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The p-adic group ring of SLs (pf )

Florian Eisele

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

Abstract

In this article we show that the Zy[(,s_]-order Zy[(,s 1] SLa(p’) can be recognized among those orders
whose reduction modulo p is isomorphic to IFr SLo(p/) using only ring-theoretic properties. In other words
we show that I, SLo(pf) lifts uniquely to a Zp|Cps —1]-order, provided certain reasonable conditions are
imposed on the lift. This proves a conjecture made by Nebe in [Neb00a] concerning the basic order of
Z[Car—1] SLa(27).
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1. Introduction

Let p be a prime and let (K,O, k) be a p-modular system. This article is concerned with the group
ring O SLy(p/), where f € N. Hence we are dealing with the discrete valuation ring version of what is
typically referred to as representation theory in “defining characteristic”. Our aim in this paper is to prove
a conjecture made by Nebe in [Neb0Oa] which claims to describe the group ring of SLy(27) over sufficiently
large extensions O of Zy. We are also interested in the question of whether the results in [Neb00b], which
deal with the case p # 2, are sufficient to describe the group ring O SLy(p?). Here, “to describe the group
ring” means to describe its basic order. Our proof of Nebe’s conjecture is indirect, and consists essentially of
showing that a “unique lifting theorem” (see Corollary 7.15) holds for the group ring of SLy(p/). Basically
this unique lifting theorem asserts that any O-order reducing to k SLy(p’) which has semisimple K-span
and is self-dual has to be isomorphic to O SLy(pf). Note however that some details have been omitted in
this short explanation. Namely, there are some technical conditions on the bilinear form with respect to
which the O-order is self-dual, and we also need to assume k D Ipr. Nebe’s conjecture is an immediate
consequence of this theorem, but the theorem may well be considered an interesting result in its own right.

This work is a continuation of the author’s work in [Eis12], where a “unique lifting theorem” similar to
the one mentioned above is proved for 2-blocks with dihedral defect group. Our approach is, as in [Eis12],
based on the idea that, provided it is properly formulated, such a theorem holds for a k-algebra if and only
if it holds for all k-algebras derived equivalent to the original one. By the abelian defect group conjecture,
which is known to be true in the special case encountered in the present paper, the blocks of &k SLg(p/)
are derived equivalent to their Brauer correspondents. Technically, we must assume k to be algebraically
closed for this, but we manage to work around that in this article. And, as it turns out, proving a “unique
lifting theorem” for these Brauer correspondents is fairly easy due to their simple structure. In particular
we prove Nebe’s conjecture without ever having to put up with the complicated combinatorics that arises
in the representation theory of SLo(pf).

The article is structured as follows: In section 2 we introduce our notation and remind the reader of
some basic definitions and facts on orders over discrete valuation rings. Section 3 gives a short summary of
the results of [Kos94], [Neb00a] and [Neb00b]. In particular that section addresses the question of how our
results extend the results of Nebe in [Neb00a] and [Neb00b], and actually lead to a complete description of
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the group ring O SLy(pf). In section 4 we explain how O-orders reducing to a k-algebra A correspond to
O-orders reducing to a k-algebra B which is derived equivalent to A. This correspondence was introduced in
[Eis12], and we use it as a technical tool to deduce results about O-orders reducing to the blocks of k SLa(p”)
from analogous results about the Brauer correspondents of these blocks. Section 5 deals with the Brauer
correspondents of the blocks of kSLg(pf). The main result of that section is Theorem 5.16, which is a
unique lifting theorem for the aforementioned Brauer correspondents. Section 6 applies the correspondence
of lifts introduced in section 4 to the derived equivalence between the blocks of k SLy(p’) and their Brauer
correspondents. This yields Corollary 6.4, which implies that a unique lifting theorem holds for k SLy(pf),
where £ is assumed to be algebraically closed. Section 7 deals with the case of non-algebraically closed fields
k. Corollary 7.15 states a unique lifting theorem for the blocks of k SLy(pf) where k D F,s. As an additional
result we also obtain Corollary 7.17, which shows that there is a derived equivalence between the blocks of
O SLy(p’) and their Brauer correspondents for O = Z, (Cpr—1]-

2. Notation and technical prerequisites

Throughout this article, p will denote a prime and (K, O, k) will denote a p-modular system such that
K is a complete and unramified extension of Q,. We let K and k£ denote the respective algebraic closures.
By vp : K —+ Z we denote the p-valuation on K.

Notation 2.1. We are going to use the following notations (all of which are more or less standard):

e mod, and proj,: the categories of finitely-generated modules respectively finitely-generated projective
modules over the ring A.

o DY(A), D~(A): the bounded respectively right bounded derived category of A-modules.
e Kb(proj4): the homotopy category of bounded compleves with finitely generated projective terms.
o —®L =: the left derived tensor product.

e Outy(A): the outer automorphism group of the k-algebra A. To keep notation simple we will not
differentiate between elements of Outy(A) and representatives for those elements in Auty(A).

o Out{(A) (assuming k is algebraically closed): the identity component of the algebraic group Outy(A).

o Autj(A) and Outj,(A): These denote the subgroups of Auty(A) respectively Outy(A) which stabilize all
isomorphism classes of simple A-modules (with the action of Autg(A) and Outy(A) on isomorphism
classes of modules being given by twisting).

e If A, B and C are rings, and o : A — C as well as § : B — C are ring homomorphisms, then
we denote by Cg the A-B-bimodule which coincides with C as a set, where a € A and b € B act on
c € C by the formula a-c-b:= afa)-c- B(b).

Definition 2.2 (Orders and lifts of elements). 1. An O-algebra A is called an order if it is free and
finitely-generated as an O-module.
2. If an O-order A is contained in a finite-dimensional K-algebra A, then we call A a full order in A if
it contains a K-basis of A.
3. Assume we are given an O-order A and a k-algebra A which is isomorphic to k ® A by means of a
given isomorphism ¢ : k@ A = A. Then we say that an element x € A lifts to an element y € A if
(lk @ y) = =.

One important property of group rings over integral domains which we are going to exploit in this article
is that they are self-dual with respect to a bilinear form of the kind defined in the following definition.



Definition 2.3 (Trace bilinear form). Let

l
A= @D:MXM (1)
i=1

be a finite-dimensional semisimple K-algebra given in its Wedderburn decomposition (i. e. the D; are

division algebras over K and the n; are certain natural numbers). Given an element u = (uy,...,u;) €
Z(A)=Z(D1) ® ... Z(D;) we define a map

l
T.: A— K: a=(a1,...,a) — ZtrZ(Di)/Ktr.red.D?ani/Z(Di)(ui “a;) (2)
i=1 )

and (by abuse of notation) a bilinear form of the same name: T, : Ax A — K : (a,b) — Ty(a-D).
Here “trzmp,)/x” denotes the trace map in the sense of Galois theory, and “tr.red.Dmx"i/Z(Di)” denotes
the reduced trace as defined for central simple algebras. A definition of the reduced trace can be found in
[Rei75, Chapter 9aj. The maps “trz(p,) K tr. red‘DfiX”i/Z(Di)” appearing in (2) are also called “reduced
traces relative to K”. A definition of these can be found in [Rei75, Definition 9.13].

For a full O-lattice L C A we define its dual as follows

L= {a € A|Ty(a,L) C O} (3)

We call L self-dual (with respect to T,) if L¥" = L (the “u” may be omitted when its choice is clear from
context).

Remark 2.4. 1. The definition of T, as given above is compatible with extensions of scalars in the
following sense: If K' is a field extension of K, O is the integral closure of O in K' and A is a
full O-order in the semisimple K-algebra A, then A is self-dual in A with respect to Ty, if and only if
O’ ® A is self-dual in K' ®@ A with respect to 1 @ u. Therefore we will often think of v as an element
of Z(K ® A).

2. An order A C A is self-dual with respect to some form T, if and only if A is a symmetric O-order.
But of course, the element u € Z(A) such that A = A¥" contains more information than merely that
the order in question is symmetric.

3. Group rings OG (for finite groups G) are self-dual orders. Let x1i,...,x; denote the (absolutely)
irreducible K-valued characters of G. Hence

l
KG = @I_{Xi(l)XXi(l) (4)
i=1

is the Wedderburn decomposition of KG. Then OG = OGH*, where

" — <X1(1) xi(1)
G| G

l
) € Z(KG) C Z(KG) =P K (5)

We will be using the following definition of decomposition numbers:

Definition 2.5. Let A be an O-order with semisimple K-span. The decomposition matriz of A is a matriz
whose rows are labeled by the isomorphism classes of simple K ® A-modules and whose columns are labeled by
the isomorphism classes of simple A-modules. If S is a simple A-module, P is the projective indecomposable
A-module with top S and V' is a simple K ® A-module, then we define the entry Dy s to be the multiplicity
of V as a direct summand of K ® P.



3. Koshita’s and Nebe’s descriptions of the group ring

In this section we are going to have a quick look at the descriptions of the basic algebra of the group
algebra of SLy(p/) as given by Koshita and later, in the p-adic case, by Nebe. Our main focus lies on the
case p = 2. Here our aim is to explain how to write down explicitly the description of the basic order of
O SLy(2/) conjectured in [Neb00a] (assuming as known the combinatorial description of the decomposition
matrix of this order given in [Bur76]), and to exhibit exactly which parts of it were actually of conjectural
nature. This is technically not a prerequisite to understanding the rest of this paper, since we will be dealing
exclusively with the Brauer correspondents of the blocks of k SLo(pf).

In [Kos94] respectively [Kos98], Koshita gave a description of the basic algebra of k SLy(p/) as quiver
algebra modulo relations, using the description of the projective indecomposable SLo(p/)-modules given in
[Alp79] as his starting point. Koshita’s presentation is given in Theorem 3.2 below.

Notation 3.1. Let N be a set and let X, Y C N be subsets. Then denote by X +Y the symmetric difference
between X and Y, thatis, X +Y =XUY - XNY.

Theorem 3.2 (Koshita). Let Q be the quiver defined as follows:

1. the vertices of Q are labeled by the subsets of N := 7/ fZ.
2. for any I C N and any i € N such that i — 1 ¢ I there is an arrow oy : I+ {i} — I.

Then the basic algebra of kSLy(27) is isomorphic to the quotient of kQ by the ideal generated by the
following families of elements:

Loayr- gy — 51 G r4q;y wherei—1 and j—1 are not in I and j ¢ {i —1,4,i + 1}
2. a1 rygiy wherei and @ —1 are not in I.

3e Q11 QG Tpfit1} O T4 {i}+{i+1) — Q41 - O 1+ {i} - Qiy1,1 where i —1 and i are not in I.
4o QG rifiv1)  Qip1 I {iit1)y  Qii{sy wherei € I buti—1¢ 1.

Definition 3.3. We denote the E-algebra constructed in Theorem 3.2 by A. Moreover we let {€r}1cn be a
system of pair-wise orthogonal primitive idempotents (where the indices correspond to the respective vertices
in Q that the idempotents are associated with). For I,J C N we define Ay :=erAey.

Remark 3.4. While our notation for the arrow o; 1 specifies the vertex from which it originates, this
information is usually redundant when specifying a path, since the origin of an arrow must coincide with the
target of the arrow preceding it in the path. Therefore we make the following notational convention:

Q; = Z au (6)

ICN—{i—1}

In [Neb00a], Nebe describes an O-order which reduces to a k-algebra with quiver and relations as in the
foregoing theorem. The constructed order is self-dual, and its K-span is semisimple. We will now outline this
description. We assume for the remainder of this section that O is an (unramified) extension of Zs[Cos_1],
in order to ensure that both k and K are splitting fields for the group SLy(27).

Let R be the set of subsets of N = Z/ fZ. As seen in Theorem 3.2 the elements of R are in bijection with
the (isomorphism classes of) simple k£ SLs(2/)-modules. Let C be an index set for the irreducible ordinary
representations of SLy(2f). We make the following two definitions:

1. Given R € R, denote by Cr the subset of C corresponding to the irreducible ordinary representations
which have non-zero decomposition number with the simple module associated with R.

2. Given C € C, denote by R¢ the subset of R corresponding to the simple modules having non-zero
decomposition number with the irreducible ordinary representation associated with C.

Then the basic order of @ SLy(2/) — which we henceforth will refer to as A — is a full O-order in the split
semisimple K-algebra
A= P KRexRe (7)
cec
4



We may assume that we have a complete set {eg} rer of pair-wise orthogonal primitive idempotents in A C A
such that each ep is diagonal in each of the matrix rings K*¢*R¢c The fact that all decomposition numbers
of SLy(27) are either zero or one implies that ep is simply a diagonal matrix unit in the direct summands
of A labeled by the elements of Cr. Consequently, Agg := egAeg is a commutative O-order, whose K-span
may be identified with the commutative split semisimple K-algebra KC7 (addition and multiplication in
this algebra work component-wise). Similarly we may think of the set Apr := ey Aeg for R, L € R as sitting
inside K#MCL . The set A7z may be regarded as a Ay z-Arg-bimdoule. In short, in [Neb00a] Nebe succeeds
in describing the O-orders Agg and the sets Apr as Apr-Aggr-bimodules. However, the bimodule structure
of AR is not sufficient to describe A, since the multiplication maps Apg X Ags —> Aps cannot be fully
recovered from the bimodule structure on the involved sets Apr, Ars and Ay g.

The first step in [Neb00a] is to lift a k-basis of Agg to an O-basis of Agg (for each R € R). The k-basis
used for this purpose was given in [Kos94] as follows:

Theorem 3.5 (Koshita). Let I C N and let i € N —I. Let j = j(i,I) be the unique integer < i such that
j—1¢ T butlel forall j <l <i. Define

Wi 7= O] Oy Qg1 " O - O - Q1 "~ Q] - O € Apr (8)

For a subset T C N — I define
Wi, T = le,i S A]] (9)
ieT
This product is well-defined independent of the order of the factors since Arr is commutative. The elements
wr,r form a k-basis of Arr.

Let a; 1 € Ag 11y be lifts of the elements «; 7. One key observation in [Neb00a] is that since each Ay
sits inside K/"¢/ (which we may in turn view as a subset of K¢ by simply extending vectors by zero) we can
reorder elements in a product arbitrarily and always obtain the same result (this is only partially reflected
in the commutativity relations in Koshita’s presentation of A, since we may also reorder the elements in
a product in such a way that the start and endpoint of the corresponding path changes). The reason is
of course that the ring K¢ (with component-wise multiplication) is commutative, and we may consider all
products as being taken within this ring (we will do this frequently below). So for instance & s - @; 4 i} is
equal to Q; 145 - Qa1 inside_KC. Now [Neb00a, Lemma 3.10] states that % QG 14 (i) - Q1 lies in Arypy 1440y
(since v r4qiy - i, r = 0 in A), and is in fact a unit in this ring. Let w;; € A7y q5,744;3 denote its inverse.
Then w; 1 - O 14 {;} - %i,p = 2+ €144}, where €7 ;) denotes the element in K¢ which has entry equal to one
in the components indexed by elements of C; (;3, and entries equal to zero elsewhere. Since we may reorder
elements in the product we obtain that &; 1 - u; - @; J+{iy =2 €114y (note that this is now an element of
A 1). The same principle is applied to the elements wy; defined above. First observe that

Qo Oy e Qg » Q- O - Qg == Qg - O = (051014 45)) (@ 14 (nim1} Qi r (oiy)  (10)

where the product on the right hand side is formed within K. As we saw above, for each j < [ < i there
is a unit Uy in AI+{j,.4.,l},I+{j,4..7l} such that

O T4 {od =1} " UL Qg 0y = 2 €14 4,0} (11)

We have hence found an explicit description of some element in Ay ; which is analogous to the element
w1 € Ar; (however, it does not necessarily reduce to this element upon reduction modulo two):

51',1 = aj,[ s Ug - aj+1 cUjy1 Qi1 - Uj—1 - O = Uy - Ol - Ol - - aj+1 ’ aj (12)
By reordering the factors and using the definition of the u; one easily sees that

Bir =2 eperi (13)



Theorem 3.6 ([Neb00a, Theorem 3.12]). For any subset I C N and any subset T C N — I define

Brr =[] Br. (14)

i€T

where the empty product is defined to be e;. Then the set {Brr | I C N,T C N — I} forms an O-basis of
the O-order Ag ;.

Thanks to formula (13) this description of Ay is perfectly explicit. Now let I,J C N be two distinct
subsets. Then we get the following information on the Ay ;:

Theorem 3.7 ([Neb00a, Theorem 3.12]). If A7 ; # 0 then
Arg=er-Amnging-€g (15)
as a Ar 1-Aj g-bimdoule.

For a full description of the order A, we need more than a bimodule-isomorphism in (15). In fact,
(15) fixes Ay y exactly up to a K ® Ar-K ® Ay j-bimodule-automorphism of K ® Ay j = KCNCs | These
bimodule automorphisms of K¢/"¢/ may be identified with elements of (K — {0})¢2"¢/ acting on K¢1"¢s
by component-wise multiplication. Thus, A7 ; = ur y-e1 - Ansrng - €7 with pry € (K —{0})¢"¢ . In
[Neb00a] the following information on py s is obtained (one should keep in mind though that the u; ; are
not uniquely determined; the main source of the ambiguity is that the order A is only well-defined up to
conjugation)

Theorem 3.8. We may choose pr,; such that
,LLI’J:'LL]’J'2|I_J|'€]'€J (16)
where uy,; € (O*)C1NCs,
Nebe conjectured the following:

Conjecture 3.9 ([Neb00a, Conjecture following Theorem 3.15]). We may choose all of the ur j in Theorem
3.8 to have all entries equal to one.

This would describe the order A up to isomorphism. By construction, the order obtained by setting all
entries of all u; ; equal to one has semisimple K-span and the same decomposition matrix as the basic order
of OSLy(2f). [Neb00a] also notes that it reduces to a k-algebra which, upon tensoring with k, becomes
isomorphic to the basic algebra of k SLo(2f) as described by Koshita. As we show in Proposition 3.10 below
it is also self-dual with respect to the appropriate trace bilinear form. In the present article we confirm
Conjecture 3.9. We also deal with the case of an odd prime p, although the article [Neb00Ob], which deals
with SLy(pf) for odd p, does not explicitly state a similarly precise conjecture. We will need the following
proposition to explain how exactly our results can be combined the ones obtained in [Neb00a] and [Neb00b].

Proposition 3.10. Let A be a semisimple K-algebra and let eq,...,e, € A be a system orthogonal idem-
potents in A. We do not require the e; to be primitive. Let Ay and Ay be two full O-orders in A which both
contain all of the idempotents ey, ..., e,. Assume moreover that

1. e;Aie; = e;Ase; for alll1 <i<n
2. e;Miej = e;Age; as ejAej-ejAiej-bimodules for all 1 < 4,7 <n withi # j
3. eA1 = eAs for all central primitive idempotents € € A

Then, given any element uw € Z(A), Ay is self-dual with respect to T, if and only if Ay is self-dual with
respect to Ty,.



Proof. Assume A; is self-dual with respect to T,,. Note that due to the cyclic property of the trace we get
Tu(esaej) = Ty (aesej) =0 for any a € A and i # j. So for any a € A we have Ty, (a) =T, (szzl eiaej) =

szzl Tu(eiaej) = > | T, (e;ae;). Since by assumption e;Are; = e;Ase; for all 1 < i < n it follows that
Tw(A2) C O, since the same holds true for T, (A1) by virtue of A; being self-dual. It follows that Ay C Ag’”,
with equality if and only if the determinant of the Gram matrix of T3, with respect to a basis of As is a
unit in O. Under a base change the determinant of the Gram matrix gets multiplied with the square of the
determinant of the base change matrix. So if we could find a linear transformation of A that maps A; to As
and whose determinant is a unit in O, then that would show that As is indeed self-dual. Hence we proceed
by choosing a linear transformation o : A — A which sends a basis of A; to a basis of As. By our first two
assumptions we may choose « in such a way that it induces the identity on e; Ae; for each 1 < i < n and
an e;Ae;-e;Aje;j-bimodule homomorphism on e;Ae; for all 1 < ¢,j < n with ¢ # j. Such an o will satisfy
ae-a) = e-afa) for all a € A and each central idempotent € € A. In particular, using the third assumption,
we get that

@ @ eAi | C @ €A1 where c.p.i. stands for “‘central primitive idempotent” (17)
e€A c.p.i. e€A c.p.i.

This means that « preserves a lattice, and therefore has integral determinant. We can repeat the same
argument to show that a~! has integral determinant. It follows that the determinant of a is a unit in O,
which, as seen above, implies that As is self-dual. O

Remark 3.11. Both [Neb00a] and [Neb00b] give partial descriptions of the basic order A of O SLy(p/) as
a full order in some semisimple K-algebra A. Let eq,...,e, denote a full system of orthogonal primitive
idempotents in A. Nebe gives a description of the e;Ae; for all i, the e;Ae; for all i # j, and the projections
of A to the Wedderburn components of A. The preceding proposition tells us that any full O-order in A
with the same data is self-dual with respect to the same symmetrizing element as A. This will be enough to

apply Corollary 7.15 to such an order, which will imply that there is a unique one which reduces to the basic
algebra of k SLy(p/).

4. Transfer of unique lifting via derived equivalences

In this section we cite the necessary theorems from [Eis12]. They establish the main technical tool used
in this paper: a bijection between the sets of lifts (in the sense of the definition below) of two derived
equivalent k-algebras. This bijection will allow us to shift the problem of proving that a given k-algebra lifts
uniquely to an O-order to an analogous problem over a simpler algebra which is derived equivalent to the
original one.

Definition 4.1. For a finite-dimensional k-algebra A define its set of lifts as follows:
£A) = {(A, ©) | Ais an O-order and ¢ : k@ A = A is an isomorphism} / ~ (18)

where we say (A, p) ~ (AN, ¢') if and only if
1. There is an isomorphism o : A = A’

2. There is a € Autg(A) such that the functor — ®x gAia fives all isomorphism classes of tilting
complezes in K°(projy)

such that the following diagram commutes:

koA ——A (19)

lidk@a lﬂ

ko AN LA
7



Moreover we define

£(A) := { Isomorphism classes of O-orders A with k@ A = A } (20)
and the projection map o -
Im: £A) — £(A) (21)
Finally, we define the set of lifts with semisimple K-span
2.(A) == {(A, ) € £A) | K ® A is semisimple } (22)
and similarly
£.(A) :={A € £(A) | K® A is semisimple } (23)

Theorem 4.2 ([Eis12, Theorem 5.2]). Let A and T be finite-dimensional k-algebras that are derived equiv-
alent. Let the derived equivalence be afforded by the two-sided tilting complex X. Then there is a bijective
map

Dy : £(A) — L) (24)

such that all of the following properties hold:

(i) If (A, @) € £(A) and (T,1) = ®x (A, ), then there is a derived equivalence between A and T.
(i) ®x induces a bijection

£.(A) «— £,(T) (25)
(iii) Set ® :=To®x. If (A, ), (N, ¢') € £A) are two lifts with Z(K @ A) = Z(K @ '), then
Z(K@®(A, @) 2 Z(K@®(N,¢)) (26)

and every choice of an isomorphism v : Z(K @ A) = Z(K ® A') gives rise to an isomorphism ®(v) :
Z(K@®(A,¢)) = Z(K @ (N, ")) depending only on v and X.

(w) If (A, ), (A, ¢') € E(K) are two lifts and vy : Z(A) = Z(N') is an isomorphism of O-algebras, then
the isomorphism ®(idg ® ) which exists according to (iii) restricts to an isomorphism of O-algebras
(v): Z(® (A @) = Z(®(N, ¢')).

(v) If( ©), g ©') € L4(A) are two lifts, and v : Z(K @ A) = Z(K ® A') is an isomorphism such that

= DN wup to permutation of columns (where rows are identified via vy ), then D®X ©) = D¢
up to permutation of columns (where rows are identified via ®(v)). Here “D” always stands for the
decomposmon matmz

(vi) If (A, ), (A ) € £, (A) are two lifts with D™ = DY up to permutation of rows and columns then
D2(Ay) — D‘I>( ") up to permutation of rows and columns.

Theorem 4.3 (see [Eis12, Theorem 4.7]). Let A and T’ be two derived-equivalent O-orders with semisimple
K-span. Then we may identify Z(K @ A) and Z(K ®T'). The order A is self-dual with respect to T, (with
u € Z(K®AN)) if and only if T is self-dual with respect to Ty, where u € Z(K ®T') is obtained from u by
flipping the signs in some Wedderburn components. N

In the setting of Theorem 4.2 the following holds: Let (A, ) € £(A) and (T,¢) == ®x(A, ). By the
first point of the preceding theorem there is an isomorphism v : Z(K @ A) = Z(K ®T'). Then A is self-dual
with respect to uw € Z(K @ A) if and only if T is self-dual with respect to @ € Z(K ®@T'), where @ is obtained
from v(u) by flipping signs in certain Wedderburn components.

A remark may be in order about the fact that the above theorem states in two places that some signs
may need flipping, but fails to specify which signs exactly. [Eis12, Theorem 4.7] does in fact specify which
signs need flipping, depending on the chosen derived equivalence between A and I'. However, this will not
matter in the present paper, and was therefore omitted.

We are actually interested in isomorphism classes of orders which reduce to a given k-algebra A ,ie. the
set £(A). However, Theorem 4.2 only relates the sets 2(/\) among derived equivalent algebras. Pr0p051t10n
4.7 below relates £(A) and S(A) with each other in a special case (which will be sufficient for us). It
generalizes [Eis12, Proposition 3.12] to the case where k is no longer required to be algebraically closed.
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Proposition 4.4 (see [Eis12, Corollary 2.14]). Assume k is algebraically closed and let A be a finite-
dimensional k-algebra. Let T € K?(proj,) be a one-sided tilting complex. Then

T®a1aA, =T for all v € Out)(A) (27)

Proposition 4.5. Let A be a finite-dimensional k-algebra and let S and T' be two tilting complexes over A.
Then S =T (in DY(A)) if and only if k ® S = k@ T in D°(k @ A).

Proof. This is a special case of [Zim12, Theorem 4]. O

Note that for any k-algebra A there is a left action of Outy(A) on £(A). If (A, ¢) € £(A) and o € Outy(A)
we simply set - (A, ) := (A, a0 ). It is proved in [Eis12, Proposition 3.7] that this is indeed well-defined
(i. e. independent of the choice of a representative for «).

Corollary 4.6. Let A be an finite-dimensional k-algebra, and let G < Outy(A) be a subgmup such that the
k-linear extensions of the elements of G all lie in Out}(k ® A). Then G acts trivially on S(A)

Proof. Since G acts trivially on isomorphism classes of tilting complexes in K°(pro Jrwi) by Proposition
4.4, it follows using Proposition 4.5 that G acts trivially on isomorphism classes of tilting complexes in
ICb(prOJ ). But by definition of the equivalence relation “~” this means that G acts trivially on £(A). O

Proposition 4.7 (cf. [Eis12, Proposition 3.12]). Let A € £(A), and let v : k® A = A. be an isomorphism.
Now assume

Auto(A) - G = Outy(A) (28)

where Auto(A) is the image of Auto(A) in Outy(A) (here we identify k@ A with A via~) and G < Outy(A)
is a subgroup such that the k-linear extensions of all elements of G lie in Out%(kj ®i A). Then the fiber
“Y({A}) has cardinality one.

Proof. Let (A,¢) € £(A) for some ¢ : k@ A —5 A (i. e. (A,¢) is an arbitrary element in II=*({A})).
We intend to show (A, p) ~ (A,7v), since this will imply that TI7!({A}) contains indeed only a single
element. Now if (28) h ds, we can write Yo ¢ ! = yo (idy ® &) oy~ o B for some & € Autp(A) and
B € G. Hence v o (idy ® & 1) = B o . Corollary 4.6 (together with the definition of “~”) implies
(A, ) ~ (A, B oyo(ide ®a1)) = (A, ). O

5. The algebra kA (pf) and unique lifting

We define Ay(p?) to be the following group:

s[5 ]

Note that As(pf) is the normalizer of a p-Sylow subgroup of SLy(p/), namely of the group of unipotent
upper triangular 2 x 2-matrices. Also note that k splits SLa(pf) and Ao (p/) if and only if k D Fpr

In this section we will write kAy(p/) explicitly as a quotient of a quiver algebra, where k is assumed to
split Ao(pf). We then use this presentation to show that kAs(p?) lifts uniquely to an O-order satisfying
certain properties. At least the first part of this, that is, finding a presentation as a quotient of a quiver
algebra, is relatively straightforward. The reason for looking at the group algebra of As(p/) is that its blocks
are the Brauer correspondents of the blocks of maximal defect of the group algebra of SLy(pf). Other than
those blocks of maximal defect, the group algebra of SLy(p/) only has a block of defect zero. All questions
we are concerned with can be answered trivially for a block of defect zero, since such a block is just a matrix
ring over a field or a skew-field. Hence the block of defect zero of k SLy(p/) will not be of interest to us.

In what follows we will use the notation “Jac(A)” for the Jacobson radical of an algebra A.

a,b € Fpy, a;éo}%cgf x Cpr_y (29)



Definition 5.1. Assume that A is an abelian p’-group such that kA s split. Denote by A the character
group of A, that is, Hom(A, k*) (abstractly we will have A = A). Assume moreover that A is acting on a
p-group P by automorphisms. Let

l
Jac(kP)/ Jac®(kP) = €P S; (30)
=1

be a decomposition of Jac(kP)/Jac?(kP) as a direct sum of simple kA-modules St,...,S;. We define the
set X (P, A) to be the disjoint union

l
s} (31)

where xs, € A denotes the character of A associated to S;.

Lemma 5.2. Let P = C’}J; be the elementary abelian p-group of rank f and let A be a group acting on P by
automorphisms. View P as an Fp-vector space by identifying CI]; with (IFIJ;, +). Under this identification, P

becomes an Fp,A module. Then
Jac(kP)/ Jac*(kP) 2y k @, P (32)

Proof. First note that after identifying P with Fg, the fact that A acts on P by automorphisms translates
into A acting linearly on ]Fg, as each automorphism of (Fg, +) is automatically Fp-linear. This turns P into
an F, A-module (in fact, the isomorphism type of this module is independent of the choice of the identification
of P with IE‘]J;) Let z1,...,zy be a minimal generating system for P = C’ZJ:. Then 1 ® z1,...,1®zy is a
k-basis for k @p, P. Now define a k-linear map

®: k®p, P— Jac(kP)/Jac®(kP): 1®@z; — z; — 1 (33)

Since the x; — 1 lie in Jac(kP) and they are a minimal generating set for kP as a k-algebra, they form a
k = kP/ Jac(kP) basis of Jac(kP)/Jac*(kP). Hence ® is an isomorphism of vector spaces. We only need
to check that ® is A-equivariant (or, more generally, Aut(P)-equivariant). This amounts to showing that
for all ny,...,ny € Z>¢ the following holds:

f
aptal 1= ng-(z;—1) mod Jac(kP) (34)
=1

Let x,y € P. Then clearly (z — 1)(y — 1) € Jac*(P), and hence 2y —z —y + 1 = 0 mod Jac?(kP). This
can be rewritten as zy — 1 = (z — 1) + (y — 1) mod Jac?(kP). Iterated application of this equality clearly
implies (34). O

Proposition 5.3. Let G = P x A with P = C’g and A an abelian p'-group acting on P. If k splits G then

kG = kQ/I (35)

where Q is the quiver which has vertices e, in bijection with the elements x € A, and an arrow e, >y Ex-b
for each x € A and Y € X(P,A). I is the ideal generated by the relations

Sxap Sxthp = Sxup Sxpup  Jor all x € A and 1, o € X (P, A) (36)
and
p—1
H Sypigp =0 forall x € A and +p € X (P, A) (37)
i=0
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Proof. We first look at kP. We have kC, = k[T]/(T?), and

!
kP = @ kC, = [T T)/(T].....T}) (3

Given any minimal generating set 1, ... ,t of kP contained in Jac(kP), the epimorphism k[T4, ..., Tf] - kP
sending T; to t; has the same kernel (77, ... ,TJIZ ). This is simply because any automorphism of k[T7,. .., T¥]
mapping the ideal (71, ...,T¥) into itself will map the ideal (T7,... 7TJZZ) into itself as well.

Now consider the action of A on Jac(kP) by conjugation. Since kA is abelian and split semisimple, there
is a basis t1,...,t,r_; of Jac(kP) such that for each i the set {u~'t;u | u € A} generates a 1-dimensional
vector space. We may choose a minimal generating set for kP from said t;’s, say (after reindexing) ¢1,...,ty.
As the images of t1,...,t; in Jac(kP)/ Jac?(kP) form a basis, there is a bijective map

S X(P,A) — {t1,... s} (39)

such that u=! - S(¥) - u = ¢(u) - S() for all u € A. In what follows we will write s, for the image of
¥ € X (P, A) under the map S. Define furthermore for each x € A the corresponding primitive idempotent
ey € kA via the standard formula

ey = (40)
14] ,;1

This is a full set of orthogonal primitive idempotents in kG. Furthermore

-1
ey S calsya-al =5 =Sy - €y (41)
xSy = |A| Z P P ‘A| Z P Exy
a€A acA
Hence define
Sy =6y -5y forall y € A,y € X(P,A) (42)

The fact that the s;, commute implies the relation (36), and the fact that s}, = 0 implies relation (37). What
we have to verify though is that the s, and e, generate kG as a k-algebra, and that there are no further
relations (i. e. dimyg kG = dimy kQ/I).

The s, generate kP as a k-algebra and the e, generate kA even as a k-vector space. Hence together
they generate kP - kA = kG as a k-algebra. Now on to the dimension of kQ/I. We can use relation (36) to
rewrite a path involving the arrows sy, y,, ..., Sy, ¢ (in that order) as a path Serdn T St for any chosen

reordering (1~/~)1, e ,zﬂl) of (¢1,...,1;). Notice that necessarily x1 = X1, and all other x; are determined by
X1 and the ;. Also we may assume, due to relation (37)7 that no p of the v; are equal. So ultimately, there
are at most |A| - pX(P4)! linearly independent paths (|A| choices for the starting point x1, p choices for the

number of occurrences of each element of X (P, A) in the sequence (¢1,...,1;)). Hence
dim kQ/I < |A| - pXEPA = |A] . pf = dimy, kG (43)
and thus the epimorphism k£Q/I — kG is in fact an isomorphism. O

Remark 5.4. It seems practical to keep on using the notation

Sp =) Sy (44)

XEA

With this notation we may just write

kG 2 kQ/ <s¢s¢ — 8psy, Sy, | ¥, p € X(P, A)> (45)
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Proposition 5.5. Let G = Ay(pf), P = Go(Fyr) = Cf and A = G (Fyr) = Cpr_y (we view P as the

subgroup of G consisting of diagonal matrices and A as the subgroup of G consisting of unipotent matrices).
Assume Fp; C k and identify A =Z/(p’ — 1)Z (where we identify i with the character that sends a € A to

a' € kX ) and write the group operation in A additively. Then
X(PA)={2-p" | q=0,....f—1} (46)

In particular, the Ext-quiver Q of kAx(p?) has pf — 1 vertices e; labeled by elements i € Z/(pf —1)Z. There
are precisely f arrows s; 2.pa (for ¢ € {0,..., f —1}) emanating from each vertez e;.

Proof. G = P x A is a semidirect product. The action of A on P is given by
PxA— P: (ba)r b-a®> where we identified A = IF;_,V7 P =T, (47)

When thinking of A as diagonal matrices of the form diag(a~!,a), and of P as upper triangular unipotent
matrices with top right entry u, then this action corresponds to the conjugation action of A on P. Let us
denote the F, A module F,; with the action of A specified above by M. According to Lemma 5.2 we have
to determine the simple constituents of k ®r, M as a kA-module. Note that there is a (one-dimensional)

[F,s A-module M with M|]FPA =~ M. So clearly

kep, M= P kor, M (48)
’yEGal(]pr /Fp)

Now Gal(FF,s /F,) = C} is generated by the Frobenius automorphism. So the simple constituents of k ®@r, M
are just copies of k on which a € A acts as a®>?" for ¢ € {0,...,f — 1}. This shows that X (P, A) is as
claimed. The shape of the Ext-quiver is now immediate from Lemma 5.2. O

Notation 5.6. We define symbols
[q] :=2-p? (49)

to refer to the elements of X (P, A) in the situation of the above proposition.

Lemma 5.7. Assume k splits Ay (pf). Then kAo (p') consists of a single block if p = 2, and two isomorphic
blocks otherwise. In the case p = 2, the Cartan matriz is given by I + J, where I is the identity matriz, and
J is the matriz that has all entries equal to one. In the case p odd, the Cartan matriz of either one of the
two blocks is I +2 - J.

Proof. The (i, j)-entry of the Cartan matrix is, by definition, the k-dimension of e; - kQ/I - e;. Let E =
{e1,...,epr_1)k be the subspace of kQ/I spanned by the idempotents. Clearly, kQ/I = E @ Rad(kQ/I) as
a vector space. So dimy e; - kQ/I -e; = 0;; + dimy, e; Rad(kQ/I)e;, where d;; denotes the Kronecker symbol.
Now, using the quiver relations from Proposition 5.3, we can deduce that dimy e; Rad(kQ/I)e; is equal to
the number of vectors (0,...,0) # (ng,...,ns—1) € {0,...,p — 1}/ such that

f-1
2~an~pqzi—j mod (pf —1) (50)
q=0

If p is odd and i — j is odd as well, then (since p/ — 1 will be even) the congruence cannot be satisfied by
any sequence of n,’s. So the corresponding entries in the Cartan matrix are zero. Now assume that p is odd
and ¢ — j is even. Then the above congruence is equivalent to

« i~ P -1
an-pqz 5 mod( 5 ) (51)




By uniqueness of the p-adic expansion of an integer, the analogous equation modulo p/ — 1 has a unique
solution in which not all of the n,’s are zero. Hence the equation above has precisely two solutions.

Now if p = 2, the factor “2” in (50) is a unit in the ring Z/(2/ — 1)Z, and hence the number of solutions
of (50) is equal to the number of solutions of

-1 .
fz:nq-QqEZ;J mod (2/ — 1) (52)
q=0
This equation has a unique non-zero solution thanks to the uniqueness of the 2-adic expansion of an integer.
O
Remark 5.8. By counting conjugacy classes in the group As(27), one easily obtains that
dimg Z(KAy(27)) =2/ (53)
In the same way one obtains for p odd that
dimg Z(KAq(p?)) =p' +3 (54)

Since kAo (pf) is the direct sum of two isomorphic blocks, the dimension of the center of either one of these
blocks is (pf + 3)/2.

For reasons that will become apparent in the section on descent to smaller fields, we would like to
investigate a slightly larger class of algebras than the blocks of kAy(pf), namely those (split) k-algebras
which become isomorphic to kAz(p?) upon extension of the ground field.

Definition 5.9. We call a split k-algebra A with k@ A = Bo(kAo(pf)) a split k-form of the principal block
Bo(kA2(p?)) of kA2 (p).

Remark 5.10. If A is a split k-form of By(kAx(p?)), then A has the same Ext-quiver and the same Cartan
matriz as Bo(kAs(p’)). Moreover, the k-dimension of the center of A is equal to the k-dimension of the
center of By(kAs(pf)).

Remark 5.11. The quiver relations given in (36) and (37) are defined over F,. In particular, even if k is
no splitting field for Aq(p?), the blocks of kQ/I are split k-forms of By(kAz(p')).

Proposition 5.12 (Shape of split k-forms). Let A be a split k-form of Bo(kAo(pf)). By Q we now denote
the Ext-quiver of Bo(kA2(p?)) (as opposed to the entire group ring kAo (pf), which it was before). Denote
(as before) the vertices of Q by ea; and the arrows by sa; 4. Then A is isomorphic to kQ/I' for some ideal
I’ which contains all the relations

p—1
H S9itj-lal,g Joralli€Z and q€{0,...,f—1} (55)
§=0

and the relations
$2i.q " S2i+[al,q’ — M2i.q.q' " 5200’ S2i+[a’).q (56)
with i ranging over Z, q and ¢’ ranging over {0,..., f — 1} and the ag; 4,4 being of the form

C2i,q,q' " €2i F T2i,q,¢' (57)

for some cz;.q.¢ € kX and some k-linear combination ry; 4.4+ of closed paths of positive length starting and
ending in eg; (hence, by construction, the ag; q ¢ will lie in (eg; - kQ/I - e;)* ).
The relations given in (55) and (56) together with all paths of length |Ao(p!)| generate I'.
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Proof. We can assume that A = kQ/I’ for some ideal I’ contained in the ideal of kQ generated by the paths of
length at least two. We need to show that I’ is of the desired form. Choose an embedding ¢ : kQ/I' < kQ/I
that maps each idempotent ey; to itself such that the k-span of the image of ¢ is all of kQ/I. Then for each i
and ¢ the image ¢(s2; 4) has to be equal to xg; 4 - 52;,q for some xq; 4 € (e2;- kEQ/I-e3;)*. Indeed, the relations
in I can be used to show that egi-l_cQ/I-egin] = egi'l_fQ/I'egi's%q. If z9; ¢ were no unit in e2:-kQ/I-ez;, then
©(82i 4) would be contained in Jac?(kQ/I) and therefore the ¢ (s2;,,) together with the eg; could not generate
kQ/T as a k-algebra. Since the relations in I imply that eg; - kQ/T - €2; - S2;.4 = S2i.q - €2i+[q] - kQ/I - €2i+[a]>
the relations in (55) follow immediately from the corresponding relation in I by application of (.
Analogous to the above discussion, we can also deduce that for all i € Z and ¢,¢' € {0,..., f — 1}

<P(S2i,q) : 90(821+[q],q/) = B2i,q,q 90(522',(1’) 'Sﬂ(sziﬂq'],q) (58)

for some fai g, € (e2i - kQ/I - €2;)*. Now take o; , . := (id @k ©) " (B2ig.q') € k @k kQ/I'. Choose a
k-vector space complement V of k in k and choose ;4.4 € €2; - kQ/I' - e2; such that Qi gt = W20 +
(Sum of paths with coefficients in V') . Now clearly the following holds:

52i,q * S2i+lal.a’ = O2i,q,q" " 52irq’ * 52i+]q'],q T (Sum of paths with coefficients in V') (59)

in k ® kQ/I'. Since a sum of paths with coefficients in V' must be k-linearly independent from kQ/I’, the
relation (56) must hold with this choice of ag; 4,4 . To see that the coefficient of ey; in ;¢ is non-zero
we could simply map the relation back into kQ/I using ¢ and subtract it from relation (58). This implies
(B2i,q.q — ©(02i,9,9')) - 52i,q * S2i4]q),q = 0, and hence fa; ¢ ¢ — @©(Q2i,,¢) 18 DO unit in ey; - kQ/I - ez, which
forces ¢(ag;.4,4’) to be a unit.

The claim that the given relations together with all paths of some sufficiently large length generate I’
can be verified by showing that they can be used to rewrite any path as a linear combination of paths of
the form

52i,q1 " 52i+[qi1],q2 * " S2i+[qa]+...+ai—1].@ (60)
such that ¢1 < g2 < ... < ¢ and no p of the ¢;’s are equal. This last statement follows from relation (55).
The latter requirement can be met using relation (55). If the ¢;’s are not ordered as claimed, relation (56)
can be used to permute them. This will however produce some summands of strictly greater length. So one
can apply a rewriting strategy where one starts with the paths of smallest length which are not already in
the desired standard form, rewrites those (possibly altering or adding some summands of strictly greater
length) and then repeats the process until the shortest paths not in standard form are bigger than the cut-off
length and therefore equal to zero. O

Lemma 5.13. Let A be a split k-form of By(kAa(p?))
1. Assume p = 2. Then any lift A € £,(A) with dimg Z(K ® A) = dimy, Z(A) has the following decom-
position matriz over a splitting field

10 0
0 1 0
: (61)
0 0 1
11 1

up to permutation of rows.

2. Assume p # 2. If A € £,(A) with dimg Z(K ® A) = dimy, Z(A) , then the decomposition matriz of A
over a splitting field looks as follows:

10 0
0 1 0
: : (62)
00 1
11 1
11 1
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up to permutation of rows.
3. Fiz a A € £,(A) subject to the same condition on the center as in the first respectively the second
point. Assume that there is some totally ramified extension of K that splits A.
(a) If p=2, then K already splits A.
(b) If p is odd then all one-dimensional representations of K @ A are already defined over K @ A. If
K does not split K ® A, then K ® A has a unique representation of dimension greater than one,
and its endomorphism ring is a totally ramified extension of K of degree two. In particular, in

that case, the decomposition matriz of A is as in (62) with the last row removed.

Proof. Concerning the first two parts: Let D be the decomposition matrix of A (over a splitting system).
First note that all entries of D must be <1, as DT - D is equal to the Cartan matrix C' of kAy(p/), which
has “2”’s (respectively “3”’s) on the diagonal. It is straightforward to prove that the only solutions (with
non-negative integer entries < 1) to the equation D' - D = C are, up to permutation of rows and columns,
the ones given in statement of this lemma.

Now we have a look at the assertions in the non-splitting case. First assume that there is a simple
K ® A-module V such that Endgga (V) is non-commutative. Let P be a projective indecomposable A-
lattice (note that &k ® A = A is split, so indecomposable projectives are absolutely indecomposable) such
that V occurs as a composition factor of K ® P. Since the endomorphism ring of V' is non-commutative,
K ® V is not multiplicity-free, but it is still a composition factor of K ® P. Hence there is some simple
K ® A-module which occurs in K ® P with multiplicity greater than one. This is the same as saying that
(over a splitting system) there is a decomposition number greater than one, which, as we have seen above,
is impossible. Now let V' be any simple K ® A-module. As we have seen E := Endgga (V) is commutative,
and therefore it is necessarily contained in any splitting field for K ® A. Since by assumption there is a
splitting field that is totally ramified over K, the field E must be totally ramified over K as well. Now
we look at how the decomposition matrix over K relates to the decomposition matrix over a splitting field.
Endger(K®V) = K @ E = @< F K. This implies that K © V decomposes into e := dimg E non-
isomorphic absolutely irreducible modules Vi, ..., V.. Whenever P is a projective indecomposable A-module,
the multiplicity of any V; in K ® P is the same as the multiplicity of V in K ® P. Hence, the decomposition
matrix of A over a splitting field arises from the decomposition matrix over K by repeating certain rows.
Namely, if the endomorphism ring of the simple module associated with a row in the decomposition matrix
of A has dimension e, then that row is repeated e times in the decomposition matrix over a splitting field.
If p = 2, then the decomposition matrix over a splitting field contains no repeated rows, and therefore all
simple K ® A-modules must be split. If p # 2, then the last two rows of the decomposition matrix over a
splitting field are identical, and therefore it is possible that the decomposition matrix of A over K contains
this row only once. If this is the case, then the endomorphism ring of the simple K ® A-module associated
with that row must have dimension e = 2. The other possibility is that the decomposition matrix of A over
K is identical to the decomposition matrix over a splitting field. In that case, all simple K ® A-modules must
be split, because otherwise the rows associated with non-split simple K ® A-modules would occur multiple
times in the decomposition matrix over a splitting field. O

Notation 5.14. Let A be an O-order with semisimple K-span and let e1,...,e, € Z(K ® A)
be the central primitive idempotents.  So, in particular, we have fized a bijection {1,...,n} <+
{ central primitive idempotents }.

1. Given an element u € Z(K @ A) we set
u;i=¢;-u forallie{l,...,n} (63)

2. When dealing with orders A which have a decomposition matriz like the one in (61) or (62), we make
the following convention concerning the ordering of the central primitive idempotents: We choose
indices so that the idempotents associated with rows in the decomposition matrix with more than one
non-zero entry come last.
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Remark 5.15. If A = OG for some finite group G (or a block thereof), then the symmetrizing element u
may be chosen so that

xi(1)
m; - |G|

where x; is the i-th irreducible K-character of G (or in the block under consideration), and m; is the
number of absolutely irreducible characters it splits up into when passing from K to its algebraic closure
K (see Remark 2.4). In particular two of the u; are equal if (and only if) the corresponding absolutely
irreducible characters have equal degree. The equality of two rows in the decomposition matrix is a sufficient
criterion for the corresponding characters to have equal degree, and therefore for the corresponding u; to be
equal. Note that we potentially have two equal rows in the decomposition matrix of the principal block of
OSLy(pf) if p is odd (to be precise, this happens if f is even,).

€Q® (64)

U; =

Theorem 5.16 (Unique lifting). Let A be a finite-dimensional semisimple K-algebra with dimp Z(A) =
dimy, Z(Bo(kAs(pf))). Assume A is split by some totally ramified extension of K.

(a) Assume we are given an elementu € Z(A)™ which has p-valuation — f in every Wedderburn component
of Z(K ® A). Then any two full O-orders A, and A}, in A satisfying the following two conditions are
conjugate:

(1) Ay and A, are self-dual with respect to T,.
(2) k@ A, and k@ N, are split k-forms of Bo(kA2(p?))

(b) Assume u and v’ are two symmetrizing elements subject to the same conditions as in (a), such that
A, and A, both exist. Then:

(1) If p=2: A, and Ay are conjugate.
(2) If p# 2 and K splits A: Let k = pf2_1. If 2ot — Ukl then Ay and Ay are conjugate.

Ur+2 Upyo’
(3) If p # 2 and K does not split A: If ug1 - O =uj - O, then Ay and Ay are conjugate.
Here K denotes the number of isomorphism classes of simple modules in By(kAg(p')).

Proof. We assume that we are given an order A = A, satisfying the conditions given in (a). In order to
prove the theorem we will try to conjugate A into a kind of “standard form” depending on w. This will
prove the claim made in point (a). By looking at how this “standard form” depends on u we will also be
able to prove (b). We let I’ be an ideal in kQ as described in Proposition 5.12 such that k @0 A = kQ/I’
(we will assume that we have fixed an isomorphism and identify the two). Also, as before, we denote the
idempotents in k@) by es; and the arrows by ss; ;. We wish to treat the case where K splits A and the case
where K does not split A as well as the cases p even and p odd (essentially) uniformly. So assume that

f_
. i b if p 2

A= PK|oK™>"  with k= 2 (65)
=1

2f —1 ifp=2

where K is isomorphic to K if p=2, to K & K if p # 2 and A is K-split, or to a fully ramified extension of
K of degree two if p # 2 and A is not K-split. By € we denote the idempotent in Z(A) =K & ... 8K ® K
which has entry “1” in the summand K and entry “0” in all other summands. For each i let é5; € A be a
lift of eg; € kQ/I’, and assume without loss that £és; is the i-th diagonal idempotent in Krxns (this may
certainly be achieved by conjugating A by an element of A*). Assume furthermore that (1 — &) - é9; has
non-zero entry in the i-th direct summand of the decomposition (65). Hence we have fixed the elements é;
as elements of the algebra A as described in (65). Now, using the fact that A is supposed to be symmetric
with respect to Ty, it follows that

1. If p is odd and K splits A:

éAé; = <[1, 1,1],[0,p%, —c-p*], [o,o,pf]> CODOBO where ¢ = Lrt1 (66)
o Up+-2
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This follows simply from the fact that a self-dual order (with respect to T,) in O & O & O must have
elementary divisors 1, pé, p/ (as an O lattice in O © O @ O) and all traces with respect to T}, must be
integral. Note that this also implies that f must be even (in this situation, i. e. when K splits A and
p is odd).

2. If p is odd and K does not split A:

éihé; = ([1,1],[0,c- n7],[0,¢* - w7]) for some ¢ € O[r]* (67)

o
where 7 is some uniformizer for the integral closure of O in K, which is a fully ramified extension of
K of degree two in this case. Up to this point, we have used two facts: First, that the elementary
divisors of O[r] ® é;Aé; as a lattice in O[r] ® O[r] © O[r] must be 1,7, 72/ and second, that é;Aé;
is generated by a single element as an O-order since e; - kQ/I - e; = k[T]/(T?) is generated by a single
element as a k-algebra. In this case we need to put in some additional information to show that
é;\é; is uniquely determined, since different choices of ¢ may give rise to different orders. Note that
T.({0} @ pf O[x]) C O, and hence necessarily {0} @ p/ O[r] C (¢;Aé;)* = é;Aé;. Moreover an element
[0,-7/] lies in é;Aé; if and only if T,,([0,&-77]) € O. To see this, let = [ry, 71 +72-c-7f +r3-c? - 72/]
with r1,79,73 € O be an arbitrary element of é;Aé;. Then

Tu(z-[0,é- 7)) = - Tu([0,& - 77)) + 79 - T ([0, ¢ - & w2)) + 175 - T ([0, & - 2 - 737]) (68)

Since K is fully ramified of degree two, we have 72/ O[r] = pf O[x], and therefore the last two summands
are traces of elements in é;Aé;, which must be integral. So (68) is integral for all values of r1, 74,73 € O
if and only if T,,([0,&- 7/]) is integral. This characterizes é;Aé; as

Aé; = O [[o,a -] ‘ T.([0,¢-©f]) € © (69)

which is obviously uniquely determined by u and the extension K /K.
3. If p=2 then
éeihé; = ([1,1],[0,27]),, (70)

by the same argument as in the first point.

In the above considerations we have used that each u; has p-valuation —f. In the case p = 2 we have not
used any further information on u. In the case p # 2 we have used the value of the quotient w41/t 2 if K
splits A and the class u,11 - O if it does not (since the characterization in (69) depends only on u,41 - O;
note that u,y1 is an element of K in this case while in the split case Uk+1 and u,4o are both elements of
K). Since we will not make any further use of the symmetrizing element u below, this will prove part (b) of
the theorem once part (a) has been proved.

Note that in either case the é;Aé; are equal when we identify the unique maximal orders containing
them. In particular, the subset of End K(f( ) consisting of the endomorphisms induced by elements of é;Aé;
acting on é;Aé; C K by multiplication from the left is the same as the subset of End K(R' ) consisting of the
endomorphisms induced by elements of é;Aé; acting by multiplication from the right. Hence the submodule
structure of é;Aé; is independent of whether it is regarded as a left é;Aé;-module or a right é;Aé;-module.
Now we consider the e;Ae; [q) for arbitrary i and g. We know from the Cartan matrix that the dimension of
ei - kQ/I' - e;4q is equal to one if p = 2 and equal to two if p # 2. We want to show that it is generated by
a single element as an e; - kQ/I’ - e;-module. In the case p = 2 this is trivial, since it is one-dimensional as a
k-vector space. If p # 2, then consider the elements s; , and e; - (Hf;& sip_l)/z) -84, Where we use notational
convention made in Remark 5.4. Those two elements lie in a two-dimensional k-vector space, and they are
not scalar multiples of each other since the relations in I’ are homogeneous. Also neither of them is zero since
the relations (55) and (56) only allow for a product of arrows to be zero if it contains at least p arrows of the
type s;, for fixed r. Hence they form a k-basis of e; - kQ/I" - ¢;4[q. Since the second of the two elements is
obtained from the first one by multiplying with an element of e; - kQ/I"-e;, it follows that e;-kQ/I" - e;1[q) is
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generated by the first element as an e; - kQ/I’ - e;-module. Independent of whether p is even or odd it follows
that e;-kQ/I"-e;4[q is isomorphic to e;-kQ/I"-e;/J for some ideal J in e;-kQ/I"-e;. But since e;-kQ/I"-¢;
is a split commutative local symmetric k-algebra, its socle is its unique one-dimensional submodule. This
implies that e; - kQ/I" - ejy[q = €; - kQ/I" - e;/ Soc(e; - kQ/I" - e;). There is an epimorphism of k-algebras
from e; - kQ/I' - e; 2 k ® é;Aé; to k ® £é;Aé;, and therefore k @ £é;Aé; 2 e; - kQ/I' - e;/ Soc(e; - kQ/T - ;)
as k-algebras. It follows that k ® é;Aé;|q) is free as a left k ® é¢;Aé;-module, and therefore é;Aé;(q) is free
as a left £¢;Aé;-module. This implies (when é;Aé;, 4] is identified with K in the natural way)

éiAé; = x5 - €¢;Ae;  for some ;5 € K* where j =i + [q] for some ¢ (71)

In addition, we may and will assume that the x;; are integral over O. For each ¢ and ¢ we have

H Citifq) - FQ/T - €ix(41)q =0 (72)
and hence
p—1
[l et A vy Sp-éi- A éiggin (73)
=0

Everything from here down to (91) below is about showing that the inclusion in (73) is in fact an equality.
The significance of this is that it can then be used as a formula to compute the é; - A - &, (q41) from the
€i - A+ €;1[q), showing that A is determined by the é; - A - &4 (o).

We define a “normalized index” for full O-lattices L; D L in K as follows:

lengtho L1 /Lg

idx(Ly, L
(L, L) = lengthe, Ly /pLy

(74)

Note that the denominator is equal to the O-rank of Ly, which is in turn equal to the K-dimension of K.
Hence the denominator is independent of the choice of L;. For arbitrary lattices Ly, Lo C K (neither of
which necessarily contains the other) we define idx(L1, Lo) := idx(Ly + Lo, Lo) — idx(L1 4+ Lo, L1). Now, if
L is any full lattice in K, and 1,22 € K*, then

idx(L,xq - 22 - L) = idx(L, 21 - L) 4+ idx(L, zo - L) (75)

because idx(L,x; - L) equals a constant multiple of the p-valuation of the determinant of “multiplication
with x;” regarded as a K-vector space automorphism of K. Now define

miyq = idx (gélAé“ ézAéz+[q]) (76)
where we view €;Aé;|q) as a subset of K as in (71). Define furthermore

p—1
a4 = 1dx <el A éiqiqt1]s Heerl (" A it q]> <Z Miyi]q ) — My 41 (77)

=0

Clearly a;, > 1 for all ¢ and g. We have for any q # r
i kQ/I' - eiriq - kQ/T - eiyqrim = €i kQ/I' - eiyiqrir] (78)
and hence in particular
€iléiyqAlit(ql+lar1] = Eileitq)tiata] = €illitiqr1)ACiy(ql4(qr1] (79)
which implies for all ¢ and ¢ that

Miq + Miyqlgrl = Mg+l + Mitqii]q (80)
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Now

@i,qg — Git[q),q

p—1 p
<Z mi+l~[q],q> - (Z mi+l-[ql’q> ~ Migt1 + Mit[q],q+1 (81)
=0 =

(80)
= Mjq— Mit[q+1].,g — Mig+1 + Miy[qlq+1 = 0

Since p is relatively prime to &, this implies that a; , = a, for some a, independent of i. Now we sum up
(77) over all k values of i, and get

K K
Z mgi’qul =p- Z mgi’q — K- aq (82)
i=1 i=1

Plugging this formula into itself f times yields (for all values of ¢)

K K f
Zin,q =pl. Z Maiq — FLZP’LZ “Ogti—1 (83)
i=1 i=1 i=1

which implies

K f
K ) K
- f—i
Moig=—F—=-Y P " agri-1 > (84)
; b pf—1 Z gt p—1

i=1

with equality if and only if all a, are equal to 1. We will now show that

f-1857

Jac(e; - kQ/I"-ei) = [T 11 eirs-a-top+i-1-ta - ¥Q/1 - it (q—top+ifa P #2)

4=0 =1 (85)

Jac(ei - kQ/T' - e;) = ][] eista—io1 ¥Q/T - €isiqi)—(o (p=2)

q=0

In both cases it is clear that the right hand sides are ideals in e; - kQ/I’ - e;. They are in fact proper ideals
ine;-kQ/I' -e;, since they only contain paths of strictly positive length. The ring e; - kQ/I’ - e; is an algebra
of dimension two if p = 2 and dimension three if p # 2. In the case p = 2, Jac(e; - kQ/I’ - ;) is the only
non-zero proper ideal in e; - kQ/I' - e;, because e; - kQ/I' - e; is local. Hence it suffices to show that the given
ideal contains a non-zero element. We may choose e; - H(J;;é 54 for this purpose. This element is non-zero
since no arrow of type s, for fixed ¢ occurs more than once. In the case p # 2, the ideal Jac(e; - kQ/I' - ¢;)
is the unique ideal of dimension two, and since e; - kQ/I’ - e; is symmetric, Soc(e; - kQ/I’ - €;) is the unique
ideal of dimension 1. So in order to show that the module defined in (85) is in fact as claimed, we just need
to specify an element with non-zero square, since every element in the socle squares to zero. The element
€+ H (p D/2 has this property, since its square involves no p arrows of type s, for any ¢ and is therefore

NON-Zero. Note that in the upper equation we used that 3([q] — [0]) = Z;{:é %[ | to simplify the indices.

Now £é;Aé; N é;Aé; is a pure sublattice of é;Aé;. The k-dimension of its image in e; - kQ/I’ - e; must
therefore be equal to its O-rank (which is one if p = 2 and two otherwise), which implies that said image is
equal to Jac(e; - kQ/I' - e;). Another consequence of £¢;Aé; N é;Aé; being a pure sublattice of é;Aé; is that
any proper sublattice of it maps to a proper subspace of Jac(e; - kQ /I’ -¢;). Hence (85) implies the following:

fo1 gt
geiheinehe; = T I é+s-qa-opro-n@Airt-(a-op+ifaq @ #2)

4=05=1 (86)
ge;Né; Nne;Né; = H €it[q]—] AeH_[ +1]—[0] (p = 2)
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This, in turn, implies that the following holds for any index i:

f-155+
/ o a A A A A A A pn
5 = idx(éé;Aé;,éé;Aé; Né;Aé;) = ZZmi_;’_%.([q]_[0])+(j—1)‘[q]7q (p#2)

=0 j=1

40 (87)
fo= idx(@eAé;, g6 NEAe) = Y miyiq—(o)q (p=2)

q=0

Summing this up over all x different values of i yields (regardless of whether p is even or odd)

RSV
Loy B ; 88
ot 2 qzz(:) 2 ;m27q ( )

Now we plug in (84) to get

f-1f f-1

f _p—-1 &K Fi p—1 Kk pl—1
K= — p ’.a 7;71: . . . a (89
2 2 pl-1 ;; " 2 pl-1 p-1 q:zo ! )

We conclude
f—1
dag=f (90)
q=0

which implies that all a, are equal to one. This implies that the é2;Aéy; (o) determine A in the sense that
the formula .
C2il\éritiarn) = o - @2illaitlq)  Caitp-1) [@AC2itp(a (91)
shows how to calculate éz;Aéy;[q41) from the knowledge of the éajAés g (for all j).
Now we may replace A by 4y~ - A -y, where

i—1

y:=|1,...,1,diag H £2;,2j+[0]
j=0

i=1,...,5 || € A% (92)

(the x;; were defined in (71)) and so we may assume without loss that all z; 2;4[0] are equal to 1, except
possibly w2, _[g] 24+ In other words, we have fixed all but one of the é2;Aéy; (o). But we have

Eon—ojAéar = {v € Ea_j0)Abas | E2xNéoy_jo) - v C 2, Aég, ) (93)

which is a consequence of the fact that €y,_[gjAéa, is the dual of éa,Aés,_jg) With respect to the bilinear
pairing induced by T, (this is a general fact on self-dual orders independent of the concrete symmetrizing
form T,; in fact u does not even show up in (93)). Now in the above formula, és,Aés, is explicitly known,
and é3,Aéz,_[g) can be calculated by repeated application of (91) from the éa;Aeg;yjo) With 0 <i <k —1
(which were fixed above by means of conjugation). This can be seen by realizing that ey, - kQ/I" - €21 [0]
can be written as a product of various ey; - kQ/I" - €;4(q With 0 < 2i < 2i 4 [q] < 2(k — 1) and hence
€2 A€2,_[0] can be written as a product of various €2;Aéy;1[q) With the same restriction in i and ¢g. But
the restriction on 7 and g ensures that these é2;Aéy;1[q can be computed by means of (91) using only those
é2iAegippo) with 0 < i < x —1 . Hence, A is determined in the sense that we have conjugated A to some
fixed order determined by the data given in the statement of the theorem. This concludes the proof. O

Remark 5.17. Situation as in the last theorem. Assume furthermore that the (unique) lift A = A, exists.
Then the above proof also implies the following: If « € Auty(k®A) is an automorphism of kQ A permuting the
set of idempotents {e;};, then there exists an element & € Autp(A) inducing the corresponding permutation
on the set of idempotents {é;};. This follows simply from the fact that we fized the idempotents at the
beginning of the proof of the Theorem and then only used conjugation by elements of A* that commuted with
all é; to conjugate A to any potential other lift of k @ A (also containing the same fized set of idempotents

{éiti).
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6. Transfer to OSLx(p¥)

Now we will generalize the result of Theorem 5.16 to all algebras derived equivalent to a split k-form of
Bo(kAz(p?)). This will in particular include the two non-semisimple blocks of k SLa(p/).

Lemma 6.1. Let k be algebraically closed and let B be the principal block of kAo (pf). There is an epimor-
phism of algebraic groups

f

[[2B)< - Outj(B) (94)

i=1
In particular, Out](B) is connected as an algebraic group, and hence equal to Outh(B).

Proof. We retain the notations of the previous section, and in particular we identify B with a block of kQ/I
(with @ and I as defined in Proposition 5.3). First define a homomorphisms of algebraic groups

f
v [[2(B)* - Auty(B) (95)
i=1
which sends (z1,...,2¢) to the automorphism given by s; ; — 24 - 8i4 and fixes each e;. It is clear that

these are automorphisms by checking that the images satisfy the relations given in Proposition 5.3. We
claim that the composition of ¢ with the natural epimorphism Aut;(B) — Outj(B) is surjective. Note
that Z(B)* = Z(B) — Jac(Z(B)), and therefore Z(B)* is Zariski-dense in Z(B). Since Z(B) is a k-vector
space, it is connected as an algebraic variety and therefore so is the dense subset Z(B)*. So the claimed
surjectivity would indeed imply the connectedness of Outy,(B).

We first prove the following claim, which will be used below: If n € N is relatively prime to p, then the
equation 7" — z for z € Z(B)* has a solution in Z(B)*. This follows from the fact that a full set of n
orthogonal primitive idempotents can be lifted from k[T]/(T™ —%) to Z(B)[T]/(T™— z) (where Z is the image
of zin Z(B)/Jac(Z(B)) = k). This yields a decomposition of algebras Z(B)[T]/(T" —2) 2 A1 & ... D A,.
Since the A; are, in particular, Z(B)-modules, and Z(B)[T]/(T™ — z) is free of rank n as a Z(B)-module,
we must have that each A; is a Z(B)-algebra that is free of rank one as a Z(B)-module. Hence each A; is
canonically isomorphic to Z(B) as a k-algebra, and the image of T in any of the A; = Z(B) is a solution of
™ —2=0.

Now we come to the actual proof of surjectivity of the composition of ¥ with the natural epimorphism
Auti(B) — Outj(B). Assume that o € Auty(B) is an automorphism such that P ® jgA, = P for all
projective indecomposables P. All full sets of orthogonal primitive idempotents in B are conjugate (see, for
instance, [CR81, Introduction §6, Exercise 14]), and hence we may compose « with an inner automorphism
of B such that the resulting automorphism fixes all idempotents. So we may and will assume that « fixes e;
for each ¢. Since the canonical map Z(B) — e;Be; is surjective, and s; 4 is a generator for the e; Be; module
eiBe;yq), we will have a(s; ) = zi 4 - 5i,4 for certain elements z; , € Z(B)*. Moreover, the z; ; determine
a. Now consider conjugation with elements v of the form v =), ¢;e; for certain ¢; € Z(B)*:

vl a(sig) v =S s (96)
ci

=iZiq

With Z; ;, defined as in the above equation we have
Hgi’o = Hzi,O =: A (97)

Furthermore we can choose the ¢; in the definition of v to assign prescribed values to all but one of the
Zi,0- Choose the ¢; so that all but possibly one of the Z; o become equal to a x-th root of A where « is the
number of simple modules in the block, which is relatively prime to p. Then by the invariance of the product
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given in (97), all Z; o will be equal. Without loss of generality we replace a by the composition of o with
conjugation by this v, that is, we assume that all z; o are equal. We claim that this o, which differs from the
« we started with only by an inner automorphism, lies in the image of ¥ with v as defined in (95). To show
this first notice that for q # r the product s;, - sit[q),» 15 a generator for the e; Be;-module elBez—f—[q]-‘,-[r];
which is isomorphic to the e; Be;-module elBeH_[q] Hence for any c,é € Z(B)* we have ¢ s;4 = ¢ 8; ¢ if
and only if ¢ 8; ¢Sit[q],r = C* Si¢Si+[q),r- Furthermore, in order for a to be an automorphism, the following
relation must hold:

Ziq " Zitlalg+l " SiqSitlalg+l T Rigtl " Zit[atl]g " Sigt+1Sit[a+1].q (98)
= Ziq+l " Fit[a+1],q " Si,qSit[a],q+1

So if we assume as an induction hypothesis that all z; 4 are equal for some fixed value of ¢, then this implies
that Zit[dl,q+l * Si,g = Zig+1 * Siygs and hence we may set Zit[dl,g+l = Zig+1- Consequentially, all z; 441 are
equal. Therefore a agrees with an element in Im(t)) on the generators s; ;. But this implies o € Im(¢)). O

Remark 6.2. By determining the kernel of the epimorphism in (94) one can deduce that

Out; (B IIk /(T = (Gf, x G (k) ifp#2 (99)

and
Out](B) =Gl (k) ifp=2 (100)

Lemma 6.3. Let A be a split k-form of the principal block kAo (p'), and assume there is a lift A of A
subject to conditions as in Theorem 5.16. Then if o € Autg(A), then there exists a 3 € Autp(A) such that
ao B € Autj(A), where B denotes the image of B in Auty(A).

Proof. Since any two full sets of orthogonal primitive idempotents in A are conjugate we can find an inner
automorphism - such that 7o« induces a permutation on some full set of orthogonal primitive idempotents
in A. Now Remark 5.17 implies the existence of a 3 € Autp(A) such that v o a o 3 fixes a full set of
orthogonal primitive idempotents. This implies in particular that v o oo 3 lies in Autj(A). Since « is an
inner automorphism, it fixes all simple modules. Therefore we also have o 3 € Autj(A). O

Corollary 6.4. Let T be a k-algebra that is derived equivalent to a split k-form A of Bo(kAx(p)). Moreover
let B be a finite-dimensional semisimple K -algebra with dimy Z(B) = dimg Z(Bo(kA2(p’))) and assume B
is split by some totally ramified extension of K. Given an element u € Z(B)* which has p-valuation —f in
every Wedderburn component of Z(K ® B), there is at most one conjugacy class of full O-orders ', C B
satisfying the following conditions:

1. Ty, is self-dual with respect to T, .
2. k®T, is isomorphic to T.

Proof. Recall the result of Proposition 4.7, which stated that if A is a lift of A for which every outer
automorphism of A may be written as a composition of (the reduction of) an automorphism of A and an
element the k-linear extension of which lies in Out%(l;: @ A), then A corresponds to a single equivalence
class of lifts in E(K) This proposition is applicable to A and the unique lift A of A subject to conditions
as in Theorem 5.16, since we have verified in Lemma 6.1 and Lemma 6.3 above that the conditions of the
proposition are met. Theorem 4.2 shows that the equivalence classes in £(A) subject to the conditions of
Theorem 5.16 (with a modified u, depending on the choice of the derived equivalence; see Theorem 4.3)
are in bijection with the equivalence classes in E(f) subject to the conditions given in the statement of
this corollary. Therefore there is at most one equivalence class of lifts of T' satisfying our assumptions. In
particular there is at most one isomorphism class of orders satisfying the assumptions. O

22



Remark 6.5. Broué’s abelian defect conjecture states the following: Let k be an algebraically closed field,
G a group, B a block of kG, P a defect group of B, and b the Brauer correspondent of B in kNg(P). Then
b and B are derived equivalent.

Broué’s conjecture has been proven (in defining characteristic) for the principal block of SLa(q) in
[Oku00]. It has also been shown to hold for the unique non-principal block of mazimal defect of SLa(q),
which exists if q is odd, in [Yos09].

Corollary 6.6. Assume that p = 2 and that k is algebraically closed. Then Conjecture 3.9 holds in that
case, that is, the generators for a basic order of ©SLy(27) as conjectured in [Neb00a] define an O-order
which is Morita equivalent to O SLo(2F). This is because Corollary 6.4 holds for the blocks of k SLa(2f) (due
to the abelian defect conjecture), guaranteeing unique lifting.

7. Rationality of tilting complexes

Our goal in this section is to perform a “Galois descent for derived equivalences” to the degree up to
which this is possible. This will allow us to state a unique lifting theorem for the group ring IF,,s SLo (p?),
thus ridding us of the necessity to assume an algebraically closed coefficient field.

Concerning notation: In this section we often use field extensions K and K’ of K. We will always
assume that K and K’ are (possibly infinite) algebraic extensions of K of finite ramification. We denote by
O respectively @ the corresponding discrete valuation rings and by k respectively &’ their respective residue
fields.

Definition 7.1. An O-order A is split if the k-algebra k ® A is split and the K-algebra K ® A is split.

Lemma 7.2. Let k be finite. Let A be an O-order such that K ® A is split semisimple. Assume that there
is a field extension K /K of finite degree such that O @ A is split and its decomposition matriz has full row
rank (that is, its rank is equal to its number of columns). Then A is already split.

Proof. Assume § is a simple A-module that is not absolutely irreducible. Since there are no non-commutative
finite-dimensional division algebras over k, End (S) is commutative and hence End; g, (k®.5) = k®@End, (5)
is a direct sum of copies of k. Therefore k ® S is a direct sum of non-isomorphic simple O @ A-modules
Si,..., 5 (for some | > 1). Each simple K ® A-module is of the form K ® V for some simple K ® A-module
V. Let L be a A-lattice in V. Then O ® L is a O ® A-lattice in K ® V, and the multiplicities of Si,...S;
in k® L are all equal to the multiplicity of S in k ® L. Therefore, the columns in the decomposition matrix

of O ® A associated to the simple modules S1,...,5; are all equal, in contradiction to the assumption that
the decomposition matrix of O ® A has full row rank. Therefore all simple A-modules are absolutely simple,
that is, A is split. O

Lemma 7.3. Assume that K is totally ramified over K. If A is an O-order such that k ® A is split, then
k® A is split.

In particular, under the assumption that k is finite, K @ A is split semisimple and the decomposition
matriz of A over a splitting system has full row rank, k ® A will be split.

Proof. Since K is assumed to be totally ramified over K, we have k = k. Therefore the assertion is trivial. [

Remark 7.4. We should note that

1. If the Cartan matriz of an algebra is non-degenerate (which is a known fact in the case of group rings),
then the decomposition matriz has full row rank.

2. The absolute value of the determinant of the Cartan matrix is preserved under derived equivalences
(even under stable equivalences of Morita type). In particular, non-degeneracy of the Cartan matriz
1s preserved under derived equivalences.

Definition 7.5. Let A be a ring. We say a tilting complex T € C®(proj,) is determined by its terms, if
any tilting complex T' € C*(proj 4) with T* = T'" for all i € 7 is isomorphic to T in K’(proj,).
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Remark 7.6. By [JSZ05, Corollary 8] two-term tilting complexes defined over algebras over a field are
determined by their terms. By unique lifting of tilting complezes (see [Ric91b]), the same is true for two-
term tilting complexes defined over orders over complete discrete valuation rings.

Definition 7.7. Let A be an O-order. We call an O-order A C A an O-form of A if rankp A = ranks A
and O - A= A. We define a k-form of a finite-dimensional k-algebra analogously.

Lemma 7.8. Let A be an O-order and let K be an unramified finite extension of K. Furthermore, let
C e Cb(mod@®A) be a complez of O ® A-modules and let C be the restriction of C to A. Then, in the
category Cb(mod@@m),

[K:K]

OwC= @ C~ (101)

i=1
for certain «; € Auto(@). Here, for an o € Auto(@), C® denotes the complex of © @ A-module the terms
of which are (as sets) equal to the terms of C, with differential equal to that of C, but with the following
twisted action of O @ A on the terms:

Cix O —C": (ma®b)—m-ala)®b (102)
We claim furthermore that at least one of the c; may be chosen to be the identity automorphism of 0.

Proof. First note that O ®p O = @[K:K O, since K is unramified over K. For i € {1,...,[K : K|} denote

by &; the epimorphism from O @ O to @ given by projection to the i-th component of @[K Ko (of course,
the ordering of the ¢; is not canonical). By abuse of notation, we also denote by &; the unique primitive
idempotent in O ®@p O that gets mapped to 1 under the projection €;. Now we consider the complex of
O ®0 O @0 A-modules O ®p C. We can decompose this complex as follows:

[K:K]

O @ 51 oy lA) (103)

Now consider the embedding R } }
N:0=0800:a—a®l (104)

If we turn (’)®o C into a complex of O ® A-modules via the embedding n®idp we get, by definition, O@o C.
If we turn O ®op C - (; ® 1,) into a complex of O ® A-modules via the embedding n @ idy we get C€°7. So
our first claim follows (with «; := €; o). As for the claim that one of the a; may be chosen equal to the
identity, just note that there is an epimorphism O o @ — O : a @ b — a - b. Since the ¢; are in fact all
epimorphisms from O ®o O to O, this epimorphism needs to be equal to some ;. But then «; = id. O

Proposition 7.9 (Reduction to finite field extensions). Let A and I' be two O-orders such that O® A and
O T are derived equivalent, and let T be a tilting complex over O @ A with endomorphism ring OwT.
Then there exists a finite extension K' of K which is contained in K such that O’ @ A is derived equivalent
to an O'-form I of O @ T, and there is a tilting complex T' over O’ @ A with endomorphism ring T’ such
that O @0 T' =T in ICb(pr0J0®A)

Proof. There is some invertible complex X € D*((0 @A) ® ((9 ®@T)) with inverse Y € D'((O ®@T')°P @5
(O®A)) such that the restriction of ¥ to O®A is isomorphic to T'in D*(O®A). We can find a finite extension
K’ of K (contained in K) such that there are bounded complexes X’ and Y” such that O ®¢ X’ = X and
O Qo Y' =Y. This is simply because X and Y can be represented by bounded complexes of finitely
generated modules, and so K’ needs only be big enough for all terms of these complexes to be defined over
O’ and for the differentials (which are made up of finitely many homomorphisms) to be defined. Looking
at the construction of the derived tensor product, it is clear that

YV and O @ (Y @ggn X) 2V @% X (105)

O ®% (X' @gerY') =2 X 0% Bon
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But the right hand terms in (105) have homology concentrated in degree zero. This means that X’ ®% rorY’
and Y’ @, X' are isomorphic to stalk complexes in D™ ((O' ® A)°P @0/ (O’ ® A)) respectively D~ ((0' @
) ®¢ (O’ @T)). Since tensoring with O renders them isomorphic to 0 — O ® A — 0 respectively
00— O®I — 0 it follows from the Noether-Deuring theorem for modules that they are isomorphic to
0— O ®A — 0 respectively 0 — O’ @ I' = 0. Therefore X’ and Y’ are invertible, and thus the restriction
of Y/ to @' ® A is a tilting complex T with O @/ T" 2= T.

_ By [Ric91a, Theorem 2.1] it follows that the endomorphism ring of 7" in DY(O' @ A) is an O'-form of
O®A. O

Remark 7.10. We should mention the following trivial supplement to the above proposition: If O splits A
and/or T, we may choose an O’ which splits A and/or T'. Similarly, if k splits k ® A and/or k@ T, we may
choose an O such that k' = O’/ Jac(O') splits k @ A and/or kT .

Lemma 7.11. Let A be an O-order and let T € Cb(mogA) be a complex with differential d : T — T[—1].
IfO®T is a tilting complex for O ®@ A (in particular O @ T € Cb(proj@®A)), then T is a tilting complex
for A.

Proof. First note that by Proposition 7.9 we may assume that K /K is a field extension of finite degree.
If M is a (finitely-generated) A-module such that O ® M is a projective O ® A-module, M must itself be
projective. This follows easily from the fact that O ® M is projective if and only if it is a direct summand of
some free module, and so the restriction of O ® M, which is just a direct sum of copies of M, is a summand
of a restriction of a free module, which is again a free module. This shows that O ® T' € Cb(proj@®A)
implies 7' € C’(proj,). 3 . .

By [Zim12, Lemma 4] we have O ® Homps () (T’ T'[i]) = Homps ) (O @ T, 0 @ T'i]) for each i € Z.
Since we assume that O ® T is a tilting complex, we get Home(@@)A)(@ ®T,0® T[i]) = {0} for all i # 0.
Therefore, O ® Hompe ) (T, T'[i]) = {0} for all i # 0, which in turn implies Hompeay (T, T'[i]) = {0} for all
1 # 0.

Now we show that T generates K?(proj,). To see this we look at the functor
Res : K™ (projsg,) — K~ (projy) (106)

which, by definition, simply restricts the terms of the complexes from O ® A-modules to A-modules. Since
this is an exact functor, and Res(O @ T) is just a direct sum of copies of T, add(T) 2 Res(add(O ® T)).
But 0 = O® A — 0 lies in add(O ® T'), and therefore 0 — A — 0 lies in add(T’) (since Res(0 = O ® A — 0)
is isomorphic to a direct sum of copies of 0 — A — 0). O

Theorem 7.12. Assume k is finite and K is unramified over K. Let A be an O-order such that k ® A is
split, K ® A is semisimple and the decomposition matriz of A over a splitting system has full row rank. Let
T € Cb(projz) be a tilting complex that is determined by its terms. Set

[ := Endp3(T) (107)

If A is an O-form of A such that k ® A is split and there is a totally ramified extension of K that splits
K ® A, then there is an O-form T of ' with the same properties that is derived equivalent to A.

Proof. Let T be the restriction of T to C*(proj,). By Lemma 7.8 the complex @ ® T is isomorphic to a
direct sum of complexes of the form T for certain a € Auto(@). Now note that since £ ® A is split, the
projective indecomposable A-modules P are of the form O ® P for projective indecomposable A-modules P.
Therefore they are isomorphic to their Galois twists. In particular, the terms of T and T are isomorphic
for all o € Aut@(@). Since T is by assumption determined by its terms, we must have T = T for all

a € Autp(0O). This shows that O ® T is a tilting complex, and therefore so is T' (by Lemma 7.11). It is
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clear by [Ric91a, Theorem 2.1] that the endomorphism ring of 7" is an O-form of the endomorphism ring of
O ® T, and of course it is derived equivalent to A. We have

O ® Endpi () (T) = Endpy 5, (0 @ T) & PIKK] X [KK] (108)

The first isomorphism is a special case of [Zim12, Lemma 4]. The second isomorphism follows from the
fact that O @ T = TUK] which we just proved. Equation (108) shows that Endps(4)(T) is on O-form
of THKIXIK:K] - This will yield on O-form of T' with the desired properties (simply by applying a Morita
equivalence) once we see that k @ Endps()(T) is split. Let K " be a totally ramified extension of K such
that K’ @ A is split. Since K’ ® Endps(4)(T) = Endpkrga)(K' @ T) is Morita equivalent to K’ ® A, it
follows by Lemma 7.3 that £ @ Endps()(T) is split. O

Corollary 7.13. The assertion of the preceding Theorem remains true zf]\ and T are linked by a series of
derived equivalences which all are afforded by tilting complezxes that are determined by their terms.

Proof. This follows by iterated application of the preceding theorem. O

Corollary 7.14. Let O be the p-adic completion of the maxzimal unramified extension of Q. The blocks of
defect Cg of the group ring Z,[Cyr 1] SLa(p’) are derived equivalent to a Zy[(,r1]-form (split over F,s) of
their respective Brauer correspondent in Oy (p’) with Qp[C,r_1]-span isomorphic to the Q,[(,s_1]-span of
the corresponding block of Z,[Cpr —1]A2(p7).

Proof. The respective blocks of k SLa(p/) and kAo (pf) are linked by a series of two-term complexes (see
[Oku00] respectively [Yos09]). Hence the first claim follows from Theorem 7.12 and Corollary 7.13. The
assertion concerning the Qp[(,s_1]-spans follows from the fact that the Q,[(,s_;]-spans of the blocks of
Zip|Cpr —1] SLa(p/) and Z, [Cpf_l]Ag(pf) which are Brauer correspondents are Morita equivalent. O

Corollary 7.15. Assume k D F,; and B is a block of kSLa(p?) of maximal defect. Let A be a finite-
dimensional semisimple K -algebra with dimg Z(A) = dimy Z(B). Assume A is split by some totally ramified
extension of K. Given an element u € Z(A)* which has p-valuation —f in every Wedderburn component of
Z(K ® A), there is, up to conjugacy, at most one full O-order A, C A satisfying the following conditions:

1. Ay is self-dual with respect to Ty, .
2. k® A, is isomorphic to B.

Proof. By Corollary 7.14 the block B is derived equivalent to a split k-form T’ of By(kAs(pf)). Thus the
assertion follows directly from Corollary 6.4. O

Corollary 7.16. Conjecture 3.9 holds true in the case O = Zo[Ca5_1], that is, the generators for a basic
order of Za[Cor _1] SLa(2F) as conjectured in [Neb00a] define a Z[Cor _1]-order which is Morita-equivalent to
Zs[Car—1] SLa(p?).

As a corollary we can also prove that a discrete valuation ring version of the abelian defect conjecture
holds for Zy[(,r 1] SL (p?).

Corollary 7.17. The non-semisimple blocks of Zy[pr 1] SLa(p!) are derived equivalent to their Brauer-
correspondents in Zy[Cpr _1]2a(p7).

Proof. As we have already seen, any non-semisimple block I of Z,[(,s ;] SLa(p/) is derived equivalent to the
unique lift Ay, C Qp[Cpr 1] ® Bo(Zy[Cpr —1]A2(p”)) =: A of a split Fs-form of By(F,Ax(p’)) with respect to
some u € Z(A) satisfying the conditions of Theorem 5.16 (this is just putting Corollary 7.14 and Theorem
5.16 together). For the rest of this proof we will use the same notational conventions as in Theorem 5.16,
including Notation 5.14. Theorem 5.16 (b) tells us that if p = 2, then A, = By(Za[(or_1]A2(27)) which
implies the assertion of this corollary. If p # 2 and Q,[(,s_;] does not split SLo(p), then Theorem 5.16
(b) tells us that A, depends only on .1 - OX, which we may assume to be equal to p~/ - O* by virtue
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of u,.+1 being rational. So again, Ay = Bo(Zp[(,r—1]A2(p”)) follows and we are done. Now if p is odd and
Qp[¢psr—1]) does split SLo (p?), then A, depends only on the quotient w1 /u,12. Assume for the rest of the
proof that we are in this case. We also fix some tilting complex T in K°(proj A,) With endomorphism ring
. Furthermore let V,,1 and V, 12 be the (k + 1)-st and (k + 2)-nd simple Q, ® A-module. Note that the
symmetrizing element u for A, arises from the symmetrizing element u’ we use for I by flipping signs in
certain Wedderburn components. As mentioned in Remark 5.15, v’ may be chosen so that uj,_ ; = ], ,, since
the corresponding rows in the decomposition matrix are equal. We do not need any particular knowledge of
the decomposition matrix of SLy(p/) to establish this. Indeed, we can simply use the fact that the (x -+ 1)-st
and (k + 2)-nd row of the decomposition matrix of Ay(p/) over a splitting system are equal, which implies
that the corresponding rows in the decomposition matrix of a derived equivalent order will also be equal.
The sign of uj, | respectively uj,_ , is flipped upon passage to A, depending on the sign of [V. 1] respectively
[Viet2] as a coefficient of

S (=17 @ @z,1¢ ;1 T'] € Ko(modg, a, 1)) (109)

3

These signs are equal, since all of the T* are projective modules and therefore Vi1 and V, 2 occur in
their @p—span with the same multiplicities. This follows from the fact that the corresponding rows in the
decomposition matrix are equal. We conclude that w41 = uxq2, and therefore Ay = Bo(Zy[Cyr —1]A2 (%)),
which is what we wanted to prove. O
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