
              

City, University of London Institutional Repository

Citation: Eisele, F. (2014). Basic Orders for Defect Two Blocks of pΣn. Communications ℤ
in Algebra, 42(7), pp. 2890-2907. doi: 10.1080/00927872.2013.773336 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/13178/

Link to published version: https://doi.org/10.1080/00927872.2013.773336

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ar
X

iv
:1

01
1.

65
98

v1
  [

m
at

h.
R

T
] 

 3
0 

N
ov

 2
01

0

Basic Orders for Defect Two Blocks of ZpΣn

Florian Eisele

Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany

florian.eisele@rwth-aachen.de

Abstract

We show how basic orders for defect two blocks of symmetric groups over the ring of p-adic

integers can be constructed by purely combinatorial means.

1 Introduction and Outline

Blocks of group rings of symmetric groups of small defect have been subject to extensive study
in the past. In this paper we are concerned with blocks of defect two. For those, it has been
shown in [13] that (among other things) the decomposition numbers are all 6 1. This bound for
the decomposition numbers is of particular interest in the context of the theory developed in [12].
Namely, if B is a defect two block of ZpΣn, then the image of B under an irreducible representation
of Qp ⊗Zp

B is a so-called graduated order (also known as a tiled order or a split order). These
can be described easily in terms of only a few numerical invariants. Therefore describing these
images is what we do first. This yields an overorder Γ of a basic order B0 of B. We then go on
to determine how B0 is embedded in Γ. Here the shape of the Ext-quiver and the decomposition
matrix play an important role, as these will turn out to control to what extent we can modify
generators of B0 by conjugation. We find that those considerations determine B0 uniquely up
to conjugacy. B0 is then given by generators in a direct sum of matrix rings over Qp. It should
not be too hard, in any particular case, to derive from this a presentation as a quiver algebra of
Fp ⊗Zp

B0.
For the principal block of ZpΣ2p, the basic orders have been determined in [9], and our approach

is a generalization of that. The aforementioned paper relies, however, heavily on the explicit
knowledge of (among other things) the decomposition matrix of the blocks treated in it. We,
on the other hand, get by without such explicit information, which allows us to treat all defect
two blocks of symmetric groups (and makes it possible for the reader to verify the proofs without
inspecting any large tables). In fact, the following is a list of the known properties of defect two
blocks of symmetric groups that we are going to use:

Remark 1.1 (Known facts). (i) The decomposition numbers of a defect two block of a symmet-
ric group are all 6 1 and the off-diagonal Cartan numbers are all 6 2. The diagonal Cartan
numbers are all > 3. (see [13]).

(ii) The decomposition matrix of a defect two block of a symmetric group can be computed by
combinatorial means, for instance using the Jantzen-Schaper formula (see [2]).

(iii) For any two simple modules S and T in a defect two block of kΣn we have dimk Ext
1
kΣn

(S, T ) =

dimk Ext
1
kΣn

(T, S) 6 1 (see [13]). We will in particular consider Ext-quivers of defect two
blocks of kΣn as undirected graphs, as for each edge, there is an edge going back. We will
represent those two directed edges by a single undirected edge.
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(iv) The Ext-quiver of a defect two block of a symmetric group is a bipartite graph according to
[4, Theorem 3.2]. Bipartite means, in this context, that the set of vertices of the quiver can
be partitioned in two parts such that any edge connects vertices coming from different parts.

2 Notation

Let p be a prime and (k,O,K) be a p-modular system such that K is unramified over Qp. For
any n ∈ N we denote by Σn the symmetric group on n points.

In this paper, all modules are, unless stated otherwise, right modules. Whenever Λ is an
O-order, V is a K ⊗O Λ-module and S is a simple k ⊗O Λ-module, we denote by [V : S] the
multiplicity of S in k ⊗O L, where L is any full Λ-lattice in V . If V is simple as well, then [V : S]
is just the decomposition number associated to V and S.

Whenever we have an O-lattice L in a K-vector space V that carries a symmetric bilinear form
T : V × V → K, we define its dual L♯ to be the O-lattice {l ∈ V | T (l, L) ⊆ O}. We say L is
self-dual if L = L♯.

Our notation concerning the representation theory of symmetric groups is essentially as in [7].
In particular, for a partition λ of n and a commutative ring R we denote by Sλ

R = Sλ
Z
⊗Z R the

corresponding Specht-module. If µ is a p-regular partition of n, we denote by Dµ the corresponding
simple module defined over k, that is, Dµ = Sµ

k /RadS
µ
k .

For a partition λ of n, we denote by λ⊤ its transposed. For a p-regular partition µ of n we

denote by µM its image under the Mullineux-map, that is, define µM so that DµM ∼= Dµ ⊗k sgn
holds.

In addition to that, we will use the following (non-standard) notation:

Definition 2.1. Define for a p-regular partition µ of n the set

cµ :=
{

λ a partition of n | [Sλ
K : Dµ] 6= 0

}

(1)

Define for any partition λ of n the set

rλ :=
{

µ a p-regular partition of n | [Sλ
K : Dµ] 6= 0

}

(2)

3 Some Facts about Orders

In this section we recollect some facts about O-orders, mostly about graduated orders as defined
in [12]. All statements made in this section can be found either in [12] or in [8]. We specialize
everything to the splitting field case, as that case is what we need for the symmetric group blocks
later on.

Definition 3.1. Let A be a semisimple K-split K-algebra and Λ ⊂ A be a full O-order in A.
Then Λ is called graduated if Λ contains a full set e1, . . . , en of orthogonal idempotents which are
primitive in A.

Remark 3.2. Clearly a graduated order Λ also contains the central primitive idempotents ε1, . . . , εh
of A. Thus we have

Λ =
⊕

i

εiΛ (3)

Each εiΛ is by itself a graduated order in εiA, which means that it suffices to describe graduated
orders in simple K-algebras.

Theorem 3.3. Any graduated order Λ ⊂ Kn×n (for some n ∈ N) is conjugate to an order of the
form

Λ(O, m̂) =
n

⊕

i,j=1

〈

pm̂i,j · ei,j
〉

O
(4)
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where m̂ ∈ Zn×n
>0 is some matrix, and ei,j denotes the element in Kn×n that has a “1” at the

(i, j)-entry and zeros elsewhere.
By a further conjugation with a permutation matrix we may moreover achieve that all of the

following holds: There is an integer v, a vector d ∈ Zv
>0 and a matrix m ∈ Zv×v

>0 such that
∑v

i=1 di = n and

m̂i,j = ms,t ∀i, j with

s−1
∑

l=1

dl < i 6

s
∑

l=1

dl and

t−1
∑

l=1

dl < j 6

t
∑

l=1

dl (5)

where the matrix m satisfies

(i) mi,j +mj,k > mi,k ∀i, j, k ∈ {1, . . . , v}

(ii) mi,j +mj,i > 0 ∀i, j ∈ {1, . . . , v}

We call the matrix m an exponent matrix for Λ. We call the vector d a dimension vector.

Definition 3.4. Any matrix m ∈ Zv×v
>0 subject to the two conditions above, together with a vector

d ∈ Zv
>0, defines a graduated order, which we denote by Λ(O,m, d).

Remark 3.5. The integer v from above is precisely the number of isomorphism classes of simple
Λ-modules. The entries of the dimension vector d are equal to the k-dimensions of those simple
modules. In particular it is easily seen that Λ(O,m, (1, . . . , 1)) is a basic order of Λ(O,m, d).

Remark 3.6. By fixing an exponent matrix we in particular fix a bijection

{1, . . . , v} ↔ { Isomorphism classes of simple Λ-modules } (6)

This bijection is afforded by the following map:

i 7→ es,sΛ/Rad es,sΛ with s subject to

s−1
∑

l=1

dl < s 6

s
∑

l=1

dl (7)

Note furthermore that the projective cover of a simple module is an irreducible lattice. Therefore
said projective cover is the unique lattice with top isomorphic to that particular simple module.

The next theorem is the main reason why we are interested in graduated orders.

Theorem 3.7. Let A be finite-dimensional, semisimple K-split K-algebra. Let Λ ⊂ A be a full O-
order such that k splits k⊗OΛ. If V is a simple A-module and ε ∈ Z(A) is the corresponding central
primitive idempotent, then εΛ is a graduated order if and only if the decomposition numbers [V : S]
are 6 1 for all simple Λ-modules S (i. e., p-reductions of irreducible lattices are multiplicity-free).

Remark 3.8. Let G be a finite group such that k and K are both splitting fields for G, let
χ ∈ IrrK(G) be an irreducible character with decomposition numbers 6 1 and let εχ ∈ Z(KG) be
the corresponding central primitive idempotent. As seen above we have ελOG ∼= Λ(O,m, d) for
some exponent matrix m and dimension vector d. It can be shown that OG being a self-dual order
with respect to the regular trace implies the following inequality:

mi,j +mj,i 6 νp

(

χ(1)

|G|

)

∀i, j (8)

Theorem 3.9 ([1, Corollary 24]). Let Λ be an O-order that carries an involution (i. e., an anti-
automorphism of order two) ◦ : Λ → Λ. Assume moreover that 2 ∈ O×. Then there is a full set
of primitive pairwise orthogonal idempotents e1, . . . , en ∈ Λ and an involution σ ∈ Σn such that
e◦i = eσ(i).

3



Corollary 3.10. If Λ is as in Theorem 3.9, then one may choose an idempotent e ∈ Λ with e◦ = e
such that eΛe is a basic algebra for Λ. In particular, a basic algebra for Λ may be assumed to carry
an involution as well. It should be noted that the assumption “2 ∈ O×” of the preceding theorem
is not necessary for this corollary to hold.

Theorem 3.11. If Λ = Λ(O,m, d) is a graduated order that carries an involution ◦ : Λ → Λ then
there is an involution σ ∈ Σv such that

mi,j +mj,k −mi,k = mσ(k),σ(j) +mσ(j),σ(i) −mσ(k),σ(i) ∀i, j, k ∈ {1, . . . , v} (9)

and di = dσ(i) for all i ∈ {1, . . . , v}.

Remark 3.12. An involution −◦ on an order Λ clearly induces an equivalence between the cate-
gories modΛ and Λmod. By slight abuse of notation, we denote this equivalence (and its inverse)
by −◦ as well. Then the functor M 7→ HomO(M,O)◦ is an auto-equivalence of modΛ. It hence
permutes the simple Λ-modules. In the situation of the last theorem, in combination with Remark
3.6, M 7→ HomO(M,O)◦ does in particular induce a permutation on the set {1, . . . , v}. The in-
volution σ in the Theorems 3.9 and 3.11 may be chosen to equal this permutation. In particular,
if Λ = ελOΣn (for some partition λ of n) is a graduated order, then we may choose σ = id.

4 A Theorem on Amalgamation Depths

The following theorem will be used only in a very special case. It is useful in many situations
though, so we give the general version. In particular, we drop the assumption that K be unramified
over Qp, and denote by π a generator for the maximal ideal of O. It is a fact about symmetric
orders in Kn, taken as an algebra with component-wise multiplication (i. e. a semisimple algebra
with n non-isomorphic simple modules of dimension one). This setup is in a way orthogonal to
what we looked at above, where we concentrated on orders in Kn×n (i. e. a semisimple algebra
with a single simple module of dimension n).

Theorem 4.1. Let Λ be a local symmetric suborder of the commutative O-order On. Fix a Kn-
equivariant symmetric bilinear form Kn ×Kn → K such that Λ = Λ♯ with respect to that form.
By εi we denote the i-th standard basis vector in Kn. Then we claim: If L 6 Kn is a full Λ-lattice
with

L · εi
L · εi ∩ L

∼=O
Λ · εi

Λ · εi ∩ Λ
for some i ∈ {1, . . . , n} (10)

then L ∼=Λ Λ.

Proof. Let L be a full Λ-lattice in Kn not isomorphic to Λ. Without loss we may assume that
L ⊆ On and L · εi = O · εi for all i ∈ {1, . . . , n}. We are going to show that there can be no
counter-example to the statement of the theorem, that is, that for each possible L ≇ ΛΛ we have
that (10) does not hold for any i ∈ {1, . . . , n}.

First assume Λ $ L ⊆ On. We then have L♯ ⊆ Jac(Λ), and hence L ⊇ Jac(Λ)♯. Now, since Λ
is local and symmetric, the following holds:

Jac(Λ)♯ · π

Λ · π
= Soc

(

Λ

Λ · π

)

(11)

Therefore: If l ∈ Λ such that l + Λ · π ∈ Soc(Λ/Λ · π) then l · π−1 ∈ L.
Now let l ∈ Λ · εi ∩Λ (where i is arbitrary) such that l /∈ Λ · π. Then (l · Λ + Λ · π) /Λ · π ∼=Λ k

(where k is viewed as the simple Λ-module). This implies that l + Λ · π ∈ Soc(Λ/Λ · π), and thus
according to the above l · π−1 ∈ L. Since L · εi = Λ · εi = O · εi, we conclude

lengthO
L · εi

L · εi ∩ L
6 lengthO

Λ · εi
Λ · εi ∩ Λ

− 1 (12)
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and this holds for each i, as i was chosen arbitrary. One implication of the above is that for any
idempotent 1 6= ε ∈ Kn and any i with ε · εi 6= 0 the epimorphism

Λ · εi/Λ · εi ∩ Λ ։ Λ · εi/(Λ · εi) ∩ (Λ · ε) (13)

is proper. Also we have shown at this point that a Λ-lattice L with Λ ⊆ L ⊆ On cannot possibly
be a counterexample to the statement of the theorem.

Now we consider an arbitrary Λ-lattice L ⊆ On with L ·εi = O·εi for all i. We pick an element
v ∈ L with v · ε1 = ε1. If v · εi ∈ O× · εi for all i then clearly Λ ⊆ v−1 · L ⊆ On, and what we
have shown above implies that L is not a counterexample to the theorem. So assume that there
is a j ∈ {2, . . . , n} such that v · εj = r · εj with r ∈ (π)O. Then we pick a w ∈ L with w · εj = εj
and look at v′ = v − r · w. By construction v′ · ε1 ∈ O× · ε1 and v′ · εj = 0. Now we have a series
of epimorphisms

Λ · ε1
Λ · ε1 ∩ Λ

։
Λ · ε1

Λ · ε1 ∩ Λ · (1− εj)
։

L · ε1
L · ε1 ∩ Λ · v′

։
L · ε1

L · ε1 ∩ L
(14)

of which at least the first one is proper, since it is a special case of the epimorphism in (13). Hence
the leftmost and the rightmost term cannot possibly be isomorphic. Repetition of this argument
with ε1 replaced by ε2, ε3, . . . , εn yields that the theorem holds for L.

Remark 4.2 (Applications to our situation). Let Λ be an O-order in a semisimple K-split K-
algebra A. Let e be a primitive idempotent in Λ. Assume moreover that the decomposition numbers
of Λ are all 6 1. Then eΛe is isomorphic to a local O-order in some Kn. Let ε1, . . . , εh be the
central primitive idempotents in A, and assume that Λ = Λ♯ with respect to the trace bilinear form

Tu : A×A → K : (a, b) 7→
h
∑

i=1

Tr(εi · ui · a · b) for some elements ui ∈ K \ (π)O (15)

Then, by elementary linear algebra, we have

εi · eΛe

εi · eΛe ∩ eΛe
∼=O O/u−1

i O (16)

Let I ⊆ {1, . . . , h} be some set of indices such that e · εi 6= 0 ∀i ∈ I and e · ε 6= e, where we put
ε :=

∑

i∈I εi. Then ε · eΛe⊕ (1− ε) · eΛe ≇eΛe eΛe. Hence

lengthO
εi · eΛe

(εi · eΛe) ∩ (ε · eΛe)
6 νπ(u

−1
i )− 1 ∀i ∈ I (17)

Now we specialize to the (unramified) defect two case. This case corresponds to νπ(ui) = −2 for
all i ∈ I. We hence have

ε · eΛe ∼= Γ|I| := 〈(1, 1, 1, . . . , 1), (0, π, 0, . . . , 0), (0, 0, π, . . . , 0), (0, 0, 0, . . . , π)〉O ⊂ K |I| (18)

Formula (18) is the consequence of the last theorem that we are actually going to use later. In the
same vein is the following: One easily concludes from the last theorem that the radical idealizer
of eΛe (that is, the largest subset Γ ⊂ Kn such that Γ · Jac(eΛe) ⊆ Jac(eΛe)), which for self-dual
orders is known to be equal to Jac(eΛe)♯ (see [10]), is isomorphic to the algebra Γ|J| as defined in
(18) with J = {i | εi · e 6= 0}. Thus

eΛe ∼= 〈(1, . . . , 1)〉O + Γ♯

|J| (19)

which basically says that eΛe is already determined by the ui (which in case Λ is a group ring are
just the character degrees divided by the group order). Of course these defect two results have more
elementary proofs.
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5 Defect Two Blocks of Symmetric Groups

Remark 5.1. In what follows, p will always be an odd prime. When we say that a partition is in
a defect two block, that simply means that it is of p-weight two.

Definition 5.2 (Jantzen-Schaper-Filtration). Let λ be a partition of some n ∈ N, and let

(−,=) : Sλ
O × Sλ

O → O (20)

be the natural bilinear form on Sλ
O inherited from the permutation module Mλ

O (see [7] for details).
Then we define for i ∈ Z>0

Sλ
O(i) :=

{

m ∈ Sλ
O | (m,Sλ

O) ⊆ pi · O
}

(21)

and

Sλ
k (i) :=

Sλ
O(i) + p · Sλ

O

p · Sλ
O

6 Sλ
k (22)

The filtration Sλ
k = Sλ

k (0) > Sλ
k (1) > Sλ

k (2) > . . . is called the Jantzen-Schaper filtration of Sλ
k .

Remark 5.3. If Sλ
k is multiplicity-free, then all layers Sλ

k (i)/S
λ
k (i + 1) of the Jantzen-Schaper

filtration are semisimple. So, in particular, this holds for an Sλ
k in a defect two block.

Proof. Consider the restriction of the standard bilinear form (−,=) on Sλ
O to Sλ

O(i) for some i.
By definition of Sλ

O(i), this takes values in (pi)O. Thus we may look at p−i · (−,=), which defines
a bilinear form on Sλ

O(i) with values in O. We reduce this modulo p to get a bilinear form on
k ⊗O Sλ

O(i). Clearly

X :=
k ⊗O Sλ

O(i)

k ⊗O Sλ
O(i) ∩ k ⊗O Sλ

O(i)
⊥

(23)

is a self-dual kΣn-module. Since Sλ
k (and therefore also k ⊗O Sλ

O(i)) is multiplicity-free, and all
simple kΣn-modules are self-dual, we must hence have that X is semisimple (as any simple module
occurring in the radical would otherwise turn up again in the socle, giving it a multiplicity of at
least two). Now we have the natural epimorphism Sλ

O(i) ։ Sλ
k (i), giving rise to an epimorphism

k⊗OSλ
O(i) ։ Sλ

k (i). This epimorphism maps k⊗OSλ
O(i)∩k⊗OSλ

O(i)
⊥ into Sλ

k (i+1), which is best
seen by diagonalizing the bilinear form on Sλ

O. Thus we get an epimorphism X ։ Sλ
k (i)/S

λ
k (i+1),

implying that the latter is also semisimple.

The following theorem essentially summarizes what can be said about the structure of Specht
modules in defect two blocks.

Theorem 5.4. Let λ be a partition in a defect two block. Then the Jantzen-Schaper-quotients of

Sλ
k and Sλ⊤

k may be described as follows:

(i) If λ and λ⊤ are both p-regular, then

Sλ
k (0)/S

λ
k (1)

∼= Dλ Sλ⊤

k (0)/Sλ⊤

k (1) ∼= Dλ⊤

Sλ
k (1)/S

λ
k (2)

∼=
⊕

µ∈rλ\{λ,λ⊤M} D
µ Sλ⊤

k (1)/Sλ⊤

k (2) ∼=
⊕

µ∈rλ\{λ,λ⊤M} D
µM

Sλ
k (2)/S

λ
k (3)

∼= Dλ⊤M

Sλ⊤

k (2)/Sλ⊤

k (3) ∼= DλM

and all further layers are zero. Furthermore, rλ \ {λ, λ⊤M} 6= ∅, meaning all of the above
layers are non-trivial.
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(ii) If λ is p-regular and λ⊤ is p-singular, then

Sλ
k (0)/S

λ
k (1)

∼= Dλ Sλ⊤

k (0)/Sλ⊤

k (1) ∼= 0

Sλ
k (1)/S

λ
k (2)

∼=
⊕

µ∈rλ\{λ}
Dµ Sλ⊤

k (1)/Sλ⊤

k (2) ∼=
⊕

µ∈rλ\{λ}
DµM

Sλ
k (2)/S

λ
k (3)

∼= 0 Sλ⊤

k (2)/Sλ⊤

k (3) ∼= DλM

and all further layers are zero.

(iii) If λ and λ⊤ are both p-singular, then there is a p-regular partition µ of n (which will neces-
sarily be the p-regularization of λ) such that

Sλ
k (1)/S

λ
k (2)

∼= Dµ Sλ⊤

k (1)/Sλ⊤

k (2) ∼= DµM

and all other layers are zero.

Proof. By [5, Theorem 4.8] (specialized to the defect two case) we have

Sλ
k (i)/S

λ
k (i+ 1) ∼=

(

Sλ⊤

k (2 − i)/Sλ⊤

k (3 − i)
)

⊗O sgn (24)

In particular Sλ
k (3) = {0}. This clearly implies that the first and the third layer of the filtration

are always as claimed. Our claim on the middle layer in cases (i) and (ii) simply follows from the
fact that all decomposition numbers are zero or one (that is, any simple module that occurs as a
composition factor of Sλ

k does so with multiplicity one), and Remark 5.3.
Now we show that when λ and λ⊤ are both p-regular, the set rλ \ {λ, λ⊤M} is non-empty.

Assume otherwise. By [7, Corollary 13.18] Sλ
k is indecomposable, and thus Ext1kΣn

(Dλ, Dλ⊤M

)
must be non-zero. Now, as mentioned in Remark 1.1, the Ext-quiver of a defect two block of
a symmetric group is bipartite. The bipartition is given by the so-called relative p-sign (see [6,
Proposition 2.2.]). Given any partition η, define its relative p-sign σp(η) to be (−1)

∑
li , where li

are the leg lengths of a sequence of p-hooks that may be removed from η to leave a p-core. Since
for p odd the leg length and the arm length of a p-hook always leave the same residue modulo two,
we have σp(η) = σp(η

⊤) for any partition λ. By [14, Proposition 2.5.], for odd p and p-regular η of

even weight, σp(η) = σp(η
M ) will hold. Therefore, σp(λ

⊤M ) = σp(λ), that is, Dλ and Dλ⊤M

are
in the same part of the bipartition. But then, Ext1 between the two cannot be non-zero, giving
us the desired contradiction.

The only part of our claim left to prove is that whenever λ and λ⊤ are both p-singular, Sλ
k will

be simple. By (24) it is clear that in this case, Sλ
k
∼= Sλ

k (1)/S
λ
k (2). According to Remark 5.3 the

module Sλ
k is hence semisimple. But by [7, Corollary 13.18], Sλ

k is also indecomposable. It follows
that Sλ

k is simple, as claimed.

Remark 5.5. Note that the last remark and theorem determine the submodule structure of Sλ
k for

each partition λ in a defect two block.

Lemma 5.6. Let λ be a partition of some n, and let Sλ
K be equipped with the natural bilinear form

inherited from Mλ
K. If L ⊂ Sλ

K is a OΣn-lattice, we denote its dual with respect to this form by

L♯. Define Ŝ(j) := (p−j · Sλ
O) ∩ Sλ♯

O . Then there is an ascending filtration

Sλ
O = Ŝ(0) 6 Ŝ(1) 6 . . . 6 Ŝ(l) = Sλ♯

O for some l ∈ N (25)

and the quotients Ŝ(j)/Ŝ(j − 1) are isomorphic to Sλ
k (j).

Proof.

Ŝ(j)/Ŝ(j − 1) ∼=
p−jSλ

O ∩ Sλ♯
O + p−j+1Sλ

O

p−j+1Sλ
O

∼=
Sλ
O ∩ pjSλ♯

O + pSλ
O

pSλ
O

= Sλ
k (j)

7



Theorem 5.7. Let λ be a p-regular partition in a defect two block. Let J0, J1 and J2 be the
sets of p-regular partitions µ such that Dµ occurs in Sλ

k (0)/S
λ
k (1), S

λ
k (1)/S

λ
k (2) and Sλ

k (2)/S
λ
k (3)

respectively. By ελ denote the primitive idempotent in Z(KΣn) belonging to λ. Then the O-order
ελOΣn is Morita-equivalent to the graduated order Λ = Λ(O,m, (1, . . . , 1)) for an exponent matrix
m ∈ Zrλ×rλ

>0 subject to the conditions:

mαλ = 0 ∀α ∈ J0 ∪ J1 ∪ J2 (26)

mλα = i ∀α ∈ Ji for i ∈ {0, 1, 2} (27)

mαβ −mβα = mλβ −mλα ∀α, β (28)

0 < mαβ +mβα 6 2 ∀α 6= β (29)

These conditions completely determine the matrix m.
Denote for each γ ∈ rλ by eγ the diagonal matrix unit in Λ belonging to γ. Then we may

choose a Morita-equivalence F between modελOΣn
and modΛ such that F(Dγ) ∼= eγΛ/Rad eγΛ.

Proof. Since K and k split Σn and all decomposition numbers are known to be 0 or 1 it follows
that ελOΣn (as well as, of course, its basic algebra) is a graduated order (see Theorem 3.7).
Thus Λ = Λ(O,m, (1, . . . , 1)) for some exponent matrix m. We may assume without loss that

F(Sλ♯
O ) ∼= O1×J0∪J1∪J2 . We may also assume that F(Dγ) ∼= eγΛ/Rad eγΛ. At this point we have

fixed an exponent matrix m, and we need to show that it satisfies (26)-(29).
The order ελOΣn carries an involution, as KΣn carries the standard involution g 7→ g−1, and

this involution fixes ελ and maps OΣn to itself. Dualizing followed by standard involution also
fixes all simple modules (this fact is usually stated as “The simple kΣn-modules are self-dual”).
Hence the order Λ may also be equipped with an involution ◦ : Λ → Λ that fixes all the eγ (this
is by Corollary 3.10 and Remark 3.12). By Theorem 3.11 this implies (28). The equation (29) is
just Remark 3.8.

Since Sλ
O has simple top Dλ, so does F(Sλ

O). The uniqueness part of Remark 3.6 thus implies
F(Sλ

O)
∼= eλΛ. But eλΛ ∼= [(p)mλα

O ]
α
, and therefore mλα equals (for each α) the multiplicity of

F(Dα) in F(Sλ♯
O )/F(Sλ

O), which has been determined in Lemma 5.6. This implies (27). Note
that in principle F applied to an irreducible lattice is, as a lattice in K1×rλ , only determined
up to multiplication by powers of p. For the above quotient we choose however the maximal
representative of F(Sλ

O) that is contained in O1×rλ = F(Sλ♯
O ).

We may equip the vector space K1×rλ with a Λ-equivariant non-degenerate symmetric bilinear
form (which one we choose is irrelevant for our purposes). Then for each OΣn-lattice L 6 Sλ

K

we have F(L♯) ∼= F(L)♯. This is best seen by choosing an involution-invariant idempotent in
e ∈ ελOΣn that affords the Morita-equivalence, since

L♯ · e ∼= HomO(L,O)◦ · e ∼= HomO(L · e◦,O)◦ = HomO(L · e,O)◦ ∼= (L · e)♯ (30)

By looking the standard bilinear pairing of K1×rλ and Krλ×1 we see that

HomO(F(Sλ♯
O ),O) ∼=Λ Orλ×1 (31)

On the other hand, as was just seen,

HomO(F(Sλ♯
O ),O) ∼= HomO(HomO(F(Sλ

O),O)◦,O)
∼= F(Sλ

O)
◦ ∼= (eλΛ)◦ ∼= Λeλ

(32)

This clearly implies (26).
The conditions (26)-(29) determine m, since (28) determines for all α, β the difference mαβ −

mβα, and hence determines mαβ +mβα modulo 2. As (29) states that mαβ +mβα ∈ {1, 2}, this
is already enough to determine the sum mαβ + mβα. This clearly determines the values of the
mαβ .
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Remark 5.8. The preceding theorem determines the exponent matrices for every ελOΣn with λ
in a defect two block, even when λ is p-singular. Namely, if λ is p-singular, we have the following
two cases:

1. λ is p-singular and λ⊤ is p-regular:
We have an isomorphism

ϕ : ελOΣn → ελ
⊤

OΣn : ελ · g 7→ sgn(g) · ελ
⊤

· g (33)

and when we retract the simple ελ
⊤

OΣn-modules with ϕ, we get ϕ∗(D
µM

) ∼= Dµ. Hence

mλ
µν = mλ⊤

µMνM for all µ, ν ∈ rλ (34)

where mλ and mλ⊤

denote the exponent matrices of ελOΣn and ελ
⊤

OΣn. mλ⊤

has of course
been determined by the last theorem.

2. λ is p-singular and λ⊤ is p-singular:
According to Theorem 5.4 the set rλ will contain just one element, and hence the exponent
matrix will be the 1× 1 zero matrix.

Corollary 5.9. Let λ be a partition in a defect two block. Then the Ext-quiver of k⊗O ελOΣn is
maximally bipartite. More precisely, this means that there is an edge between any vertex pertaining
to a constituent of Sλ

k (1)/S
λ
k (2) and any vertex pertaining to a constituent of either Sλ

k (0)/S
λ
k (1)

or Sλ
k (2)/S

λ
k (3).

Proof. By Remark 5.8 we may assume that λ is p-regular (and we do so in what follows). We
adopt the notation of Theorem 5.7. The group ΣJ1

acts naturally via automorphisms on the basic
order of ελOΣn. In particular it acts via quiver automorphisms on the Ext-quiver of k⊗O ελOΣn

by permuting the vertices labeled by elements of J1. This can easily be derived from the fact that
the set of equations (26)-(29) is invariant under the operation of ΣJ1

on the indices, and those
equations determine the exponent matrix m completely.

J0 and J2 each consist of at most one partition. First suppose that J1 6= ∅. Then by Theorem
5.4 the top of Sλ

k has a single constituent labeled by the partition in J0, and the socle of Sλ
k has

constituents labeled by the partitions in J2 (also, of course, at most one). Therefore Sλ
k / SocS

λ
k

has at least one non-semisimple quotient of length two, implying the existence of an edge from the
partition in J0 to one partition in J1. Provided J2 6= ∅, the module RadSλ

k has a non-semisimple
submodule of length two, implying the existence of an edge from the element of J2 to one element
of J1. Now using the action of ΣJ1

we conclude that the Ext-quiver has at least the postulated
edges. The case J1 = ∅ is trivial, since then by Theorem 5.4 the set J2 is also empty, that is, the
Ext-quiver consists of only a singe vertex.

As we already mentioned in Remark 1.1, the Ext-quiver of any defect two block of a symmetric
group is known to be bipartite by [4]. We can use the epimorphism kΣn ։ k ⊗O ελOΣn to
retract modules and sequences of modules, in particular simple modules and extensions of simple
modules. Hence the Ext-quiver of k ⊗O ελOΣn is a sub-quiver of the bipartite Ext-quiver of the
defect two block. It will therefore be bipartite as well. But if any further edges were to be added
to the quiver constructed above, it would cease to be bipartite (for then there would be a closed
path of length three). Hence we have constructed the full Ext-quiver of k ⊗O ελOΣn.

Lemma 5.10. Let λ be a partition in a defect two block, and let i ∈ Z>0. If Dγ is a simple
module occurring in Sλ

k (i)/S
λ
k (i+1) and Dω is a simple module occurring in Sλ

k (i+1)/Sλ
k (i+2),

then Ext1kΣn
(Dγ , Dω) 6= {0}. On the other hand, whenever two simple modules Dγ and Dω occur

in the same layer of the Jantzen-Schaper-filtration, then Ext1kΣn
(Dγ , Dω) = {0}.

Proof. This follows directly from Corollary 5.9.

Theorem 5.11. Let λ and µ be two distinct p-regular partitions in some defect two block. If
Ext1kΣn

(Dλ, Dµ) 6= {0}, then both of the following hold:

9



(i) |cλ ∩ cµ| = 2

(ii) λ ∈ cλ ∩ cµ or µ ∈ cλ ∩ cµ

Proof. To prove the claim of (i), we argue by contradiction. We know that |cλ∩cµ| 6 2 by Remark
1.1 (i). So let cλ∩cµ consist of just one element, say η. Then by Theorem 5.4 and Lemma 5.10, Dλ

and Dµ occur in successive Jantzen-Schaper layers of Sη
k . Hence, by Theorem 5.7, mµλ+mλµ = 1

(where m is the exponent matrix of εηOΣn). But if eλ and eµ are primitive idempotents in OΣn

corresponding to Dλ and Dµ, then eλOΣneµOΣneλ = 〈p · εη · eλ〉O (this is easy to see if one
identifies εηOΣn with Λ(O,m, d) for the appropriate dimension vector d, and assumes without
loss that εηeλ and εηeµ are equal to diagonal matrix units in Λ(O,m, d)). OΣn is a self-dual (and
so in particular integral) lattice with respect to the bilinear form T : (a, b) 7→ 1

n!

∑

ϕ χϕ(1)χϕ(ab)

(where χϕ is the irreducible character associated to the Specht module Sϕ
K). Now T (p ·εη ·eλ, 1) =

p · T (εη · eλ, 1) = p · χη(1)
n! · χη(eλ). However νp(p) + νp(

χη(1)
n! ) + νp(χ

η(eλ)) = 1− 2 + 0 = −1, and
thus T (p · εη · eλ, 1) /∈ O, in contradiction to the integrality of OΣn.

Now we prove (ii). Let ν be an element of cλ ∩ cµ. By Lemma 5.10, either λ or µ must occur
in one of Sν

k (0)/S
ν
k (1) or Sν

k (2)/S
ν
k (3). By Theorem 5.4 it follows that ν ∈ {λ, µ, λM⊤, µM⊤}.

Since we know already that |cλ ∩ cµ| = 2, we only have to check that cλ ∩ cµ 6= {λM⊤, µM⊤}.

Suppose the contrary. Then SλM⊤

k has Dµ as a composition factor, and therefore SλM

k has DµM

as a composition factor. It follows µM ⊲ λM . But in the same way the fact that SµM⊤

k has Dλ as
a composition factor implies that λM ⊲ µM , which yields the desired contradiction.

At this point we fix a defect two block B of some OΣn, and we wish to describe its basic order,
which we shall denote by Λ. We describe Λ as an order in the K-algebra A which we are about
to define.

Definition 5.12. The exponent matrices for B determined in Theorem 5.7 and Remark 5.8 shall
be denoted by mλ

µν . By dλ we denote the dimension of the Specht module Sλ
K .

Definition 5.13. Define a K-algebra A spanned by a K-basis

ελµν for λ a partition in B and µ, ν ∈ rλ (35)

equipped with the following multiplication law:

ελµν · ελ̃µ̃ν̃ = δλλ̃ · δνµ̃ · ελµν̃ (36)

Note that this A is isomorphic to a direct sum of full matrix algebras over K, and the ελµν are just
the matrix units. Note also that A ∼= K ⊗O Λ. We will henceforth assume that Λ is embedded in
A.

The central primitive idempotents in A are given by

ελ :=
∑

µ∈rλ

ελµµ (37)

and we shall assume without loss that for each λ

ελΛ =
⊕

µ,ν∈rλ

〈pm
λ
µν · ελµν〉O (38)

and that for each p-regular µ the idempotent
∑

λ∈cµ
ελµµ is a primitive idempotent in Λ (corre-

sponding to Dµ). This can all be achieved by conjugation within A.

Theorem 5.14. The order Λ is conjugate in A to the O-algebra generated by the following ele-
ments of A: For each p-regular µ in B the idempotent

eµ :=
∑

λ∈cµ

ελµµ (39)
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and for each (ordered) pair (µ, ν) of (distinct) p-regular partitions in B with Ext1k⊗OB(D
µ, Dν) 6=

{0} an element xµν , which is defined as

xµν := pm
λ
µν · ελµν + pm

η
µν · εηµν where cµ ∩ cν = {λ, η} (40)

if µ > ν, respectively

xµν := pm
λ
µν · ελµν −

dλ
dη

· pm
η
µν · εηµν where cµ ∩ cν = {λ, η} (41)

if µ < ν.

Proof. It follows easily from Nakayama’s lemma (for O-modules) that a set of elements of Λ
generate Λ as an O-algebra if and only if their images in k⊗OΛ generate k⊗OΛ as a k-algebra. It is
well known (see for instance [3, Proposition 4.1.7], and be aware that the condition “k algebraically
closed” may be replaced by “k is a splitting field”) that a full set of primitive idempotents eµ (with
the natural choice of indices) and any basis of eµ Jac(k ⊗O Λ)/ Jac(k ⊗O Λ)2eν (where µ, ν run
over all p-regular partitions) generates k ⊗O Λ. By [3, Proposition 2.4.3] we have

dimk eµ ·
(

Jac(k ⊗O Λ)/ Jac(k ⊗O Λ)2
)

· eν = dimk Ext
1
k⊗OB(D

µ, Dν) (42)

Moreover we know (as mentioned in Remark 1.1) that all Ext1k⊗OB(D
µ, Dν) are at most one-

dimensional.
Now pick a specific pair µ, ν of p-regular partitions with µ > ν such that Ext1B(D

µ, Dν) 6= {0}.
Our goal is to pick some element in eµΛeν that is suitable as a generator due to the above
considerations.

First we should note that since Λ is a self-dual order with respect to the symmetric Λ-
equivariant bilinear form

A×A → K : (a, b) 7→
1

n!

∑

λ

dλ · Tr(ελ · a · b) (43)

we can define the bilinear pairing

T : eνAeµ × eµAeν → K
(

∑

λ∈cµ∩cν
fλ · ελνµ,

∑

λ∈cµ∩cν
gλ · ελµν

)

7→ 1
n! ·

∑

λ∈cµ∩cν
dλ · fλ · gλ

(44)

to get eνΛeµ = {v ∈ eνAeµ | T (v, eµΛeν) ⊆ O} (and the analogous equation for eµΛeν). We will
use this together with the fact that νp

(

dλ

n!

)

= −2 for all λ. We distinguish the following cases:

(i) cµ∩cν = {λ, η}, mλ
µν +mλ

νµ = 2 and mη
µν +mη

νµ = 2. By Theorem 5.4 and Theorem 5.7 this
could only happen if {λ, η} = {µ, ν}. But then Dµ is a composition factor of Sν , so µ ⊲ ν,
and Dν is a composition factor of Sµ, so ν ⊲ µ. Clearly this is a contradiction, so this case
does not occur at all.

(ii) cµ∩cν = {λ, η} and mλ
µν+mλ

νµ = 1. In this case T (eνΛeµ, p
mλ

µν ·ελµν) = p−1 ·O, which implies

pm
λ
µν · ελµν /∈ eµΛeν (note however that pm

λ
µν+1 · ελµν is in eµΛeν by the same argument), and

thus
eµΛeν $ 〈pm

λ
µν · ελµν〉O ⊕ 〈pm

η
µν · εηµν〉O (45)

However the projection onto each summand (that is, multiplication by ελ) has to be surjective

by (38), and so there is an element in eµΛeν of the form pm
λ
µν · ελµν +αη

µν ·p
mη

µν · εηµν for some
αη
µν ∈ O×. So we can state that

eµΛeν =
〈

pm
λ
µν · ελµν + αη

µν · pm
η
µν · εηµν , pm

λ
µν+1 · ελµν

〉

O
(46)
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and by dualizing it follows that

eνΛeµ =

〈

pm
λ
νµ · ελνµ −

dλ
dη

· (αη
µν)

−1 · pm
η
νµ · εηνµ, pm

λ
νµ+1 · ελνµ

〉

O

(47)

Theorem 4.1 and Remark 4.2 imply that

(ελ + εη) · eµΛeµ = 〈ελνµ + εηνµ, p · ε
λ
νµ〉O (48)

and therefore 〈pm
λ
νµ+1 · ελνµ, p

mη
νµ+1 · εηνµ〉O is the unique maximal eµΛeµ-submodule of

eνΛeµ = eν Jac(Λ)eµ. It is therefore equal to eµ Jac(Λ)
2eν . Hence we may take

xµν = pm
λ
µν · ελµν + αη

µν · pm
η
µν · εηµν (49)

as a generator (since it is not contained in eµ Jac(Λ)
2eν), and by the same argument we may

pick

xνµ = pm
λ
νµ · ελνµ −

dλ
dη

· (αη
µν)

−1 · pm
η
νµ · εηνµ (50)

Now we have to show that all the αη
µν may be chosen to be equal to one. To do that, first note

that due to Theorem 5.11 we may assume that all parameters are of the form αν
µν (for p-regular

partitions µ > ν). Of course, in this case, it may also be assumed that ν is the lexicographically
greatest element in cµ ∩ cν .

Assume ν0 is a p-regular partition in B such that all αν
µν with ν < ν0 are equal to one

and αν0
µν0

6= 1 for some µ. Assume moreover that ν0 is lexicographically maximal with respect
to this property. Our goal is to show that after conjugation by an appropriate unit in A and
renormalization of the generators by multiplying with elements of O× afterwards, we can make it
so that all αν

µν with ν 6 ν0 equal one, which yields that without loss, all αν
µν may be chosen equal

to one. To do this, we conjugate with a u (i. e., replace each xµν by u−1 · xµν · u), where

u :=
∑

µ∈rν0

αν0
µν0

· εν0µµ +
∑

λ6=ν0

ελ ∈ A× (51)

Note that in this formula we take those αν0
µν0

that are not defined to equal one. The conjugation
with this unit will obviously make all αν0

µν0
equal to one, and not affect any αν

µν with ν < ν0 (since
all elements of cµ ∩ cν will be lexicographically smaller than ν0). After renormalizing the other
generators that were altered by the conjugation (to make them look as in (49) respectively (50)
again), we have αν

µν = 1 for all ν 6 ν0. That concludes the proof.

It has been proved in [11, Corollary 5.4.5.] that defect two blocks of symmetric groups over k
are tightly graded. The following reproves that result (in a very simple fashion), and additionally
shows that the images of the xµν (as defined in the theorem above) in the basic algebra over k are
homogeneous generators. That should in particular simplify the calculation of the quiver relations
from our description of the block.

Corollary 5.15. Let Λ = O〈{eµ}µ, {xµν}µ,ν〉 as in Theorem 5.14. Let Q be the Ext-quiver,
denote by Eµ the vertices and denote by Xµν an edge from Eµ to Eν . By kQ we denote the quiver
algebra (with multiplication convention Xµν ·Xντ 6= 0). Then the kernel of the epimorphism

Φ : kQ ։ Λ/pΛ :

{

Xµν 7→ xµν + pΛ
Eµ 7→ eµ + pΛ

(52)

is a homogeneous ideal, where we define the vertices of Q to be homogeneous of degree zero and
the arrows to be homogeneous of degree one.
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Proof. Since KerΦ =
⊕

µ,ν Eµ ·KerΦ·Eν , and a path connecting Eµ with Eν has even respectively
odd length if and only if µ and ν lie in the same part respectively in different parts of the bipartition,
we may assume that KerΦ is generated by elements that involve only paths of even length and
elements that only involve paths of odd length. By general theory we may assume that all paths
involved in any element of KerΦ have at least length two. By [13, Theorem I], the projective
indecomposables of Λ/pΛ have common Loewy length five, i. e. Φ maps every path of length > 5
to zero. A path of length four will correspond to a top onto socle endomorphism of a projective
indecomposable. Thus all paths of length four that start and end at a separate vertex are sent to
zero under Φ, and all paths of length four that start and end at the same fixed vertex of Q will
be mapped by Φ into a one-dimensional subspace of Λ/pΛ.

So, considering all of this, all we need to show is that if Yµ := XµαXαβXβγXγµ is not in KerΦ,
then neither is Yµ +

∑

ν qν · XµνXνµ for any choice of qν ∈ k. It follows easily from Theorem
5.11 that |cµ ∩ cα ∩ cβ ∩ cγ | = 1, and let us denote the single element of this set by λ. Hence
yµ := xµαxαβxβγxγµ is equal to v · ελµµ for some v ∈ O. The fact that yµ ∈ Λ \ pΛ implies
νp(v) = 2. Let T : eµΛeµ × eµΛeµ → O the symmetric bilinear form on eµΛeµ as given in (44).
Then T (yµ, 1) ∈ O×. On the other hand T (xµνxνµ, 1) = 0 for any ν by definition of the xµν . Hence
T (yµ +

∑

ν q̂ν ·xµνxνµ, 1) ∈ O× for any choice of q̂ν ∈ O, which implies yµ +
∑

ν q̂ν ·xµνxνµ /∈ pΛ.
Thus Φ(Yµ +

∑

ν qν ·XµνXνµ) 6= 0.

Example 5.16. We look at the principal block of Z3Σ7. The decomposition matrix is given as
follows (we assign arbitrary names to the partitions in order to unclutter notation a bit):

Dim. Name (7) (5, 2) (4, 3) (4, 2, 1) (3, 2, 12)

1 λ (7) 1 . . . .
14 µ (5, 2) 1 1 . . .
14 ν (4, 3) . 1 1 . .
35 η (4, 2, 1) 1 1 1 1 .
20 ϕ (4, 13) . . . 1 .
35 η̃ (3, 2, 12) 1 . 1 1 1
14 ν̃ (23, 1) 1 . . . 1
14 µ̃ (22, 13) . . 1 . 1

1 λ̃ (17) . . 1 . .

(53)

and the Ext-quiver is given by

λ

η η̃ µ

ν

The 4× 4-exponent matrices are given as follows

mη = mη̃ =









0 0 0 0
1 0 1 0
1 1 0 0
2 1 1 0









(54)

with row/column indexing (µ, λ, ν, η) and (η, λ, ν, η̃). The 2× 2-exponent matrices are

mµ = mν = mν̃ = mµ̃ =

(

0 1
0 0

)

(55)

with rwo/column indexing (λ, µ), (µ, ν), (λ, η̃) and (ν, η̃). The 1 × 1-exponent matrices are of
course trivial.
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By Theorem 5.14 we now get the following generators for the basic order:

xλη = εηλη + 3 · εη̃λη xηλ = 3 · εηηλ − εη̃ηλ
xλη̃ = εη̃λη̃ + 3 · εν̃λη̃ xη̃λ = 3 · εη̃η̃λ − εν̃η̃λ
xλµ = 3 · εµλµ + 3 · εηλµ xµλ = εµµλ − εηµλ
xνη = εηνη + 3 · εη̃νη xην = 3 · εηην − εη̃ην
xνη̃ = εη̃νη̃ + 3 · εµ̃νη̃ xη̃ν = 3 · εη̃η̃ν − εµ̃η̃ν
xµν = 3 · ενµν + εηµν xνµ = εννµ − 3 · εηνµ

(56)

and of course the following idempotents:

eλ = ελλλ + εµλλ + εηλλ + εη̃λλ + εν̃λλ
eµ = εµµµ + ενµµ + εηµµ
eν = εννν + εηνν + εη̃νν + εµ̃νν + ελ̃νν
eη = εηηη + εϕηη + εη̃ηη
eη̃ = εη̃η̃η̃ + εν̃η̃η̃ + εµ̃η̃η̃

(57)
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