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A quantitative approach to behavioural analysis of drivers in 

highways using particle filtering 

 

The analysis of driving behaviour is a challenging task in the transport field that 

has numerous applications, ranging from highway design to micro-simulation and 

the development of advanced driver assistance systems (ADAS). There has been 

evidence suggesting changes in the driving behaviour in response to changes in 

traffic conditions, and this is known as adaptive driving behaviour. Identifying 

these changes and the conditions under which they happen, and describing them 

in a systematic way, contributes greatly to the accuracy of micro-simulation, and 

more importantly to the understanding of the traffic flow, and therefore paves the 

way for introducing further improvements with respect to the efficiency of the 

transport network. In this paper adaptive driving behaviour is linked to changes in 

the parameters of a given car-following model. These changes are tracked using a 

dynamic system identification method, called particle filtering. Subsequently, the 

dynamic parameter estimates are further processed to identify critical points 

where significant changes in the system take place.  

Keywords: adaptive driving behaviour; particle filtering; car-following models; 
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1. Introduction 

Studying the body of literature on micro-simulation points to the difficulty of 

representing the dynamics of driving under different traffic conditions and for different 

drivers by a single mathematical equation. There have been studies reporting that the 

behaviour of different drivers is best represented using different model structures 

(Punzo and Simonelli 2007, Ossen and Hoogendoorn 2007), which in essence means 



that different drivers drive according to different models. Furthermore, individual 

drivers also exhibit different driving patterns in different traffic conditions, a 

phenomenon that has been identified by many researchers (Munoz and Daganzo 2002, 

Ma and Andréasson 2007, Hoogendoorn, et al. 2006). The very fact that the calibration 

of car-following models is highly dependent on the driving condition, as confirmed by 

numerous studies (such as Punzo and Simonelli (2007), Ossen and Hoogendoorn (2008) 

and Kesting and Treiber (2009)) is further testimony of the existence of this 

phenomenon.  

Much research has partly addressed the issue of adaptive driving behaviour by 

developing multi-regime car-following models, which are able to achieve greater 

accuracy in the reproduction of the driving behaviour. Notable examples include the 

models proposed by Wiedemann (1974), Yang and Koutsopoulos (1996) and Fritzsche 

(1994), implemented in the VISSIM, MITSIM, and Paramics micro-simulation software 

tools, respectively. However, while the passive reproduction of driving behaviour is a 

significant improvement, important questions that remain open are whether it is possible 

to actively identify the conditions under which changes in driving behaviour happen, 

and in what way these conditions may be affecting the driving behaviour. As a matter of 

fact, being able to identify and represent the drivers’ adaptive behaviour in micro-

simulation would bring about even greater improvements in terms of modelling 

accuracy and would deliver a better insight into the traffic flow.  

Some previous research in the direction of identifying and modelling adaptive 

driving behaviour exists. Notably, Ma and Andréasson (2007) used data collected from 

an instrumented vehicle to identify different regimes of driving and applied a fuzzy 

clustering method to a combination of accelerations and velocities of lead and follower 

vehicles, as well as to their spacing, in order to group the data into different regimes. 



Thiemann, Treiber and Kesting (2008) calculated probability density functions for 

headways from a large dataset of vehicle trajectories and identified a significant 

correlation between the headway and driving-behaviour-related variables, such as 

speed, approach speed and traffic condition. Treiber, Kesting and Helbing (2006) 

proposed a general adaptation method that can be integrated within a wide range of car-

following models, which essentially states that the headway in smooth traffic flow 

increases linearly with variations in the local traffic conditions; a measure for 

representing these variations was then given, and the model was calibrated empirically 

using data from a Dutch highway. And Hoogendoorn et al. (2006) used a method called 

particle filtering to calibrate two car-following models dynamically (the Gazis-Herman-

Rothery (GHR) and the Helly models), which allowed the model parameters to vary at 

each time instance in order to minimise the estimate error, as opposed to static system 

identification methods requiring the whole set of time series data to be used to find the 

single set of parameters resulting in least error.  

Building on the work of Hoogendoorn et al. (2006), the aim of this study is to 

investigate the possibility of utilising particle filtering for purposes beyond the simple 

demonstration of variations in model parameters. Specifically, the main objective is to 

analyse whether a link between changes in the model parameters and external stimuli or 

driving conditions can be established. Deriving a conclusion in this regard will deliver 

two significant benefits: on one hand, such information will help gain a better insight 

into traffic dynamics and dynamic driving behaviour, with corresponding improvements 

in micro-simulation modelling; on the other hand, it will enable the assessment of the 

capabilities of car-following models on the basis of the robustness of their parameter 

estimates and of their ability in accounting for different driving phenomena. For 

instance, if a car-following model fails to account for a certain driving phenomenon, 



this deficiency will exhibit itself in the form of systematic changes in the model 

parameter estimates, when the phenomenon becomes present. 

The rest of this paper is organised as follows: the background of the study, 

including an overview of previous relevant work on the topics of car-following models, 

calibration methods and particle filtering is given in Section 2. Section 3 presents the 

application of particle filtering to a simulated dataset and proposes a simple method for 

the discretisation of the dynamic parameter estimates, so as to facilitate the 

identification and analysis of dynamic driving behaviour. Section 4 then applies the 

proposed method on a vehicle trajectory dataset from a real highway and discusses the 

results. Finally, Section 5 summarises the conclusions and identifies areas of future 

work.  

2. Background 

Car-following models, and acceleration models in general, describe the behaviour of 

human drivers. These models, integrated in simulation software, are used to assess 

policy-making in various fields related to transport networks, ranging from highway 

design to the evaluation of advanced driver assistance systems (ADAS). However, not 

all of these models are developed for the same purpose, and different levels of accuracy 

might be required accordingly, and so different car-following models may best serve 

different purposes. A large number of car-following models have been developed over 

several decades, and comprehensive reviews of the topic are given by Brackstone and 

McDonald (1999) and by Ahmed (1999). 

System identification is an important aspect for car-following models, as such 

models may describe the structure of the stimuli-response processes underlying the car-

following behaviour in a mathematical form, but they need to be adjusted and tailored if 

they are to be applied in a specific scenario. This may be done through calibration using 



an appropriate dataset. In this section, the Intelligent Driving Model (IDM) car-

following model, used in this work, is presented, followed by a discussion of some of 

the considerations related to calibration that need to be made, and by a brief description 

of the particle filtering method.  

2.1 The IDM car-following model 

The IDM car-following model is selected for the present study on the basis of a number 

of advantages that it presents over other models. Namely, in addition to being 

computationally simple and relying only on a small number of parameters, each with an 

intuitive meaning, the IDM has also been found to perform well in terms of both 

macroscopic and microscopic calibration (Treiber, Hennecke and Helbing 2000, Treiber 

and Kesting 2013, Punzo and Simonelli 2007). Numerous studies on different aspects of 

the IDM have been carried out, including calibration, stability and other microscopic 

and macroscopic properties, and the advantages have been confirmed (Wilson and Ward 

2011, Kesting and Treiber 2009). 

The IDM is given by the following general equation: 

 

�̇� = 𝑎 [1 − (
𝑣

𝑣𝑑)
𝛿

− (
𝑠∗(𝑣,Δ𝑣)

𝑠
)

2

]                                                                                               (1)                             

 𝑠∗(𝑣, Δ𝑣) = 𝑠0 + 𝑠1√
𝑣

𝑣𝑑 + 𝑇𝑣 +
𝑣Δ𝑣

2√𝑎𝑏
 

Δ𝑣 = 𝑣 − 𝑣𝑝 

 

which calculates the value of the output variable �̇�, denoting the acceleration of the 

subject vehicle, as a function of the following input variables: the speed of the subject 

vehicle 𝑣; the speed of the preceding vehicle 𝑣𝑝; and the distance headway 𝑠. The model 

is then also dependent on a number of parameters, including: the maximum 



acceleration 𝑎; the desired speed 𝑣𝑑; the acceleration exponent 𝛿; the jam distances in 

fully-stopped and in high-density traffic 𝑠0 and 𝑠1 respectively; the safe time headway 

𝑇; and the comfortable deceleration 𝑏. 

2.2 Calibration of car-following model 

Many factors must be taken into account in the calibration of a car-following model, 

including the choice of the dataset, the calibration method employed and the purpose for 

which the calibrated model is to be used. When a certain level of accuracy in the 

collective behaviour or traffic flow is required to reproduce the same flow-density 

characteristics as observed in the real data, a certain set of model parameters for a given 

car-following model may work best (Treiber, Hennecke and Helbing 2000). However, 

for the different purpose of modelling microscopic behaviour of individual drivers, 

including details such as the velocity and spacing of individual vehicles, another set of 

model parameters may work best, which would be different from the former (Treiber 

and Kesting 2013). Even for the same driver, significant inconsistencies between the 

calibration results with different trajectory data can be found. This means that if one 

intends to reproduce accurate trajectories for a given driver in a specific driving 

condition on a specific highway (e.g. upstream of a bottleneck, taking into account the 

traffic flow and density, weather conditions, etc.), the data used for the calibration must 

match the specific scenario under investigation in terms of traffic characteristics.  

Even excluding the question of intra-driver inconsistencies, this gives rise to the 

so called phenomenon of over-fitting, which means that the model is so accurately 

adapted to a given specific scenario that it loses its generality, delivering inaccurate 

results even for very slight variations in the driving scenario. Over-fitting means that the 

resulting model is rendered unreliable for making any predictions, which makes the 

trade-off between accuracy and robust calibration evident. Other considerations 



regarding calibration include the choice of error measurement (e.g. travel time, spacing, 

velocity, acceleration), system identification method (e.g. Maximum-Likelihood 

Estimation (MLE), Least Squares Estimation (LSE), nonlinear optimisation methods), 

and error tests (e.g., Root Mean Square error (RMSe), Root Mean Square Percentage 

error (RMSQe), and Theil’s inequality coefficient (U)). Comprehensive reviews of 

some of these considerations have been carried out by Punzo and Simonelli (2007), 

Ossen and Hoogendoorn (2008), Treiber and Kesting (2013), and Ranjitkar, Nakatsuji 

and Asano (2004).  

2.3 Particle filtering 

Sequential Monte-Carlo filtering or particle filtering (PF) can be used to tackle the 

difficulty associated with the estimation of states or parameters in nonlinear, non-

Guassian filtering. The state-space representation of such a system is denoted below: 

 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑣𝑡−1), 𝑦𝑡 = ℎ(𝑢𝑡, 𝑥𝑡 , 𝑛𝑡)                                                                             (2) 

 

where 𝑥𝑡 is the state of the system that evolves under the nonlinear function 𝑓(. ).  The  

previous state of the system is denoted by 𝑥𝑡−1, and 𝑣𝑡−1 is an independent and 

identically distributed (i.i.d) random noise, that is known as the process noise. The true 

state of the system is almost always hidden from the observer, however one can deduce 

a good estimate of it through successive observations and measurements {𝑦𝑡, 𝑡 ∈ ℕ}. 

This, in fact, is the ultimate purpose of filtering. These observations are dependant on 

the control input 𝑢𝑡, the true state of the system 𝑥𝑡, and an i.i.d noise 𝑛𝑡, known as the 

measurement noise. This dependency is denoted by the function  ℎ(. ).   

The method of PF is based on the principles of Bayes theorem, which provides a 

mechanism for updating knowledge about the underlying system upon receipt of new 



data on the observed states of the system at each time instance. In Bayesian estimation, 

the quantity of interest is the probability distribution function of the state variable given 

the sequence of observations made 𝑝(𝑥𝑡| 𝑦0:𝑡), which is known as the posterior 

distribution.  

In algorithms such as the Kalman Filter and the Extended Kalman Filter, the following 

two assumptions are made: the system is linear, or a locally linearised system provides a 

good enough approximation (in the case of EKF); and the underlying noise is Gaussian. 

Under these assumptions the characteristics of the posterior, namely the mean and 

covariance, can be optimally derived. The term optimal in this context means that the 

resulting estimator leads to Minimum Mean-Square Error (MMSE). However, when the 

system of interest exhibits highly nonlinear behaviour and the noise is non-Gaussian, 

the performance of KF and EFK deteriorates.  

PFs provide an alternative way to linearisation and holding assumptions about 

the underlying noise distribution. In these methods a number of samples, that are 

referred to as particles, are propagated through the nonlinear system using simulation 

techniques, and then these samples are used to extract the characteristics of the 

posterior. An important step in this method is importance sampling, where an estimate 

of the ratio below is calculated: 

 

𝑤𝑡 =
𝑝(𝑦1:𝑡|𝑥0:𝑡)𝑝(𝑥0:𝑡)

𝑞(𝑥0:𝑡|𝑦1:𝑡)
                                                                                                            (3) 

 

where 𝑤𝑡 is the importance weight, 𝑝(𝑦1:𝑡|𝑥0:𝑡) is the conditional probability of the 

observations 𝑦 given the states 𝑥; 𝑝(𝑥0:𝑡) is the probability distribution of states; and 

𝑞(𝑥0:𝑡|𝑦1:𝑡) is a known, easy-to-sample proposal distribution.  



A sequential relationship for the importance weight can be drawn, as shown by 

van der Merwe, et al. (2000), namely: 

 

𝑤𝑡 = 𝑤𝑡−1

𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥𝑡−1)

𝑞(𝑥𝑡|𝑥0:𝑡−1, 𝑦1:𝑡)
                                                                                                 (4) 

 

which gives rise to the popular choice of the proposal distribution 

 

𝑞(𝑥𝑡|𝑥0:𝑡−1, 𝑦1:𝑡) = 𝑝(𝑥𝑡|𝑥𝑡−1)                                                                                      (5) 

 

which results in the simplification of equation (4). 

In PF the estimate of the posterior is based on a number of randomly selected 

weighted samples.  The great potential of this method in dealing with complex 

nonlinear non-Gaussian systems has been pointed out by van der Merwe et al. . (2000) 

and by Arulampalam et al. (2002), and a schematic representation is given in Figure 1. 

At the first step of the algorithm (sampling) 𝑁 random particles (samples) are drawn 

from a proposal distribution. These particles are then propagated through the nonlinear 

system and are subsequently associated with weights �̃� according to their fitness, i.e. 

equation (4). This step is known as importance sampling. Subsequently, a resampling of 

particles with respect to their associated weights is carried out, as a result of which 

particles with high weights are split into a number of unweighted particles and particles 

with low weights are eliminated. Finally, the introduction of a random noise to the 

group of particles at the third step results in local variety in the samples. This process is 

visualised in the fourth row of particles in Figure 1. Since, this step provides an 

unweighted distribution of particles that mimic the prior distribution, it is referred to as 

the prediction step.  



 

 

Figure 1. Illustration of the three stages of importance sampling, resampling, and 

prediction in PF, figure from van der Merwe et al. (2000) 

 

In the present study, the application of PF for parameter tracking is of particular 

interest. Given a car-following model and a set of data, one can update the estimates of 

model parameters upon the receipt of new data. As a result, one will obtain time-

varying estimates of the model parameters. Naturally, these time-varying estimates 

cannot be used for modelling and simulation purposes, but they can provide a good 

insight into some of the very important model characteristics that may otherwise remain 

hidden in cumulative error terms. In particular, in simulation-based applications the 

parameters are constant, and hence the use of a parameter tracking method gives 

information about how a model parameter should deviate from its nominal value to 

compensate for modelling flaws. This concept is closely related to model-based fault 

detection (Isermann 1984, Venkatasubramaniana, et al. 2003). There is a possibility that 

in some cases general patterns in changes of the model parameters are observed (e.g. 

significant increase or decrease in the value of a model parameter in an identifiable 



driving phase), and this type of information can then be used to improve the quality of 

modelling and simulation.  

3. Methodology 

In this section PF is applied to simulated data to investigate the extent to which the 

properties of the adaptive driving can be identified using this method. The section first 

introduces the simulated dataset, and then goes on to present the results of the 

application. The choice of the objective function for the calibration is also described, 

and a simple method for the discretisation of the estimates is proposed. The 

discretisation of the dynamic estimates is an important step in the interpretation of the 

raw estimates obtained initially and in the linkage of the changes in the model 

parameters to the traffic conditions.  

3.1 Simulated dataset 

In this section the application of particle filtering to simulated data is investigated to 

illustrate the extent to which this method can be utilised for the purpose of 

“meaningful” parameter tracking in car-following models. The additional constraint 

arising from the term “meaningful” refers to the fact that, sometimes by calibrating a 

number of model parameters simultaneously, an error in the estimate of one model 

parameter may be compensated by an error in another. This could happen due to the 

existence of correlation between model parameters and the fact that the information 

available is less than what is required for the determination of the unknowns uniquely, 

thus causing erroneous tracking of model parameters. 

For the data simulation, the trajectories of a specific vehicle from the enhanced 

NGSIM I-80 dataset (Montanino and Punzo 2013) were selected. The NGSIM I-80 

dataset is an open source trajectory data that has been collected from a 500-m long 



stretch of an interstate freeway in the San Francisco Bay area, CA (Halkias and Colyar 

2006), and the enhanced dataset has been made available by the MULTITUDE project 

(Montanino and Punzo 2013). The selected trajectories were then used to generate 

trajectories for follower vehicles with the IDM model proposed by Treiber, Hennecke 

and Helbing (2000), and a specific parameter profile was used for this purpose. In the 

profile used, certain parameters were varied at certain points in time, and particle 

filtering was applied to the simulated trajectories to generate dynamic estimates of the 

model parameters. Figure 2 illustrates the trajectories used for the leader vehicle.  

 

 

 

Figure 2. a) Trajectory of the lead vehicle selected from NGSIM data Lane 2    b,c,d) 

Position trajectories, velocities, and accelerations of the lead vehicle and synthetized 

follower in dashed red line and blue line respectively 

 

The parameter profiles used for the simulation of the trajectories shown were as 

follows: the default model parameters reported by  Treiber, Hennecke and Helbing 

(2000) were used up to Time = 30 𝑠 , i.e. 𝑎 = 0.73
𝑚

𝑠2
, 𝑏 = 1.67

𝑚

𝑠2
, 𝑣𝑑 = 33.3

𝑚

𝑠
, 𝛿 = 4, 

𝑠0 = 2 𝑚, 𝑠1 = 0 𝑚, and 𝑇 = 1.6 𝑠; then, at 𝑡 = 30 𝑠, the following parameters were 



changed to the given values: 𝑏0 = 1.5
𝑚

𝑠2
, 𝑎0 = 1

𝑚

𝑠2
, 𝑣𝑑 = 60

𝑚

𝑠
 , 𝑇 = 0.5 𝑠. As such, 

the simulation includes the case of having erroneous estimates for some of the model 

parameters while another one is being tracked. Additionally, the value of the parameter 

𝑇 changes again to the values 𝑇 = 1 𝑠 and 𝑇 = 3 s at time points 𝑡 = 40 𝑠 and 𝑡 =

50 𝑠, respectively. 

3.2 Sensitivity analysis 

One important consideration in the model calibration is addressing the question of how 

the dataset used reflects the characteristics of the model parameters. This is especially 

of importance in models, such as IDM, where some degree of orthogonality between 

model parameters exists, and different model parameters are best set according to 

different types of data in different regimes of driving  (Treiber and Kesting 2013). If 

this question is not addressed, misleading estimates of model parameters or unnecessary 

high computational complexity may result (Ciuffo, Punzo and Mon 2014). 

Global sensitivity analysis is used for this purpose, and the more representative 

“total sensitivity indices” are used, that capture the impact of parameters across all the 

feasible regions in the hyperspace of parameter values (Ciuffo, Punzo and Mon 2014, 

Saltelli, et al. 2010, Jacques , Lavergne and Devictor 2006). Figure 3 illustrates the 

results for total sensitivity as a function of the number of samples used for the same 

trajectory as above. As expected, the results for other vehicles were also found to be 

consistent with the ones illustrated, as well as those reported by Ciuffo, Punzo and Mon 

(2014). The parameter related to headway, 𝑇, has the highest impact with a total 

sensitivity index value of 0.788, and the parameter related to spacing in jam traffic, 𝑠0, 

has the second highest impact, with a total sensitivity index value of 0.268. The rest of 

the indices have values very close to zero and can be seen as a horizontal line roughly 



coinciding with the x-axis. The upper boundary (UB) and lower boundary (LB) values 

for parameters are given in Table 1. 

 

 

 Figure 3. Total sensitivity indices for the simulation scenario 

Table 1 Lower and upper boundary 

Parameters LB UB 

𝒂 1 3 

𝒃 1 3 

𝑽𝒅 20 50 

𝒔𝟎 2 10 

𝑻 0.5 3 

 

 

As pointed out by Ciuffo, Punzo and Mon (2014), since the assumption of 

parameter independence for such models is unlikely to hold, the results may be subject 

to bias. Nonetheless, the conclusions were also verified through a local sensitivity 

analysis around the calibrated parameter values, as well as through investigation of the 

use of different parameter values and different combinations thereof for parameter 



tracking. Furthermore, an additional justification to the choice of the parameter used in 

this study is the physical meaning of it. 

3.3 Application of particle filtering to simulated data 

Figure 4 shows the results of the application of particle filtering to the simulated dataset. 

For this purpose, all of the model parameters are set to their default values, except for 

parameter T, which is to be estimated dynamically. 

As was seen, a reason for focusing on T in parameter tracking is that it was 

found that no other parameter was capable of tracking the changes in driving behaviour 

for multiple trajectories when selected alone.  Also, variations in this model parameter 

remain low compared to other model parameters. Furthermore, one of the advantages of 

IDM is that the parameters have intuitive meanings, and if one parameter is to be 

selected among others representing comfortable deceleration, maximum acceleration, 

desired velocity, etc., the choice of parameter T, representing headway, is most sensible. 

This parameter was also used in Treiber, Hennecke and Helbing (2000) to generate 

variations in traffic conditions, and hence driving behaviour, and by doing so the 

empirical data related to the formation of traffic jams were successfully simulated. 

 

 

Figure 4. The result for estimation of the parameter T. The blue shadow denotes the 

distribution of particles at each time instance while the red curve is the selected particle. 



 

It can be seen that up to time 𝑡 = 30 s, the estimation of parameter T is almost 

error-free and stable. Also, the subsequent changes at the times 𝑡 = 30 𝑠, 𝑡 = 40 𝑠, and 

𝑡 = 50 𝑠 can be identified from Figure 4 by “jumps” in the values of the parameter at 

these times, compared to the smooth curves in the intervals between the changes. The 

estimations of parameter T at times after 𝑡 = 30 𝑠, unlike before, are unstable and 

fluctuate around a certain value. This is due to the fact that beyond time 𝑡 = 30 s, other 

model parameters were changed to values other than the ones used in the estimation 

process. As a result, the effect of this false estimation needs to be compensated by 

overestimations and underestimations of parameter T. 

Using the parameter estimation given by the application of particle filtering 

(Figure 4), an almost perfect estimation of the spacing (𝑅2 = 0.995), velocity (𝑅2 =

0.993) and acceleration (𝑅2 = 0.91) can be derived, despite the errors in the other 

model parameters from 𝑡 = 30 𝑠 onwards). This is shown in Figure 5.  

 



 

Figure 5. The comparison of real trajectories with simulated trajectories when the 

dynamic estimation of the parameter T, given by particle filtering, is used. 

 

It should be noted that the IDM car-following model was used to generate 

trajectories for the follower vehicles, and the same car-following model was used in the 

calibration process. In the application to real data, this is the equivalent of assuming 

knowledge of the model underlying the behaviour of human drivers. Although this is 

obviously not the case, the findings of Ossen and Hoogendoorn (2008) may justify use 

of such simulated data. Therein, it was found that the characteristics of the followers’ 

behaviour can be recovered by calibrating a car-following model to the data, even when 

the real model is different to the model used for calibration.  

3.4 Objective function 

The objective function defines a measure of error that is intended to be minimised. For 

this purpose, one needs to choose among measures of performance (MOPs), such as 



spacing, speed, and acceleration, in addition to an appropriate error test (functional form 

of the defined error), such as root mean square error (RMSe) and root mean square 

percentage error (RMSPe), as outlined in numerous studies in the literature (Punzo and 

Simonelli 2007, Ossen and Hoogendoorn 2008, Treiber and Kesting 2013, Ranjitkar, 

Nakatsuji and Asano 2004).  

In Punzo and Simonelli (2007) the inter-vehicle spacing was suggested as the 

most reliable MOP. In this work, however, it was found that the best result is obtained 

when a combination of errors on spacing, velocity, and acceleration was used in the 

objective function instead of a single variable. This is due to the use of the information 

available on all variables, which avoids outliers and non-smooth modelled data in any 

of the three measures individually. In Ossen and Hoogendoorn (2008), in addition to the 

different variables for calibration, the use of a combination of speed and spacing in the 

objective function was investigated. Therein, despite the fact that the use of a 

combinatory objective function including both the spacing and the velocity was found 

to be dependent on the specific model used, it was, concluded that when such prior 

information about the model is lacking, the use of an objective function including both 

speed and spacing could be advantageous. Here, a uniformly weighted sum of squared 

errors of all three variables was used, which is an extension to the suggestion made by 

Ossen and Hoogendoorn (2008). The accuracy of the acceleration trajectories in the 

NGSIM data is somewhat questionable, as pointed out by Thiemann, Treiber and 

Kesting (2008), but excluding the acceleration error between the predicted values and 

the real values from the objective function results in randomly fluctuating estimates of 

acceleration with unrealistically large values of jerk. This can be avoided by including 

the acceleration error in the objective function with a low weight to suppress the 

significant influence of these inaccurate data on the estimation process. Figure 6 



illustrates the simulated acceleration trajectory when the acceleration error is excluded 

from the objective function. Although in this case a slight improvement in the simulated 

velocity and spacing trajectories is obtained, this improvement comes at the cost of the 

acceleration, as can be seen from the figure.  

 

 

Figure 6. Comparison of the simulated accelerations with the real values when the 

acceleration error is: a) excluded from the objective function; b) included in the 

objective function. 

3.5 Interpreting dynamic parameter estimations 

As was shown in Figure 4, although the “jumps” in the values of the model parameters 

are visually identifiable, the resulting estimates are much harder to interpret when the 

method is applied to real data. This makes the identification of the points where sudden 

changes in the model parameters take place difficult, which is due to two reasons: 1) the 

actual underlying model is not known in advance; and 2) the changes are much smaller 

but more frequent. As one would expect from human drivers, they do not drive in a 

crisp and deterministic fashion, and neither do they immediately change their 

underlying driving attributes as soon as they reach a different traffic condition; instead a 

smooth and gradual change in driving behaviour is to be expected from them.  



Hence, a way to identify significant changes and to filter out the smooth 

fluctuations from the dynamic model parameter estimate is required. A simple approach 

is adopted here for this purpose, whereby the points where maximum changes in the 

subsequent values of the parameter under estimation are identified. These points are 

referred to as “breaking points”. Following that, the model parameter under 

investigation is separately calibrated for each interval between the breaking points.  

The detection of breaking points is governed by two conditions, both of which 

must hold for a breaking point to exist:  

1) The change in the value of model parameter is greater than a certain value, 

set to be 0.5 𝑠𝑒𝑐 for parameter 𝑇 here.  

2) The distance between each two breaking points is greater than a certain 

value. This condition is imposed to avoid frequent changes of the parameter 

in a short interval, and its implementation may also be justified by the fact 

that frequent and sudden changes in driving behaviour and driving 

parameters in a short time interval are highly unlikely among human drivers. 

The value of 5 seconds (50 time steps for the NGSIM dataset) is used here.  

The application of the proposed discretisation method to the result illustrated in Figure 4 

leads to the correct identification of the jumps. Subsequently, parameter T is 

recalibrated in separate time intervals: [0, 300], [300, 400], [400, 500], and [500, 600]. 

Figure 7 shows the promising results obtained using this method.     



 

 

Figure 7. Comparison of the simulated trajectories when averaging between the 

breaking points is applied with real results for: a) the estimation of parameter T; b) 

spacing; c) speed; d) acceleration. 

 

It can be seen that not only the points where the parameter is changed are 

identified correctly, but also that the values of the parameter within corresponding 

intervals are estimated with very high accuracy. Hence, the acceleration, velocity, and 

spacing trajectories are generated with significantly better accuracy than any 

conventional calibration method.   

4. Results 

In the previous section it was shown that using the particle filtering along with the 

proposed discretisation method, the changes in the model parameters can be identified 

and consequently the changes in the driving behaviour can be captured. In this section, 



this method is applied to the NGSIM trajectory dataset to investigate the question of the 

identification of the adaptive driving behaviour.  

4.1 Application to the NGSIM dataset 

The functionality of the proposed method was illustrated using simulated data. In this 

section the proposed method is applied to a platoon of nine vehicles driving in the 

second lane to investigate the following two issues: 1) whether the assumption of 

systematic changes in driving attributes can be validated; and 2) whether these changes 

can be identified using car-following models, such as the IDM, and a dynamic system 

identification method, such as particle filtering. The procedure is as follows: 

1. The five model parameters {𝑎, 𝑏, 𝑣𝑑 , 𝑠0, 𝑇} are calibrated using a genetic 

algorithm to minimise the sum of squared errors across all the three variables, 

namely, spacing, speed, and acceleration (Equation 6). 

 

𝑈 = ∑ ((𝑠𝑖
𝑜𝑏𝑠 − 𝑠𝑖

𝑚𝑜𝑑𝑒𝑙)
2

+ (𝑣𝑖
𝑜𝑏𝑠 − 𝑣𝑖

𝑚𝑜𝑑𝑒𝑙)
2

+ (𝑎𝑖
𝑜𝑏𝑠 − 𝑎𝑖

𝑚𝑜𝑑𝑒𝑙)
2

)𝑛
𝑖=1          (6)   

 

where: the abbreviations “obs” and “model” denote the observed value and the 

modelled value respectively; 𝑛 is the number of sample points; and 𝑠, 𝑣, and 𝑎 

denote the spacing, velocity, and acceleration respectively. The objective 

function above is the sum of the squared Euclidean distances between the three-

dimensional observed states and the modelled states. 

2. At the second step, the parameters {𝑎, 𝑏, 𝑣𝑑 , 𝑠0} are fixed to their calibrated 

values, while parameter 𝑇 is being tracked given the lead vehicle’s trajectory 

and the real trajectory of the follower vehicle. The calibrated values for all the 

vehicles in the platoon are reported in Table 2.  



3. The dynamic estimates of parameter 𝑇 in several runs are then analysed using 

the method described in Section 3.5 to identify the breaking points.  

4. Once the breaking points are identified, parameter 𝑇 is then calibrated once 

more for each time interval between the breaking points. 

 

Table 2 The calibrated values of the parameters 

Parameters V348 V343 V354 V362 V368 V378 V381 V391 

𝒂 1.598  0.886 1.620 1.688  2.681 0.815      0.824 1.087 

𝒃 5.000 0.602 5.000 5.000 0.500 1.509 0.500 5.000 

𝑽𝒅 11.412 33.298 12.903 10.000 33.300 33.298 33.299 15.929     

𝒔𝟎 1.000 2.529 5.000 3.319 4.843 4.848 3.164 1.000 

𝑻 1.094 0.400 1.952 0.903 0.881 0.400     0.695 1.146 

 

All the vehicles observed remain in the platoon for the whole duration of the 

experiment, which means that the dynamics are undisturbed by any lane changing 

attempts. Figure 8 illustrates the application of the proposed method to one of the 

vehicles, and the top-left graph illustrates the discretised parameter estimate.  

It should be noted that when applied to the dynamic parameter estimates for real 

trajectories, the proposed discretisation method yields breaking points that are less 

robust compared to the investigated case of simulated data. In other words, the breaking 

points are not always uniquely identified, and while some are detected with a high level 

of certainty, others may only be detected in a small percentage of cases. Herein, only 

the points that were detected in more than 50% of cases were selected.    

The discretised parameter profile is subsequently used to simulate the driving 

behaviour for the follower vehicle. The comparison of the simulated states (spacing, 



speed, and acceleration) with the real states points to the accuracy of the simulated 

behaviour. The reason why the acceleration estimates are less solid than the spacing and 

speed estimates is due to the low weight of the acceleration variable in the objective 

function, as explained earlier.  

An interesting finding of this work that can be identified from Figure 8, is the 

correlation between the estimate of parameter T, and speed. This will be explained 

further in the following section. 

 

Figure 8. Trajectories resulting from application of the proposed method to vehicle no. 

348 of the NGSIM data. 



4.2 Analysis of the parameter estimates  

Figure 9 illustrates the resulting parameter estimates for the vehicles, based on which 

highly accurate estimates of the spacing and velocity trajectories can be obtained. Table 

2 summarises the errors in the estimation of velocity and spacing. 

 

 

 

Figure 9. Parameter estimates for the eight vehicles following vehicle no. 329 in the 

NGSIM data. The position of each vehicle inside the platoon is specified in front of the 

vehicle ID no. 

 

 

 

 



 

Table 3. Measures regarding quality of fit for each of the vehicles in the platoon 
 V348 V343 V354 V362 V368 V378 V381 V391 

Average absolute 

error for spacing 

 

0.7366 

 

0.8333     

 

1.8907 

 

1.0251 

 

0.5108     

 

0.7039     

 

0.8268     

 

1.7798     

Average absolute 

error for speed 

 

 

0.3885 

 

0.5072     

 

0.6117 

 

0.5066 

 

0.4249 

 

0.5032 

 

0.4805 

 

0.6909     

 

One of the interesting findings is that in the majority of investigated trajectories, 

a noticeable relationship between the average speed and estimate of parameter T can be 

observed. In particular, from the parameter estimates related to vehicles with IDs 348, 

354, 362, and to a lesser extent 343, 378, 391, it can be seen that with the increases in 

the average speed, the estimate of parameter 𝑇 increases, and that sudden drops in the 

average speed results in drops of parameter 𝑇. The detection of common patterns is an 

encouraging result, as it points to a driving phenomenon that the car-following model 

fails to account for.  

However, interestingly, two other patterns can be observed within the estimates 

for this platoon: 1) the inverse relation with the average speed, as in the case of vehicle 

no. 368; and 2) irrelevant or no changes in the estimated parameter with respect to 

average speed, which is the case for vehicle no. 381. Similar patterns are observed in 

many other examined vehicles, and can be most likely be attributed to differences in 

driving styles, intentions (such as preparation for performing a lane change), or maybe a 

more complicated relation between the average speed and spacing, which could 

describe the changes in the model parameter better. Moreover interestingly, in a 

statistically significant number of cases, the breaking points are detected at a point in 

time where there has been a change in the driving conditions. For instance, considering 

the velocity profile of the vehicle no. 348 (Figure 8), it can be seen that the two 



breaking points identified correspond to points where: 1) there is a transition from 

driving through a shockwave into more homogeneous congested traffic, at about 𝑡 =

20 𝑠; and 2) there is a transition from homogenous congested traffic to a less congested 

state where the vehicle starts accelerating at about 𝑡 = 43 𝑠.  

It should be acknowledged here that, indeed, the random nature of driving may 

be amplified at low speeds and under stop-and-go conditions, and therefore decisive 

conclusions can only made when sufficiently large numbers of suitable data are 

analysed. A suitable dataset for this purpose would be one consisting of trajectories with 

long observation times, where large enough numbers of drivers can be tracked through 

different driving conditions. The implementation of the proposed framework on such a 

dataset would enable the analysis and interpretation of the jumps in the parameter 

values in a broader perspective, and would allow the modification of the method and its 

parameters for better performance. The further investigation of these topics and the 

application of the method to more trajectories will shed more light on some of these 

issues. 

5. Conclusions and future work 

In this paper, particle filtering was utilised to examine the dynamic behaviour of drivers 

in different traffic conditions. In order to interpret the estimates given by the particle 

filtering process, a simple discretisation method was used, and promising results from 

its application to simulated and real data were obtained. This helped isolate minor 

fluctuations, which could be due to the fuzzy and stochastic nature of human driving, or 

minor errors in the modelling of car-following behaviour, and to convert the raw 

estimates given by the particle filtering process to an interpretable form.  

The application of this method to real data delivered interesting results. 

Specifically, for a large number of cases, an interesting relationship between average 



speed and the parameter under investigation was observed. This frequent pattern may 

point to a common driving behaviour that may not be addressed by the mathematical 

structure of the model under investigation. Moreover, two additional patterns were, 

interestingly, observed: 1) an inverse relation with the average speed; and 2) no relation 

with average speed. Additionally, in a significant number of cases the points that were 

detected as breaking points seemed to be the ones where, indeed, a change in the driving 

condition took place. Therefore, the employed framework was found to have great 

potential in investigating the properties of traffic flow, as well as in examining the 

robustness and performance of car-following models.  

In future work, the application of suitable clustering methods, such as 

consolidated fuzzy clustering (Ma and Andréasson 2007) will be considered for 

grouping the estimation results. Moreover, due to the stochastic nature of particle 

filtering, the values of the breaking points identified are subject to changes in 

consecutive runs. The uncertainty arising from this issue could be tackled by calculating 

confidence intervals for these values. Finally, in order to draw reliable conclusions 

about how driving behaviour may change with reference to car-following models, an 

analysis of larger groups of trajectory data needs to be carried out.  
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