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ASYMPTOTIC TAIL PROBABILITIES FOR LARGE CLAIMS
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Abstract

We consider a dependent portfolio of insurance contracts. Asymptotic tail

probabilities of the ECOMOR and LCR reinsurance amounts are obtained under

certain assumptions about the dependence structure.

Keywords: Archimedean copula, Dependence, ECOMOR and LCR reinsurance,

Tail probability

1 Introduction

Insurance companies often use reinsurance as a mechanism for sharing risk, particularly

when there is the possibility of catastrophic losses. Two appealing reinsurances are

ECOMOR (excédent du coût moyen relatif) and LCR (largest claims reinsurance).

Under ECOMOR, the reinsurer pays the sum of the exceedances of the l largest claims

over the l + 1st largest claim. Under LCR, the reinsurer pays the sum of the l largest

claims. ECOMOR and LCR treaties were proposed by Thépaut (1950) and Ammeter

(1964), respectively.

1E-mail: aasimit@stats.uwo.ca
2Corresponding Author. Telephone: 519-661-3149; Fax: 519-661-3813; E-mail: jones@stats.uwo.ca
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We consider a portfolio of n similar insurance contracts. The associated loss random

variables Xi, i = 1, . . . , n are assumed to be dependent and identically distributed with

common distribution function F = 1− F̄ and dependence structure given by a suitable

copula. Let X1,n ≥ . . . ≥ Xn,n be the corresponding upper order statistics. Then the

reinsurance amounts under ECOMOR and LCR are given by

El =
l∑

i=1

(Xi,n −Xl+1,n),

and

Ll =
l∑

i=1

Xi,n.

The purpose of this paper is to establish the asymptotic tail probabilities of the

reinsurance amount under ECOMOR and LCR for a portfolio of dependent insurance

contracts. This may be quite useful for risk management purposes, as it allows one to

determine high quantiles of the reinsurance amount and therefore enables one to obtain

capital amounts that will be adequate with high probability. This can also be done

by performing a simulation study. However, to estimate high quantiles, a very large

number of simulations are required, and since multivariate outcomes must be generated,

the computations may be very time consuming.

2 Preliminaries

Let Yi, i = 1, 2, . . . be a sequence of independent random variables with common distri-

bution F , and let Mn be the maximum of Y1, . . . , Yn. If there exist constants an, bn and

a random variable Z with nondegenerate df G such that anMn + bn converges weakly

to Z, then F is in the maximum domain of attraction of G and we write F ∈ MDA(G).

Moreover, by the Fisher-Tippett theorem (see, for example, Embrechts et al., 1997), G

belongs to the type of the distribution

Hξ(x) =





exp
{−(1 + ξx)−1/ξ

}
, 1 + ξx > 0, ξ 6= 0

exp{−e−x}, −∞ < x < ∞, ξ = 0
.
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Hξ is known as the generalized extreme value distribution. For α > 0, Φα(x) :=

H1/α(α(x − 1)) is the standard Fréchet distribution, Ψα(x) := H−1/α(α(x + 1)) is the

standard Weibull distribution, and Λ(x) := H0(x) is the standard Gumbel distribution.

The dependence structure associated with the distribution of a random vector can

be characterized in terms of a copula. An n-dimensional copula is a multivariate df

defined on [0, 1]n with uniformly distributed marginals. Due to Sklar’s Theorem (see

Sklar, 1959), if X1, . . . , Xn has a joint distribution function with continuous marginals,

then there exists a unique copula, C, such that

Pr(X1 ≤ x1, . . . , Xn ≤ xn) = C
(
Pr(X1 ≤ x1), . . . , Pr(Xn ≤ xn)

)
.

Similarly, the survival copula, Ĉ, is defined as the copula relative to the joint survival

function and satisfies

Pr(X1 > x1, . . . , Xn > xn) = Ĉ
(
Pr(X1 > x1), . . . , Pr(Xn > xn)

)
.

A well-known class of copulas is the Archimedean class. By definition, an Archimedean

copula C is given by

C(u1, . . . , un) = ϕ−1

(
n∑

i=1

ϕ(ui)

)
,

where ϕ : [0, 1] 7→ [0,∞) is its generator. Some regularity conditions are necessary to

ensure that C is a valid copula (see Kimberling, 1974 and Nelsen, 1999, ch. 4).

An important concept that is crucial to establishing the main results of this paper

is vague convergence. Let {µn, n ≥ 1} be a sequence of measures on a locally compact

space E with countable base. Then µn converges vaguely to some measure µ (written

µn
v→ µ) if for all bounded continuous functions f with compact support we have

lim
n→∞

∫

E
f dµn =

∫

E
f dµ.

A thorough background on vague convergence is given by Kallenberg (1983) and Resnick

(1987).
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3 Main Results

Throughout this paper it is assumed that the common df F = 1 − F̄ has positive

support and infinite right endpoint. For ease of exposition, we first assume that the

survival copula, which describes the dependence among portfolio risks, is a member of

the Archimedean class. This setup is used by Wüthrich (2003) and Alink et al. (2004

and 2005) in order to characterize the asymptotic tail behavior for a sum of dependent

random variables. A similar problem is discussed by Albrecher et al. (2006), Barbe et

al. (2006) and Kortschak and Albrecher (2007), when a more general dependence struc-

ture is assumed. Since the ECOMOR and LCR reinsurances are linear combinations

of the order statistics, studying the asymptotic tail probability for the losses associated

with these reinsurance treaties is closely related to the aforementioned problem.

We make the additional assumption that the generator ϕ of the survival copula is

regularly varying at 0 with index −α (ϕ ∈ RV 0
−α). That is,

lim
t↑0

ϕ(tx)

ϕ(t)
= x−α,

for any positive x. For more details on regular variation, we refer the reader to Bingham

et al. (1987).

The Clayton copula is an example of an Archimedean copula with generator, ϕ(u) =

u−α − 1, which satisfies the property ϕ ∈ RV 0
−α. This copula has the form

C(u1, . . . , un) =

(
1− n +

n∑
i=1

u−α
i

)−1/α

,

where α > 0.

Our assumption that the individual loss df F has infinite right endpoint implies that

only F ∈ MDA(Φβ) or F ∈ MDA(Λ) may hold. We consider these two cases in turn.

3.1 Results for F in MDA of Fréchet

If F ∈ MDA(Φβ) and ϕ ∈ RV 0
−α, then for any positive x1, . . . , xl with 1 ≤ l ≤ n,

lim
t→∞

Pr(X1 > tx1, . . . , Xl > txl)

F̄ (t)
=

(
l∑

i=1

xαβ
i

)−1/α

, (1)
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provided that 0 < α < ∞ (see Alink et al. 2004).

Now, as a result of our assumptions, the random variables X1, . . . , Xn are exchange-

able. Therefore,

Pr(X1,n > tx1, . . . , Xl,n > txl) (2)

=
∑

(k1,...,kl)∈Al

n!

k1! · · · kl! (n− k1 − · · · − kl)!
Pr

(
{X1, . . . , Xk1 > tx1},

{tx2 < Xk1+1, . . . , Xk1+k2 ≤ tx1}, · · · , {Xk1+...+kl+1, . . . , Xn ≤ txl}
)

,

for any x1 > . . . > xl, where Al = {(k1, . . . , kl) : i ≤ k1 + . . . + ki ≤ n, i = 1, . . . , l}.
Each term on the right-hand side of (2) can be expressed as a linear combination of

joint survival probabilities. This fact combined with (1) allows us to conclude that

there exists a positive function fl such that

Pr(X1,n > tx1, . . . , Xl,n > txl) ∼ F̄ (t)fl(x1, . . . xl), t →∞. (3)

Under more general assumptions for which the exchangeability property does not

hold, a similar but even more cumbersome relationship to that in (2) can be obtained.

Now, relation (3) implies that

Pr ((X1,n/t, . . . , Xl,n/t) ∈ ·)
Pr(X1 > t)

v→ µl(·),

holds on [0,∞]l \ {0} where the measure µl is given by

µl

(
(x1,∞]× · · · × (xl,∞]

)
:= fl(x1, . . . , xl). (4)

We now have the essential development for the main results of this subsection, which

are stated in the following theorem.

Theorem 1 Let (X1, . . . , Xn) be a positive random vector with an Archimedean survival

copula for which the generator satisfies ϕ ∈ RV 0
−α with α ∈ (0,∞). In addition, the

marginals are identically distributed with df F ∈ MDA(Φβ). For l = 1, . . . , n − 1, the

asymptotic tail probability for El, the reinsurance amount under an ECOMOR treaty,

is given by

Pr(El > t) ∼ CEF (l, α, β) F̄ (t) as t →∞,
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where

CEF (l, α, β) = µl+1

(
x :

l∑
i=1

xi − lxl+1 ≥ 1, x1 ≥ · · · ≥ xl+1 ≥ 0

)
,

with µl defined by (4).

For l = 1, . . . , n, the asymptotic tail probability for Ll, the reinsurance amount under

an LCR treaty, is given by

Pr(Ll > t) ∼ CLF (l, α, β) F̄ (t) as t →∞,

where

CLF (l, α, β) = µl

(
x :

l∑
i=1

xi ≥ 1, x1 ≥ · · · ≥ xl ≥ 0

)
.

It should be noted that in order to obtain these results, we used the fact that each

measure µl contributes zero mass to
l⋃

i=1

{xi = ∞}.

3.2 Result for F in MDA of Gumbel

As in the Fréchet case, the first step is to establish the joint tail extreme behavior. It is

well-known (see, for example, Embrechts et al., 1997) that if F ∈ MDA(Λ), then there

exists a positive, measurable function a(·) such that

lim
t→∞

F̄ (t + xa(t))

F̄ (t)
= e−x, (5)

for any real x. Once again, we assume that ϕ ∈ RV 0
−α, which gives that

lim
t→∞

Pr(X1 > t + x1a(t), . . . , Xl > t + xla(t))

F̄ (t)
=

(
l∑

i=1

eαxi

)−1/α

, (6)

for any real x1, . . . xl with 1 ≤ l ≤ n (see Alink et al. 2004).

In the same manner as the previous subsection, we have

Pr(X1,n > t + x1a(t), . . . , Xl,n > t + xla(t)) ∼ F̄ (t) gl(x1, . . . xl), (7)

where gl is a positive function.

Now, relation (7) implies that

Pr

((
(X1,n − t)/a(t), . . . , (Xl,n − t)/a(t)

) ∈ ·
)

Pr(X1 > t)

v→ νl(·),
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holds on (−∞,∞]l where the measure νl is given by

νl

(
(x1,∞]× · · · × (xl,∞]

)
:= gl(x1, . . . , xl). (8)

Now, we are able to give the main result from this subsection, which is only for the

LCR reinsurance. This is stated as Theorem 2.

Theorem 2 Let (X1, . . . , Xn) be a positive random vector with an Archimedean survival

copula for which the generator satisfies ϕ ∈ RV 0
−α with α ∈ (0,∞). In addition, the

marginals are identically distributed with df F ∈ MDA(Λ). For l = 1, . . . , n, we have

Pr(Ll > lt) ∼ CLF (l, α, β) F̄ (t) as t →∞,

where

CLG(l, α) = νl

(
x :

l∑
i=1

xi ≥ 0, x1 ≥ · · · ≥ xl

)
,

with νl defined by (8).

Two more remarks are useful in understanding Theorem 2. First, note that each

measure νl contributes zero mass to
l⋃

i=1

{xi = ∞}. Second, νl has no mass on regions

around −∞. This is obvious for l = 1, so we consider the case in which l > 1. It is

sufficient to check that

lim
M→∞

νl

(
x :

l∑
i=1

xi ≥ 0, x1 ≥ · · · ≥ xl−1 ≥ −M ≥ xl

)
= 0. (9)

In doing so, we first mention that the following clearly holds

Pr(X1,n > t) =

(
n

1

)
Pr(X1 > t)− · · ·+ (−1)n+1

(
n

n

)
Pr(X1 > t, . . . , Xn > t)

∼ ∆F̄ (t), as t →∞, (10)

where the last step is due to (6) and ∆ is a positive constant. Combining (5) and (10),

we have

νl

(
x :

l∑
i=1

xi ≥ 0, x1 ≥ · · · ≥ xl−1 ≥ −M ≥ xl

)

≤ lim
t→∞

Pr
(
X1,n > t + a(t) M

l−1

)

F̄ (t)
= ∆e−M/(l−1),

which leads to (9).
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3.3 Examples

In this subsection, examples for the limiting constants from Theorems 1 and 2 are given.

In order to avoid long computations, a portfolio consisting of n = 3 insurance contracts

is considered. First, the Fréchet case is explored. From (2), we have

Pr(X1,3 > tx1, X2,3 > tx2) = Pr(X1, X2, X3 > tx1) + 3 Pr(X1, X2 > tx1, X3 ≤ tx2)

+ 3 Pr(X1, X2 > tx1, tx2 < X3 ≤ tx1)

+ 3 Pr(X1 > tx1, tx2 < X2, X3 ≤ tx1)

+ 6 Pr(X1 > tx1, tx2 < X2 ≤ tx1, X3 ≤ tx2),

for any x1 > x2 > 0. Otherwise,

Pr(X1,3 > tx1, X2,3 > tx2) = Pr(X1, X2, X3 > tx2) + 3 Pr(X1, X2 > tx2, X3 ≤ tx2).

Straightforward computations together with (1) yield the following

f2(x1, x2) =





(3−1/α − 3 · 2−1/α)x−β
1 + 6(xαβ

1 + xαβ
2 )−1/α

−3(xαβ
1 + 2xαβ

2 )−1/α, 0 < x2 < x1

(3 · 2−1/α − 2 · 3−1/α)x−β
2 , 0 < x1 ≤ x2

. (11)

In a similar manner, if F ∈ MDA(Λ) then (6) yields

g2(x1, x2) =





(3−1/α − 3 · 2−1/α)e−x1 + 6(eαx1 + eαx2)−1/α

−3(eαx1 + 2eαx2)−1/α, 0 < x2 < x1

(3 · 2−1/α − 2 · 3−1/α)e−x2 , 0 < x1 ≤ x2

. (12)

The measure µ2

(
(x1,∞] × (x2,∞]

)
:= f2(x1, x2), and it follows from Theorem 1 that

the respective constants for ECOMOR and LCR are

CEF (1, α, β)

= µ2

(
(x1, x2) : x1 − x2 ≥ 1, 0 ≤ x2 ≤ x1

)

= 6β

∫ ∞

0

tαβ−1
{[

tαβ + (1 + t)αβ
]−1−1/α − [

2tαβ + (1 + t)αβ
]−1−1/α

}
dt

8



and

CLF (2, α, β)

= µ2

(
(x1, x2) : x1 + x2 ≥ 1, 0 ≤ x2 ≤ x1

)

= µ2

(
(x1, x2) : x1 = x2 ≥ 1/2

)
+ µ2

(
(x1, x2) : x1 + x2 ≥ 1, 0 ≤ x2 < x1

)

= f2(1/2, 1/2)

+6(1 + α)β2

∫ 1

1/2

∫ s

1−s

(st)αβ−1
[(

sαβ + tαβ
)−2−1/α − (

sαβ + 2tαβ
)−2−1/α

]
dt ds

+6(1 + α)β2

∫ ∞

1

∫ s

0

(st)αβ−1
[(

sαβ + tαβ
)−2−1/α − (

sαβ + 2tαβ
)−2−1/α

]
dt ds

= 3 + 3 · 2−1/α(2β − 1) + 3−1/α(1− 2β+1)

+6(1 + α)β2

∫ 1

1/2

∫ s

1−s

(st)αβ−1
[(

sαβ + tαβ
)−2−1/α − (

sαβ + 2tαβ
)−2−1/α

]
dt ds.

The measure ν2

(
(x1,∞] × (x2,∞]

)
:= g2(x1, x2) and from Theorem 2 the limiting

constant for LCR is

CLG(2, α)

= ν2

(
(x1, x2) : x1 + x2 ≥ 0, x1 ≥ x2

)

= ν2

(
(x1, x2) : x1 = x2 ≥ 0

)
+ ν2

(
(x1, x2) : x1 + x2 ≥ 0, x1 > x2

)

= 3 · 2−1/α − 2 · 3−1/α

+6(1 + α)

∫ ∞

0

∫ s

−s

eα(s+t)
[(

eαs + eαt
)−2−1/α − (

eαs + 2eαt
)−2−1/α

]
dt ds.

Numerical exemplifications of our main results are now considered for the LCR

treaty. It is assumed that each marginal is a two-parameter Pareto distribution with df

FPareto(x; β, γ) = 1−
(

1 + γ
x

β

)−β

, x ≥ 0

in order to illustrate Theorem 1 and exponentially distributed for Theorem 2. In both

cases, the expected value is set to 10,000, which implies that the Pareto parameters

should satisfy γ = β/((β−1)×10, 000). We performed the calculations for β = 2, 3, 4, 5.

For both the Pareto and exponential cases we considered α = 2, 3, 5, 7, 9, 10. The

following tables show the values of the asymptotic constants and the resulting quantiles

at level 0.999.
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Table 1: Asymptotic constants, CLF (2, α, β)

α β = 2 β = 3 β = 4 β = 5
2 8.6293 17.2031 34.3509 68.6358
3 8.5542 17.0840 34.1435 68.2577
5 8.4062 16.8037 33.5987 67.1870
7 8.3146 16.6248 33.2452 66.4851
9 8.2557 16.5087 33.0147 66.0263
10 8.2336 16.4651 32.9280 65.8535

Table 2: Quantile estimates of L2 at 0.999 level

α β = 2 β = 3 β = 4 β = 5
2 918, 940 496, 296 378, 419 330, 997
3 914, 891 495, 102 377, 801 330, 587
5 906, 852 492, 269 376, 164 329, 417
7 901, 844 490, 445 375, 092 328, 642
9 898, 606 489, 254 374, 388 328, 132
10 897, 393 488, 805 374, 122 327, 939

Tables 1 and 2 show that, as α increases, the asymptotic constants CLF (2, α, β)

decrease. This makes the corresponding quantile decrease, which is expected since an

increasing value of α results in a stronger dependence between the insurance contracts.

Changing the value of α does not have a significant impact on the quantiles, but the

sensitivity to β is quite apparent. This indicates that poor quantification of the tail

index β may yield incorrect results. A heavier tail, which corresponds to a lower value

of β, results in larger quantiles.

Table 3: Asymptotic constants, CLG(2, α) and quantile estimates of L2 at level 0.999

α CLG(2, α) Quantile
2 2.1367 153, 340
3 2.1294 153, 272
5 2.0983 152, 978
7 2.0770 152, 774
9 2.0630 152, 638
10 2.0576 152, 586
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The asymptotic constant CLG(2, α) and quantile from Table 3 exhibit the same

behaviour as in Tables 1 and 2, regarding changes in the strength of dependence. As

anticipated, the quantiles for the exponential case are smaller than the corresponding

Pareto quantiles, due to the light-tail extreme behaviour of the exponential distribution.

4 Other Dependence Structures

In the previous section it was assumed that the survival copula is Archimedean, and

some regularity conditions were imposed. The main purpose of this section is to extend

those results.

4.1 Archimedean Copula

A natural question is how do the asymptotic results differ when the copula itself (rather

than the survival copula) is assumed to be Archimedean? This can be done, but we give

up some simplicity. In this case, we assume that the generator ϕ is regularly varying

at 1. By definition, this means that for any positive x the following holds

lim
t↓0

ϕ(1− tx)

ϕ(1− t)
= xα,

and we write ϕ ∈ RV 1
α . Furthermore, the index satisfies the condition that α ≥ 1

(see Juri and Wütrich, 2003). The Gumbel copula is an example of such a copula

with regularly varying generator ϕ(u) = (− ln u)α, which satisfies the latter property

(ϕ ∈ RV 1
α ).

C(u1, . . . , un) = exp


−

[
n∑

i=1

(− ln ui)
α

]1/α

,

where α ≥ 1.

Upon defining the joint tail extreme behavior, the same steps as in the case of the

survival Archimedean copula are followed, where (1) and (6) are replaced respectively

by

lim
t→∞

Pr(X1 > tx1, X2 > tx2)

F̄ (t)
= x−β

1 + x−β
2 −

(
x−αβ

1 + x−αβ
2

)1/α

, x1, x2 > 0,

11



in the Fréchet case, and

lim
t→∞

Pr(X1 > t + x1a(t), X2 > t + x2a(t))

F̄ (t)

= e−x1 + e−x2 − (
e−αx1 + e−αx2

)1/α
, −∞ < x1, x2 < ∞,

in the Gumbel case (see Juri and Wütrich, 2003) provided that 1 < α < ∞. For

simplicity, the bivariate case has been considered, but the result can be extended to the

multivariate case, which is more cumbersome.

4.2 Extension

All previous cases were done under the assumption of exchangeability, which simplifies

the computations since we deal with order statistics. We recognize that this assumption

may be questionable, but extensions can be made when it does not hold, though they

are tedious.

Earlier we mentioned that the joint tail extreme behaviour is essential to characterize

the tail probability for the ECOMOR and LCR reinsurances. In the case that the

exchangeability property fails to hold we can still make the same characterization,

provided that for any set I ⊆ {1, . . . , n} the following exist

lim
t→∞

Pr(Xi > txi, i ∈ I)

V (t)
, xi > 0,

in the Fréchet case, and

lim
t→∞

Pr(Xi > t + a(t)xi, i ∈ I)

V (t)
, −∞ < xi < ∞,

for Gumbel, where V (·) is a positive-valued function.

5 Conclusions

In this paper, we provide a procedure to understand the tail behavior of the ECOMOR

and LCR reinsurances for a portfolio of dependent insurance contracts. First, a specific

dependence structure is considered. Namely, the survival copula is assumed to be

Archimedean. This choice of dependence structure aids in giving closed form results,

12



while the exchangeability between random variables simplifies the analysis. Finally, we

note that our main results can be extended, provided that we control the limiting joint

tail probabilities.
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