and y terms rather than only one of them. The field variable 
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representation within an element should not alter the local co-ordinate system. In order to 

achieve this geometric isotropy, the polynomial should be complete according to Pascal’s 

triangle as shown in Figure 3.5. The final consideration in selecting the order of the 

interpolation polynomial is to make the total number  

 

Figure 3.5: Pascal’s triangle for complete polynomials in two dimensions 

of terms in the polynomial equal to the number of nodal degrees of freedom of the element. 

For example, the first degree polynomial involves three coefficients and so can be expressed 

in terms of three nodal values at the triangle vertices. The second degree polynomial needs 

six coefficients and can similarly be expressed in terms of values of six nodes as shown in 

Figure 3.5. 

The continuous field function Φ(x, y) in the problem domain may be replaced by a set of 

 discrete values (Φi, i = 1, 2, 3 ..... m), where m is the total number of nodes. This  function will 

 be continuous across the triangles. To be admissible functions, there must be some specific 

 conditions between the elements usually the continuity of the field across the boundaries is 

 preferred. A typical first order triangular element used in finite element discretisation is 

 shown in Figure 3.6. 
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Figure 3.6: Representation of a first order triangular element 

Inside each first oder element, the nodal field values Φ is interpolated continuously. This can 

be achieved by introducing the interpolation functions, Ni(x, y). Thus, using the interpolation 

functions, the elemental field values can be written as: 

                                ∑
=

=
3

1i
iie y).(x,Ny)(x, ϕϕ           (3.31) 

                                                                                                

where Φi are the nodal field values. The functions Ni(x, y) are called `shape functions'. 

 Equation (3.31) can also be written in matrix form as: 

                            















=

3

2

1

321e ]NN[Ny)(x,
ϕ
ϕ
ϕ

ϕ               (3.32) 

                                                 

                                                 }[N]{y)(x, ee ϕϕ =                                        (3.33) 
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where [N] is the shape function matrix and the column vector {Φe} is vector corresponding to 

the field values at the 3 vertices of the triangular element. In order to obtain the shape 

functions, Ni(x,y) (where i = 1; 2; 3), a linear approximation of the of the field inside the 

element must be performed: 

                                yαxααy)(x, 321e ++=ϕ               (3.34) 

                                                                 

for which α1, α2 and α3 are constants. By re-writing the above relation, such that the 

 following conditions are satisfied: 

                                      iiie )y,(x ϕϕ =  3,2,1=i            (3.35) 

                                                       

where (xi, yi) (i = 1; 2; 3) are the global co-ordinates of the three vertices of the triangle. Hence 

the nodal field values Φi can be expressed as: 

             1312111e1 yαxαα)y,(x ++==ϕϕ  

                                              2322122e2 yαxαα)y,(x ++==ϕϕ    

                                                                  3332133e3 yαxαα)y,(x ++==ϕϕ                                (3.36)                                            

This can also be written in the matrix form as: 

                                    





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






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






=

















3

2

1

33

22

11

3

2

1

α
α
α

yx1
yx1
yx1

ϕ
ϕ
ϕ

                                (3.37)           
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By solving the above matrix, the constants α1, α2, α3 can be determined in terms of Φi; i = 1, 

2, 3: 

                                 [ ])yxy(x)yxy(x)yxy(x
2A

1α 122133113223321
e

1 −+−+−= ϕϕϕ  

                               [ ])y(y)y(y)y(y
2A

1α 213132321
e

2 −+−+−= ϕϕϕ  

                                                     [ ])x(x)x(x)x(x
2A

1α 123312231
e

3 −+−+−= ϕϕϕ                    (3.38) 

Where Ae is the area of the triangular element given by:  

 

           (3.39)                  

Substituting the values of αi from equation (3.38) into equation (3.34) results in the formation 

of the following equation: 

             332211e y).φ(x,Ny).φ(x,Ny).φ(x,Ny)(x,φ ++=  

                                                    }[N]{φy)(x,φ ee =∴                                                                              (3.40) 

 The above relation has close resemblance to the matrix relation given earlier in equation

 (3.33) and Ni(x,y) i = 1, 2, 3 are shape functions given by the matrix notation [180]: 
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y
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xxyyyxyx
xxyyyxyx
xxyyyxyx

2A
1

N
N
N

[N]

12211221

31133113

23322332

e
3

2

1
T                    (3.41) 

                 Where N1, N2 and N3 are the three nodal points of the triangular element and NT denotes a 

 transpose of the N matrix. The shape function matrix can also be re-written as: 

)xy(x)yxy(x)yxy(x
2
1

yx1
yx1
yx1

2
1Α 122131132332

33

22

11

e y−+−+−=















=
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                           (3.42)  

 

and ai , bi, ci (i = 1; 2; 3) are the constants calculated as: 

                                                        
e

2332
1 2A

yxyxa −
=  

                                                       
e

32
1 2A

yyb −
=  

                    
e

23
1 2A

xxc −
=                 (3.43)                                                                

Similarly a2, b2, c2, a3, b3 and c3, can be calculated by cyclic exchange of 1  2  3 in equation 

(3.43). The shape functions Ni can also be expressed in terms of the areas of the triangle shown 

earlier in Figure 3.6 as: 

                       
23

23
i 1  trianglesub ofarea 

 P trianglesub ofarea N =               (3.44)                                                  

Similarly N2 and N3 can be defined in the same way. Hence, Ni has the following property: 

      ∑
=

=
3

1i
i 1N                                                                 (3.45)                                                                              

Thus evaluating the shape function N1 gives a value of 1 at the node 1(x1, y1), whereas at nodes 

2 and 3 a value of 0 is obtained. Hence it is the unique first degree interpolation function for 

node 1. Similarly the shape functions N2 and N3 gives a value of 1 at nodes 2 and 3 respectively 

and - at other nodes. 
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3.5.3   Global and Element Matrics 

The solution of the optical waveguide problem by the FEM can be transformed to a standard 

eigenvalue problem as in equation (3.27) where matrices [A] and [B] are known as global 

matrices and consist of the summation of the element matrices for each triangular element 

of the discretised cross-section of the optical waveguide.  In this section, the assembly of the 

element and global matrices is shown, with respect to the shape functions and the nodal field 

values of each triangular element, based on the variational formulation. Throughout the 

procedure, the full H-field formulation in terms of the three axial components is assumed and 

first-order triangular elements are being used.  Within each of the triangular elements the 

three unknown field H-components Hx, Hy and Hz of the magnetic field can be represented 

as following: 
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where Hxi, Hyi and Hzi   for i = 1, 2, 3 are the x, y and z components of the nodal magnetic  

fields.   Hence the magnetic  field  over the  element  [H]e  can be described as:                
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(3.47) 

In a more compact form, the above equation (3.46) can be written as: 

                [ ] [ ]{ }eHNeH =                              (3.48) 

Where {H}e  is the column vector representing the three components of the nodal field values 

in the element  and [N]  is  the  shape function  matrix.   Also using equation (3.48), the curl of 

H equation can be written as: 
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                Where the matrix [Q] can be written as: 
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Where [0] = [0  0  0] and [N] = [N1  N2  N3] and the some of the shape  function derivatives 

are substituted using equation (3.43) as shown: 

                  
3
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(3.51) 

 

the values of the constants  b1, b2, b3, c1, c2  and c3  were given earlier in equation (3.43). By 

substituting the expressions shown in equations (3.48) and (3.49) in to the variational 

formulation of equation (3.30), the vector H-field formulation functional for an element can 

be obtained as: 
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(3.52) 

 

Re-arranging the last part of the above equation (3.52), the following can be obtained: 

                                                     Ω [N]{H}d μ[N]{H}ωΩ d  [Q]{H} .ε . [Q]{H}J
^

TT
eΔ

2
e
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where ∆ represents the integration over the triangular element domain. T and * denote the 

transpose of a matrix and the complex conjugate transpose, respectively. The [Q] matrix was 

defined earlier in equation (3.49). A transpose operation on this matrix would define the [Q]* 

matrix.  For isotropic material, the relative permittivity is a scalar quantity. For waveguides 

consisting of anisotropic material the relative permittivity can be taken as a tensor 

represented by a 3 x 3 matrix and the inverse of the matrix should be implemented. The total 

function, J, associated with the whole cross section of the waveguide can be obtained by 

summing Je of all the individual elements as: 

                                    ∑
=

=
n

1e
eJJ                                                                       (3.54)

     

                where n is the number of elements. 

The minimisation of the functional given in equation (3.54) can be performed by 

differentiating with respect to the field nodal values and equating it to zero as below: 

                                                                                    0
{H}

J

e

=
∂
∂

                                                                   (3.55) 

            Thus the following relation can be obtained: 
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∂             (3.56)             

                    0e{H} . [N]dΩTμ[N]Δ
2ωe{H} . dΩ [Q]

^-1     
ε*[Q] Δ =∫−∫∴  

           Thus the following eigenvalue equation can be obtained: 

                                                            0[B]{H}ω[A]{H} 2 =−                                                             (3.57) 
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           where the matrices [A] and [B] can be defined as: 
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(3.58) 

Matrix {H} contains all the H-field nodal values over the whole cross section of the waveguide 

considered. [A]e  and [B]e  represent the element matrices whose assemblage over the whole 

cross section result in formation of the so called global matrices  of the eigenvalue equation,  

given  by [A] and [B],  respectively.  

When solving waveguide problems by using finite elements, the key factor affecting storage 

requirements and computational effort is the choice of algorithm to solve the matrix equation.  

The global matrices [A] and [B] shown in equation (3.58) are highly sparse.  The sparsity 

increases with the order of the matrices and decreases with the polynomial order of the shape 

functions. It is obvious that using higher order basis functions, one may obtain a more accurate 

solution of the problem under consideration.  However, the added disadvantage to that is that 

the process involves increasing programming effort, particularly when considering waveguide 

problems with material anisotropy, infinite elements and penalty functions.  In addition to 

that using higher order polynomials for a given matrix order increases the density of the matrix 

although this can be handled with reasonable effort by using a sophisticated matrix solver. 

3.5.4 Spurious Solution 

The usage of vector formulations in analysing waveguide problems, results in generating some 

non-physical, spurious solutions along with the physical solutions of the system. Spurious 

solutions may evolve due to several reasons such as: (i) enforcement of boundary condition 

(ii) positive definiteness of the operator and (iii) non-zero divergence of the trial fields. In the 
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H-field formulation, the associated  Euler  equation  is  consistent  with  the  two  curl Maxwell’s  

equations (3.4), (3.5), but does satisfy the 0B =⋅∇  condition which may be the 

reason behind the appearance of spurious modes [190]. 

The identification of the spurious modes amongst the physical modes can be difficult, when a 

set of eigenmodes is computed. Sometimes spurious modes can be spotted, from their 

dispersion curves, or by their eigenvectors, where the field varies in an unreasonable, 

sometimes in a random way along the cross section of the waveguide.  Rahman and Davies 

[192] have developed a procedure which gives a reasonable identification of the spurious 

modes.   In the above approach, the divergence of the magnetic field, 0H =⋅∇ , is calculated 

for each eigenvector, and when the value obtained is high, it is assumed that the eigenmode 

does not satisfy the divergence condition, and therefore it is a spurious mode. 

Several approaches have been used, most of them aiming to force the condition 0H =⋅∇ , 

which is considered the main cause of spurious modes.   In the method developed by Rahman 

and Davies [192] an integral is added the H-field formulation, so that the resulting Euler 

equation is the Helmholtz equation, plus the 0B =⋅∇  condition. The variational formulation 

then becomes as [190, 192]: 

                               ∫
∫ ∫

⋅

⋅∇⋅∇+×∇×∇
=

μH)dΩ(H

H)dΩ(H)(
ε
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ω
*

*

0

*

2                          (3.59) 

where α is the dimensionless penalty factor.  The value of α is often taken to be around
nε

1

where εn is the dielectric constant of the core of the waveguide. In this method the divergence 

free constraint is imposed in a least-squared sense and larger the penalty factor the more 

heavily the constraint is implemented giving a further reduction of the spurious modes from 
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the spectrum. The penalty function also improves the quality of the eigenvectors without 

increasing the order of the matrix in the eigenvalue problem. 

3.6 Summary 

The aim of this chapter was to present a theoretical background of the Finite Element Method 

based on variational principle to perform modal analysis of various waveguide structures.  The 

properties of various numerical methods often used in analysing waveguide problems have 

been examined.  An elaborate mathematical description is given for the vector H-field based 

FEM formulation. Several aspects  of the  method  such  as the boundary conditions, shape 

functions and methods aimed at eliminating spurious solutions has been extensively analysed. 

This chapter thus serves as the underlying principle of the numerical method used to analyse 

waveguides used in optical biosensing of which will be presented in the subsequent chapters. 
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4 
METAL CLAD OPTICAL BIOSENSORS 

 
 4.1 Label-free detection of Escherichia Coli (E.coli) 

This chapter starts with characterization of a biosensor using the finite element based 

numerical tools for detection of specific E.coli strain.  Most of the E.coli detection systems use 

a reporter method to determine if two or more molecules interact.  As a result, these 

conventional methods of pathogen detection require a number of time consuming steps to 

achieve at a useable measurement. However, the development and use of more effective 

biosensor technology could significantly reduce this time, as well as allow the detection of 

even smaller amounts  of pathogens with fewer false positives.  Today optical methods are 

widely used to study the interaction of molecules in fields ranging from genomics to 

biophysics.   

 Escherichia Coli (E.Coli) have emerged as an important enteric pathogen posing a 

 tremendous challenge to public health. Illnesses caused by E.Coli can range from mild, 

 watery diarrhoea to life threatening conditions, such as haemolytic uremic syndrome and 

 haemorrhagic colitis [193].   

E.Coli is a bacterium that commonly lives in the intestines of people and animals. The organism 

can be found on a small number of cattle farms and can live in the intestines of healthy cattle. 

Meat can become contaminated during slaughter, and organisms can be thoroughly mixed 
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into when it is ground. Bacteria present on the cow's udders or on equipment may get into 

raw milk [194-197].  

Several optical sensing mechanisms have been proposed and developed so far in particular 

surface plasmon resonance has been exploited for the detection of pathogens. The surface 

plasmon resonance based sensors when compared to other biosensing techniques offer high 

degree of sensitivity, no labelling of biomolecules, real-time measurement of kinetics of 

biomolecular interaction, and immunity from electromagnetic interference [193-199].   

 Although, SPR in Planar structure can be more compact and integrable with other photonic 

 devices, however, Fibre based sensors would be easy to fabricate and overall cheaper. The 

 Fibre optic biosensors are easily miniaturized and integrated for the determination of 

 different target compounds in a wide variety of application fields. The Fibre optic sensors 

 consume less analyte, smaller in size, occupy less space, light in weight, more durable and 

 have greater geometry versatility, hence, so less expensive. They also provide numerous 

 ways of performing the rapid, remote, in-line and on-line determination of a lot types of 

 analytes in a wide range of application fields. 

In the present work, the H-field Finite Element Method (FEM)-based full-vector formulation 

in conjunction with the perturbation technique is used for the solution of the metal-clad fibre 

modes, where the transverse and longitudinal magnetic field components are analyzed with 

respect to the rectangular coordinates. Therefore, the optical fibre modes are initially 

presented in terms of the transverse magnetic field components, Hx
mn and Hy

mn, as commonly 

used for integrated optical waveguide problems, where the m and n subscripts denote the 

field maxima along the x- and the y-axes, respectively. As an example of this notation, the Hy
mn 

mode (also known as the quasi-TE mode) indicates that the Hy (or Ex) field is dominant 

compared to the non-dominant Hx (or Ey) field component. 
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The transverse and longitudinal magnetic field components only excite the surface plasmon 

waves. Excitation occurs when the surface plasmon waves and the TM modes are phase 

matched, resulting in a coupled wave system. 

 4.1.1 Modal Solution  

The key modal parameters in the design of any waveguide are their propagation constants, 

confinement factor, loss coefficients and the modal field profiles.  First of all it is essential to 

develop modal solution approach, which can provide this information for practical optical 

waveguides with arbitrary shape, size, and material profile.  Practical metallic conductors are 

not perfect conductors and hence suffer significant loss of the electromagnetic waves, and 

therefore, the modelling of loss in the analysis of optical waveguides, incorporating metallic 

films and the interaction of the metallic films with dielectric materials in order to 

accommodate guided waves, is considered to be important for the accurate design of various 

biosensor devices.  As surface plasmon technology has reached maturity, the associated 

devices have, themselves, become more complex.  The optimisation of such advanced devices 

requires the accurate characterisation of their lightwave propagation characteristics. 

Unfortunately analytical methods are not adequate to model these advanced sensing devices 

without significant approximation. Only the simplest planar waveguides can be analyzed by 

solving their corresponding transcendental equations, which are developed by applying field 

continuity conditions at the interface boundaries. Even then, it is not possible to find a closed-

form solution of such transcendental equations, and iterative procedures must be used to find 

the zeros of such equations. From the boundary conditions for multilayered planar structures, 

a matrix equation can be generated, and similarly the roots of the determinants can be found 

iteratively, to yield that propagation constant of such planar structures. However, in all 

practical optical waveguides the optical power is confined in both the transverse directions, 

and for such a waveguide, an analytical solution is not possible. It is not possible to find an 
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exact analytical solution for even the simplest arrangement, i.e. one with perfect circular 

symmetry, a step-index difference between core and cladding, and infinite cladding. 

Therefore the optimisation of existing realistic designs or the evaluation of new designs has 

created great interest in the development and use of effective numerical methods.  Hence 

there is a significant need for the development and use of numerical methods to simulate 

complex structures in order to optimise existing designs and evaluate novel devices, either 

prior to or instead of fabrication and experimental testing, which is time consuming and 

expensive.   

 Several approaches for the analysis of SPMs, such as field expansion approaches for 

 matching the field continuity at the metal dielectric interface of axially symmetric copper 

 wire, the classical Sommerfeld waveguiding principle to metal waveguides operating in the 

 millimetre-wave region, and more recently, a 3-D time-harmonic simulation using the finite 

 element method (FEM) have been considered, but the last one, being a 3-D approach, 

 requires very large computational resources [200 - 204].   

 Of the different numerical approaches considered so far, the FEM is now established as one 

 of the most powerful and versatile methods in many branches of engineering [205].  In the 

 FEM approach the problem domain is divided into a patch work of finite number of regions 

 called elements.  Each of these elements can have different shapes, sizes and material.  

 Using this approach a complex structure can be accurately represented. Most of the 

 formulations used in the FEM, such as the scalar and H-field formulations are restricted to 

 structures without modal loss or gain. Due to necessity for analysis of practical waveguides 

 that suffer from loss or gain various alternative approaches have been developed, such as 

 the FEM solution in terms of the transverse magnetic field Ht formulation.  However, this 

 formulation generates a complex eigenvalue equation and therefore, is computationally 

 more expensive.  On the other hand the vector H-field formulation used in conjunction with 
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 the perturbation technique, which is computationally more efficient, can be used for 

 waveguides with low or medium loss values. The FEM H-field formulation has been 

 previously successfully applied in the characterization of optical and THz waveguides [206].  

 In such cases, the perturbed fields were approximated by the fields obtained from the 

 solution of the variational formulation using only the real part of the dielectric constant.  The 

 attenuation constant was the calculated from the fields obtained from the loss-free system 

 by using a simple matrix multiplication, thus reducing the calculation time and the large 

 memory requirements necessary in other formulations, such as Ht formulation.  

 4.1.2 Sensor structure studied  

The structure studied here is shown in Figure 4.1. This kind of structure has become common 

in many sensors because it has been observed that its behaviour is strongly dependent on the 

refractive index of the surrounding medium. Although, a side polished fibre may also be used, 

however, to study the effect of fibre parameters on optical properties, a circularly symmetric 

structure is considered here. 

 

Figure 4.1 Schematic of the SPR structure studied 

A metal-coated mono-mode optical fibre is considered for the understanding of the various 

loss mechanisms and, subsequently, the design and optimization of the biosensor for the 

detection of E coli. The thickness of the gold metallic layer is taken as 21 nm with a refractive 

index of n = 0.52 + 10.7j [226]. The refractive index (RI) of the core and cladding is taken as 

1.44868 and 1.44439, respectively at an operating wavelength of 1550nm.  Here, R1 is the 
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radius of the core and R2, R3, R4, and R5, are the thicknesses of the cladding, gold, outer 

medium and water layers respectively. Firstly, effect of index variation of R4 and thickness of 

R2 layer is studied. The purpose of changing index values of R4 and thickness of R2 layer is to 

find an optimum index and desirable thickness where the phase matching is better. Finally, 

with the new optimum index and desirable thickness of R4 and R2 respectively E.coli layer is 

introduced.   

A two fold symmetry has been employed for the present analysis, where only a quarter of the 

waveguide cross section has been divided into 100 and 120 azimuthal and radial divisions, 

respectively, thus forming a mesh of 23900 first-order triangular elements. It takes about 48 

seconds of CPU time to obtain a single modal solution on a 3.4-GHz Pentium processor. 

 4.1.3 Effective index variation  
FEM based model investigation is devoted to study the influence of geometrical parameters 

of metal clad optical fibre sensor on the effective index of mode by varying the refractive index 

of surrounding medium in order to achieve better coupling between the SPR modes in order 

to maximize the modal field penetration depth into the sensing medium. 

 Initially, R1, the radius of the core is taken as 4.5 μm, the thickness of the gold, R3 is taken as 

 21nm, and R4, the outer medium thickness was varied from 2μm to 3μm and R2 the cladding 

 thickness was varied from 5-10 μm.  The values of the effective indices for the modes of the 

 structures are represented as a function of the outer medium refractive index, R4. The 

 refractive index of outer medium is varied from 1.440 to 1.453 to study the coupling 

 between the inner surface plasmon mode (ISPM) and the outer surface plasmon mode 

 (OSPM).  There are two metal/dielectric interfaces which can support SPM: one at the outer 

 gold/dielectric boundary and the other at the inner gold dielectric boundary.  In this 

 waveguide, the mode with the dominant Hx field at the upper and lower metal-dielectric 

 interfaces is tangential to these boundaries, which satisfies the electric-wall boundary 
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 condition n.H = 0 and supports two SPMs along these metal/dielectric interfaces.  These two 

 surface plasmon modes have different propagation constants.  However, if the propagation 

 constants are closer for these two modes then the two modes can couple and form a 

 supermode or super SPM.    

                   

  Figure 4.2: Effective index variation with the refractive index of the outer medium, R4 for the 
  inner and outer SPMs at the gold/cladding and the gold/outer medium interfaces    
  respectively for a cladding thickness of  R2 = 5 and 10μm 

 

 As shown in Figure 4.2, as the refractive index of the outer medium increases the effective 

 index difference between the outer surface plasmon mode (OSPM) and the inner surface 

 plasmon mode (ISPM) becomes closer and at phase matching condition they are nearly 

 equal.   The propagation constants of the two SPMs are close at refractive indices of 1.449, 

 1.448 for cladding thickness of 5μm and 10μm respectively.  In this case the outer medium 

 thickness was fixed at R4=2 μm. 
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 4.1.4 Modal field profile 

This section shows the model field profile of metal clad optical biosensor when E.Coli layer is 

added to the sensing structure. This layer consists a chemical linker MUDA [mercapto 

undecanoic acid], its RI is 1.463 and thickness is 1.69nm and is used as linker for antibody (RI 

is 1.41 and thickness is 2.98nm) and the target antigen E.coli with average RI of 1.37 and 

average thickness of 0.4 – 0.7 microns [221]. This layer is added on top of the outer medium 

layer, R4 with phased matched refractive index values of 1.449 and 1.448 for cladding 

thickness of 5μm and10μm respectively.   

 The variation of the optical properties with the metal thickness, t, and the outer cladding 

 materials can be better explained with the aid of the field distribution along the radial 

 direction of the fibre and particularly near the dielectric/metal and metal/dielectric 

 interfaces.  Variations of the Hx field along the y - axis and the x -axis for the outer SPM are 

 shown in Figure 4.3.                     

               

 Figure 4.3: Hx field profile along the y-axis and x-axis for the outer SPM 

It can be observed that the field profile along the y-axis, as shown  by the solid line, exhibits 

its maximum field intensity at the dielectric/metal interface at the radial distance of 9.5μm, 

14.5μm and 19.5 μm for R2=5μm, R2=10μm and R2=15μm respectively and  decays rapidly in 

the metal region.  In this configuration the Hx does not see the  SPM along the x-axis as 
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n.H=0 forces the Hx field to be zero at the metal interface but that is not true along the y-

direction.  On the other hand, the Hy is forced to zero along the metal interface on the x-axis 

and sees the SPM along the y-axis at the metal dielectric.  As can be seen from Figure 4.3 when 

R2 = 5μm there is a strong interaction between the fibre core mode and the surface plasmon 

mode and most of the field is in the core region.  However, as the R2 is increased to 15μm the 

separation between the core and the SPM modes become larger weakening the phase 

matching.  Hence the core mode and the SPM will be weakly coupled and as shown by dashed-

dotted line that most of the field is at the metal  interface. 

 When the radial distance is greater than the thickness of the cladding, the optical field 

 profile along the x-axis has the maximum field intensity at the centre, shown by a dashed 

 line and gradually decreases along the radial distance reaching zero value at the 

 cladding/metal interface.   

The 3-D contour profile of the Hx fields for this SPM at the outer metal/dielectric interfaces 

are shown in Figures 4.4 and 4.5 for R2=5μm and R2=15μm respectively. Here, it can also be 

seen that the field intensity is maximum at the upper and lower interfaces, where the electric 

wall boundary condition allows the Hx component to have its maximum value.  It can also be 

noticed that there are 3 peaks along the y-direction, one in the core and two at the two vertical 

metal/dielectric interfaces. Along the x-direction the field is forced to zero at the 

metal/dielectric interface and has a maximum in the core region with no surface plasmon 

mode at this part of the metal/dielectric interfaces. 
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      Figure 4.4: Hx field profile of the outer SPM, R2=5μm      Figure 4.5: Hx field profile of the outer SPM,R2=15μm 

 

 Figure 4.5 shows similar characteristics to Figure 4.4; however, as R2 is larger here, the 

 interaction between the core and SPM modes is smaller.  It can also be seen clearly that the 

 field is higher at the metal/dielectric boundaries.   

 4.1.5 Effect of coupling length 

The coupling length is an important parameter in investigating the phase matching condition 

of the fibre mode and the surface plasmon mode. The coupling length can be defined as the 

minimum distance at which a maximum power transfer occurs. Through the calculation of the 

propagation constants of the inner surface plasmon modes and outer surface plasmon modes 

using the VFEM, the coupling length, Lc, can be calculated as; 

ISPMOSPM
cL

ββ
π
−

=                                                               (4.1) 

Where, βOSPM and βISPM are the propagation constants of the surface plasmon mode and fibre 

mode, respectively. One can understand this by noting that the coupling length is related to 

the difference between βOSPM and βISPM. 

Figure 4.6 shows the coupling length as a function of the outer medium refractive index.  The 

maximum coupling length is observed when it is phased matched.  As can be seen from this 
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Figure as the cladding thickness, R2 is increased from 5μm to 15μm although similar phase 

matching can be achieved, however, due to increased separation between the core mode and 

SPM mode, the coupling length is increased.   

 

  Figure 4.6: Coupling length against outer medium refractive index for R4=2 μm 

 

This can be explained with the help of Figure 4.2.  When the cladding thickness, R2 is 5μm the 

inner and the outer SPMs are very strongly coupled hence the difference between their 

propagation constant is large giving a shorter coupling length.  However, when R2 is 15μm the 

inner and the outer surface plasmon modes are weakly coupled and hence the difference 

between their propagation constant is small giving rise to an increased coupling length.  It can 

also be noticed that the peaks of the coupling length curves correlate with the phase matching 

points from Figure 4.2.   

 4.1.6 Sensing layer growth 

An important question for the modelling of sensor performance is how the sensing layer 

composed of recognition and target molecules is modelled. The simple model that is generally 

adopted describes changes of an equivalent sensing layer. This layer is characterized by its 
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thickness and its refractive index. Molecular deposition is modelled as a change in thickness 

or refractive index of this layer. In simple model the molecular interactions correspond directly 

to changes in refractive index or thickness of the sensing layer. Using this model the quantity 

to be measured is the change of the effective index upon changes of the sensing layer 

thickness. 

 

Figure 4.7: Coupling length as a function of the thickness of the E.coli region 

Therefore, thickness of the E coli layer is an important parameter in the design of the optical 

biosensors. To study the effect of the thickness of the E.coli on the effective index and coupling 

length the thickness was varied from 0.2 – 0.7μm.  As can be seen from Figure 4.7 as the 

thickness of the E.coli is reduced from 0.7 to 0.2μm the coupling length is increased from 

2084μm to 2524μm respectively.  This shows that maximum power coupling can be achieved 

at a much shorter device length for larger thickness of the E.coli.  The solid line shown in Figure 

4.7, indicate the variations of the effective indexes for the SPM at outer interface. Effective 

index of the outer SPM increases with the thickness of E.coli. The outer SPM being associated 

with the higher refractive index RI=1.449 of R4 layer shows the features of an oddtype first 

supermode. Similarly, with the inner SPM mostly being confined near the core and cladding 
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region with lower refractive index, and this mode shows evenlike second supermode 

properties. The effective index of outer surface plasmon mode increases from 1.44646 to 

1.44654 with the increase of thickness of E.coli from 0.2 to 0.7 µm respectively. Similarly, the 

effective index of inner surface plasmon mode increases from 1.446152 to 1.446166 with the 

increase of thickness of E.coli from 0.2 to 0.7 µm respectively. This shows that coupling length 

decreases with the increase of effective index for larger thickness of the E.coli.  The 

evanescent field of outer surface plasmon mode penetrates more into the E.coli layer due to 

higher refractive index of buffer layer, R4 in between outer metal interface and E.coli layer 

hence power confinement increases. The inner surface plasmon doesn’t penetrate deep into 

the E.coli layer because it is confined near the core region, R1 of lower refractive index.  

Therefore, for the detection of E.coli excitation of outer surface plasmon mode is very 

important. 

 4.1.7 Optimizing thickness of cladding 

The majority of the fibre optic SPR sensors are based on evanescent field interactions. A typical 

single mode optical fibre has a core diameter between 8 and 10.5 μm, a cladding diameter of 

125 μm and light propagates confined in the core [201]. Therefore, the penetration depth is 

far smaller than the cladding thickness and there is almost no interaction between the optical 

signal and the external medium. The evanescent field can be exposed by removing partially or 

totally the cladding of the optical fibre. This can be done by chemical etching, tapering or side 

polishing techniques [201]. Therefore, leaving too much of the cladding around the core 

weakens the interaction between the fundamental mode and the SPR mode. For this reason 

we have varied the thickness of cladding, R2 from 5 to 15 µm with R1 core diameter kept 4.5 

µm. The thickness of metal layer, R3 is 21nm and thickness of buffer layer, R4 is 2µm with 

higher refractive index of 1.449. We will first study the effect of cladding thickness with 

difference in propagation constant, Δβ in presence of E.coli.  
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Figure 4.8: Propagation constant as a function of the thickness of the cladding 

The solid line shown in Figure 4.8, indicate the variation of propagation constant of outer SPM 

with or without presence of E.coli. Here, the propagation constant of outer SPM without 

presence of E.coli and the propagation constant difference between outer SPM with E.coli and 

outer SPM without E.coli is plotted against thickness of cladding, R2. As can be seen from the 

aforementioned characteristics, as R2 increases the propagation constant of outer SPM 

without presence of E.coli decreases. The propagation constant difference, Δβ, between the 

outer SPM without E.coli and the outer SPM with E.coli is shown in dotted lines in the figure, 

increases with increase in the thickness of cladding.  

Next, the variation of effective indexes for the SPMs at the inner and outer interfaces as shown 

in dotted and solid lines in the Figure 4.9 respectively in presence of E.coli. As shown in the 

figure the effective index of outer SPM with presence of E.coli is higher for the cladding 

thickness of 5µm. Since the variation of the cladding thickness changes the effective index of 

the inner SPM. It increases with the cladding thickness and is highest value is when cladding 

thickness, R2 is 10 µm. 
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Figure 4.9: Variation of effective index with the thickness of cladding, R2 

The outer SPM being associated with the higher refractive index RI=1.449 of R4 layer shows 

the features of an oddtype first supermode. Similarly, with the inner SPM mostly being 

confined near the core and cladding region with lower refractive index 1.44439, and this mode 

shows evenlike second supermode properties. However, it can be clearly observed that these 

two lines do not cross each other. For coupled SPMs, the oddlike SPM has a higher effective 

index than the evenlike SPM. The effective index of the inner SPSM strongly depends on the 

thickness of cladding and increases monotonically.  On the other hand, the effective index of 

the outer SPM reduces with the cladding thickness.  

103 
 



 

Figure 4.10: Coupling length as a function of the cladding thickness with and without E.Coli for an 

outer medium index, R4 of 1.449 

Next the effect of the coupling length with the cladding thickness is studied.  As can be seen 

from Figure 4.10 the coupling length increases monotonically for small values of thickness and 

it reaches a maximum around the optimum design condition of R2=10μm.  As can be seen 

from this Figure the coupling length is maximum at a cladding thickness, R2=10μm.  This can 

be correlated with Figure 4.2 where the ISPM and the OSPM modes match very closely around 

10μm when the outer medium index, R4 is 1.449.  It can also be noticed from Figure 4.10 that 

the maximum power transfer occurs when the device length is around 2524 μm in presence 

of E.Coli.  Hence by carefully selecting the length of the fibre and monitoring power transfer, 

the presence of E.Coli may be identified.   
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Figure 4.11:  Attenuation constant variation with the cladding thickness R2 for the even and the odd 
SPMs. 

Next, the attenuation characteristics of the inner and outer SPM modes have been calculated 

by using the vector H-field FEM with perturbation and the variation of the normalized 

attenuation constant α/k0 for the oddlike and evenlike SPMs are shown in Figure 4.11 by a 

solid line and a dashed line, respectively. The inner SPM decays more slowly in the core region 

and with a lower power confinement in the lossy metal layer, yielding a smaller modal loss 

compared to the SPM at the outer interface. The evanescent field of outer surface plasmon 

mode penetrates more into the E.coli layer due to higher refractive index of buffer layer, R4 

in between outer metal interface and E.coli layer hence modal loss increases.  
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 4.1.8 Effect of outer medium 

The outer medium layer can be used to increase the sensitivity of sensor by manipulating the 

power distribution of the guided modes. The concept behind the outer medium layer is that 

a thin layer with higher refractive index than the core is used to penetrate more power of the 

mode into the sensing layer. 

Finally the structure was slightly modified to study the effect of outer medium, R4. The 

 thickness of the outer medium, R4, is increased from 2μm to 3μm.  The refractive index of 

 outer medium is varied from 1.440 to 1.453 to predict the coupling between modes. 

              

Figure 4.12: Effective index as a function of the outer medium index for the Fibre Mode and (SPM) 
surface plasmon mode for an outer medium thickness of R4 = 2 & 3μm and cladding thickness, 
R2 = 5μm. 

As shown in Figure 4.12 increase in refractive index of the outer medium increases the 

effective index of outer SPM, however, effective index of inner SPM doesn’t change that 

much. The propagation constants of the two SPMs are close to phase match only when the 

outer layer refractive index is 1.449 and 1.446.  In this case the cladding thickness, R2 of 5μm 

when R4 is 2μm and 3μm respectively are used.  It can be clearly observed that these two 

106 
 



eigenvalue curves do not cross each other.  The effective index of the ISPM strongly depends 

on the outer layer refractive index and increases monotonically. The effective index of the 

OSPM increases much faster with the changing outer refractive index as the metal layer sees 

the outer mode. 

 4.1.9 Power in the E.coli region 

 Finally the biosensor is optimized for the maximum percentage of power in the E.Coli region.  

 It can be seen from Figure 4.13 that the maximum detection is possible when the outer 

 medium, R4 refractive index is 1.449, the thickness of the cladding, R2 is 10 μm, and the 

 thickness of the outer medium is 2 μm.  As the outer medium refractive index is reduced it 

 can be noticed that the percentage of power in the E.Coli region is also slowly reducing 

 showing that increased index difference between the E.Coli and the outer medium has more 

 power confined in the E.Coli region. 

              

  Figure 4.13: Percentage of power in the E.Coli (R5) region as a function of cladding  
  thickness for different outer medium refractive indices 
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 4.2 Interaction of metal-clad fibre with surrounding refractive index  

A metal-clad fibre is considered to study the optical properties and effect of outer sensing 

region whose index is varied from 1.30 –1.44 to cover most of the materials that can be used 

in the biosensing applications [207].  Different metals such as copper, gold and silver are used 

to excite the surface plasmon modes. The variation of optical parameters of such structures 

due to the presence of materials that affect the modal field distribution can be utilized in 

optical sensor applications.  

                 
                     Figure 4.14: Schematic of the Metal-clad fibre structure 

Figure 4.14 shows the schematic cross-section of the metal-clad optical fibre with a silica core 

and a finite copper cladding thickness, t is evaluated, where D is the core diameter, the 

refractive index of the core is taken as ncore= 1.444, copper cladding is given by ncl= 0.76-j10.36, 

and surrounding index medium ns is taken as 1.34 at an operating wavelength of λ = 1.55 µm. 

The thickness, t of the copper layer was set to 20 nm. The reason thickness, t of the copper 

layer is kept 20 nm and operating wavelength λ = 1.55 µm is because penetration depth of 

guided mode is greater in to the sensing region under these parameters and thus higher 

sensitivity can be achieved. Using these values, the performance of the SPR sensor is 

evaluated through simulating the structure in Figure 4.14. 
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 4.2.1 Optical mode field distribution 

Figures 4.15 and 4.16 shows the inner and outer radially polarized surface plasmon modes at 

core diameter of D = 6 µm. As can be seen from these Figures the inner mode is more confined 

and the outer mode is more spreaded and much more circular. The superimposed field 

intensity from the Hx and Hy  fundamental supermodes form the radially polarized RP01 mode, 

for a metal-clad silica fibre with a diameter, D = 6 µm and a metal thickness, t = 0.02 µm and 

a surrounding index of 1.34 is presented here. From Figure 4.16 it can be seen that the optical 

field decays in both the  centre of the fibre and the outer cladding, with the anti-symmetric 

peak field intensities at the inner silica/copper (where the field is positive) and small negative 

peak (but this is not visible) at the outer copper interface. 

        
        Figure 4.15: Inner radially polarized surface plasmon     Figure 4.16: Outer radially polarized surface

  mode at D = 6 µm.                plasmon mode at D = 6µm and ns = 1.34. 

4.2.2 Variation of surrounding medium index 

Figure 4.17 shows the effective index with the surrounding medium refractive index. In this 

case the surrounding medium index is varied from 1.30–1.44 to cover most of the materials 

that can be used in the biosensing applications [207]. As can be seen from Figure 4.17 the 

outer surface plasmon effective index changes linearly with the increasing index values. 
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However, as the inner mode does not see the surrounding index the refractive index of the 

inner mode is not affected.                            

                 

 Figure 4.17: Effective index with surrounding medium (ns) refractive index. 

The inner SPM and outer SPM are excited at the inner and outer metal interfaces respectively 

and outer SPM effective index is higher than that of inner SPM. The evanescent field of outer 

surface plasmon mode penetrates more into the sensing region due to increasing refractive 

index of sensing medium hence effective index of outer SPM increases. The inner surface 

plasmon doesn’t penetrate deep into the sensing medium because it is confined near the core 

region hence the effective index of inner SPM doesn't change and is lower than that of outer 

SPM. 

 4.2.3 Effect of modal loss 

 Next the attenuation characteristics of the above modes have been calculated using the 

 vector H-field Finite Element Method with perturbation and the variation of the normalized 

 attenuation constant, α/k0 with the surrounding refractive index is presented for a fibre 

 diameter of 6 µm in Figure 4.18. From this Figure it can be seen that as the refractive index 

 of the surrounding medium is increased the modal loss also increases as the mode starts to 

 penetrate more into the surrounding medium. However the modal loss in the inner 
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 silica/copper boundary is constant over a range of surrounding index as the field does not 

 see the outside index. The modal loss here is mainly due to the metal loss at the silica/metal 

 inner interface.  It can clearly be seen that as the outside index approaches that of the silica 

 index the modal loss is at its maximum.  However, to design practical biosensing devices a 

 compromise must be found between the modal loss and the amount of penetration that is 

 needed within the surrounding index medium. This can be attributed to the sensitivity of the 

 biosensor that is needed for different biomedical applications.        

                    

                Figure 4.18:  Attenuation with surrounding refractive index. 

The inner SPM decays more slowly in the core region and with a lower power confinement in the lossy 

metal layer, yielding a smaller modal loss compared to the SPM at the outer interface. The evanescent 

field of outer surface plasmon mode penetrates more into the sensing medium hence modal loss 

increases with the increasing refractive index. The inner surface plasmon doesn’t penetrate deep 

into the sensing medium because it is confined near the core region hence modal loss remains 

unchanged with the increasing refractive index of sensing medium. 
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 4.2.4 Power in the sensing medium 

Figure 4.19 shows the percentage power with the surrounding medium refractive index. In 

this case the surrounding medium index is varied from 1.30–1.44. As can be seen from Figure 

4.19 percentage power in the sensing medium also increases with the increase in the 

surrounding index. However the percentage power in the inner silica/copper boundary is 

constant over a range of surrounding index as the field does not see the sensing medium 

index.  It can clearly be seen that as the outside index approaches that of the silica index the 

power in the sensing medium is at its maximum.   

                      

                     Figure 4.19: Percentage Power with surrounding medium (ns) refractive index. 

The power confinement in the sensing medium is more when outer surface plasmon mode is 

excited at the outer metal interface. The outer surface plasmon mode evanescent field 

penetrates more into the sensing region due to increase in refractive index of sensing medium 

hence the power confinement is high in the sensing medium and low in the core region. 
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However, the inner surface plasmon mode is confined near the core region hence the power 

confinement in the core region is high and low in the sensing medium. 

4.3 Detection of acetone using metal-clad fibre sensor 

Acetone is a chemical that is found in the human bodies and naturally in the environment. It 

can be produced by industries too. Many conditions can lead to higher than average amounts 

of acetone in the body. People who can have higher amounts of acetone in their bodies for 

example, diabetics, babies, pregnant women, and people who exercise, diet, have physical 

trauma, or drink alcohol. 

The metal-clad sensor can be utilized to ascertain whether the patient is suffering from 

diabetic ketoacidosis, a prospective serious complication that occurs when people with 

diabetics do not take adequate quantities of insulin and will be used in homes by diabetics to 

find out whether they require more insulin. A metal-clad fibre as shown in figure 4.14 is 

considered to study the optical properties and effect of acetone as an outer surrounding 

material by using different metals such as copper, gold and silver to excite the surface plasmon 

modes. The variation of optical parameters of such structures due to presence of materials 

that effect the modal field distribution can be utilized in optical sensor applications. At first, 

we used the modal approach to calculate the effective refractive index, mode attenuation 

constant and outer cladding power for guided modes in the sensing section. 

 4.3.1 Modal field profile along y-axis 

A metal-clad fibre with diameter of D = 6 µm and a finite metal thickness, t, with acetone 

material around the metal cladding has been considered at an operating wavelength of 

1.55µm. The field profile of the fundamental Hx odd-like optical supermode along the y-axis, 

for different values of the metal thickness, t, have been investigated and are shown in Figure 

4.20. As can be seen from this Figure 4.20, for a metal thickness of 0.2 µm (as shown by a solid 
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line), the field profile has similar properties to those obtained for an infinite cladding fibre, 

where the field has a maximum intensity at the dielectric/metal interface and decays rapidly 

in the metal region, except a small negative peak is clearly visible at the copper/acetone 

interface, due to the weak coupling between the two non-synchronous SPMs. As the metal 

thickness decreases, the maximum field intensity increases anti-symmetrically at both the 

interfaces, with the highest maximum being at the silica/copper interface.          

       
  Figure 4.20:  Hx field profiles along the y-axis with metal thickness for acetone in the outer 
  cladding. 

 

 

 4.3.2 Effective index change with increase in thickness of  metal 

The variation in the effective index of outer surface plasmon mode for a fibre diameter of 6 

µm, covered by a copper, silver and gold metal layer respectively and further covered by 

acetone as the sensing medium at an operating wavelength of 1.55µm has been studied and 

presented in Figure 4.21 
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                       Figure 4.21: Effective index variation with metal thickness for D = 6 µm. 

It can be seen that for a large metal thickness, t, two SPMs exist at inner and outer metal 

circular boundaries and when the two dielectric materials are different, their propagation 

constants are different, and therefore they do not interact to form a supermode. However, as 

the metal thickness, t, is reduced, there is stronger coupling between the SPMs and two 

supermodes, with odd and even like maximum field intensities at the two interfaces, being 

formed. The first supermode has a higher propagation constant and is confined near the outer 

metal interface with the higher refractive index and has an odd-like field profile. As can be 

seen from the effective index curve shown in Figure 4.21, when the metal thickness, t, 

decreases below 50 nm, the effective index of the odd-like supermode increases rapidly. On 

the other hand, the second supermode is confined near the inner metal interface with the 

lower refractive index and has an even-like field profile. The even-like second supermode is 

dominated by the effective index of the inner metal dielectric interface, and being close to 

cut-off, as the metal thickness decreases, the even-like mode becomes unbounded. The 

effective index of the even-type SPM is below the cut-off and therefore is not presented here. 

When silver is considered as a metal the effective index of acetone is higher as compared to 

copper and gold respectively.  
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 4.3.3 Effect of attenuation constant with metal thickness  

 Next, the variation of the normalized attenuation constant of the Hx odd-like optical 

 supermode has  been calculated. From the Figure 4.22 it can be seen in all cases that when 

 the metal thickness, t, is less than 50 nm the modal loss of odd like SPM is higher. The 

 attenuation constant of odd like SPM decreases with an increasing thickness of the metal 

 film because field doesn’t see the outside index. When gold is considered as a metal the 

 attenuation constant of modes is lower as compared to copper and silver respectively. 

                     

 

Figure 4.22: Modal loss with metal thickness for D = 6 µm. 

As the metal thickness below 50 nm is decreased the modal loss also increases as the mode 

starts to penetrate more into the surrounding medium. The modal loss here is mainly due to 

the metal loss at the silica/metal outer interface. It can clearly be seen that at metal thickness 

of 20 nm modal loss is at its maximum. The outer SPM penetrates more into the sensing 

medium and with a higher power confinement in the lossy metal layer, yielding a higher modal 

loss to the SPM at the outer interface.  
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4.3.4 Effect of power with the thickness of metal layer 

The power in the sensing medium also depends on the thickness of the metal layer which is 

an important design parameter of the structure, which may strongly influence the sensor 

performance. It is clear from Figure 4.23 when the metal thickness decreases power increases 

in the sensing medium due to coupling of modes. The power is more in the sensing region 

when the silver is considered as metal as compared to copper and gold respectively.                      

 

                        Figure 4.23: Percentage power in acetone with metal thickness for D = 6 µm. 

The power confinement in the sensing medium is more when outer surface plasmon mode is 

excited at the outer metal interface. The outer surface plasmon mode evanescent field 

penetrates more into the sensing region due to thin metal film hence the power confinement 

is high in the sensing medium and low in the core region.  

 

4.4 Summary 

A finite-element approach based on a full-vectorial H-field formulation in conjunction with the 

perturbation technique has been used to study the surface plasmon resonance based fibre 

optic biosensors to detect E.Coli.  The SPMS propagating in the above waveguide and the study 

of their propagation and attenuation characteristics, with the variation of the metal layer 

117 
 



thickness and outer layer thickness is investigated.  It has been shown that by changing the 

refractive index of the outer medium, R4 the effective index of the inner and the outer surface 

plasmon modes can be matched to achieve better coupling efficiency.  The effect of coupling 

length, modal confinement and modal loss are studied with and without the presence of E.coli 

in the outer medium.  We have also shown the differential coupling length and differential 

attenuation for the cases of with and without E.Coli. 

Moreover above numerical methods have been used to study the detailed optical properties 

such as the optical mode field distribution, the effective index and the attenuation constant 

of a metal-clad silica fibre with finite metal-clad thickness surrounded by another outer 

cladding. The variations of the above optical properties with the change of the surrounding 

materials are very important in several applications, such as optical fibre sensors and 

biosensors. For finite metal thickness, the SPMs exist at both the inner and outer interfaces. 

By adjusting the metal thickness and refractive index values of the cladding layers, the odd 

and even-type coupled SPMs can be formed and exploited for various biosensing applications. 
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 5 
NANOSTRUCTURE OPTICAL BIOSENSORS  

  

5.1 Mach–Zehnder nanowire biosensor for detection of E.coli 

Silica nanowires [208] offer several advantages over other types of nanowires since they are 

based on materials used in the most important photonic and opto-electronic applications 

within the visible and the near-infrared ranges and as a result their optical properties are 

familiar [209].  

Light guided along the optical nanowire leaves a large fraction of the guided field outside 

the wire as evanescent waves [210], [211] making it highly sensitive to the index change of 

the surrounding medium. Phase shift of the guided mode caused by index change of the 

surrounding medium is used as a criterion for sensitivity estimation. Our simulation shows 

that optical nanowire waveguides are very promising for developing high-sensitivity optical 

sensors of significantly reduced sizes. 

In the aforementioned work, changes in the optical field profile, the power confinement, and 

the propagation constant of the guided optical mode along the sensing arm have been 

studied. In the present work, the aforementioned structure has been analyzed using the more 

rigorous and versatile FEM approach and the variation of the effective index; the optical 

power distribution of the guided optical mode in both the reference and the sensing arm of 

the sensor have been studied, by optimizing the sensitivity of important silica nanowire 
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parameters, such as the fibre core diameter, the specimen refractive index, the wavelength, 

and the temperature. 

 5.2 Mach–Zehnder based sensor structure  

The proposed Mach–Zehnder-based biosensor system is formed by using two uniform silica 

nanowires: one used as a reference arm and the other as a sensing arm is presented in Figure 

5.1(a). Both arms are immersed in aqueous solution and the surface of the sensing arm is 

silanized and biomodified with specific receptors for higher selective detection. A layer around 

the wire is formed by the complex of chemical linker, antibody and E.Coli respectively as 

shown in the cross section of the composite waveguide in Figure 5.1(b). 

 The chemical linker is MUDA [mercapto undecanoic acid], its RI is 1.463 and thickness is 

 1.69nm and is used as linker for antibody (RI is 1.41 and thickness is 2.98nm) and the target 

 antigen is E.coli with average RI of 1.37 and average thickness of 0.4 – 0.7 microns [212]. 

 
(a) 

 
(b) 

 Figure 5.1: Schematic diagram of (a) the proposed sensor and (b) the cross section view of the 
 composite waveguide, with a specimen layer. 
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A probe light that is launched through the nanowire propagates through the first 3 dB coupler, 

operating as an optical splitter, which divides it between the sensing and the reference arms, 

and it finally recombines via the second 3 dB coupler, working as an optical combiner, as 

shown in Figure 5.1(a). The phase shift caused by the index change due to the specimen placed 

in the sensing arm is numerically calculated and evaluated from the simulated signal output 

of the lower nanowire, as presented in Figure 5.1(a). 

 5.2.1 Modal Solution 

Initially, the optical properties of the reference and the sensing arm of the single mode silica 

nanowires immersed in aqueous solution have been examined, where the latter is coated with 

the linker, antibody and E.coli under detection and the 3-D optical field profile of the mode of 

the two arms, for a core diameter, D, of 400 nm is presented in Figure 5.2. 

 

                   

 Figure 5.2:  (a) 3-D field profile of the Hx mode for the reference and the sensing arm for D = 400  nm 

  
 The refractive index of the single-mode silica nanowire and the aqueous solution  

 were considered to be 1.482 and 1.355, respectively, at an operating wavelength of 325  nm 

 [213].   

 As can be seen from the field profiles of the optical mode for a core diameter, D, of 400  nm, 

 in the reference arm shown in Figure 5.2 (a), the optical field is more confined in the silica 
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 core and the aqueous solution does not have much effect on the field profile. However, for a 

 core diameter, D, of 400 nm, in the sensing arm shown in Figure 5.2 (b) a small change in the 

 refractive index profile produces a larger change in the field profile. As can be concluded 

 evanescent field in the sensing arm expands more outside due to change of refractive index 

 in the aqueous solution. 

 The optical field confinement in the reference and the sensing arms can be better 

 viewed  from the normalized field profile along the horizontal (x)-axis, as presented in 

 Figure 5.3 for nanowire core diameter, D, of 150 nm. As can be seen from the earlier 

 curves in Figure 5.3, the normalized optical fields for the reference and the sensing 

 arms have small variation in the optical field profile.  

 
Figure 5.3: Hx along the x axis for a fibre diameter of D = 150 nm. 

 

 5.2.2 Effective Index Variation 

Next, the variation of the effective reactive index of Hx
11 in the reference and the sensing arms 

with the silica nanowire diameter, D, has been examined, and the results are presented in 

Figure 5.4. Here, the effective index of the reference arm and the effective index difference 
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between the two arms is plotted against core diameter, over a range of 100 nm to 800 nm. As 

can be seen from the aforementioned characteristics, as diameter, D, decreases, the effective 

index also reduces, and the rate of reduction slowly increases. The effective index difference 

between the reference and the sensing arm is presented in Figure 5.4. It is shown in the Figure 

5.1, the effective index difference between the reference and the sensing arm decreases with 

the increase of the core diameter. However, for a core diameter, D, of 100 nm, peak value in 

∆neff  is obtained and as the core diameter increases the effective index difference decreases. 

 

  Figure 5.4:  Effective index (ne) and effective index difference (∆neff) between the  
  reference and sensing arms as a function of the fibre diameter (D). 
 

The effective index of the sensing arm is higher than the reference arm. It is due to increase 

of refractive index in the sensing arm with the addition of linker, antibody and E.coli. It can be 

noted that as the nanowire diameter is increased, the effective index asymptotically 

approaches that of the Silica refractive index, when most of optical power is confined in the 

Silica core. The effective index is dependent on the refractive index of surrounding medium. 
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Therefore, single mode nanowires are suitable for sensing elements and sensitive to the index 

change of the surrounding medium. 

 

 Figure 5.5: Change in effective index (ne) and effective index difference (∆neff) as a function  
 of the wavelength (λ) 

Next, the effective index for the reference arm and the effective index difference between the 

reference and the sensing arms are presented, with the variation of the wavelength, in Figure 

5.5. As can be seen from the Figure 5.5, the effective index of reference arm decreases with 

the increase of the wavelength and the effective index difference increases linearly with the 

increase of the wavelength for core diameter of 400 nm. When the wavelength increases, the 

mode is weakly confined and penetrates more into the sensing region of the sensing arm 

hence increases the effective index. However, when the wavelength decreases, the mode is 

well confined and decays more into the core region hence decreases the effective index of 

sensing arm. 
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 5.2.3 Power confinement 

 Further, the power fraction in the aqueous solution for the reference and the sensing arm 

 has also been studied with the variation of the nanowire core diameter and the result is 

 presented in Figure 5.6. As can be seen from the aforementioned characteristics, for a core 

 diameter, D, of 100nm the field extends mostly in the aqueous solution for both the 

 reference and the sensing arms. However sensing arm exhibits more power in the 

 aqueous solution than the power in the aqueous solution of reference arm. It is due to 

 refractive index change in the aqueous solution of sensing arm when target antigen 

 (E.Coli) is attached to immobilised antibody. As the value of D is increased further, the 

 power in the aqueous solution is reduced since the field is more confined in the  core region.  

 

 

  Figure 5.6: Power fraction in aqueous solution for the sensing and the reference  
  arms as a function of the fibre diameter (D). 
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 The change of the power fraction in the different regions of the sensing arm has been 

 studied and is presented in Figure 5.7. As can be seen from the characteristics, shown in 

 Figure 5.7, when the wavelength increases, the mode is weakly confined, and hence, less 

 power is seen in the core region and more power is present in the cladding aqueous region. 

 The mode is well confined for smaller wavelength values and more power is present in the 

 core silica region. However, as the wavelength  increases, the mode becomes weakly 

 confined and more power is present in the aqueous solution region compared to the 

 silica core region. 

 

  Figure 5.7: Power fraction for the sensing arm as a function of wavelength for a fibre  
  diameter of D = 400 nm 

 

 5.2.4 Effect of thickness 

 Next, the change in the propagation constant β of sensing arm and the power fraction in the 

 aqueous solution of sensing arm as a function of the E.Coli thickness, for a core diameter of 

 D = 400 nm, have been investigated and are presented in Figure 5.8. As the E.Coli 
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 thickness increases, both the propagation constant and the power fraction in the sensing 

 arm decrease linearly. 

 

  Figure 5.8: Change in propagation constant (β) and power fraction in the E.coli with the  
  variation of the E.coli thickness. 

As the thickness of E.coli increases the power fraction in the sensing arm and propagation 

constant of the sensing arm mode decreases with the increase in thickness of E.coli. This is 

due to the penetration of evanescent field into the sensing region decreases with increase of 

E.coli thickness. With the increase of sensing layer thickness evanescent field will not 

penetrate deep into the sensing region. However smaller nanowires with diameter of 100 nm 

and 200 nm may be used to penetrate more evanescent field into the sensing region.  

 5.2.5 Sensitivity  

The effective index change is produced either by a change of cover medium refractive index 

(homogeneous sensing) or by a change of thickness of E.coli which is immobilized on nanowire 

(surface sensing). Adlayer thickness and change of cover medium refractive index affects the 

effective index of the propagating optical mode. Measurement of sensitivity depends on 
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optical field distribution in the sensing medium therefore the most important design task is to 

maximize the sensitivity of the biosensor. 

Figure 5.9 shows the change in effective index and waveguide sensitivity decreases with the 

increase in diameter, D, of silica nanowire. The larger effective index variation and waveguide 

sensitivity is achieved at a D = 100 nm. The greater the change in ∆neff more sensitive the 

biosensor will be. Therefore, when D = 100nm maximum index difference is achieved. When 

the nanowire dimension becomes too large, most of the power is confined in the silica core 

and a smaller effective index difference is achieved hence lesser sensitivity. 

 

Figure 5.9: Variation of effective index difference, ∆neff and waveguide sensitivity with Diameter, D 
(nm), of silica nanowire. 

When designing a sensor, the sensitivity is a very important parameter to evaluate the device 

performance. To study the sensitivity of our device, we use the sensor to detect the change 

in the effective index of mode with the change in the refractive index of surrounding medium. 

When there is an extremely small index change around the nanowire, the guided light is 

changed in its optical phase. We assumed the sensing area length, L = 75µm. Calculated Δneff 
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is about 0.0131/μm at the wavelength of 325 nm induced by coating the nanowire with E.coli 

layer for a 400nm diameter silica nanowire.  

 

Figure 5.10: Sensitivity of the sensor as a function of the wavelength 

The phase shift (Δφ) of the sensing arm can be obtained as; 

                        effnL∆=∆
λ
πφ 2

                           (5.1) 

Where L is the effective length of sensitive area and Δneff is the effective index difference 

between the sensing arm and the reference arm, respectively. It is shown in the Figure 5.10a 

that the sensitivity of the device decreases with the increase in the wavelength and higher 

sensitivity of 697nm/RIU is achieved at wavelength of 325 nm. For comparison, the sensitivity 

of conventional Mach–Zehnder sensors based on integrated planar waveguides is much lower 

[209], showing that much higher sensitivity, or equivalently much smaller size can be achieved 

when sensing with silica nanowires. 
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 5.3 Slot-waveguide biosensor for detection of DNA hybridisation. 

  Slot waveguides present an interesting alternative when compared to rib or strip waveguide 

 based biosensors where light is predominantly guided in the high index material. The light 

 thus has little interaction with the biomaterial. This is a drawback for biosensing applications 

 where small refractive index variations caused by biomolecular interactions are monitored.  

 In case of slot waveguide, light is confined in a low index slot region sandwiched between 

 two high index rails.  Due to the discontinuity of the electric field at the interface between 

 the rails and slot, a significant fraction of the electromagnetic field is localized in the slot. 

 The sensitivity of an optical waveguide sensor relies on the amount of light in the medium to 

 be sensed. Due to the increased amount of power confined in the slot region higher 

 sensitivities will be achieved as compared to other waveguide based biosensors. 

Author of [128] has compared conventional slot waveguide, slot rib waveguides and Si wire 

for sensing of aqueous solution. However the work presented here is based on the slot 

waveguide micro ring resonation for the detection of DNA Hybridization - binding of 

complementary DNA strands (targets) to DNA probes. Moreover we have calculated 

wavelength shift, device sensitivity, detection Limit, and power density and compared with 

the experimental work published in [214], [215], [216] and [217]. 

 In the present work, the H-field Finite Element Method (FEM) based full-vector formulation 

 is used for the solution of the TE and TM Slot Waveguide modes where the TE mode is highly 

 confined in the slot region as compared to TM mode.  In the FEM, a problem domain can 

 suitably be divided into a patchwork of a finite number of subregions called “elements”.  

 Each of the elements can have different shapes and sizes and by using many elements a 

 complex problem can be accurately represented.  In using the aforementioned approach, 

 the field distribution in the transverse plane is obtained by the application of the variational 

 formulation in the region. More recently, slot waveguide based biosensors have been 
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 investigated using Finite difference time domain method (FDTD) and Finite Element Method 

 [218,219,220].   

 In the present work by optimising the slot waveguide parameters such as the slot width, 

 guide width and guide height a compact biosensor is proposed.  The aim of this work is to 

 provide a novel comprehensive analysis defining the modal characteristics, effective index 

 variation of ssDNA and dsDNA, surface sensitivity and power confinement in the DNA layer 

 of a slot waveguide biosensor with a nanoscale cross-section, and in doing so, the effects of 

 the critical size of such waveguide are also presented. To undertake such analysis, an 

 accurate and numerically efficient vector-H-field finite-element method (VFEM) [221] is used 

 to calculate the propagation constant, effective index, power confinement factor and the 

 full-vectorial modal field profiles of the waveguide. The full-vectorial electric field (E) is also 

 derived from the vector H-field obtained to characterize modal properties of such 

 waveguides. 

 5.3.1 Slot waveguide structure 

 

 

Figure 5.11: Slot Waveguide Biosensor 

 

A slot waveguide is investigated for the biosensing applications. The slot waveguide is formed 

by two Si wires close to each other having nanometer dimensions as shown in Figure 5.11. 

Refractive index (RI) of silicon, silicon oxide and water is taken as 3.476, 1.444 and 1.31 
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respectively at an operating wavelength of 1550nm. The sensing structure is first coated with 

a linker layer (silanes) whose refractive index is taken as 1.42 [222] having a thickness of t=1 

nm.  The refractive index of ssDNA and dsDNA is taken as 1.456 and 1.53 [223] respectively. 

The thickness of the DNA probe layer is taken as n=8 nm and remains unchanged when binding 

of complementary DNA strands (targets) to DNA probes happens i.e., only refrective index 

changes from 1.456 (ssDNA) to 1.53 (dsDNA). 

 A waveguide height, GH = 320 nm and high index region width, GW = 180 nm [128], slot 

 width, SW = 100 nm, linker layer thickness of t=1 nm and DNA probe thickness of n=8 nm is 

 considered for the initial simulation study. 

 5.3.2 Modal solutions 

 In the study of modal field profile, the H-field based VFEM is used to obtain the modal 

 solutions of such a waveguide. For this study, due to the availability of two-fold symmetry 

 of the waveguide structure, only a half of the structure is considered, in which more than 

 80,000 irregular sized first order triangular elements have been employed to represent the 

 waveguide structure. It takes about 2 minutes cpu time on a dual-core Pentium processor

 computer running solaris platform. 

    
  Figure 5.12: Hy field of the Hy11 mode               Figure 5.13: Hy Contour of Hy11 mode                         
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The structure supports both fundamental quasi-TE and quasi-TM modes. For the quasi-TE 

mode the Hy field component is dominant, and Hx and Hz are the nondominant components. 

The dominant Hy field component of the Hy11 mode is shown in Figure 5.12 for the waveguide 

width, GW = 180 nm and height, GH = 320 nm  

In its contour plot as shown in Figure 5.13 it is clearly visible that the modal confinement is 

much stronger in the slot region. Due to the large index contrast at interfaces, the normal 

electric field undergoes a large discontinuity, which results in a field enhancement in the slot 

region. 

 5.3.3 Effective index variation 

The variation in the effective index of the fundamental Hy
11 mode for a slot waveguide has 

been studied. The effective index, neff, of a given mode is a normalized propagation parameter, 

which can be defined by neff = β0/k0, where β0 is the propagation constant of that mode and 

k0 is the free space wavenumber defined as k0 = ω (ε0μ0)1/2 = 2π/λ. The various simulations are 

carried out to yield the maximum effective index difference so that maximum waveguide 

sensitivity is achieved and small size compact biosensor is designed. 
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Figure 5.14: Variations of the effective index, neff, with the Slot width for TE Mode 

 

For biosensing applications effective index change is an important design parameter. In Figure 

5.14 variations of the effective index (neff) with the slot width for the fundamental Hy
11 mode 

is presented. A waveguide height, GH = 320 nm and high index region width and GW = 180 

nm is considered for the study of simulations. In Figure 5.14, solid line represents the water 

as the sensing medium, dotted line represents linker layer (thickness t=1 nm and RI = 1.42), 

and water as the sensing layers, dashed line represents linker layer, ssDNA (thickness n=8 nm 

and RI = 1.456), and water as the sensing layers and dash dotted line represents linker layer, 

dsDNA (thickness n=8 nm and RI = 1.53) and water as the sensing layers. In all the cases it 

shows the effective index decreases with the increase in slot width because when the slot gap 

is small a stronger coupling occurs and hence increases the effective index.  It is also shown 

that the effective index is higher when the sensing medium is dsDNA as represented by dash 

dotted line in the Figure 5.14. 
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 5.3.4 Sensitivity 

In sensor development, sensitivity is an important parameter to evaluate the sensor 

performance. Fundamentally, sensitivity is determined by the strength of light-matter 

interaction. For an optical label-free sensor, sensitivity can be divided into waveguide 

sensitivity and device sensitivity. Device sensitivity is defined as the ratio of the change in the 

transducing optical parameter to the effective index change, while waveguide sensitivity is 

the ratio of the effective index change to the change in the waveguide parameter affected by 

analytes. 

 5.3.4.1 Waveguide sensitivity  

The effective index change is produced either by a change of cover medium refractive index 

(homogeneous sensing) or by a change of thickness of DNA layer which is immobilized on 

waveguide surface (surface sensing). Measurement sensitivity depends on optical field 

distribution in the sensing medium, so one of the most important design task is the waveguide 

optimization in order to maximize its sensitivity. 

Adlayer thickness and change of cover medium refractive index affects the effective index of 

propagating optical mode. The thickness of the DNA probe layer is taken as 8 nm and remains 

unchanged when binding of complementary DNA strands (targets) to DNA probes happens 

and the refractive index of ssDNA and dsDNA is taken as 1.456 and 1.53 respectively.   

Waveguide sensitivity can be written as; 

    S = ∆neff /RI                                        (5.3) 

Where RI is the DNA layer refractive index and ∆neff is the effective index difference when 

ssDNA and dsDNA is present. The effective index difference is achieved by simulating first by 

adding ssDNA layer on top of linker layer and then replacing ssDNA by dsDNA layer.  
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Figure 5.15: Variation of effective index difference, ∆neff and waveguide sensitivity with guide width  

A waveguide height, GH = 320 nm is fixed and SW = 60, 100 and 140 nm is varied. The sensing 

layers are linker layer (thickness t=1 nm and RI = 1.42), ssDNA (thickness n=8 nm and RI = 

1.456), and water respectively. We have then replaced ssDNA layer with the dsDNA (thickness 

n=8 nm and RI = 1.53) to achieve the difference between the two. 

Figure 5.15 shows larger effective index variation and waveguide sensitivity is achieved at a 

guide width = 220 nm when the slot width is 60nm, 100nm and 140nm respectively. The 

greater the change in ∆neff more sensitive the biosensor will be. Therefore, when guide width 

is between 200nm and 220nm maximum index difference is achieved. Although, a smaller slot 

width shows a more sensitive design, however, considering the fabrication techniques 

available today, a 100 nm slot-width would be suitable design [224].  
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Figure 5.16: Variation of effective index difference, ∆neff and waveguide sensitivity with slot width 

 

Figure 5.16 shows variation of effective index difference and waveguide sensitivity with the 

slot width. The effective index difference, ∆neff , as well as waveguide sensitivity decreases 

with the increase in the slot width due to presence of DNA layers. A waveguide height, GH = 

320 nm is fixed and GW = 140, 180 and 220 nm is varied. The sensing layers are linker layer 

(thickness t=1 nm and RI = 1.42), ssDNA (thickness n=8 nm and RI = 1.456), and water 

respectively. We have replaced ssDNA layer with the dsDNA (thickness n=8 nm and RI = 1.53) 

to achieve the difference between the two. A large effective index variation is achieved when 

the slot width is less than 100 in all cases. 
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Figure 5.17: Variation of effective index difference, ∆neff and waveguide sensitivity with guide height 

Figure 5.17 shows variation of effective index difference, ∆neff , and waveguide sensitivity with 

the guide height. When guide width is between 180nm and 220nm and slot width is 100nm 

maximum effective index difference can be achieved as compared to a guide width 140nm. 

The effective index difference increases with the increase in guide height. However if the 

waveguide dimension becomes too large, most of the power would be then confined in the Si 

core and a smaller effective index difference can be achieved hence less sensitivity and less 

confinement in the slot region. A line needs to be drawn to achieve a compact and smaller 

biosensor therefore guides height between 320nm and 340nm are the desirable dimensions. 

 

 

A comparison is made with the structure simulated in [219]. The parameters of slot waveguide 

structure in [219] have Slot width = 100 nm, Guide width = 220 nm, and Guide height = 250 

nm. The refractive indices of the silicon and the silicon oxide are 3.48 and 1.46, respectively. 
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In total, they have used about 100 00 mesh elements for full structure. When same 

parameters are simulated using our method calculated effective indices are shown in Figure 

5.18 below. For this study, due to the availability of two-fold symmetry of the waveguide 

structure, only a half of the structure is considered, in which 80,000 triangular elements have 

been employed to represent the waveguide structure. The cover medium refractive index is 

equal to 1, 1.33 1.444, 1.456 and 1.530 for air, aqueous solution, silicon oxide, ssDNA and 

dsDNA respectively. 

 

Figure 5.18: Variation of Effective index, ne with RI 

The effective index of TE and TM mode increases with the increase in the refractive index of 

cover medium. When cover medium refractive index is equal to 1, 1.33 and 1.444 a strong 

decrease in the effective index of the quasi-TE mode is measured whereas the effective index 

of the quasi-TM mode is less affected. This behaviour is direct evidence that, for the quasi-TE 

mode, light is indeed concentrated in the low-index region because of the field discontinuity. 
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However, when cover medium refractive index is equal to 1.456 and 1.530 the effective index 

of the quasi-TE mode is getting higher than the quasi-TM mode. The field still is concentrated 

in the low-index region of quasi-TE mode but the increase in its effective index is due to 

increase in the cover medium refractive index including the slot gap region. Therefore, if 

refractive index of the low-index region is increased the quasi-TE mode effective index is 

increased and gets higher than the quasi-TM mode. 

When cover medium index is equal to 1.0 the calculated effective index is 1.757767 for the 

quasi-TM mode and 1.611924 for the quasi-TE mode at the operating wavelength of 1545 nm 

in [219]. When same parameters are simulated using our method the calculated effective 

indices are 1.5271 for the quasi-TM mode and 1.4509 for the quasi-TE at the operating 

wavelength of 1545 nm. This difference in effective indices of the quasi-TM mode and the 

quasi-TE mode is maybe due to difference in x-side and y-side total length of the structure. 

The x-side total length of 0.500 µm including guide width of 0.220 µm and y-side total length 

of 1.500 µm including height of 0.250 µm is set in our structure. In [219] there is no mention 

of total length in the x-side and the y-side of the structure. However, when x-side total length 

is reduced from 0.500 µm to 0.330 µm and y-side total length increased from 1.500 µm to 

2.050 µm the effective index of the quasi-TE mode is increased from 1.4509 to 1.62540.  

 5.3.4.2 Device Sensitivity 

Device sensitivity only depends on device properties, and waveguide sensitivity is relevant to 

waveguide structures regardless of the type of devices. Based on the definition, device 

sensitivity is related to the variation of transducing optical parameters, and thus depends on 

the transducing method. For the resonant wavelength shift scheme, it is expressed as 
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        S = ∆λ/∆n                                                               (5.4) 
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=∆                                                                          (5.5) 

Where ∆neff is the change of the effective index caused by the analyte binding, λres is the 

resonance wavelength and ng is the group index and its value is 1.81264 at wavelength of 

1550nm as shown in Figure 5.19 when silicon width is 220nm, height is 320 nm and slot width 

is 100 nm. 

 

 

Figure 5.19: Variation of effective index with wavelength 

 

As a function of slot width and guide width the effective index of the waveguide was simulated 

once for ssDNA and once for dsDNA. By using Eq 5.3, the difference in effective index ∆neff = 

neff,ssDNA – neff,dsDNA  was used to calculate the expected wavelength shift of the slot waveguide.  
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Figure 5.20: Variation of wavelength shift with slot width 

 

Figure 5.21: Variation of wavelength shift with guide width  

Figures 5.20 and 5.21 show the calculated resonance wavelength shift as a function of slot 

width and guide width. In this range of the parameters, the sensitivity increases with 

decreasing slot width. When silicon width is 220nm, height is 320 nm and slot width is 100 nm 

our simulation shows that the effective refractive indices of ssDNA and dsDNA are 1.80549 
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and 1.81264 respectively with 6.12nm resonance wavelength shift, and sensitivity of 856 

nm/RIU is achieved.  

In our sensor, a large resonance wavelength shift is caused by large light-matter interaction 

and by decreasing the slot width. A comparison is made with the following structures [215], 

[216] and [214] respectively. In case of [215] where Slot width = 100 nm, Guide width = 210 

nm, Guide height = 220 nm, RI = 1.45 and a wavelength shift is 5.4 nm. When same parameters 

are simulated using our method a wavelength shift of 5.56 nm is achieved. This difference is 

due two different numerical methods are applied in simulating the structure. The authors in 

[215] have used FIMMWAVE for theoretical simulations and don’t have any mention of mesh 

elements employed in simulating the structure. We have applied H-field Finite Element 

Method (FEM) based full-vector formulation in calculating the effective indices of the TE and 

TM modes of slot waveguide structure in which 80,000 triangular elements have been 

employed. Despite the difference in values of effective indices and resonance wavelength shift 

we have a similar sort of trend in optimising the slot width and guide width of the slot 

waveguide. Higher values of resonance wavelength shift are calculated when slot width is less 

than 100nm as shown in the Figure 5.20 and same is the case with structure simulated in 

[215]. Similarly, higher values of resonance wavelength shift are calculated when guide width 

is between 180nm and 240nm as shown in the Figure 5.21. Other parameters like quality 

factor in [215] has not been studied because it needs either Beam Propagation Method (BPM) 

or FDTD method for calculating the quality factor values which is not the focus and objective 

of this work and will be taken into consideration in the future work. 

In case of [216] where Slot width = 200 nm, Guide width = 400 nm, Guide height = 300 nm, RI 

= 1.45 and a wavelength shift is 3 nm. A wavelength shift of 4.2nm is achieved in our 

simulations when using same values of slot waveguide as in [216]. The difference in comparing 
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results is because of two different numerical methods applied in simulating the structure. The 

authors in [216] have calculated numerical values of wavelength shift experimentally.  

Different results of wavelength shift is achieved when same slot waveguide parameters as in 

case of [214] are used (Slot width = 200 nm, Guide width = 500 nm, RI of ssDNA = 1.456, RI of 

dsDNA = 1.53 and a wavelength shift of 3.634 nm). The authors of [214] have used FDTD 

numerical method in simulating the structure which isn’t the objective of this research work.  

 5.3.5 Sensor Detection Limit 

Sensor detection limit (DL) is another important parameter to characterize the sensor 

performance. DL is the smallest change in the refractive index which is equal to the resonance 

wavelength resolution divided by the sensitivity [215]. The DL can be deduced by taking into 

account the noise in the transduction signal, σ, i.e., the minimum resolvable signal: DL = σ/S, 

where S is the sensitivity. For an optical RI-based label-free sensor, DL in units of refractive 

index units (RIU) is naturally used to quantify the sensor performance, which enables a rough 

comparison of the sensing capability among different optical technologies and structures. 

[126]. We follow the convention of using 3 standard deviations σ of the total system noise as 

a measure of the sensor resolution [227].  

             R = 3σ = 1.2 pm                                     (5.6) 

Improvement in the DL can be accomplished by increasing the sensitivity or reducing the noise 

level. Sensitivity can be enhanced by increasing the light-matter interaction. For our sensor, 

the detection limit is 1.43x10-6 RIU. 
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     5.3.6 Power confinement 

The confinement factor in any particular area normalized to the total power, which is obtained 

by integrating the Poynting vector, from the H-and E fields as given below: 

                Sz = ∫∫Ω {E × H} dxdy                                        (5.7) 

The waveguide sensitivity depends on the optical field confinement factor in the sensing 

medium. Quasi-TE mode supported by a slot waveguide is highly confined in the gap region 

and its confinement factor in the DNA layer is typically around 10-12%, which means a very 

large sensitivity to cover index change. Quasi-TM mode is significantly less sensitive to cover 

index change and its confinement factor is only around 4-5%. 

  

Figure 5.22 (a): Power confinement factor in ssDNA layer       
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Figure 5.22 (b): Power confinement factor in dsDNA layer                                                                                    

As shown in Figure 5.22 (a) and 5.22 (b), the difference in the field confinement between 

ssDNA and dsDNA is small and that is why the curves are plotted separately otherwise they 

overlap with each other. 

TE mode has more power confinement due to normal electric field undergoes a large 

discontinuity, which results in a field enhancement in the slot region when the slot width is 

smaller. However, TM mode has less power confinement in the slot region because optical 

power is localised more in the high index region and less confined in the slot region. 

The slot width is varied from 40 nm to 180 nm keeping guide width as 220 nm and guide height 

as 320 nm. The highest power confinement is achieved when slot width is 40 nm and sensing 

medium is ssDNA. When the slot gap is smaller, stronger coupling occurs and hence more 

power confinement. However, it is important to remember the fabrication limitations that the 

slot width less than 100nm are not easy to fabricate and hence slot width of 100nm is the 

minimum desirable width for the design of our biosensor [224].  
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 Figure 5.23: Variation of power density in DNA layer with the slot width for TE mode 

 

Another important parameter in the design of such biosensors is the slot power density, which 

is defined as the power confinement in the sensing medium divided by the sensing medium 

area [220]. Figure 5.23 shows the variation of the slot power density for different slot widths 

keeping constant guide width of 140nm and 180nm respectively and guide height of 320nm. 

The guide width of 140nm and 180nm is compared in order to achieve better results. The 

power density is a maximum when the slot width is smaller and guide width is 180nm. Smaller 

the slot widths better the coupling efficiency. Power density is higher when the sensing 

medium is ssDNA as compared to dsDNA in both the cases of guide widths. When the index 

contrast is high the normal electric field undergoes a large discontinuity, which results in a 

field enhancement in the slot region therefore more power confinement in the slot region in 

case of ssDNA as compared with dsDNA. 
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 Figure 5.24: Variation of power density in DNA layer with the guide width for TE mode 

 

Next the effect of power confinement is measured by varying the guide width and keeping the 

sloth widths as 60nm, 100nm and 140nm and guide height as 320 nm. The maximum power 

confinement is achieved when guide width is 180nm and slot width is 60nm as shown in Figure 

5.24. Then followed by guide width of 180 and slot width of 100nm. However slot width of 

60nm is not easy to fabricate therefore slot width of 100nm and guide width of 180nm is an 

ideal combination for achieving maximum power confinement. Again, it is evident that power 

confinement is higher when the sensing medium is ssDNA as compared to dsDNA in all the 

cases of varying slot widths due to its high index contrast with the guide. 
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Figure 5.25: Variation of power density in DNA layer with the guide height for TE mode 

 

Further, the guide height is varied whilst keeping slot width as 100 nm and guide width as 180 

nm which is the best possible combination as shown above in Figure 5.15 and Figure 5.16. The 

power confinement increases with the increase in guide height as shown in the Figure 5.25. 

As the waveguide dimension becomes large, most of the power would be confined in the Si 

core however due to restrictions in guide width and slot width we see power confinement in 

the DNA layer increases with the guide height. Most of the easily available wafers are of 

H=220nm, and slot waveguide of other heights needs to be fabricated specifically.  

Comparing Figures 5.23, 5.24 and 5.25 with Figures 5.15, 5.16 and 5.17 it appears power 

confinement and sensitivity can be achieved with the same design parameters where 

sensitivity is maximum we can also see power confinement is maximum in all the cases. 
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5.4 Simulation results for non-vertical sidewall slot waveguide 

In this section we present the results of a non-vertical sidewall slot waveguide structure 

(slanted-shaped slot waveguide) as shown in Figure 5.26. Numerical simulations of the 

possible mode field, the power confinement, and the sensitivity are carried out for different 

waveguide geometry such as non-vertical sidewall width, slot width, guide height and guide 

width, operating wavelengths and cladding materials. The simulation study here is based on 

a comparison of non-vertical sidewall slot waveguide with the conventional slot waveguide 

structure defined above in the Figure 5.11. 

 

Figure 5.26: Non-vertical sidewall slot waveguide biosensor 

Refractive index (RI) of silicon, silicon oxide and water is taken as 3.476, 1.444 and 1.34 

respectively at an operating wavelength of 1550nm. The sensing structure is first coated with 

a linker layer (silanes) whose refractive index is taken as 1.42 [222] having a thickness of t=1 

nm.  The refractive index of ssDNA and dsDNA is taken as 1.456 and 1.53 [223] respectively. 

The thickness of the DNA probe layer is taken as n=8 nm and remains unchanged when binding 

of complementary DNA strands (targets) to DNA probes happens i.e., only refrective index 

changes from 1.456 (ssDNA) to 1.53 (dsDNA). 

A waveguide height, GH = 320 nm and high index region width, GW = 180 nm [128], slot width, 

SW = 100 nm, linker layer thickness of t=1 nm and DNA probe thickness of n=8 nm is 

considered for the initial simulation study. The structure supports both fundamental quasi-TE 

and quasi-TM modes. For the quasi-TE mode the Hy field component is dominant, and Hx and 
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Hz are the non-dominant components. The dominant Hy field component of the Hy11 mode is 

studied using the full-vectorial finite element method and its contour plot is shown in Figure 

5.27 for the waveguide width, GW = 180 nm and height, GH = 320 nm. 

 

Figure 5.27: Hy Contour of Hy11 mode 

The contour plot of dominant Hy field component of the Hy11 mode is shown in Figure 5.27 

for the waveguide width, GW = 180 nm and height, GH = 320 nm. It is clearly visible that the 

modal confinement is much stronger in the slot region. Due to the large index contrast at 

interfaces, the normal electric field undergoes a large discontinuity, which results in a field 

enhancement in the slot region. 

5.4.1 Effect of non-vertical sidewall 
The change of effective index as induced by non-vertical sidewalls is calculated in the Figure 

5.28. When varying the width of non-vertical sidewalls the effective mode index of quasi-TE 

mode in a slot waveguide (GW1=180nm, GH=320nm and SW=100nm) increases dramatically 

with the increase of non-vertical sidewalls width. The increase in effective index with non-

vertical sidewalls is an indication of an enhanced optical confinement.   

A linear dependence of effective index change on non-vertical sidewalls has been observed. 

Non vertical sidewalls influence on effective index is stronger for quasi-TE because the 
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relevant electric field has its maxima along the vertical interfaces between silicon guide and 

gap region. 

 

 

Figure 5.28: Effective mode index and power confinement in a non-vertical slot waveguide with RI of 
dsDNA = 1.53 as function of Wsl (non-vertical sidewall variation). 

With an increase of non-vertical sidewall width power confinement decreases in the cover 

medium i.e. DNA layer due to enhanced optical field confinement along the vertical interfaces 

between the silicon guide and the gap region. Therefore, most of field remains between the 

silicon guide and the gap region which leads to less confinement in the cover medium.  Hence 

this shape will have an impact on the sensor performance when compared to conventional 

slot waveguides whereby power confinement in the cover medium is higher. 
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5.4.2 Effect of slot width 

Next, effect of varying slot width is studied with fixed dimension of 320nm height (GH), 180nm 

top-width (GW1), and 280nm bottom-width (GW2) at an operating wavelength of 1550nm as 

shown in Figure 5.29.  

 

Figure 5.29: Effective mode index in a non-vertical slot waveguide with RI of dsDNA = 1.53 as function 
of slot width. 

The sensing layers are linker layer (thickness t=1 nm and RI = 1.42), ssDNA (thickness n=8 nm 

and RI = 1.456), and water respectively. We have then replaced ssDNA layer with the dsDNA 

(thickness n=8 nm and RI = 1.53) to achieve the effective index difference for calculating the 

sensitivities. 

The effective index of the structure is decreased when the slot width is increased. Therefore, 

there is less confinement of the optical field in the guiding region at a large slot width.  

Due to less confinement of the optical field in the guiding region sensitivity of the sensor 

increases with the increase in the slot width. However, the sensitivity of the non-vertical 

sidewall structure is less than the vertical sidewall structure as shown in Figure 5.30.  
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Figure 5.30: Sensitivity in a non-vertical and vertical slot waveguide as function of slot width. 

The non-vertical sidewalls significantly degrade the conventional slot waveguide sensitivity 

because less evanescent field extends into the sensing region. Thus, the high power 

confinement in the cladding is the key parameter to achieve better sensitivity. 

5.4.3 Effect of guide height 

Figure 5.31 shows the power confinement in the sensing layer i.e. DNA layer as a function of 

variable guide height whilst keeping slot width as 100 nm and guide width as 180 nm. The 

power confinement increases with the increase in guide height. As the waveguide dimension 

becomes large, most of the power would be confined in the Si core however due to 

restrictions in guide width and slot width we see power confinement in the DNA layer 

increases with the guide height. 
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Figure 5.31: Variation of power confinement in DNA layer with the guide height for TE mode 

The Figure 5.31 shows a comparison of power confinement in the DNA layer in non-vertical vs 

vertical structure. Due to non-vertical sidewalls the maximum optical field confinement 

remains along the vertical interfaces between the silicon guide and the gap region and hence 

less evanescent field extends into the sensing region which is the reason for degraded power 

confinement in the DNA layer with the non-vertical sidewall structure. 

Figure 5.32 shows variation of waveguide sensitivity with the guide height for non-vertical and 

vertical structures with fixed guide width of 180nm and slot width of 100nm. The sensitivity 

increases with the increase in guide height. However if the waveguide dimension becomes 

too large, most of the power would be then confined in the Si core and a smaller effective 

index difference can be achieved hence less sensitivity and less confinement in the slot region. 
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Figure 5.32: Variation of waveguide sensitivity with guide height 

 

Again, a comparison of sensitivities is drawn between the non-vertical and vertical structures 

and it proves that the sensitivity of vertical structures are higher than the non-vertical one’s.  

5.4.4 Effect of guide width 

Figure 5.33 shows a comparison of power confinement in DNA layer for non-vertical and 

vertical sidewalls. The vertical sidewall structure achieves higher power confinement in the 

DNA layer than the non-vertical sidewall structure. It is expected that as the waveguide 

dimension becomes large, most of the power would be confined in the core. However, it can 

be noted that, the power confinement in the sensing region is higher between guide width of 

180nm and 220nm, because the height of the core was restricted to 320 nm. If the height of 

the core also becomes larger, then the power confinement in the core could approach 100%. 

It can be observed here that as the width is reduced, the power confinement in the core also 

reduces. 
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Figure 5.33: Variation of power confinement in DNA layer with the guide width for TE mode 

Next, the sensitivity is calculated for vertical and non-vertical structures with fixed slot width 

of 100nm and guide height of 320nm as shown in Figure 5.34. It is evident that sensitivity of 

vertical guide is much higher than the non-vertical guide due to higher power confinement in 

the sensing region which allows more evanescent field interaction with the sensing material. 

Most of modal field in non-vertical sidewall structure remains confined between the guide 

and the gap region which leads to less penetration in the cover medium hence less sensitive’s 

are achieved. 

157 
 



 

Figure 5.34: Variation of sensitivity in non-vertical and vertical sidewall structures with the guide 
width for TE mode 

5.4.5 Effect of refractive index variation 
It can be observed from Figure 5.35 that the power confinement of the vertical slot waveguide 

exploiting quasi-TE mode is greater than that of the non-vertical slot waveguide, and this value 

increases when the refractive index of the cladding material is increased. The power 

confinement in the cladding region is improved when increasing the refractive index of the 

cladding material for both vertical and non-vertical slot waveguides. 

For the quasi-TE mode, light is indeed concentrated in the low-index region because of the 

field discontinuity for both vertical and non-vertical structure. However, the field still is highly 

concentrated in the low-index region of quasi-TE mode for non-vertical sidewall structure as 

compared to vertical sidewall structure. Therefore, less field penetrates into cladding region 

of the non-vertical slot waveguide and hence less power confinement in this region. 
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Figure 5.35: Variation of power confinement in DNA layer with the variation of cladding refractive 
index for TE mode 

5.4.6 Effect of wavelength 

The power confinement in the cladding region is greater when the operating wavelength 

increases, as shown in Figure 5.36.  

 

Figure 5.36: Variation of effective index and power confinement in DNA layer with non-vertical 
sidewall at an operating wavelength range from 1520 to 1600nm for TE mode. 
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The effective index of the structure is decreased when the operating wavelength is increased. 

Therefore, there is less confinement of the optical field in the guiding region at a large 

wavelength. 

The vertical sidewall slot waveguide structure have been proved to be very sensitive to detect 

the DNA hybridisation than the non-vertical sidewall structures especially when a quasi-TE 

mode is considered. The analysis in this work shows that non-vertical sidewall slot waveguide 

have an enhancing effect on the mode confinement with mode intensity maximum moves 

towards the region where the rails are wider and the slot is narrower. However, non-vertical 

structures degrade the performance of sensitivity for sensor which need more penetration of 

evanescent field into the cover sensing region towards the top of the waveguide.  

5.5 Summary 

A rigorous finite element-based full vectorial H-field formulation has been used for the study 

of the optical properties of silica nanowires in a simulated Mach–Zehnder-based optical 

sensor for detecting biomaterial specimens such as E.coli. The variation of the effective index, 

propagation constant, power fraction in the different regions of the reference and the sensing 

arms of the aforementioned device with the variation of the nanowire size and the specimen 

refractive index, temperature, and wavelength are studied thoroughly as they are very 

important parameters in determining the sensitivity of the proposed optical sensors based on 

such a configuration. 

 In the next part of the above chapter the finite-element approach based on a full-

 vectorial H-field formulation has been used to study the slot waveguide biosensor to 

 detect the DNA  hybridisation. The optical field profiles, the effective index change, 

 power confinement factor and power density in the DNA layer have been studied and an 

 optimised slot waveguide sensor with maximum sensitivity is proposed. In this work we have 

 proposed a method to detect DNA hybridisation. When the complementary strand DNA 
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 attaches with the probe DNA, we see a change in the effective index and power 

 confinement.  

By keeping the fabrication limitation into consideration slot width of 100nm is a minimum 

desirable width for the design of a biosensor. Moreover, guide width of 180nm to 220nm and 

guide height of 320nm gives us the compact and smaller size biosensor with maximum 

waveguide sensitivity, maximum effective index difference and maximum power confinement 

factor in the DNA layer. 
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 6 
    CONCLUSION AND FUTURE WORK 
 

6.1 Conclusion 
The primary objective of this research work has been to develop, implement and apply 

effectively a numerical modelling technique which can be used to model, design, optimise and 

characterize label free optical biosensors for detection of various biomolecular interactions at 

optical frequencies in light of practical limitations such as fabrication and experimental results. 

The objectives outlined have been successfully achieved with a detailed analysis of results 

during the entire work. In this work, a numerical method based on finite element formulation 

has been extensively used to accurately characterise various types of optical  biosensors 

and study their optical properties. 

The background knowledge of label free optical biosensors is of paramount importance  for 

understanding their underlying principles, mechanisms, architectures and immobilization 

techniques is discussed and served in chapter 2. The discussion started with the introduction 

of biosensors in order to know and fully understand its working principle. It has followed with 

classification of optical biosensors based on sensing mechanism, sensing architectures and 

detection protocols. We have adopted an evanescent wave sensing mechanism for detection 

of biomolecular interactions. Sensitivity is an important parameter to evaluate the sensor 

performance and the factors that affect sensitivity has been identified. The design goal for 

achieving high sensitivity is to design a structure that allows as much of the field as possible 

to reside in the sensing medium. For this reason various architectures of optical biosensors 
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with comparison are elaborated that allowed interaction of guided mode with the sensing 

medium so that the minimum detectable change in the sensing medium changes the effective 

refractive index of mode and thus to a change of the output signal. Interface between the 

sensor surface and the chemical or a biological system is a key component of the optical 

biosensors. The physical and chemical properties of the interface play an important role in 

achieving optimal recognition of the target and limiting the nonspecific adsorption. 

Immobilizations of bioreceptors such as enzymes, antibodies, nucleic acids, proteins on the 

functionalized surface are discussed. The performance of a biosensor comes from its ability to 

immobilize receptors while maintaining their natural activity, the bioavailability of the 

receptors to targets in solution and a low nonspecific adsorption to the solid support. These 

specifications govern the specificity and sensitivity of such devices and can be tailored by an 

appropriate choice of the interface where the bioreceptors are immobilized. 

Chapter 3 is devoted to the methodology adopted for modelling and simulation of metal-clad 

fibre, silica nanowire and slot-waveguide based biosensors. The full vectorial H-field based 

variational formulation has been implemented in the numerical tool is applied to analyse the 

effects of various design parameters of optical biosensor devices by varying and resolving the 

problem repeatedly, while an appropriate output metric is recorded. Graphs are built relating 

the parameters to the results, from which optimum parameters are picked according to 

fabrication limitations. In this formulation, the magnetic field vector H is naturally continuous 

across the waveguide interfaces and also the associated natural boundary condition is that of 

an electric wall, which is very convenient to implement in many practical waveguide problems. 

Key primary concepts such as discretisation of the domain, the shape functions and the 

element matrices were explained in detail in this chapter. Since the shape functions provide 

only an approximate representation of the true fields, it is necessary to increase the number 

of elements or nodal points to reduce the resulting error. In doing so, the numerical model 

becomes a closer representation of the real physical problem. However, with this H-field 
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formulation, the appearance of the spurious (non-physical) modes along with the physical 

modes is a key problem. The penalty function method was incorporated to eliminate these 

spurious modes by imposing the condition (∇ · H = 0). The finite element method has been 

proven to be a very powerful method of finding the field profiles and propagation 

characteristics of the guided modes of most waveguides used across the broader 

electromagnetic spectrum. 

The design of label free optical sensors based on optical fibre is a quite attractive area due to 

the intrinsic features of optical fibres, including small size, robustness, low cost and immunity 

to electromagnetic interference. Implementation of numerical methods for the modelling and 

characterisation of metal-clad optical biosensors for the detection of E.Coli and range of 

refractive indexes of other biomolecules is shown in chapter 4. A full-vectorial H-field 

 formulation in conjunction with the perturbation technique has been used to study 

the surface plasmon resonance based fibre optic biosensors to detect E.Coli. The newly 

developed polar coordinate discretization used here has matched accurately the circular 

layers of the waveguide, and the optical field profiles and optical power confinement were 

rigorously presented for each layer. The surface plasmon modes propagating in the above 

waveguide and the study of their propagation and attenuation characteristics, with the 

variation of the metal layer thickness and outer layer thickness is investigated. For finite metal 

thickness, the SPMs exist at both the inner and outer interfaces. By adjusting the metal 

thickness and refractive index values of the cladding layers, the odd and even-type coupled 

SPMs can be formed and exploited for various biosensing applications. The metal-clad optical 

biosensors for the detection of E.Coli is a circularly symmetric structure and contains core, 

cladding, gold, outer medium and water layers respectively. The refractive index of outer 

medium is varied from 1.440 to 1.453 to study the coupling between the inner surface 

plasmon mode (ISPM) and the outer surface plasmon mode (OSPM). The propagation 

constants of the two SPMs are close at refractive indices of 1.449, 1.448 for cladding thickness 
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of 5μm and 10μm respectively. In this case the outer medium thickness was fixed at 2μm. The 

coupling length is an important parameter in investigating the phase matching condition of 

the fibre mode and the surface plasmon mode. The maximum coupling length is observed 

when it is phased matched. When the cladding thickness is 5μm the inner and the outer SPMs 

are very strongly coupled hence the difference between their propagation constant is large 

giving a shorter coupling length. However, when the cladding thickness is 15μm the inner and 

the outer surface plasmon modes are weakly coupled and hence the difference between their 

propagation constant is small giving rise to an increased coupling length. It has been analysed 

that the maximum detection is possible when the outer medium refractive index is 1.449, the 

thickness of the cladding is 10μm, and the thickness of the outer medium is 2μm. 

Chapter 5 is focused on studying optical properties of silica nanowires for detecting specimens 

such as E.coli. The optical field profiles, effective index difference, propagation constant 

difference and power fraction of reference and sensing arms of the Mach-Zehnder based 

interferometer sensor are discussed with the variation of the nanowire diameter, specimen 

refractive index and wavelength. They are very important parameters in determining the 

sensitivity of the proposed biosensor. Due to the presence of E.coli in an aqueous solution it 

is has been analysed evanescent field in the sensing arm expands more outside because of 

change of refractive index in the aqueous solution.  Because of this change in refractive index, 

effective index of guided mode decreases with the decrease of core diameter and the increase 

of the wavelength. For a core diameter, D, of 100nm the field extends mostly in the aqueous 

solution for both the reference and the sensing arms. However sensing arm exhibits more 

power in the aqueous solution than the power in the aqueous solution of reference arm. It is 

due to refractive index change in the aqueous solution of sensing arm when target antigen 

(E.Coli) is attached to the immobilised antibody. The greater the change in Δneff more sensitive 

the biosensor will be. Therefore, when D = 100nm maximum index difference is achieved. 

165 
 



When nanowire dimension becomes too large most of the power is confined in the silica core 

and a smaller effective index difference is achieved hence lesser sensitivity. 

In the next part of the chapter 5 we have proposed a method to detect DNA hybridisation 

using an optimised slot waveguide sensor. When the complementary strand DNA attaches 

with the probe DNA, we see a change in the effective index and power confinement. The 

various simulations are carried out to yield the maximum effective index difference so that 

maximum waveguide sensitivity is achieved and small size compact biosensor is designed. The 

effective index decreases with the increase in slot width because when the slot gap is small a 

stronger coupling occurs and hence increases the effective index. The greater the change in 

Δneff more sensitive the biosensor will be. The effective index difference, Δneff, as well as 

waveguide sensitivity decreases with the increase in the slot width due to presence of DNA 

layers.  In this sensor, a large resonance wavelength shift is caused by large light-matter 

interaction and by decreasing the slot width. When silicon width is 220nm, height is 320nm 

and slot width is 100nm our simulation shows that the effective refractive indices of ssDNA 

and dsDNA are 1.80549 and 1.81264 respectively with 6.12nm resonance wavelength shift, 

and sensitivity of 856nm/RIU is achieved. Improvement in the Detection Limit can be 

accomplished by increasing the sensitivity or reducing the noise level. For this sensor, the 

detection limit achieved is 1.43x10-6 RIU. 
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6.2 Future work 
Modelling of optical biosensor is a rich source of mathematical challenges. The main 

components of biosensors are based on well-understood physical processes as well as 

chemical and biological reactions, all of which are amenable to mathematical modelling using 

ordinary and partial differential equations.   

Chapter 5 refers to an interferometer structure using nanowires. However, the results 

presented correspond to the change in modal effective index in one arm of the interferometer 

and not in the changes in the interferogram. Simulations of the interferogram (as a function 

of the wavelength) and estimate the sensitivity of the sensor from the interferogram will be 

carried out in the future work. 

Traditional diagnostic methods are not very powerful methods when it comes to cancer 

detection at very early stages. As well, some of the screening methods are quite costly and 

not available for everyone. Therefore, the development of technology that is specific and 

reliable for detecting cancers at early stages and is easily accessible so that it can function as 

the first-line guidance is of importance. 

 Biomarkers in relation with nanotechnology and biosensors have opened up a new era of 

 early cancer diagnosis and precise drug delivery. Proteins, antibody fragments, DNA 

 fragments, and RNA fragments are the base of cancer biomarkers and have been used as 

 targets in cancer detection and monitoring. Various nanowires have also been applied to 

 biomarker detection including silicon nanowires [228-230], In2O3 nanowires [231], gold 

 nanowires [232], [233], and conducting polymer nanowires [234]. 

DNA sensors are highly concerned due to their important function of transferring genetic 

codes in living cells. Once the DNA sensor is reduced down to cell scale, it would be possible 

to detect signs of the early DNA damage that can lead to cancers. The DNA sensor presented 

in the chapter 5 of thesis has been proved to be label-free and fast.  Aiming at the in-cell DNA 
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detection, the miniature sensor with the same structure is a new research direction of great 

interest. The numerical methods based on Finite Element Method applicable to study of DNA 

sensor as outlined in the chapter 5 with a view to optimising sensor design process will be 

applied first to detect the in-cell DNA.  

Nanowire sensors based biosensors have been considered as one of the appropriate methods 

for disease detection and label-free detection of cancer biomarkers is possible. Therefore, 

numerical methods discussed in the thesis can be used to design, analyse and optimise the 

label-free optical biosensors for detection of cancer biomarkers in future. 
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Appendices 
 

Appendix A: Finite element analysis of quarter structure of    
Metal Clad Optical Fibre 

 

Polar Mesh Generation 
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Quarter structure of Optical Fiber 
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 subroutine gend1(np,ne,nop,cord,ibnd,dlc,nrt) 

 

 Variables used in the subroutine 

 

 nmt = number of radial layers 

 nrt = number of radial elements 

 npr = number of radial nodes 

 na: number of azimuthal elements 

 na1: number of azimuthal nodes 

 np: number of nodes 

 ne: number of triangular elements. 

 r(i): r1..r6: radius of each radial layer 

 nr(i): nr1.. nr6: element divisions for each radial layer 

 nbr(i): nbr1..nbr6: radial boundary nodes for each layer 

 dri(i): dri1..dri6: radius difference 

 

 dr(i): dr1.. dr6= radial element resolution for each layer where dr(i)=dri(i)/nr(i) 

 da: azimuthal element resolution: 
na

da
*2
π

=  

 k: node variable, k=1..np 

 polc(k,1): stores the magnitude of the nodal polar coordinate 

 polc(k,2): stores the phase of the nodal polar coordinate 
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 Assignment of nodes for layer 1 
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 Boundary nodes for each layer 

x
r

θ

(nbr1-1)*na1+2

(nbr2-1)*na1+2
(nbr4-1)*na1+2

(nbr3-1)*na1+2
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(nrt-1)*na1+2

(nbr1-1)*na1+2+na

(nbr2-1)*na1+2+na

(nbr3-1)*na1+2+na

(nbr4-1)*na1+2+ na

(nbr5-1)*na1+2+na

(nrt-1)*na1+2+na

y

1

 

 sr=dr(1)     {Initialisation of the  radial length: sr} 
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 do 200 ir=1,nrt     

 drr=dr(1)     {Radial resolution for the inner layer}  

 do 210 im=1,nmt     

 if (ir.ge.nbr(im-1)) drr=dr(im)  {Assignment of radial resolution for each ring layer} 

  210 continue 

 

 sp=0.0d0     {Initialisation of the azimuthal length, sp} 

 do 220 iz=1,na1 

 k=(ir-1)*na1+iz     

 k=k+1     { node  index variable} 

 polc(k,1)=sr    {Nodal magnitude} 

 polc(k,2)=sp    {Nodal phase} 

 sp=sp+da     {Radial length increment} 

  220 continue 

 sr=sr+drr     {Azimuthal length increment} 

 200 continue   
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 Assignment of element global nodes, element number and material 
 index 
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          Local node numbering    Global nodal and element numbering 
      for the  inner   layer 

 

 do 400 ir=1,nrt   {total number of radial elements} 

 do 400 iz=1,na   {total number of azimuthal elements} 

 

                  if(ir.eq.1) then  {node numbers for the elements in the first  inner ring: Elements1..5}  

 kr=iz       

 nop(kr,1)=1   {Global node number for the 1st  local node of the inner circle}
  

 nop(kr,2)=iz+1   {Global node number for the 2nd local node of the inner circle} 

 nop(kr,3)=iz+2   {Global node number for the first local node of the inner circle} 

 nop(kr,4)=1   {Material index for the elements in  the inner circle} 

 endif 

  

 k1=(ir-1)*na+na+iz+k3  {element index for the upper elements} 

 k2=k1+1    {element index for the lower elements} 
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 k3=k3+1    {element index for the lower elements} 

 nop(k1,1)=(ir-1)*na1+iz+1 {Global node number for the 1st  local node of  the upper element} 

 nop(k1,2)=ir*na1+iz+1 {Global node number for the 2nd  local node of  the upper element} 

 nop(k1,3)=ir*na1+iz+2 {Global node number for the 3rd  local node of  the upper element} 

 nop(k2,1)=(ir-1)*na1+iz+1 {Global node number for the 1st  local node of  the lower element} 

 nop(k2,2)=ir*na1+iz+2 {Global node number for the 2nd  local node of  the lower element} 

 nop(k2,3)=(ir-1)*na1+iz+2 {Global node number for the 3rd  local node of  the lower element} 

 

 if(ir.le.nbr(1)) nop(k1,4)=1    {Material index for the inner layer} 

 if(ir.ge.nbr(1).and.ir.lt.nbr(2)) nop(k1,4)=2  {Material index for the 1st ring layer} 

 if(ir.ge.nbr(2).and.ir.lt.nbr(3)) nop(k1,4)=3  {Material index for the 2nd   ring layer} 

 if(ir.ge.nbr(3).and.ir.lt.nbr(4)) nop(k1,4)=4  {Material index for the 3rd   ring layer} 

 if(ir.ge.nbr(4).and.ir.lt.nbr(5)) nop(k1,4)=5  {Material index for the 4th  ring layer} 

 if(ir.ge.nbr(5)) nop(k1,4)=5    {Material index for the 5th  ring layer} 

                 nop(k2,4)=nop(k1,4)        {Material index for the corresponding lower elements of each ring layer} 
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 400 continue 
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 Assignment of boundary nodes 

Boundary 1
Boundary 3
Inner circle

B
ou

nd
ar

y 
2

Boundary 4

 

 

 ibnd(1,1)=1   {Initialization of boundary nodes for each boundary 

 ibnd(2,1)=1 

 ibnd(3,1)=1 

 ibnd(4,1)=1 

 

 do 420 i=1,na1   {Assignment of boundary nodes for boundary 4} 

 ibnd(4,i)=i+nrt*na1  {Assignment of boundary nodes for boundary 3} 

 ibnd(3,i)=i 

 420  continue 

 

 do 430 i=1,nrt 

 ibnd(1,i+1)=(i-1)*na1+2  {Assignment of boundary nodes for boundary 1} 

 ibnd(2,i+1)=i*na1+1  {Assignment of boundary nodes for boundary 2} 

 430 continue 
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 Dielectric constant for each material index 

 

 Real part 

 dlc(1)=anco 

 dlc(2)=ang 

 dlc(3)=ans 

 dlc(4)=ango 

 dlc(5)=anc 

 

 Complex refractive index 

 

 Assigned in the main program 

 IF (icm.eq.1) canm=cmplx(anco,altco) 

 IF (icm.eq.2) canm=cmplx(ang,altg) 

 IF (icm.eq.3) canm=cmplx(ans,alts) 

 IF (icm.eq.4) canm=cmplx(ango,altgo) 

 IF (icm.eq.5) canm=cmplx(anc,0.0d0) 

 

 where canm is the complex 
 refractive index variable 

 Transformation from polar to 
 rectangular coordinates 

 

 do 230 i=1,np 

 cord(i,1)=polc(i,1)*dcos(polc(i,2)) 

 cord(i,2)=polc(i,1)*dsin(polc(i,2)) 

 230 continue 
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 Figure below shows the element discretization for a three layer fibre:  

 

 

 Material variation in the azimuthal generation 

 The easiest way to change the material of a circular layer in the azimuthal direction 
 is to assign the number of total azimuthal elements to be a multiple of the azimuthal 
 partition. 

 Example 

 Assume the 3rd layer to be partioned into 1/5 with material 4 and 4/5 with material 3 
 as shown below: 
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 The total number of azimuthal elements, na should be a multiple of 5. Therefore the 
 statements for the assignment of  material index to the different layers will be 
 changed to:  

 

 if(ir.le.nbr(1)) nop(k1,4)=1     

177 
 



 if(ir.ge.nbr(1).and.ir.lt.nbr(2)) nop(k1,4)=2 

  if(ir.ge.nbr(2).and.ir.lt.nbr(3)) then  

  if(iz.le.(na/5)) nop(k1,4)=4 {Material index4 for the 1/5 of the azimuthal section} 

  if(iz.gt.(na/5)) nop(k1,4)=3 {Material index3 for  the remaining 4/5  of the azimuthal section} 

  endif 

 if(ir.ge.nbr(3).and.ir.lt.nbr(4)) nop(k1,4)=4 

 if(ir.ge.nbr(4).and.ir.lt.nbr(5)) nop(k1,4)=5 

 if(ir.ge.nbr(5)) nop(k1,4)=5     

 nop(k2,4)=nop(k1,4)  

 

 By using the above approach only the material contribution in the azimuthal 
 direction is controlled. 

 To control mesh refinement in the azimuthal direction, the number of azimuthal 
 elements, na, should be subdivided according to the partition eg. naz1, naz2, where 

 na=naz1+naz2. 

 Further azimuthal arc lengths (in rad) are also required such as az1 and az2, where 

 az1+az2= π/2 

 Next an azimuthal resolutions daz1 and daz2 are required to be defined where: 

 daz1=naz1/az1 

 daz2=naz2/az2 

 In the coordinate assignment section of the subroutine the following statement 
 should be added in the loop 

 if (iz.lt.na1) da=daz1 

 if (iz.ge.na1) da=daz1 
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 Appendix B: Finite element analysis of waveguide 

 

Mesh Generation Subroutine 

 

Directional coupler structure 
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Fig.1 

 

Input waveguide structure 
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Fig.2 
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MMI structure 
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Fig.3 

 The above structures are to be used for the input/ output waveguides and MMI 

 region of the MMI 3dB coupler. 

 Finite Element discretization for Input waveguide structure 

 The input waveguide structure is subdivided into 8 and 9 main divisions along the x- 

 and the y-axis thus giving 8x9 rectangular blocks as shown in Fig.4. 
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Fig.4 
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 The number of elements in each of the main divisions along the x and the y direction 

 are named nxa1..nxa8 and nya1..nya8, respectively and given in the COMMON 

 BLOCK statement as follows 

 data nx/70/, nxa1/5/, nxa2/5/, nxa3/15/, nxa4/10/, nxa5/10/, nxa6/15/, nxa7/5/, nxa8/5/ 

 data ny/60/, nya1/5/, nya2/5/, nya3/5/, nya4/20/, nya5/5/, nya6/5/, nya7/5/, nya8/5/, nya9/5/ 

 where nx and ny is the total number of elements in the x and the y direction, 

 respectively. 

 The variables ne1..ne7 and nb1..nb8 is a count of the nodes along the boundaries, at 

 the end of each main division,  in the x and y direction, respectively.  

 The dimensions for each main division of elements is also given in the BLOCK DATA 

 statement as: 

 data xa1/1.0d0/, xa2/2.45d0/, xa3/1.1d0/, xa4/0.95d0/ 

 data xa5/0.95d0/,xa6/1.1d0/,xa7/2.45d0/,xa8/1.0d0/ 

 data ya1/1.0d0/, ya2/1.0d0/, ya3/0.45d0/,ya4/0.45d0/, ya5/0.8d0/,ya6/0.4d0/, ya7/1.0d0/, 
 ya8/1.0d0/, ya9/1.0d0/ 

 

 The material index shown in each block, corresponds refractive index of each block, 

 where the refractive indices are also given the BLOCK DATA as: 

 data an1/3.39d0/ an2/3.17d0/, an3/1.0d0/  
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 Assignment of nodes  

 Each main division shown in Fig.4 is subdivided according to the number of elements 
 as shown in Fig.5 

1 2 3 4 5 6 7

72 787776

143

73 14274

213

214 284

1

dx=xd1

2

3

4

5

nxa1 nxa2

357

75

285

6

dx=xd2 dx=xd8

nxa8

139

140

142

141

70 71

358

4331

356

4260

4330

8400

8399

4261

286

215

427

4190 4191

4262

d
y=

d
y1

280
279143

8261

8262

144

143

281
283

4263d
y=

d
y9

n
ya

1
n

ya
9

nx

(0,0) (0,dx)

(0,yl)
(xl,yl)

(0,yl-dy)

(xl,0)

(xl,dy)(0,dy)

(dx,yl)

(xl,yl-dy)

(xl-dx,0)

n
y

 

Fig.5 

 The resolution dx and dy for each main division along the x- and the y-axis 

 respectively is defined as the length of each main division divided by the number of 

 elements in that division. 

 For example by considering the 1st main division along the x-axis the resolution dx is 

 defined by dx=xa1/nxa1. Similarly, for the first main division along the y-axis starting 

 from the top of the structure the resolution dy is given by: dy=ya1/nya1. 

 In the FORTRAN program the resolution for each main division, xd1..xd8 and 

 dy1..dy9, in the x and the y direction, is achieved as follows: 
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       xd1=xa1/dble(float(nxa1)) 

       xd2=xa2/dble(float(nxa2)) 

       xd3=xa3/dble(float(nxa3)) 

       xd4=xa4/dble(float(nxa4)) 

       xd5=xa5/dble(float(nxa5)) 

       xd6=xa6/dble(float(nxa6)) 

       xd7=xa7/dble(float(nxa7)) 

      xd8=xa8/dble(float(nxa8)) 

       

       dy1=ya1/dble(float(nya1)) 

       dy2=ya2/dble(float(nya2)) 

       dy3=ya3/dble(float(nya3)) 

       dy4=ya4/dble(float(nya4)) 

       dy5=ya5/dble(float(nya5)) 

       dy6=ya6/dble(float(nya6)) 

       dy7=ya7/dble(float(nya7)) 

       dy8=ya8/dble(float(nya8)) 

      dy9=ya9/dble(float(nya9)) 
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 The next step is to determine a count of the sum of the nodes along the boundaries, at the 

 end of each main division, in the x and y direction, (ne1..ne7 and nb1..nb8), respectively, 

 with in order to assign the nodes for each element. The top-left corner node is considered as 

 the first node of the structure. The above counting is determined as follows: 

 

    nb1=nya1+1 

       nb2=nb1+nya2 

       nb3=nb2+nya3 

       nb4=nb3+nya4 

       nb5=nb4+nya5 

       nb6=nb5+nya6 

       nb7=nb6+nya7 

       nb8=nb7+nya8 

       nb9=nb8+nya9 

       ne1=nxa1+1 

       ne2=ne1+nxa2 

       ne3=ne2+nxa3 

       ne4=ne3+nxa4 

       ne5=ne4+nxa5 

       ne6=ne5+nxa6 

       ne7=ne6+nxa7 

       ne8=ne7+nxa8 

       sy=yl 

 

 Next, the coordinates at each nodal point are assigned by forming a loop initially along the y- 

 and then along the x-axis as follows. 

  

       do 100 i=1,ny1 
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       if(i.le.nya1) dy=dy1 

       if(i.gt.nya1) dy=dy2 

   if(i.ge.nb2) dy=dy3 

       if(i.ge.nb3) dy=dy4 

       if(i.ge.nb4) dy=dy5 

       if(i.ge.nb5) dy=dy6 

       if(i.ge.nb6) dy=dy7 

       if(i.ge.nb7) dy=dy8 

       if(i.ge.nb8) dy=dy9 

       sx=-xd1 

       do 110 j=1,nx1 

       if(j.le.ne1)dx=xd1 

       if(j.gt.ne1)dx=xd2 

       if(j.gt.ne2)dx=xd3 

       if(j.gt.ne3)dx=xd4 

       if(j.gt.ne4)dx=xd5 

       if(j.gt.ne5)dx=xd6  

       if(j.gt.ne6)dx=xd7 

       if(j.gt.ne7)dx=xd8  

       k=(i-1)*nx1+j 

       cord(k,1)=sx+dx 

       sx=sx+dx 

       cord(k,2)=sy 

   110 continue 

       sy=sy-dy 

   100 continue 

 

 Using the above loop the node numbering starts from the top-left corner of the structure, 

 moves from left to right nx1 and ny1 correspond to the total number of nodes along the x 

 and the y direction respectively, and calculated by: 
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      nx1=nx+1 

       ny1=ny+1 

 

 Therefore, the total number of nodes of the structure, np, can be calculated from  

 

 np=nx1*ny1 

 

 In the above loop the resolution dx and dy is defined according to the node defined by i and 

 j index and the x,y coordinates are stored in the array: 

 cord(k,m) 

 

 where k is the node number 

 And m=1 and m=2 correspond to the x and the y coordinate of each node. 

 It should be noted that the length in the x and the y direction xl and yl respectively are 

 calculated by: 

       xl=xa1+xa2+xa3+xa4+xa5+xa6+xa7+xa8 

       yl=ya1+ya2+ya3+ya4+ya5+ya6+ya7+ya8+ya9 

 By considering the highlighted rectangular blocks in Fig.5 the nodes are assigned as shown in 

 Fig.6. 
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 Assignment of elements 

 As it has been shown above, the waveguide structure has been divided into rectangular 

 elements, according to the mesh refinement given. Further, these elements are subdivided 

 into triangular elements. The triangular elements are numbered, starting with the lower 

 triangle of the first left top-rectangular element, as shown in Fig.7. 
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 The highlighted numbers correspond to the element number and the numbers assigned to 

 the nodal points are the node numbers. 

 The edges of the triangular element are assigned with local node numbers 1, 2, and 3, and 

 each local node number corresponds to a global node number, as shown in Fig.7. 

 For example, for element 1, the local node numbers 1, 2, and 3, correspond to the global 

 node numbers 1, 72, and 73, respectively. Similarly, for element 142, the local node 

 numbers correspond to the global node numbers72, 144 and 73. 

 The element numbers are assigned using the following code: 

 

       do 200 i=1,ny 

      do 200 j=1,nx 

       k=(i-1)*nx+j 

       k2=k*2 

         k1=k2-1 

       nop(k1,1)=(i-1)*nx1+j 

        nop(k1,2)=i*nx1+j 

        nop(k1,3)=i*nx1+j+1 

        nop(k2,1)=(i-1)*nx1+j 

       nop(k2,2)=i*nx1+j+1 

     nop(k2,3)=nop(k1,1)+1 

    200 continue 

 

 The global node numbers for each elements are stored in the array: 

 

 nop(k,j) 

 

 where k=k1, k2.  
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 k1 and k2 is the index for the lower and the upper triangle for each rectangular element. 

 J=1..3 

 Where 1, 2, and 3 is the element local node number. 

 

 Therefore global node numbers for element 1 are stored as: 

 

 nop(1,1)=1 

 nop(1,2)=72 

 nop(1,3)=73 

 

 Assignment of element material number 

 By considering Fig.4 each main block has a particular element material index number 

 according to the structure. These material index numbers are assigned utilizing the count of 

 the nodes along the boundaries, ne1..ne7 and nb1..nb8, as explained earlier. The 

 assignment of the material index number is accomplished using the following FORTRAN 

 code: 

 

 

       do 200 i=1,ny 

       do 200 j=1,nx 

       k=(i-1)*nx+j 

       k2=k*2 

       k1=k2-1 

       nop(k1,1)=(i-1)*nx1+j 

       nop(k1,2)=i*nx1+j 

       nop(k1,3)=i*nx1+j+1 

       nop(k2,1)=(i-1)*nx1+j 

       nop(k2,2)=i*nx1+j+1 
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       nop(k2,3)=nop(k1,1)+1 

 c              calculate material data 

       nop(k1,4)=3 

       if(j.ge.ne2.and.j.lt.ne3.and.i.ge.nb2.and.i.lt.nb4) nop(k1,4)=2 

       if(j.ge.ne2.and.j.lt.ne3.and.i.ge.nb4.and.i.lt.nb5) nop(k1,4)=1 

       if(j.ge.ne2.and.j.lt.ne3.and.i.ge.nb5.and.i.lt.nb6) nop(k1,4)=2 

       if(j.ge.ne1.and.j.lt.ne7.and.i.ge.nb6.and.i.lt.nb8) nop(k1,4)=2 

       nop(k2,4)=nop(k1,4) 

   200 continue 
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