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Abstract. Cultural change can be quantified by temporal changes in frequency of different cultural 
artefacts and it is a central question to identify what underlying cultural transmission processes could have 
caused the observed frequency changes. Observed changes, however, often describe the dynamics in 
samples of the population of artefacts whereas transmission processes act on the whole population. Here 
we develop a modelling framework aimed at addressing this inference problem. To do so we firstly 
generate population structures from which the observed sample could have been drawn randomly and 
then determine theoretical samples at a later time t2 produced under the assumption that changes in 
frequencies are caused by a specific transmission process. Thereby we also account for the potential effect 
of time-averaging processes in the generation of the observed sample. Subsequent statistical comparisons 
(e.g. using Bayesian inference) of the theoretical and observed samples at t2 can establish which processes 
could have produced the observed frequency data.  In this way we infer underlying transmission 
processes directly from available data without any equilibrium assumption. We apply this framework to a 
dataset describing pottery from settlements of some of the first farmers in Europe (the LBK culture) and 
conclude that the observed frequency dynamic of different types of decorated pottery is consistent with 
age-dependent selection, a preference for ‘young’ pottery types which is potentially indicative of fashion 
trends.  
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1. Introduction 
How does cultural change happen? What are the cultural transmission processes that underlie observed 
episodes of cultural change? Those and similar questions have been the subject of intense research in the 
last decades. Naturally fine-grained individual-level data detailing who learns from whom would be most 
suited to answer these questions empirically. However, outside experimental conditions, large individual 
data sets of this kind are difficult to obtain, especially in pre-modern contexts. Studies such as [1] which 
used historical records of the board game Go, or [2] which used contemporary data from Fiji to 
determine the relative importance of different cultural transmission processes are remarkable exceptions. 
Much available data in archaeology, biological anthropology, animal behaviour or psychology, however, 
describes the population-level outcomes of the transmission processes. The data is often in the form of 
frequency distributions of a number of different variants of a cultural trait in the population at a certain 
point in time, or in a time-series describing the dynamics of the frequency change of cultural variants over 
time. Further, the data usually comprises sparse samples from the whole population.  
 But how well can population-level data answer questions about the underlying cultural 
transmission processes that produced observed episodes of cultural change? It has been suggested that 
the shape of the adoption curve (detailing the fraction of the population that has adopted a specific 
cultural variant) might be indicative of the underlying transmission processes (e.g. [3],[4],[5],[6]). However, 
the diagnostic power of these approaches, especially when applied to sparse data, has been proven to be 
limited (e.g. [7],[8],[9],[10]).  
 In archaeological applications a lot of emphasis has been put on testing the consistency between 
observed empirical patterns and the hypothesis of neutral evolution. It has been argued that neutral 
evolution provides the most parsimonious mechanism to account for the common observation that new 
artefact attributes, such as decoration patterns, appear, rise in popularity then decline in frequency and go 
extinct [11]. To determine whether the composition of an observed archaeological assemblage is 
consistent, or not, with unbiased social learning (the mechanism of neutral cultural evolution), empirical 
diversity statistics of the observed assemblage have been compared to their theoretical expectations at 
innovation-drift equilibrium (e.g. [11],[12],[13],[14]). Further, Bentley et al. (e.g. [15],[16],[17]) have used 
the full variant frequency distribution of a dataset and compared it to the right-skewed power-law 
distribution expected to arise under unbiased social learning at innovation-drift equilibrium [18]. However 
it has been pointed out that the power-law as limiting distribution can be generated by a large number of 
underlying mechanisms ([19],[20]). Nevertheless, [21] showed that the power-law approach produces 
more robust results when time-averaging processes are considered than the diversity approach. To 
examine the temporal dynamic of neutral evolution, [22] and [23] used the rate of turnover within the n 
most popular variants in a population to test for departures from the neutral evolution hypothesis within 
a model comparison framework. Potentially it may be difficult to apply this approach to sparse 
archaeological data where the total number of observed cultural variants is low (such that a ’top list’ of 
size sufficient to accurately calculate turnover rates cannot be defined). Crucially, the approaches 
described above are based on the assumption that the cultural system considered is at innovation-drift 
equilibrium. This means the system is in a state where the loss of cultural diversity through drift and the 
introduction of diversity through innovations are balanced. For a more detailed review of this literature 
see [24].  
 In this paper we contribute to this discussion by developing a generative inference framework, 
going beyond our previous work on this topic [25] to address sampling and other issues. Generative 
inference frameworks have already been successfully applied to genetic applications (e.g. [26],[27]). 
Importantly, the framework will not rely on the assumption that the cultural system is at equilibrium. It 
has been shown that the inference of underlying transmission processes should, if possible, be based on 
the temporal dynamic of cultural change and not on the cultural composition of the population at a single 
point in time ([28],[29]). Therefore, the aim of our framework is to evaluate whether frequency changes of 
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different types of cultural variants observed in two archaeological assemblages between two time points 𝑡! 
and 𝑡! (with 𝑡! > 𝑡!) are consistent with a specific hypothesis about the underlying mechanisms of 
cultural transmission (see [25]). The approach is similar in spirit to the model selection framework 
developed by McElreath et al. [30] but we do not restrict the choice of the modelling framework by the 
availability of an analytical representation of the corresponding likelihood function. In particular, we use 
the frequency distribution of the observed sample, denoted by 𝑆(𝑡!) (throughout the paper, the ‘overline’ 
symbol ∙ stands for observed quantities), of cultural variants at time 𝑡! as the starting point of our analysis. 
But importantly a sample describes only a fraction of the whole population of cultural variants. Cultural 
transmission processes, however, act on the whole population and therefore any inference framework 
must be based on the cultural composition of the population rather than the observable sample. To 
incorporate this fact we firstly generate population structures from which the observed sample could have 
been drawn at random. Then we determine the statistical properties of theoretical samples, denoted by 
𝑆(𝑡!), produced under the assumption that changes in frequencies seen at time 𝑡! are caused by a specific 
transmission mechanism. By this means we also account for potential time-averaging processes, where 
time-averaging refers to the phenomenon where cultural remains deposited at different times are 
preserved together and cannot be distinguished from one another, the rule rather than the exception in 
archaeology  (e.g. [21]). Subsequent comparisons of the properties of the theoretical sample with 
properties of the observed sample 𝑆(𝑡!) will allow for conclusions about the consistency between the 
transmission hypothesis and the observed changes in frequency of the cultural variants in the time period 
[𝑡!, 𝑡!]. In particular, we are interested in exploring the consistency with neutral evolution, frequency-
dependent and age-dependent selection processes. For that we use approximate Bayesian computation to 
establish which transmission processes could have produced the observed frequency data and therefore 
infer the underlying processes directly from the available data without any equilibrium assumption. The 
outcomes of the framework developed are posterior distributions for the model parameters 
(characterizing the specific transmission process), indicating the range of the transmission processes that 
could have produced the observed changes in frequency.  

 We stress that it is not known a priori whether observable population-level patterns, such as 
observed changes in frequency of cultural artefacts, carry a strong signature of the underlying 
transmission process and therefore whether reliable inference is possible on the base of the observed data 
[3]. However, we envision that a generative inference framework might shed light on this problem. 
Knowing when inference should not be based on population-level data is equally important, as in these 
situations other lines of evidence have to be considered.   

2. The inference framework 
The inference framework is designed to investigate whether observed changes in frequencies of cultural 
variants between two time points 𝑡! and 𝑡! are consistent with a specific hypothesis of cultural 
transmission. It consists of two main parts. Firstly, we develop a generative model which, based on the 
observed sample 𝑆(𝑡!) at time 𝑡!, generates theoretical samples, 𝑆(𝑡!), at time 𝑡! conditioned on a specific 
cultural transmission process. Secondly, we use Bayesian inference techniques to establish whether the 
cultural transmission process considered can produce samples 𝑆(𝑡!) that are similar to the observed 
sample 𝑆(𝑡!) at time 𝑡!.  In this section we discuss both parts of the framework in detail. 
 Throughout the paper we use the following notation. A sample of cultural variants is 
characterized by the number 𝑘 of different types of variants, the total number 𝑛! of variants of type 𝑖, 
𝑖 = 1,… , 𝑘, the sample size 𝑛 = 𝑛!!

!!!  and the relative frequencies 𝑟! =
!!
!

, 𝑖 = 1,… , 𝑘. Similarly, the 

corresponding population, denoted by 𝑷, is described by the following usually unknown quantities: the 
number 𝐾 of different types of variants (𝑘 ≤ 𝐾), the total number 𝑁! of variants of type 𝑖, 𝑖 = 1,… ,𝐾, the 

population size 𝑁 = 𝑁!!
!!!  and the relative frequencies 𝑅! =

!!
!

, 𝑖 = 1,… ,𝐾. Importantly, we summarize 
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the population structure by [𝑅!,𝑅!,… ,𝑅! ,𝑅!!!] with 𝑅!!! = 1 − 𝑅!!
!!!  or [𝑁!,𝑁!,… ,𝑁! ,𝑁!!!] with 

𝑁!!! = 𝑁 − 𝑁!!
!!!  and therefore consider all variant types which are not observed in the original sample 

as type 𝑘 + 1. This is a simplifying assumption as variant type 𝑘 + 1 most likely consists of several 
unobserved (and potentially rare) variant types. The determination of the number of unobserved variant 
types is not the subject of this inference approach as we aim to establish the statistical power of inference 
methods based on observable population-level quantities; it will be left for future research. 

2.1. The generative model 
As already mentioned before, the observed sample 𝑆(𝑡!) of size 𝑛(𝑡!) only describes a fraction of the 
population of cultural variants present at 𝑡!. Cultural transmission processes however, act on the whole 
population. Consequently, the first step of our model must include the determination of a population 
structure 𝑷(𝑡!) that is consistent with the observed sample 𝑆(𝑡!) or in other words, of a population 
structure from which the observed sample could have been drawn by a process of random sampling. 
Grounding the inference framework on sample frequencies would inevitably overestimate the role of 
cultural drift. Based on a consistent population 𝑷 𝑡! , we generate the population-level frequencies of the 
different cultural variant types conditioned on the assumption that frequency changes between the time 
points 𝑡! and 𝑡! are caused by the assumed evolutionary process. In this way we generate theoretical 
populations 𝑷 𝑡! + 𝜏 , 𝜏 = 1,… , 𝑡! − 𝑡! and the last modelling step consists of sampling from those 
populations to generate a sample 𝑆(𝑡!) of size 𝑛(𝑡!) (𝑛(𝑡!) denotes the size of the observed sample 𝑆(𝑡!)) 
at time 𝑡!. 

2.1.1. Generating	
  population	
  structures	
  based	
  on	
  a	
  given	
  sample	
  	
  
Given the observed sample 𝑆, we determine consistent population structures 𝑷 = [𝑅1,… ,𝑅𝑘,𝑅𝑘+1], 
meaning population structures from which the observed sample 𝑆 could have been drawn by a process of 
random sampling, by using a Dirichlet distribution approach. This approach has already been successfully 
applied in population genetics (e.g. [26],[27]). It results in a distribution of consistent population 𝑷 of the 
form   

𝑃(𝑷|𝑆) ∝ 𝑃(𝑷)𝑃 𝑆|𝑷 ∝ 𝑅1
𝛼1−1+𝑛1𝑅2

𝛼2−1+𝑛2 ∙⋯ ∙ 𝑅𝑘
𝛼𝑘−1+𝑛𝑘𝑅𝑘+1

𝛼𝑘+1−1.                                                     (1) 

Consequently, sampling from distribution (1) generates population structures 𝑷 = [𝑅1,… ,𝑅𝑘,𝑅𝑘+1] from 
which the observed sample could have been drawn at random. As an example, we assume a sample 
consisting of seven variant types with the frequencies 𝑆 = [1,2,5,10,20,40,60]. Figure 1 shows the 95% 
intervals of the possible population-level frequency ranges of the seven variant types present in the 
sample and of variant type eight summarizing all variants not observed in the sample. As expected, those 
95% intervals are relatively wide, demonstrating the importance of this modelling step.  

In more detail, we assume that the total population size N is much larger than the sample size n. 
Now, given a population structure 𝑷 = [𝑅1,… ,𝑅𝑘,𝑅𝑘+1] the probability of a specific sample 𝑆  with the 
absolute frequencies 𝑛!,… , 𝑛! , 0  is determined by the multinomial distribution 

𝑃 𝑆|𝑷 = !!
!!!!

!!!
𝑅!
!! ∙ … ∙ 𝑅!

!!𝑅!!!! .              

In this case the conjugate prior is given by the Dirichlet distribution of the form  

𝑃 𝑷 ∝ 𝑅!
!!!! ∙ … ∙ 𝑅!

!!!!𝑅!!!
!!!!!!  

[31] with exponents 𝛼! > 0 and we can derive the unnormalized posterior distribution of the population P  
given the sample 𝑆 (see equation (1)) 

𝑃(𝑷|𝑆) ∝ 𝑃(𝑷)𝑃 𝑆|𝑷 ∝ 𝑅1
𝛼1−1+𝑛1𝑅2

𝛼2−1+𝑛2 ∙⋯ ∙ 𝑅𝑘
𝛼𝑘−1+𝑛𝑘𝑅𝑘+1

𝛼𝑘+1−1                                                      
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[31]. We note that this procedure does not need an estimate of the actual population size. The parameter 
setting 𝛼! = ⋯ = 𝛼!!! = 1 assigns equal density to any population P  satisfying 𝑅! = 1!!!

!!! . However, 
one needs to be cautions when there are many variant types with very low frequencies in the sample. In 
this situation a uniform Dirichlet distribution (i.e. 𝛼! = ⋯ = 𝛼!!! = 1) tends to underestimate the fraction 
of unobserved variant types and the parameters 𝛼! might have to be chosen appropriately.  

 
Figure 1. 95% intervals of the marginal (population-level) frequency distributions of the seven variant types which are 
present in the sample with the frequencies 𝑺 = [𝟏  𝟐  𝟓  𝟏𝟎  𝟐𝟎  𝟒𝟎  𝟔𝟎] and variant type eight summarizing all variants not 
observed in the sample with 𝜶𝒊 = 𝜶 = 𝟏. 

2.1.2. 	
  Modelling	
  the	
  evolutionary	
  process	
  
In the following we develop a framework that models the change in frequency of the different variant 
types in the population at each time point 𝑡! + 𝜏, 𝜏 = 1,… , 𝑡! − 𝑡! (where 𝑡! and 𝑡! are measured in years 
and a time step has the duration of a year) conditioned on a specific underlying transmission mechanism. 
To do so we determine the total population sizes 𝑁 𝑡! + 𝜏 , 𝜏 = 1,… , 𝑡! − 𝑡! for each time point between 
𝑡! and 𝑡!, sample a population structure 𝑷(𝑡!) at 𝑡! from equation (1) and assume that in each time point 
𝑡! + 𝜏, 𝜏 = 1,… , 𝑡! − 𝑡! there is a fraction of the population of cultural variants that is removed from the 
population and subsequently replaced. While the removal process is modelled in a random fashion the 
replacement process occurs according to the cultural transmission process considered. In this way we 
generate theoretical population structures 𝑷(𝑡! + 𝜏) at times 𝑡! + 𝜏 with 𝜏 = 1,… , 𝑡! − 𝑡! conditioned on a 
specific underlying transmission mechanism, and additionally allow for the inclusion of potential time-
averaging effects (see [21] or [32] for detailed investigations of these effects). The assumption of a 
random removal process is a modelling choice. This is motivated by the fact that we later apply the 
inference framework to a dataset describing temporal frequency changes of different types of decorated 
ceramic vessels. The removal of certain vessels from the population might coincide with being physically 
broken. It seems reasonable to assume that this occurs in a random rather than in a selective manner.    
 More specifically, we determine the population sizes 𝑁(𝑡!) and 𝑁(𝑡!) at times 𝑡! and 𝑡! by 

𝑁 𝑡! = !
!
𝑛(𝑡!)   and   𝑁 𝑡! = !

!
𝑛(𝑡!) 

where 𝑠 (0 < 𝑠 ≤ 1) describes the ratio between population size and sample size. To account for 
uncertainties in the estimate of this ratio we define 𝑠 as normally distributed with mean 𝑠  and variance 
𝜎!!. This implies that on average the sample represents 𝑠 ∙ 100% of the population; however, the 
concrete realisation varies around this mean ratio. The population sizes 𝑁(𝑡! + 𝜏) for time points between 
𝑡! and 𝑡! are obtained by linear interpolation; in other words, they are inferred on the basis that the 
difference between the sample sizes at 𝑡! and 𝑡! is evenly distributed across the time steps between them. 

Next, we sample a population structure 𝑷 𝑡! = [𝑅1 𝑡! ,… ,𝑅𝑘 𝑡! ,𝑅𝑘+1 𝑡! ] from equation (1) and 
determine the absolute frequencies 𝑷! 𝑡! = [𝑁1 𝑡! ,… ,𝑁𝑘 𝑡! ,𝑁𝑘+1 𝑡! ] by multiplying 𝑅! by the estimate 
of the total population size 𝑁(𝑡!) at 𝑡!.  
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To describe the evolutionary process between 𝑡! and 𝑡! we model the frequencies of the 𝑘 + 1 
variant types as a Markov process. In each time step 𝜏 = 1,… , 𝑡! − 𝑡! we firstly randomly choose 𝑢 
variants to be removed from the population. It holds  

 𝑢 =
𝑟𝑁 𝑡! + 𝜏                                                                                                                                                         if    𝑁 𝑡! + 𝜏 ≤ 𝑁 𝑡! + 𝜏 + 1
     𝑟𝑁 𝑡! + 𝜏 + 1 + 𝑁 𝑡! + 𝜏 − 𝑁 𝑡! + 𝜏 + 1                 if    𝑁 𝑡! + 𝜏 > 𝑁 𝑡! + 𝜏 + 1   

                          (2) 

with ∙  denoting the integer part. The variable 0 < 𝑟 ≤ 1 describes the fraction of the population being 
replaced based on the population size 𝑁 = min  {𝑁 𝑡! + 𝜏 ,𝑁 𝑡! + 𝜏 + 1 } and therefore 1/𝑟 defines the 
average life span of each variant. We assume that 𝑟 is modelled as a normally distributed random variable 
with mean 𝑟  and variance 𝜎!!. Again the use of a random variable aims to capture the uncertainty and 
temporal variation in the fraction of the population that is replaced in each time step and therefore in the 
average life span of a cultural variant. Equation (2) ensures that the number of variants subsequently 
added to the population is not influenced by the direction of the change in population size between two 
time steps. Further, 𝑢! records the total number of removed variants of type i in this time step; it holds 

𝑢! = 𝑢!!!
!!! .  Secondly, we add 𝑣 = 𝑁 𝑡! + 𝜏 + 1 − 𝑁 𝑡! + 𝜏 − 𝑢  cultural variants to the population 

and ensure that the total population size 𝑁(𝑡! + 𝜏 + 1) at 𝑡! + 𝜏 + 1 is maintained. Importantly, the 
choice of which variant type to add is guided by the assumed cultural transmission process and the 
variables 𝑣! denote the total number of added variants of type 𝑖 so that it holds 𝜈! = 𝑣!!!

!!! .  
Summarizing, the two random processes, the removal and subsequent replacement of cultural 

variants, result in a one-step transition probability for transforming the population 𝑷𝑵 𝑡! + 𝜏 =
[𝑁! 𝑡! + 𝜏 ,… ,𝑁!!! 𝑡! + 𝜏 ] of cultural variants at time 𝑡! + 𝜏 into 𝑷𝑵 𝑡! + 𝜏 + 1 = [𝑁! 𝑡! + 𝜏 +
1 ,… ,𝑁!!! 𝑡! + 𝜏 + 1 ] at time 𝑡! + 𝜏 + 1 of the form  

𝑃 𝑷𝑵 𝑡! + 𝜏 + 1   𝑷𝑵 𝑡1 + 𝜏 =
                                                           𝑃(removing   𝑢!,… , 𝑢!!!   variants)∀(!,!)∈! ∙ 𝑃(adding   𝜈!,… , 𝜈!!!   variants).                (3)                     

The set G contains all pairs of vectors 𝜗 = [𝑢!,… , 𝑢!!!] and 𝜈 = [𝜈!,… , 𝜈!!!] satisfying  

 0 ≤ 𝑢! ≤ 𝑁! 𝑡! + 𝜏 ,       𝑢! = 𝑢!!!
!!!    and    𝑁(𝑡! + 𝜏) − 𝑢 + 𝜈!!!!

!!! = 𝑁(𝑡! + 𝜏 + 1) 

(see Appendix A for more mathematical details). In the following we explore the temporal dynamic of the 
frequency change under the assumption that the replacement process is guided by neutral evolution, 
frequency-dependent and age-dependent selection.  

 
Neutral cultural evolution means that in finite populations cultural variant types are chosen to be added 
to the population according to their relative frequency and new variants are introduced by a process of 
random mutation at rate 𝜇 (see e.g. [11],[12],[17]). This implies that the probability for choosing a variant 
of type i to be added to the population is given by 

 𝑝! 𝑡 = !! ! !!!
! ! !!

(1 − 𝜇)    for   𝑖 = 1,… , 𝑘   and    𝑝!!! 𝑡 = !!!!(!)!!!!!
! ! !!

+ 𝜇 !! ! !!!
! ! !!

!
!!! .  

Variant type k+1 contains all variant types not observed in the sample 𝑆(𝑡!) and by definition all 
mutations as well.  
 
Frequency-dependent selection is defined as the disproportional preference for either low-frequency 
variant types (anti-conformist bias) or high-frequency variant types (conformist bias) (e.g. [4]). In order to 
incorporate those biases in our framework we define the probability of choosing a variant of type i, 

i=1,…,k+1 to be added to the population by 𝑝! 𝑡 = 𝑝!(𝑡)
!
!

 with  

𝑝!(𝑡) =
0,                                        𝐢𝐟         !! ! !!!

! ! !!
+ 𝑏!"#$ 𝑘 !! ! !!!

! ! !!
− 1 < 0

!! ! !!!
! ! !!

+ 𝑏!"#$ 𝑘 !! ! !!!
! ! !!

− 1 (1 − 𝜇),                        𝐞𝐥𝐬𝐞
  

                                                                          (4) 
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and   

𝑝!!!(𝑡) =

!
!!!

𝑝!!
!!! ,                    𝐢𝐟         !!!! ! !!!!!

! ! !!
+ 𝑏!"#$ 𝑘 !!!! ! !!!!!

! ! !!
− 1 < 0

!!!! ! !!!!!
! ! !!

+ 𝑏!"#$ 𝑘 !!!! ! !!!!!
! ! !!

− 1 + !
!!!

𝑝!!
!!! ,                        𝐞𝐥𝐬𝐞

  

                                                                        

and 𝑤 = 𝑝𝑖(𝑡)
!!!
!!! . The parameter 𝑏!"#$ defines the strength and direction of the selection. For 

𝑏!"#$ > 0 selection favours variant types with frequencies higher than the relative majority 1/𝑘 (where 

𝑘  denotes the number of variant types with non-zero frequency at 𝑡) and for 𝑏!"#$ < 0 selection favours 
variant types with frequencies lower than 1/𝑘. In other words, 𝑏!"#$ controls the importance of selection 
compared to neutral evolution (Equation (4) coincides with neutral evolution for 𝑏!"#$ = 0.). The 
simplifying assumption that variant type 𝑘 + 1 contains all unobserved and newly invented variants (i.e. 
variant type 𝑘 + 1 has a higher frequency than any of the individual types) will slightly overestimate the 
selection pressure on this variant type in conformist situations and underestimate the selection pressure in 
anti-conformist situations. This naturally influences the temporal frequency change dynamic but 
simulation studies indicate that those influences are very small for sample sizes of the magnitude 
considered in section 3.  
 
Age-dependent selection (or pro-novelty selection) is here defined as a disproportional preference for 
‘young’ variant types (e.g. [33]). Naturally there can exist different preferences; however, we restrict 
ourselves to the situation where young variant types possess a selective advantage just because they are 
novel. We note that age-dependent selection and anti-conformity result in different cultural dynamics. 
While anti-conformity favours variant types below a certain threshold regardless of their age, age-
dependent selection only supports 'young' variants. Consequently the effects of both transmission 
processes might be similar on newly invented and therefore low-frequency variant types; however, they 
are very different on 'older' variant types returning to a low frequency.  

Besides its frequency, each variant type 𝑖 is now also characterized by its age, denoted by 𝑎!, 
defined as the time it has been present in the population. We assume: the younger the age of type 𝑖 the 
stronger it is favoured by selection. Then the probability of choosing a variant of type 𝑖, 𝑖 = 1,… , 𝑘 + 1 to 

be added to the population is given by 𝑝! 𝑡 = 𝑝!(𝑡)
!
!

 with 

𝑝!(𝑡) =
!! ! !!!
! ! !!

𝑒!!!"#!! ! (1 − 𝜇)  and  𝑝!!!(𝑡) =
!!!! ! !!!!!

! ! !!
𝑒!!!"#!!!!(!) + 𝜇 !! ! !!!

! ! !!
𝑒!!!"#!!(!)!

!!!    (5) 

and 𝑤 = 𝑝𝑖(𝑡)
!!!
!!! . The parameter 𝑏!"# defines how quickly the selective advantage of young variant 

types fades with increasing age. Similarly to frequency-dependent selection, 𝑏!"# controls the importance 
of selection compared to neutral evolution (Equation (5) coincides with neutral evolution for 𝑏!"# = 0). 
As variant type 𝑘 + 1 contains all unobserved and newly invented variants the age-dependent selection 
pressure on this variant type can only be an assumed average value. Again this influences the temporal 
frequency change dynamic. But as it is almost impossible to obtain information about the age of 
unobserved variant types from observable data we believe this simplification is justified.  

2.1.3. Generating	
  theoretical	
  samples	
  	
  
Lastly we generate a theoretical sample 𝑆(𝑡!) at time 𝑡! of size 𝑛(𝑡!). Instead of sampling from the 
theoretical population 𝑷(𝑡!) at time 𝑡! only we randomly draw 𝑛(𝑡!) variants evenly from the populations 
{𝑷 𝑡! + 𝜏 , 𝜏 = 1,… , 𝑡! − 𝑡!} that have been determined as described in the previous section. In this way 
we account for possible time averaging effects in the considered interval [𝑡!, 𝑡!] by e.g. allowing variant 
types to be present in the sample 𝑆(𝑡!) at 𝑡! which are already extinct in the population 𝑷(𝑡!).    
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2.2. Inference of underlying transmission process 
The second part of the inference framework includes the statistical comparison between observed 
frequency changes in the interval [𝑡!, 𝑡!] and frequency changes expected under a specific hypothesis ℋ 
about the underlying mechanisms of cultural transmission. As described above, we consider in the 
following the hypotheses ℋ: ‘neutral evolution’, ℋ: ‘frequency-dependent selection with strength 𝑏!"#$’ 
and ℋ: ‘age-dependent selection with strength 𝑏!"#’.  

To do so we generate 100,000 theoretical samples 𝑆(𝑡!) conditioned on a specific hypothesis ℋ 
according to the procedure described in section 2.1. and derive their statistical properties. In particular, 
we determine (i) the marginal frequency distributions 𝑃 𝑆! 𝑡! 𝑆 𝑡! ,ℋ  of all 𝑘 + 1 variant types at 
𝑡!  and (ii) the probability distribution 𝑃(𝜅(𝑡!)|𝑆(𝑡!),ℋ) of the number of variant types, denoted by 𝜅(𝑡!), 
that are present in the sample at 𝑡! and are still present in the sample 𝑆(𝑡!) at 𝑡! conditioned on the 
assumed transmission hypothesis ℋ. Comparisons of these distributions with the observed frequencies of 
the 𝑘 variant types and the observed number of remaining initially present variants at time 𝑡! allow for 
conclusions on whether the assumed transmission mechanism ℋ could have produced the frequency 
changes in the samples 𝑆(𝑡!) and 𝑆 𝑡! .    

While the procedure described above is appropriate for neutral evolution, our definition of 
frequency-dependent and age-dependent selection (equations (4) and (5)) allows for varying selection 
strengths 𝑏!"#$ and 𝑏!"#, respectively). Naturally, different selection strengths affect the distributions 
𝑃 𝑆! 𝑡! 𝑆(𝑡!),ℋ  and 𝑃(𝜅(𝑡!)|𝑆(𝑡!),ℋ). This leads to the question of which parameter values of 𝑏!"#$ 
and/or 𝑏!"# describe the observed sample 𝑆(𝑡!) best. As the complete exploration of the relevant 
parameter spaces is too costly we use the statistical inference method approximate Bayesian computation 
(ABC).  

2.2.1. Approximate	
  Bayesian	
  Computation	
  (ABC)	
  
The general idea of this method is to approximate the (joint) posterior distributions of the model 
parameters, summarized in the vector 𝜃, given the observed sample 𝑆(𝑡!) in situations where the 
likelihood function of the considered model is either impossible or computationally prohibitive to obtain 
(e.g. [34]). Broadly speaking, the posterior distributions describe the parameter ranges which could have 
produced the observed sample under a given tolerance level 𝜀. These distributions are obtained by 
generating samples 𝑆(𝑡!) with parameter values 𝜃 sampled from appropriately chosen prior distributions.  
Parameter combinations resulting in samples ‘close enough’ to the observed sample 𝑆(𝑡!) are retained and 
provide a sample of the distribution 𝑃(𝜃|𝑑(𝑆 𝑡! , 𝑆(𝑡!)) ≤ 𝜀). The function 𝑑 describes the distance 
between the theoretical and observed sample and 𝜀 the tolerance level that determines the level of 
approximation. As 𝜀 → 0 the retained sample asymptotically approaches the true posterior distribution 
𝑃(𝜃|𝑆(𝑡2)) (e.g. [34]). In other words, the distributions 𝑃(𝜃|𝑑(𝑆 𝑡! , 𝑆(𝑡!)) ≤ 𝜀) are only a meaningful 
approximation of the likelihood function of the generative model if the tolerance level 𝜀 is sufficiently 
small. In the following we use a sequential Monte Carlo approach (e.g. [35],[36]). The idea here is to 
decompose the problem of sampling from the distribution 𝑃(𝜃|𝑑(𝑆 𝑡! , 𝑆(𝑡!)) ≤ 𝜀) into a series of 
simpler sub-problems. For that we choose a sequence of tolerance levels {𝜀!, 𝜀!,… , 𝜀!} with 𝜀! > 𝜀! >
⋯ > 𝜀! ≥ 0 and draw in the first step a sample from 𝑃(𝜃|𝑑(𝑆 𝑡! , 𝑆(𝑡!)) ≤ 𝜀!) with 𝜀! large and 
subsequently from an increasingly constrained sequence of distributions  

𝑃 𝜃 𝑑 𝑆 𝑡! , 𝑆 𝑡! ≤ 𝜀! ,      𝑖 = 1,… , 𝑛 

until the desired tolerance level 𝜀 = 𝜀! is reached. The crucial question, however, is how we define the 
distance between the theoretical samples 𝑆 𝑡2  and the observation 𝑆(𝑡!). In practice data is often 
reduced to a set of summary statistics, denoted by 𝒮, producing samples of the distribution 
𝑃(𝜃|𝑑(𝒮(𝑆 𝑡! ), 𝒮(𝑆 𝑡! )) ≤ 𝜀). This approach only generates exact inference results if the summary 
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statistic is sufficient. Here we determine the distance between theoretical and observed sample by 
calculating  

• the absolute distance between observed and theoretical frequencies  

                                              𝑑! =
!
!

𝑆!(𝑡!) − 𝑆!(𝑡!)!
!!! ,                                                                      (6)                                                                                                                  

• the absolute difference between the median 𝑚! of the distributions 𝑃 𝑆! 𝑡! 𝑆(𝑡!),ℋ  and the 
observed frequencies  

                                           𝑑! = !
!

𝑆!(𝑡!) −𝑚!
!
!!! .                                                                           (7)                                                                                                                     

Additionally we require that the number of remaining initially present variant types coincides with the 
observed number. We note that the statistics dd and dm are based directly on the actual frequencies. While 
dd compares the observed and theoretical frequencies directly dm compares the observed frequencies to the 
median frequencies (a measure of the average value of the possible frequency range) under the considered 
transmission hypothesis ℋ. Consequently, using dm as the statistic infers likely parameter constellations 
whereas using dd infers possible parameter constellations which, however, might only produce the 
observed sample 𝑆(𝑡2) with a small likelihood. In Appendix B (cf. Figure S1) we show that inference 
based on the statistic dm provides the tightest posterior distribution of the model parameters and therefore 
we build the analysis in the next section on this statistic. In Appendix F we show the corresponding 
results for the analysis based on dd.  

2.3. Theoretical limitations of the inference procedure 
To explore the theoretical limits of inference based on population-level data we assume the presence of 
seven cultural variant types with the frequencies 𝑆 𝑡! = 1,2,5,10,20,40,60  at 𝑡! = 0. We use the 
modelling framework to generate samples 𝑆 𝑡!  under the hypothesis of neutral evolution (i.e. 𝑏!"#$ = 0), 
negative frequency-dependent selection (i.e. 𝑏!"#$ = −0.01), positive frequency-dependent selection (i.e. 
𝑏!"#$ = 0.01) and the parameter constellation 𝑟 = 0.1 and 𝑠 = 0.3 at 𝑡! = 50. Application of the ABC 
procedure identifies the cultural transmission processes (parameterized by the selection strength 𝑏!"#$) 
that are consistent with the observed data. Figure 2 shows the posterior distributions of the parameter 
𝑏!"#$ if the ‘true’ selection strength is (a) 𝑏!"#$ = −0.01, (b) 𝑏!"#$ = 0 and (c) and 𝑏!"#$ = 0.01. Those 
posterior distributions describe the parameter range of 𝑏!"#$ for which the distance between theoretical 
and observed samples after 50 time steps as measured by equation (7) is almost zero. The widths of the 
distribution show that the information that can be inferred from sparse frequency data is limited. For 
example, in Figure 2b the data was produced under neutral evolution but frequency-dependent selection 
can generate almost identical frequency patterns resulting in a relative wide posterior distribution for 𝑏!"#$. 
It is theoretically impossible to distinguish between neutral evolution and weak frequency-dependent 
selection on the basis of such sparse data. This implies that there exist theoretical limits on the amount of 
information that can be extracted from population-level frequency data.   

a. b. c.  
Figure 2. Posterior distributions of the model parameter 𝒃𝐟𝐫𝐞𝐪  for a) anti-conformist selection with 𝒃𝐟𝐫𝐞𝐪 = −𝟎.𝟎𝟏, b) 
neutral evolution and c) conformist selection with 𝒃𝐟𝐫𝐞𝐪 = 𝟎.𝟎𝟏 based on the statistic dm. 
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3. Case study 
In the following we apply the framework developed in section 2 to a data set describing the culture of the 
earliest farmers in Central Europe, the so-called Linear Pottery Culture (or LBK after its German name), 
c.7500-7000 years ago. The dataset (given in [25],[37]) records the frequency of different types of 
decorated vessels at seven different points in time, denoted with 𝑡! , 𝑗 = 1,… ,7, defining six phases of 
cultural change which vary in duration. Our aim is to explore whether observed frequency changes in 
different types of pottery between the beginning and the end of each of the six phases are consistent with 
a specific hypothesis about the underlying mechanism of cultural transmission. The assumption that 
cultural transmission is relevant in this case is based on ethnographic studies showing that knowledge of 
pottery-making techniques is transmitted between potters. Previous studies of the transmission of LBK 
decoration patterns ([12],[25],[38],[39]) have been inconclusive, some consistent with neutral evolution 
and others rejecting it in favour of anti-conformist transmission.  

For the analysis we use the observed sample sizes 𝑛(𝑡!) at times 𝑡! and assume that the 

corresponding population sizes 𝑁 𝑡!  are determined by 𝑁 𝑡! = !
!
𝑛 𝑡! , 𝑗 = 1,… ,7 with 𝑠~𝒩( 𝑠 , 𝜎𝑁2 ). 

Estimating even the average sampling fraction 𝑠  is, of course, very problematical for archaeologists 
since the currently available record is the result of a large number of local factors relating to site survival 
and recovery. However, in the case of the LBK in Germany the work of Zimmermann et al. ([40],[41]) 
provides a basis. Using data from small areas that have been very thoroughly excavated he calculated the 
estimated number of households for the different LBK settlement area of Germany ([40], Figure 15). For 
the areas included in Strien’s study this is c.2300 at the peak density. The total number of distinct finds in 
Strien’s data set [37], which should roughly correspond to households, is 270. While this is based on all 
the phases, it suggests that an average sampling fraction of 0.1 is the right order of magnitude and we 
assume 𝑠~𝒩(0.1, 0.012). The samples represent on average 10% of the population at 𝑡! but we allow for 
sufficient variation to account for uncertainties in those estimates. Population sizes for intermediate time 
steps are obtained by linear interpolation between 𝑁(𝑡!) and 𝑁(𝑡!!!). Further, in temperate climates such 
as Central Europe pottery making is largely seasonal and generally takes place in one bout of activity per 
year [42]. Accordingly, the lengths of the phases correspond to the number of potential opportunities for 
copying within a given phase and thus the number of opportunities for the population of decorative 
motifs to change as a result of the operation of drift, innovation and other potential forces.  

3.1. Analysis of neutral evolution 
We start our analysis by investigating whether observed frequency changes in different types of pottery 
between different phases are consistent with the hypothesis of neutral evolution. For that we determine 
the marginal frequency distributions 𝑃 𝑆! 𝑡!!! 𝑆 𝑡! ,ℋ  of all initially present variant types and the 
probability distribution 𝑃(𝜅(𝑡!!!)|𝑆(𝑡𝑗),ℋ) of the remaining initially present variant types for all phases 
under neutral evolution. We assume that the fraction r in equation (2) is given by 𝑟~𝒩( 𝑟 , 0.05!) with 
𝑟 = 0.1; 0.3; 0.5 Varying the mean value 𝑟  allows us to explore the effects of different replacement 

fractions and consequently different individual life spans of the cultural variants on the frequency change 
dynamic. Shott [43] reviews a range of ethnoarchaeological studies of pottery use life and finds a general 
correlation with vessel size: smaller vessels tend to have short use lives with larger vessels surviving 
longer. The data show that the replacement fractions used are plausible ones. It should also be noted that 
in the case of the LBK the vessels are very uniform in size and shape. 

 The 95% intervals of the marginal frequency distributions 𝑃 𝑆! 𝑡!!! 𝑆 𝑡!  of all initially present 

variant types at the end of each phase represent the frequency ranges of each type of pottery that are 
possible under neutral evolution (see Appendix C, Figure S3 for the concrete intervals). Table 1 shows 
that in each phase a number of observations lie outside these intervals for 𝑟 = 0.1; 0.3 and therefore we 
argue that the observed frequencies are not likely to be produced by neutral evolution with an average life 
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span of an individual variant of 10 and 3.33 years, respectively. For 𝑟 = 0.5 the neutral hypothesis gains 
slightly more support; fewer observations lie outside the intervals; however, with the possible exception 
of the phases II, III and VI we also conclude that the observed frequencies are not likely to be produced 
by neutral evolution with an average life span of an individual variant of 2 years.   

Replacement Phase I Phase II Phase III Phase IV Phase V Phase VI 
 out of 10 out of 10 out of 19 out of 26 out of 35 out of 20 
𝑟 =0.5 2 (=20%) 1 (=10%) 3 (≈16%) 6   (≈23%) 7 (=20%) 3 (=15%) 
𝑟 =0.3 2 (=20%) 5 (=50%) 6 (≈32%) 9   (≈35%) 8 (≈23%) 4 (=20%) 
𝑟 =0.1 2 (=20%) 5 (=50%) 7 (≈37%) 15 (≈58%) 8 (≈23%) 7 (=35%) 

Table 1. Number of variants outside the 95% intervals of the marginal frequency distribution for 𝒓 = 𝟎.𝟏;𝟎.𝟑;𝟎.𝟓. 
 
In the next step we analyse the distributions of the number of remaining initially present variant types for 
each phase. The relatively long life span of the individual cultural variants for 𝑟 = 0.1 predicts that under 
neutral evolution more variant types than observed should survive until the end of phases IV and V.  For 
𝑟 = 0.3; 0.5 the number of remaining initially present variants in phase V contradicts the hypothesis of 

neutral evolution (see Appendix C, Figure S4 for details). 
Summarizing, based on the analysis of the two statistics we found no consistent evidence that 

neutral evolution with an average sampling fraction 𝑠 = 0.1 was the dominant transmission mechanism 
over the 500 years the Linear Pottery Culture lasted.  

3.2. Analysis for frequency-dependent selection 
In this section we ask whether frequency-dependent selection can describe the observed changes better 
than neutral evolution and assume that the probability of choosing a particular variant type is given by 
equations (4). To do so we apply the ABC inference procedure based on the statistic dm. The results of 
this procedure are posterior distributions of the model parameter  𝑟 and 𝑏!"#$ describing the parameter 
ranges for which the distance between theoretical and observed samples as measured by equation (7) is 
smaller than or equal to some tolerance level 𝜀. Figure 3 shows those distributions for the phases I and V 
(left column: posterior distribution of 𝑏!"#$, middle column: posterior distribution of 𝑟, right column: joint 
posterior distributions of 𝜃 = (𝑟, 𝑏!"#$)); the complete analysis can be found in Appendix D. It is apparent 
that 𝑏!"#$ = 0 is contained in the ranges of the posterior distribution of all phases meaning that frequency-
dependent selection does not explain the observed samples 𝑆(𝑡!) better (but also not worse) than neutral 
evolution. In detail, based on the posterior distribution for 𝑏!"#$ we exclude the presence of conformist 
selection in the population for phases I-III. In contrast, we exclude the presence of anti-conformist 
selection in phase V. The posterior distributions in the phases IV and VI indicate no strong frequency-
dependent selection pressure. We conclude that a relatively large parameter range of 𝑏!"#$ could produce 
the observed frequency changes between the different phases (given a certain tolerance level) which 
demonstrates the uncertainties associated with inferences based on sparse data. But importantly we note 
that the achievable tolerance level 𝜀 in the ABC analysis is relatively large in the different phases, 
indicating that frequency-dependent selection (and neutral evolution) might not be the best model to 
explain the observed data. To explore how well the identified parameter ranges are able to replicate the 
observed changes in frequency in more detail we determine the marginal frequency distributions 
𝑃 𝑆! 𝑡!!! 𝑆 𝑡! ,ℋ  of all 𝑘 variant types present at 𝑡! based on the joint distributions of the model 
parameters 𝜃 = (𝑟, 𝑏!"#$) shown in Figure 3. Figure S6 in Appendix D shows that a similar number of 
variant types as in the case of neutral evolution with 𝑟 = 0.5 (cf. Table 1) lie outside the 95% intervals of 
𝑃 𝑆! 𝑡!!! 𝑆 𝑡!   ,ℋ  pointing again to the fact that the hypotheses of neutral evolution and frequency-
dependent selection have similar explanatory power. 
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Figure 3. Posterior distribution of 𝒃𝐟𝐫𝐞𝐪  (left column), 𝒓  (middle column) and joint posterior distribution (right column, 
lighter areas coincide with regions of the parameter space that possess a higher probability) at the end of phase I (first 
row) and V (second row). We assume uniform priors over the intervals [-0.02,0.02] and [0.05,0.5].   

3.3. Analysis of age-dependent selection 
Next we explore whether age-dependent selection can describe the observed changes better than neutral 
evolution and assume that the probability 𝑝! of choosing a particular variant type is given by equations (5). 
This means that 𝑝! not only depends on the frequency but also on the age of the variant type, and 
consequently we need to estimate the time of innovation for each type. This is a challenging task as 
archaeological insights can help constructing an interval estimate but an accurate innovation time cannot 
be obtained with any certainty. Therefore we apply the ABC inference procedure not only to determine 
the posterior distribution of the fraction 𝑟 of the population that is replaced in every time step and the 
strength of age-dependent selection 𝑏!"# but also to determine the posterior distributions of the 
innovation times of all variant types and the average age of the variant types not observed in the sample at 
the beginning of each phase. Consequently age-dependent selection represents a more complex 
hypothesis than frequency-dependent selection. Archaeological interval estimates allow us to define 
relatively tight prior distributions for the innovation times (at least for the observed variant types) which 
restrict the variability of those parameters. Figure 4 shows the posterior distributions of 𝑏!"# (left 
column), 𝑟 (middle column) and the joint posterior distribution of 𝜃 = (𝑟, 𝑏age) (right column) for the 
phases I and V; a complete analysis can be found in Appendix E. We note that in contrast to frequency-
dependent selection the achievable distance 𝜀 between theoretical and observed samples as measured by 
equation (7) is relatively small for all phases. We further observe that 𝑏!"# = 0 is not contained in the 
ranges of the posterior distributions and therefore conclude that the hypothesis of age-dependent 
selection describes the observed samples 𝑆(𝑡!) better than neutral evolution. Further, the marginal 
frequency distributions 𝑃 𝑆! 𝑡!!! 𝑆 𝑡! ,ℋ  of all 𝑘 variant types present at 𝑡! produced by the joint 
distributions of the model parameters 𝜃 = (𝑟, 𝑏!"#) shown in Figure 4 indicate that, apart from phases II 

and V, almost no variant type lies outside the 95% intervals of   𝑃 𝑆𝑖 𝑡𝑗+1 𝑆 𝑡𝑗 ,ℋ  (see Appendix E, 
Figure S8). Therefore we conclude that the observed frequency changes especially between the beginning 
and the end of the phases I, III, IV and VI are consistent with the hypothesis of age-dependent selection. 
The Linear Pottery early farmer population might have had a mild preference for novel as opposed to 
longer established types of decorated pottery. 
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Figure 4. Posterior distribution of 𝒃𝐚𝐠𝐞  (left column), 𝒓  (middle column) and joint posterior distribution (right column, 
lighter areas coincide with regions of the parameter space that possess a higher probability) at the end of phase I (first 
row) and V (second row). We assume uniform priors over the intervals [0,0.01] and [0.05,0.5]. 

4. Qualitative differences between neutral evolution and age-dependent 
selection 

We have shown that age-dependent selection, i.e. the preference for novel cultural variants, is able to 
explain the LBK data set better than neutral evolution. But what are the qualitative differences between 
the two cultural transmission processes? To explore these differences we use our simulation framework 
and record the cumulative frequencies of each variant type that has been introduced in the population at 
some point over a period of 20,000 time steps under the assumption of 𝑟 = 0.3 and neutral evolution and 
age-dependent selection, respectively. To study the effects of the transmission processes only we keep the 
population size constant over time (𝑁 = 500) and allow for an initial burn-in time. Figure 5 shows that 
age-dependent selection produces variant frequency distributions which differ from neutral evolution (see 
[15],[16],[17] for results for neutral evolution with 𝑟 = 1). Age-dependent selection results in more variant 
types with medium-high frequencies and fewer variant types with high frequencies.  

 
Figure 5. Distribution of the cumulative frequencies of all variant types that have been present in the population at 
some point over a period of 20,000 time steps for r=0.3 and neutral evolution (red), age-dependent selection with 
𝒃𝐚𝐠𝐞 = 𝟏/𝟑𝟎𝟎 (magenta) and 𝒃𝐚𝐠𝐞 = 𝟏/𝟏𝟎𝟎 (cyan). The dashed lines illustrate the fitted power-laws (see [44] for details 
on the fitting procedure). 
  
In Appendix G we show that under neutral evolution variant types with a high frequency are usually ‘old’. 
Consequently, the lack of high-frequency variant types in situations of age-dependent selection is 
explained by the fact that ‘old’ variant types are selected against and therefore variant types do not have 
sufficient time to accumulate a high frequency. Further, we demonstrate in Appendix G that age-
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dependent selection leads to a higher turnover rate of top lists compared to neutral evolution (see 
[22],[45] for results under neutral evolution). Additionally, under age-dependent selection variant types 
show a more monotonic decrease behaviour after they have reached their frequency maximum (see Table 
S1). Summarizing, age-dependent selection accelerates the speed of cultural change (see also [33]) by 
selecting against ‘old’ and therefore cumulatively high-frequency variant types.  

5. Conclusion 
In this paper we developed an inference framework which evaluates whether observed frequency changes 
of cultural variant types between two time points 𝑡! and 𝑡! are consistent with a specific hypothesis about 
the underlying process of cultural transmission. In particular, we were interested in exploring the 
consistency with neutral evolution, frequency-dependent and age-dependent selection. Naturally this is 
not an all-encompassing analysis and alternative transmission hypotheses could be consistent with the 
observed frequency changes as well. The framework developed takes into account that observed 
frequency data often describe the composition of samples and not of whole populations of cultural 
variants. Using the Dirichlet distribution approach, we generated population structures from which the 
observed sample at time point 𝑡!, denoted by 𝑆 𝑡! , could have been drawn randomly. Based on those 
inferred population structures, we determined the temporal evolution of the frequencies of the cultural 
variant types conditioned on a specific transmission hypothesis. In doing so we assumed that only a 
fraction of the population, denoted by 𝑟, is renewed in every time step, which implies that individual 
variants have an average life span of 1/𝑟. In this way we generated populations of cultural variants at each 
time point in the considered interval [𝑡!, 𝑡!]. To further account for potential time-averaging processes we 
produced samples with a size equal to the observed sample at 𝑡!, denoted by 𝑆 𝑡! , by randomly sampling 
from all generated populations in [𝑡!, 𝑡!]. Consequently, the outputs of the developed framework are 
theoretical samples at 𝑡! conditioned on the cultural transmission hypothesis considered. Statistical 
analysis of the samples then informs about e.g. the frequency ranges of the cultural variants that are 
expected under the considered hypothesis.  
 Here we use approximate Bayesian computation (ABC) to determine which transmission 
processes are consistent with the observed changes in frequency. To test whether the hypothesis of 
frequency-dependent selection or age-dependent selection explains the data better than neutral evolution 
we approximated the posterior distribution of the parameters 𝜃 = (𝑟, 𝑏!"#$) (with 𝑏!"#$ describing the 
strength of frequency-dependent selection) and 𝜃 = (𝑟, 𝑏!"#) (with 𝑏!"# describing the strength of age-
dependent selection), respectively. Those posterior distributions indicate the parameter values and 
therefore the transmission hypotheses which could have produced sample frequencies similar to the 
observed ones. To this end we evaluated the similarities between the theoretical samples obtained by 
frequency-dependent or age-dependent selection and the observed sample at 𝑡! in two different ways. 
Firstly we compared the observed frequencies 𝑆 𝑡2  to the median frequencies (a measure of the average 
value of the possible frequency range) of the considered transmission process with the chosen 
parameterization 𝜃 (cf. statistic dm described in equation (7)). We retained the parameter constellations 
which produced frequency data sufficiently close to the observed data and subsequently generated 
posterior distributions for the model parameters describing probable parameter constellations. Secondly 
we compared the obtained theoretical frequencies directly to the observed frequencies 𝑆(𝑡2) (cf. statistic 
dd described in equation (6)). Again we retained the parameter constellations which produced frequency 
data sufficiently close to the observed data and subsequently generated posterior distributions for the 
model parameters describing possible parameter constellations. Possible means that the transmission 
hypothesis with the parameterization 𝜃 could have produced the observed sample frequency but 
sometimes only with a very small probability. We found, unsurprisingly, that applications of the ABC 
algorithm based on dd resulted in substantially wider posterior distributions indicating that many 
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transmission processes could theoretically produce the observed frequencies 𝑆(𝑡2) although this might 
only happen with a very small probability (see Appendices D and F). This strongly points to the 
uncertainties associated with inferences based on sparse population-level data.   
 The observed widths of the posterior distributions led to the question: How well should we 
expect to be able to distinguish between different transmission processes on the base of the observed 
changes in frequency? We used the developed model to generate frequency data under a known 
underlying transmission hypothesis (in detail, we assumed frequency-dependent selection with 𝑏!"#$ =
−0.01; 0; 0.01 and 𝑟 = 0.3, see Appendix B) and applied the inference framework to this data. The 
resulting posterior distributions of the model parameters 𝑟 and 𝑏!"#$ indicate the ranges of the parameter 
values that could have produced the observed data (see Figure 2) and consequently the widths of those 
distributions describe the information about the underlying transmission process contained in the 
population-level data. Our example showed clearly that the information is limited.  For example, it is 
theoretically impossible to distinguish between neutral evolution and weak frequency-dependent selection 
on the base of sparse population-level frequency data (cf. Figure 2b). Even though the data was produced 
under the assumption of neutral evolution, i.e. 𝑏!"#$ = 0, values of 𝑏!"#$ within the interval [-0.005;0.01] 
corresponding to weak/medium anti-conformity and conformity can generate almost identical frequency 
patterns. The main insight from the described inference analysis is the exclusion of cultural transmission 
processes (e.g. conformity with 𝑏!"#$ > 0.01) that could not have produced the observed sample based on 
the inference procedure used and therefore the reduction of the pool of potential hypotheses [46]. 
 Further, our results show that the cultural system considered is more sensitive to changes in the 
selection strengths, 𝑏!"#$ or 𝑏!"#, than to the fraction 𝑟 of the population that is renewed in every time 
step (and therefore the average life span of an individual variant) (cf. the widths of the posterior 
distributions for 𝑟 in Figure 3 and Figure 4). Considering the difficulties of estimating 𝑟 from 
archaeological data, this points to the fact that moderate estimation errors do not affect the temporal 
dynamic of cultural change substantially. 
 We applied this framework to a data set describing the culture of the earliest farmers in Central 
Europe, the so-called Linear Pottery Culture (LBK), c.7500-7000 years ago. Our aim was to investigate 
whether the observed frequency changes between the beginning and the end of a phase of the different 
types of pottery decoration are consistent with the hypothesis of neutral evolution. To do so we 
determined the marginal frequency distributions 𝑃 𝑆! 𝑡!!! 𝑆 𝑡! , neutral  evolution  of all variant types 
initially present at 𝑡! and the probability distribution 𝑃(𝜅(𝑡!!!)|𝑆 𝑡! , neutral  evolution) of the initially 
present variant types remaining at 𝑡!!! under the assumption that cultural transmission occurs in an 
unbiased way. We concluded that neutral evolution is not a likely hypothesis for the underlying 
transmission process as in almost all phases a relatively large proportion of the observed frequencies of 
the different variant types were outside the 95% interval of the ranges expected under neutrality. 
Additionally we found that in phase V the observed number of surviving variant types between the 
beginning and the end of this phase was too low to have been produced by neutral evolution.  
 To test whether frequency-dependent selection describes the observed frequency changes better 
than neutral evolution, we employed approximate Bayesian computation.  Based on the resulting 
posterior distributions of the model parameters r and 𝑏!"#$ we were able to exclude conformity in phases 
I-III and anti-conformity in phase V as likely causes of the observed frequency changes. Overall we found 
that frequency-dependent transmission did not explain the data better than neutral evolution. The 
parameter value 𝑏!"#$ = 0 (indicating neutral evolution) was contained in the range of the posterior 
distribution of 𝑏!"#$ in all phases and a similar number of variant types lay outside the 95% intervals of 

marginal frequency distributions 𝑃 𝑆! 𝑡!!! 𝑆 𝑡! ,ℋ . Comparing these results with [25] points to the 
crucial importance of rooting any inference framework in population frequencies and not in sample 
frequencies.  
 We applied the same statistical procedure to test whether age-dependent selection (defined as a 
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disproportional preference for ‘young’ variant types) explains the data better than neutral evolution. But 
besides the parameters 𝑟 and 𝑏!"#, describing the strength of the age-dependent selection process, we also 
estimated the innovation times of the variant types present in the data set (as generally this information 
cannot be obtained precisely from the archaeological record) resulting in a more complex model than 
considered for frequency-dependent selection. We concluded that with the possible exception of phases 
II and VI, the observed frequency changes between the beginning and the end of a phase are consistent 
with the hypothesis of weak age-dependent selection. In particular, the hypothesis of age-dependent 
selection is able to explain the LBK data better than neutral evolution. 
 In this context it has been demonstrated that neutral evolution is able to replicate the population-
level pattern of fashion trends (e.g. popularity of baby names ([15],[17]), dog breeds [16], popular music 
[22]). In particular, it has been argued that neutral evolution may explain why a few cultural variant types 
become highly popular but then fade away, producing the well-observed temporal dynamic of fashion 
trends [22]. Age-dependent selection favours 'young' recently invented variant types but disfavours 'old' 
variant types which have been in the population for some time. Consequently, age-dependent selection 
equally produces the characteristic frequency behaviour of fashion trends (see section 4 and Figure S11) 
and we hypothesise that it could be an alternative explanation for the dynamic of fashion trends (see also 
[47] for a different hypothesis), or rather that the concept of ‘fashion trends’ may actually encompass 
dynamics of different types as age-dependent selection does not produce a power law. Summarising, the 
observed frequency dynamic of the different types of decorated pottery in the Linear Pottery Culture is 
consistent with age-dependent selection potentially indicating that the early farmers treated decorated 
pottery as fashion items, with more recent innovations being preferred because of their novelty.  This 
observation might present the earliest instance of such fashion trends yet recorded.      
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