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ANCHORS OF IRREDUCIBLE CHARACTERS

RADHA KESSAR, BURKHARD KÜLSHAMMER, AND MARKUS LINCKELMANN

Abstract. Given a prime number p, every irreducible character χ of a finite

group G determines a unique conjugacy class of p-subgroups of G which we
will call the anchors of χ. This invariant has been considered by Barker in
the context of finite p-solvable groups. Besides proving some basic properties

of these anchors, we investigate the relation to other p-groups which can be
attached to irreducible characters, such as defect groups, vertices in the sense
of J. A. Green and vertices in the sense of G. Navarro.

Dedicated to the memory of J. A. Green

November 2, 2015

1. Introduction

Let p be a prime number and O a complete discrete valuation ring with residue
field k = O/J(O) of characteristic p and field of fractions K of characteristic 0.
For G a finite group, we denote by Irr(G) the set of characters of the simple KG-
modules. For χ ∈ Irr(G), we denote by eχ the unique primitive idempotent in
Z(KG) satisfying χ(eχ) 6= 0. The O-order OGeχ in the simple K-algebra KGeχ
is a G-interior O-algebra, via the group homomorphism G → (OGeχ)

× sending
g ∈ G to geχ. Since (OGeχ)

G = Z(OGeχ) is a subring of the field Z(KGeχ), it
follows that OGeχ is a primitive G-interior O-algebra. In particular, OGeχ is a
primitive G-algebra. By the fundamental work of J. A. Green [7], it has a defect
group. This is used in work of Barker [1] to prove a part of a conjecture of Robinson
(cf. [24, 4.1, 5.1]) for blocks of finite p-solvable groups. In order to distinguish this
invariant from defect groups of blocks and from vertices of modules, we introduce
the following terminology.

Definition 1.1. Let G be a finite group and let χ ∈ Irr(G). An anchor of χ is a
defect group of the primitive G-interior O-algebra OGeχ.

By the definition of defect groups, an anchor of an irreducible character χ of
G is a subgroup P of G which is minimal with respect to eχ ∈ (OGeχ)

G
P , where

(OGeχ)
G
P denotes the image of the relative trace map TrGP : (OGeχ)

P → (OGeχ)
G.

Green’s general theory in [7, §5] implies that the anchors of χ form a conjugacy
class of p-subgroups of G.

For the remainder of the paper we make the blanket assumption that K and k
are splitting fields for the finite groups arising in the statements below. In a few
places, this assumption is not necessary; see the Remark 1.7 below.

The second author gratefully acknowledges support by the DFG (SPP 1388).
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2 KESSAR, KÜLSHAMMER, AND LINCKELMANN

Theorem 1.2. Let G be a finite group and let χ ∈ Irr(G). Let B be the block of
OG containing χ and let L be an OG-lattice affording χ. Let P be an anchor of χ
and denote by ∆P the image {(x, x) |x ∈ P} of P under the diagonal embedding of
G in G×G. The following hold.

(a) P is contained in a defect group of B.
(b) P contains a vertex of L.
(c) We have Op(G) ≤ P .
(d) The suborder OPeχ of OGeχ is local, and OGeχ is a separable extension of

OPeχ.
(e) ∆P is contained in a vertex of the O(G×G)-module OGeχ and P ×P contains

a vertex of OGeχ. Moreover, ∆P is a vertex of OGeχ if and only if χ is of
defect zero.

For G a finite group, we denote by IBr(G) the set of O-valued Brauer characters
of the simple kG-modules. We denote by G◦ the set of p′-elements in G, and for χ
a K-valued class function on G, we denote by χ◦ the restriction of χ to G◦.

Theorem 1.3. Let G be a finite group and χ ∈ Irr(G). Let B be the block of OG
containing χ and let L be an OG-lattice affording χ. Let P be an anchor of χ. The
following hold.

(a) If χ◦ ∈ IBr(G), then L is unique up to isomorphism, P is a vertex of L, and
P × P is a vertex of the O(G×G)-module OGeχ.

(b) Let τ be a local point of P on OGeχ. Then the multiplicity module of τ is
simple. In particular, Op(NG(Pτ )) = P and P is centric in a fusion system of
B.

(c) If B has an abelian defect group D, then D is an anchor of χ.
(d) If χ has height zero, then P is a defect group of B, and P × P is a vertex of

the O(G×G)-module OGeχ.

The hypothesis χ◦ ∈ IBr(G) in the first statement of Theorem 1.3 holds if χ is a
height zero character of a nilpotent block. If G is p-solvable, then by the Fong-Swan
theorem [4, §22], for any ϕ ∈ IBr(G) there is χ ∈ Irr(G) such that χ◦ = ϕ. The
fact that anchors are centric is essentially proved in the proof of [1, Theorem] as an
immediate consequence of results of Knörr [14], Picaronny-Puig [20], and Thévenaz
[26]; see the proof of 3.7 below for details.

The next result shows that anchors are invariant under Morita equivalences
given by a bimodule with endopermutation source, hence in particular under source
algebra equivalences.

Theorem 1.4. Let G, G′ be finite groups. Let B, B′ be blocks of OG, OG′, with
defect groups D, D′, respectively. Suppose that B and B′ are Morita equivalent
via a B-B′-bimodule M which has an endopermutation source, when viewed as an
O(G×G′)-module. Let χ ∈ Irr(B) and χ′ ∈ Irr(B′) such that χ and χ′ correspond
to each other under the Morita equivalence determined by M . Then there is an
isomorphism D ∼= D′ sending an anchor of χ to an anchor of χ′. In particular, if
B and B′ are source algebra equivalent, then χ and χ′ have isomorphic anchors.

The last statement in Theorem 1.4 can be made more precise: if B, B′ are
source algebra equivalent, then the isomorphism D ∼= D′ can be chosen to have an
extension to a source algebra isomorphism; see Theorem 4.1 below.
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In [17] Navarro associated, via the theory of special characters, to each ordinary
irreducible character χ of a p-solvable group G, a G-conjugacy class of pairs (Q, δ),
where Q is a p-subgroup of G and δ is an ordinary irreducible character of Q, which
behave in certain ways as the Green vertices of indecomposable modules (see also
[5],[2] and [3]). We call such a pair (Q,χ) a Navarro vertex of χ. We prove the
following two results relating Navarro vertices and anchors (see Section 5 for the
definitions).

Theorem 1.5. Let G be a finite p-solvable group and let χ ∈ Irr(G) such that χ◦ ∈
IBr(G). Let (Q, δ) be a Navarro vertex of χ. Then Q contains an anchor of χ.
Further, if p is odd or δ is the trivial character, then Q is an anchor of χ.

Theorem 1.6. Let G be a finite group of odd order, and let χ ∈ Irr(G) have
Navarro vertex (Q, δ). Then Q is contained in an anchor of G.

We give examples which show that equality does not always hold in the above
theorem. We also give examples which show that if |G| is even, then a Navarro
vertex need not be contained in any anchor of χ.

Section 2 of the paper contains some basic properties of quotient orders of finite
group algebras. In Section 3, we prove the theorems 1.2 and 1.3. In section 4 we
characterise anchors at the source algebra level, and use this to prove Theorem 1.4.
In Section 5 we prove some properties of anchors with respect to normal subgroups.
Section 6 contains the proofs of Theorems 1.5 and 1.6. In Section 7 we compare
anchors of OGeχ to the defect groups of k ⊗O OGeχ.

Remark 1.7. The splitting field hypothesis on K and k is not needed in Theorem
1.2 and the Propositions 3.1, 3.2, 3.3, and 3.5, on which the proof of Theorem 1.2
is based. This hypothesis is also not needed in Theorem 4.1, stating that anchors
can be read off the source algebras of a block.

Remark 1.8. Let G be a finite group, χ ∈ Irr(G), and b the block idempotent
of the block of OG to which χ belongs; that is, b is the primitive idempotent in
Z(OG) satisfying beχ = eχ. Let P be an anchor of χ; that is, P is a minimal
subgroup of G such that there exists an element c ∈ (OGeχ)

P satisfying eχ =

TrGP (c). We clearly have (OG)P eχ ⊆ (OGeχ)
P , but this inclusion need not be an

equality, and this is one of the main issues for calculating anchors. The spaces
(OG)P eχ and (OGeχ)

P have the same O-rank, since (KG)P eχ = (KGeχ)
P . An

equality (OG)P eχ = (OGeχ)
P implies that P is a defect group of the block of OG

to which χ belongs; see Proposition 3.9 below.

2. Orders of characters

Let G be a finite group and χ ∈ Irr(G). Then OGeχ is an O-order in the simple
K-algebra KGeχ, called the O-order of χ. In general, OGeχ is not a subalgebra
of OG, but it is an O-free quotient of OG. The map f : OG→ OGeχ sending x ∈
OG to xeχ is an epimorphism of O-orders; in particular, the O-orders OGeχ and
OG/Ker(f) are isomorphic. Since we assume that K and k are splitting fields for

all finite groups arising in this paper, we have eχ = χ(1)
|G|

∑

g∈G χ(g
−1)g, and as a K-

algebra, KGeχ is isomorphic to the matrix algebraKχ(1)×χ(1). In particular, KGeχ
has up to isomorphism a unique simple left module Mχ, and we have dimK(Mχ) =
χ(1). Since the O-rank of OGeχ is χ(1)2, it follows that k⊗O OGeχ is a k-algebra
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of dimension χ(1)2 whose isomorphism classes of simple modules are in bijection
with the set

IBr(G|χ) = {ϕ ∈ IBr(G) : dχ,ϕ 6= 0}

where dχ,ϕ denotes the decomposition number attached to χ and ϕ, defined by the
equation χ◦ =

∑

ϕ∈IBr(G) dχ,ϕϕ. It is well-known that dχ,ϕ = χ(i), where i is a

primitive idempotent in OG such that OGi is a projective cover of a simple module
with Brauer character ϕ. In particular, dχ,ϕ 6= 0 if and only if ieχ 6= 0. The simple
k ⊗O OGeχ-module Nϕ corresponding to ϕ ∈ IBr(G|χ) has dimension ϕ(1). Thus
we have an isomorphism of k-algebras

k ⊗O OGeχ/J(k ⊗O OGeχ) ∼=
∏

ϕ∈IBr(G|χ)

kϕ(1)×ϕ(1).

Let P (Nϕ) denote an OGeχ-lattice which is a projective cover of Nϕ. Then
the KGeχ-module K ⊗O P (Nϕ) is isomorphic to Mdχ,ϕ ; in particular, we have
rkO(P (Nϕ)) = dχ,ϕχ(1). Setting ℓχ = |IBr(G|χ)|, the decomposition matrix of the
O-order OGeχ is the 1× ℓχ-matrix

∆χ = (dχ,ϕ : ϕ ∈ IBr(G|χ)) .

Hence the Cartan matrix of OGeχ is the ℓχ × ℓχ-matrix

Cχ = ∆⊤
χ∆χ = (dχ,ϕdχ,ψ : ϕ,ψ ∈ IBr(G|χ)).

By definition, Cχ has rank 1. The only non-zero invariant factor of Cχ is

gcd(dχ,ϕdχ,ψ : ϕ,ψ ∈ IBr(G|χ)) = gcd(dχ,ϕ : ϕ ∈ IBr(G|χ))2.

If χ◦ ∈ IBr(G), then it is well-known that the O-order OGeχ is isomorphic to

Oχ(1)×χ(1) (see e. g. [13, Prop. 4.1]), and thus the k-algebra k ⊗O OGeχ is

isomorphic to kχ(1)×χ(1). In this case the decomposition matrix ∆χ is the 1 × 1-
matrix (1), and so is the Cartan matrix Cχ.

Since Z(KGeχ) = Keχ ∼= K, we have Z(OGeχ) = Oeχ ∼= O; in particular,
Z(OGeχ) is a local O-order, and hence Z(k ⊗O OGeχ) is a local k-algebra, by
standard lifting theorems for central idempotents. It is obvious that

Z(k ⊗O OGeχ) ⊇ k ⊗O Z(OGeχ) = k ⊗ eχ.

This inclusion can be proper, or equivalently, the canonical map Z(OGeχ) →
Z(k ⊗O OGeχ) need not be surjective. The following example illustrates this.

Example 2.1. Let G be the dihedral group of order 8, let χ ∈ Irr(G) with χ(1) = 2,
and let p = 2. We represent G in the form G = 〈a, b〉 where

a =

(

0 1
−1 0

)

and b =

(

0 1
1 0

)

.

Then OGeχ is isomorphic to the subalgebra Λ of O2×2 generated by a and b. Note
that ba = −ab, so that (1⊗ b)(1⊗ a) = (1⊗ a)(1⊗ b) in k ⊗O Λ. This shows that
k ⊗O OGeχ ∼= k ⊗O Λ is commutative and of dimension 4.
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3. Proofs of the theorems 1.2 and 1.3

Proposition 3.1. Let G be a finite group, χ ∈ Irr(G), and let P be an anchor of
χ. Let B be the block of OG containing χ, and let L be an OG-lattice affording χ.
The following hold.

(i) P is contained in a defect group of B.
(ii) P contains a vertex of L.

Proof. Let D be a defect group of B. Then there exists an element x ∈ (OG)D such

that TrGD(x) = 1B . Then xeχ ∈ (OGeχ)
D, and TrGD(xeχ) = TrGD(x)eχ = 1Beχ = eχ.

Thus D contains an anchor of χ, and (i) follows. Let y ∈ (OGeχ)
P such that

TrGP (y) = eχ. Then the map η : L→ L sending z to yz, is an element in EndOP (L)

such that TrGP (η) = idL. By Higman’s criterion, P contains a vertex of L, whence
the result. �

Proposition 3.2. Let G be a finite group, χ ∈ Irr(G), and let P be an anchor of
χ. Then Op(G) ≤ P .

Proof. Set N = Op(G). Arguing by contradiction, suppose that P does not contain
N . Then P is a proper subgroup of PN . For g ∈ N , we have g − 1 ∈ J(ON) ⊆
J(OG). It follows that gd− d, dg−1 − d, and gdg−1 − d = gdg−1 − dg−1 + dg−1 − d
are contained in J(OGeχ) for all g ∈ N and all d ∈ OGeχ. Let d ∈ (OGeχ)

P such

that TrGP (d) = eχ. By the above , we have TrPNP (d)−|PN : P |d ∈ J(OGeχ). Since

p divides |PN : P |, it follows that x = TrPNP (d) ∈ J(OGeχ). Applying TrGPN to

this element shows that eχ = TrGP (d) = TrGPN (x) ∈ J(OGeχ), a contradiction. �

Let R be an O-order with unitary suborder S. We recall that R is called a
separable extension of S if the multiplication map µ : R ⊗S R → R sending x ⊗ y
to xy for all x, y ∈ R splits as a map of R-R-bimodules. This is equivalent to the
condition that 1R = µ(z) for some z ∈ (R⊗S R)

R.

Proposition 3.3. Let G be a finite group and χ ∈ Irr(G). Let P be an anchor of
χ. Then the O-order OGeχ is a separable extension of its local suborder OPeχ.

Proof. The O-order OP is local, and the map OP → OGeχ induced by multipli-
cation with eχ is a homomorphism of O-algebras with image OPeχ. Thus OPeχ is
a local suborder of OGeχ. Let T be a transversal for G/P , and let d ∈ (OGeχ)

P

such that

eχ = TrGP (d) =
∑

g∈T

gdg−1.

Then the element x =
∑

g∈T gdeχ⊗ g−1eχ ∈ OGeχ⊗OPeχ OGeχ is independent of
the choice of T since

gudeχ ⊗ u−1g−1eχ = gdeχueχ ⊗ u−1eχg
−1eχ = gdeχ ⊗ g−1eχ

for g ∈ T and u ∈ P . But, for h ∈ G, hT is another transversal for G/P . Thus

x =
∑

g∈T

hgdeχ ⊗ g−1h−1eχ = hxh−1.

This shows that x ∈ (OGeχ ⊗OPeχ OGeχ)
OGeχ , and

µ(x) =
∑

g∈T

gdeχg
−1eχ = TrGP (d)e

2
χ = e3χ = eχ
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where µ : OGeχ ⊗OPeχ OGeχ → OGeχ, denotes the multiplication map sending
a⊗ b to ab. The result follows. �

Remark 3.4. The proposition above implies that k ⊗O OGeχ is also a separable
extension of k ⊗O OPeχ. Note that k ⊗O OPeχ is a homomorphic image of the
group algebra kP . Thus, if P is cyclic, then k ⊗O OPeχ has finite representation
type.

Proposition 3.5. Let G be a finite group and χ ∈ Irr(G). Let P be an anchor of
χ. Then ∆P is contained in a vertex of the O(G × G)-module OGeχ and P × P
contains a vertex of OGeχ. Moreover, ∆P is a vertex of OGeχ if and only if χ is
of defect zero.

Proof. Viewing OGeχ as an O(G × G)-module, we have OGeχ(∆P ) 6= 0, where
OGeχ(∆P ) is the Brauer quotient of OGeχ (cf. [27, §11]). The first assertion
follows by [27, Exercise 27.2 (a)]. Next, we claim that OGeχ is relatively P × G-
projective. Indeed, let T be a transversal for G/P , and let d ∈ (OGeχ)

P such
that

eχ = TrGP (d) =
∑

g∈T

gdg−1.

The map

OGeχ → O(G×G)⊗O(P×G) OGeχ, (x→
∑

u∈T

(g, 1)⊗ dg−1x), x ∈ OGeχ

is an O(G×G)-module splitting of the surjective O(G×G)-module homomorphism

O(G×G)⊗O(P×G) OGeχ, (y ⊗ y′ → yy′), y ∈ O(G×G), y′ ∈ OGeχ

proving the claim. Similarly, OGeχ is relatively G × P -projective. Let R1 be a
vertex of OGeχ contained in G × P and let R2 be a vertex of OGeχ contained in
P × G. Since R1 and R2 are G × G-conjugate, it follows that R1 ≤ xP × P for

some x ∈ G and hence that OGeχ is relatively P ×P = (x−1,1)( xP ×P )-projective.
This proves the second assertion.

Finally, if ∆P is a vertex of O(G × G), then Res
O(G×G)
O(G×1) OGeχ is projective. In

particular, the character of OGeχ as a left OG-module vanishes on the p-singular
elements of G. Since the character of OGeχ is a multiple of χ, it follows that χ
is of p-defect zero. Conversely, if χ is of p-defect zero, then by Proposition 3.1 we
have P = 1, hence 1 = P × P = ∆P is a vertex of OGeχ. �

Proof of Theorem 1.2. Proposition 3.1 implies (a) and (b) of the theorem. Propo-
sition 3.2 proves (c). Part (d) follows from Proposition 3.3 and Part (e) is proved
in Proposition 3.5. �

Proposition 3.6. Let G be a finite group, and let χ ∈ Irr(G) with anchor P .
Suppose that χ◦ ∈ IBr(G). Let L be an OG-lattice affording χ. Then L is unique
up to isomorphism, P is a vertex of L, and P×P is a vertex of the O(G×G)-module
OGeχ.

Proof. The hypotheses imply that the O-orders OGeχ and Oχ(1)×χ(1) are isomor-

phic. Since Oχ(1) is the only indecomposable Oχ(1)×χ(1)-lattice, up to isomorphism,
L is the only indecomposable OGeχ-lattice, up to isomorphism. Thus the canonical
map

OGeχ −→ EndO(L)
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is an isomorphism ofG-interiorO-algebras, and hence these two primitiveG-interior
O-algebras have the same defect groups. Higman’s criterion implies that P is
a vertex of L. Moreover, we have a canonical O(G × G)-module isomorphism
EndO(L) ∼= L ⊗O L∗, where L∗ is the O-dual of L. This implies that P × P is a
vertex of OGeχ. �

We observe next that the multiplicity modules of the primitive G-interior O-
algebras OGeχ are simple. Background material on multiplicity modules can be
found in [26, §9 Appendix].

Proposition 3.7. Let G be a finite group and χ ∈ Irr(G). Let Pτ be a defect
pointed group of the primitive G-interior O-algebra OGeχ. Then P is an anchor of
χ and the multiplicity module of τ is simple. In particular, we have Op(NG(Pτ )) =
P , and P is centric in a fusion system of the block containing χ.

Proof. The fact that P is an anchor of χ is a standard property of local pointed
groups on primitive G-algebras (see e. g. [27, (18.3)]). As noted earlier, we have
(OGeχ)

G ∼= O. Set N̄ = NG(Pτ )/P ). It follows from [26, 9.1.(c), 9.3.(b)] that the
multiplicity module Vτ of τ is simple. The well-known Lemma 3.8 below implies
that Op(NG(Pτ )) = P . By results of Knörr in [14], every vertex of a lattice with
irreducible character χ is centric in a fusion system of the block containing χ.
Centric subgroups in a fusion system are upwardly closed. Since the anchor P of
χ contains a vertex of every lattice with character χ, the last statement follows.
One can prove this also by applying the results of [20] directly to the G-interior
O-algebra OGeχ. �

Lemma 3.8. Let G be a finite group, A a primitive G-algebra, and let Pτ be a defect
pointed group on A. If the multiplicity module of τ is simple, then Op(NG(Pτ )) =
P .

Proof. Set N̄ = NG(Pτ )/P . The multiplicity module Vτ of τ is a module over a
twisted group algebra kαN̄ for some α ∈ H2(N̄ ; k×). Since Pτ is maximal, Vτ is
projective (cf. [26, 9.1]). Since Vτ is also simple by the assumptions, it follows that
kαN̄ has a block which is a matrix algebra over k. By [27, (10.5)] we have kαN̄ ∼=
kN ′e for some central p′-extension N ′ of N̄ and some idempotent e ∈ Z(kN ′). Thus
the multiplicity module corresponds to a defect zero block of kN ′. Since Op(N

′) is
contained in all defect groups of all blocks of kN ′, it follows that Op(N

′) is trivial.
By elementary group theory, the canonical map N ′ → N̄ sends Op(N

′) onto Op(N̄),
and hence Op(N̄) is trivial, or equivalently, Op(NG(Pτ )) = P . �

Proof of Theorem 1.3. Part (a) is proved in Proposition 3.6. Part (b) follows from
Proposition 3.7, and (c) is an immediate consequence of (b). If χ has height zero
then χ(1)p = |G : D|p where D is a defect group of B. Then D contains a vertex
Q of L, and |G : Q|p divides (rkOL)p = χ(1)p = |G : D|p. This implies Q = D.
Hence D is an anchor of χ in this case. A similar argument shows that D×D is a
vertex of the O(G×G)-module OGeχ. This proves (d). �

Proposition 3.9. Let G be a finite group, χ ∈ Irr(G), and let P be an anchor of
χ. If (OG)P eχ = (OGeχ)

P , then P is a defect group of the block of OG to which
χ belongs.

Proof. Denote by b the primitive idempotent in Z(OG) such that beχ = eχ. Suppose

that (OG)P eχ = (OGeχ)
P . Then eχ = TrGP (ceχ) = TrGP (c)eχ for some c ∈ (OGb)P .
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Thus w = TrGP (c) is not contained in J(Z(OGb)), hence invertible in Z(OGb).

Therefore b = w−1w = TrGP (w
−1c), which implies that P contains a defect group

of b, hence is equal to a defect group of b by Theorem 1.2 (a). �

4. Anchors and source algebras

We show that anchors of characters in a block can be read off the source algebras
of that block, and use this to prove Theorem 1.4. As before, we refer to [27, §11]
for the Brauer quotient and Brauer homomorphism.

Let G be a finite group, B a block of OG, and D a defect group of B. We
denote by Irr(B) the subset of all χ ∈ Irr(G) satisfying χ(1B) = χ(1). Let i be
a source idempotent in BD; that is, i is a primitive idempotent in BD satisfying
BrD(i) 6= 0. Then A = iBi = iOGi is a source algebra of B. We view A as a
D-interior O-algebra with the embedding of D → A× induced by multiplication
with i. By [21, 3.5], the A-B-bimodule iB = iOG and the B-A-bimodule Bi =
OGi induce a Morita equivalence between A and B. In particular, if X is a simple
K ⊗O B-module, then iX is a simple K ⊗O A-module, and this correspondence
induces a bijection between Irr(B) and the set of isomorphism classes of simple
K ⊗O A-modules. Equivalently, the map eχ 7→ ieχ is a bijection between primitive
idempotents in Z(K ⊗O B) and Z(K ⊗O A). If U is a B-lattice with character
χ ∈ Irr(B), then iU is an A-lattice such that K ⊗O iU is a simple K ⊗O A-module
corresponding to χ. This Morita equivalence induces a bijection between the O-
free quotients of B and of A. If χ ∈ Irr(B), then the O-free quotient OGeχ = Beχ
corresponds to the O-free quotient iOGieχ = Aieχ = Aeχ. Note that Aeχ is again
a D-interior O-algebra, via the canonical surjection A → Aeχ. Note further that
Aeχ is a direct summand of Beχ as an OD-OD-bimodule, since it is obtained from
multiplying Beχ on the left and on the right by the idempotent ieχ in (Beχ)

D.
The next result shows that anchors of χ can be characterised in terms of the order
Aeχ. This is based on a variation of standard arguments, similar to those used in
[15, §6], identifying vertices of modules at the source algebra level.

Theorem 4.1. Let G be a finite group, B a block of OG, D a defect group of B,
and i ∈ BD a source idempotent. Set A = iBi. Let χ ∈ Irr(B).

(i) Let Q be a p-subgroup of G such that (Beχ)(Q) 6= 0. Then there is x ∈ G such
that xQ ≤ D and such that (Aeχ)(

xQ) 6= {0}.

(ii) Let Q be a subgroup of D of maximal order subject to (Aeχ)(Q) 6= {0}. Then
Q is an anchor of χ.

Proof. We use basic properties of local pointed groups; see e. g. [27, §18] for an
expository account of this material. Let γ be the local point of D on B containing
i. Let Q be a p-subgroup of G such that (Beχ)(Q) 6= {0}. Since eχ is the unit

element of Beχ, this is equivalent to Br
Beχ
Q (eχ) 6= 0. By considering a primitive

decomposition of 1B in BQ it follows that there is a primitive idempotent j ∈ BQ

such that Br
Beχ
Q (jeχ) 6= 0. Then necessarily also BrBQ(j) 6= 0, because the canonical

map B → Beχ sends ker(BrBQ) to ker(Br
Beχ
Q ). Thus j belongs to a local point δ of Q

on B. Since the maximal local pointed groups on B are all G-conjugate, it follows
that there is x ∈ G such that xQδ ≤ Dγ . In other words, after replacing Qδ by a
suitable G-conjugate, we may assume that Qδ ≤ Dγ , and hence that j ∈ AQ for
some choice of j in δ. For this choice of j, we have jeχ ∈ Aeχ. Thus the condition
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Br
Beχ
Q (jeχ) 6= 0 is equivalent to Br

Aeχ
Q (jeχ) 6= 0; we use here the fact, mentioned

above, that Aeχ is a direct summand of Beχ as an OP -OP -bimodule. In particular,
we have (Aeχ)(Q) 6= {0}. This proves (i). For (ii), let Q be a subgroup of D such
that (Aeχ)(Q) 6= {0} and such that the order of Q is maximal with respect to this
property. Then (Beχ)(Q) 6= {0}, and hence Q is contained in an anchor R of χ.
By (i), there is x ∈ G such that xR ≤ D and such that (Aeχ)(

xR) 6= {0}. The
maximality of |Q| forces Q = R, whence the result. �

Theorem 4.1 implies that anchors are invariant under source algebra equiva-
lences. By a result of Scott [25] and Puig [23, 7.5.1], an isomorphism between
source algebras is equivalent to a Morita equivalence given by a bimodule with a
trivial source (see also [16, §4] for an expository account). In order to extend the
invariance of anchors to Morita equivalences given by bimodules with endopermu-
tation source, we need to describe these Morita equivalences at the source algebra
level. Let G, G′ be finite groups, and let B, B′ be blocks of OG, OG′ with defect
groups D, D′, respectively. By results of Puig in [23, §7], a Morita equivalence
between B and B′ given by a bimodule with endopermutation source implies an
identification D = D′ such that for some choice of source idempotents i ∈ BD, i′ ∈
(B′)D, setting A = iBi and A′ = i′B′i′, we have D-interior O-algebra isomorphisms

A′ ∼= e(S ⊗O A)e , A ∼= e′(Sop ⊗O A′)e′ ,

where S = EndO(V ) for some indecomposable endopermutation OD-module V
with vertex D, and where e, e′ are primitive idempotents in (S ⊗O A)D, (Sop ⊗O

A′)D, respectively, satisfying BrD(e) 6= 0, BrD(e
′) 6= 0. These isomorphisms induce

inverse equivalences between mod(A) and mod(A′), sending an A-module U to the
A′-module e(V ⊗O U), and an A′-module U ′ to the A-module e′(V ∗ ⊗O U ′). Here
V ∗ is the O-dual of V ; note that EndO(V

∗) ∼= Sop as D-interior O-algebras.

Proof of Theorem 1.4. We use the notation above. Let χ ∈ Irr(B) and χ′ ∈
Irr(B′) such that χ and χ′ correspond to each other through the Morita equiv-
alence mod(B) ∼= mod(A) ∼= mod(A′) ∼= mod(B′) described above. As mentioned
at the beginning of this section, the primitive idempotent in Z(K ⊗O A) corre-
sponding to χ is ieχ. Similarly, the primitive idempotent in Z(K⊗OA

′) is equal to
i′eχ′ . The explicit description of the Morita equivalence between A and A′ above
implies that we have

i′eχ′ = e · (1S ⊗ ieχ)

ieχ = e′ · (1Sop ⊗ i′eχ′)

where these equalities are understood in the algebras K ⊗O A and K ⊗O A′. By
Theorem 4.1, it suffices to show that for Q a subgroup of D, we have (Aeχ)(Q) 6=
{0} if and only if (A′eχ′)(Q) 6= {0}. It suffices to show one implication, because the
other follows then from exchanging the roles of A and A′. Thus it suffices to show
that if (Aeχ)(Q) = {0}, then (A′eχ′)′(Q) = {0}. Let Q be a subgroup of D such
that (Aeχ)(Q) = {0}. We have (S ⊗O A)(1S ⊗ ieχ) = S ⊗O Aeχ. Since S has a
D-stable basis, it follows from [22, 5.6] that (S⊗OAeχ)(Q) = S(Q)⊗k (Aeχ)(Q) =
{0}. Since A′eχ′ is obtained from S ⊗O Aeχ by left and right multiplication with
the idempotent e, it follows that (A′eχ′)(Q) = {0} as required. �
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5. Anchors and normal subgroups

We prove in this section some results on anchors of characters which are induced
from a normal subgroup or inflated from quotients. Since an anchor of an irreducible
character χ contains a vertex of any lattice affording χ, constructing suitable lattices
is one of the tools for getting lower bounds on anchors. The following is well-known
(we include a proof for the convenience of the reader).

Lemma 5.1. Let G be a finite group and χ ∈ Irr(G). Let S be a simple kG-module
with Brauer character ϕ such that dχϕ 6= 0. Then there exists an OG-lattice L
affording χ such that L has a unique maximal submodule M , and such that L/M ∼=
S.

Proof. Let i be a primitive idempotent in OG such that OGi is a projective cover
of S. Since χ(i) = dχϕ 6= 0, there is an O-pure submodule L′ of OGi such that
L = OGi/L′ affords χ. Since the projective indecomposable OG-module OGi has
a unique maximal submodule and S is its unique simple quotient, it follows that
the image, denotedM , in L of the unique maximal submodule of OGi is the unique
maximal submodule of L, and satisfies L/M ∼= S. �

In [19], Plesken showed that if G is a p-group and χ is an irreducible character of
G, then there exists an OG-lattice affording χ whose vertex is G. Our next result
is a slight variation on this theme.

Proposition 5.2. Let G be a finite group, N a normal subgroup of G of p-power
index, and χ ∈ Irr(G). If there exists ϕ ∈ IBr(G) of degree not divisible by |G : N |
and such that dχ,ϕ 6= 0, then there exists an OG-lattice L with character χ which
is not relatively ON -projective. In particular, in that case, N does not contain the
anchors of χ.

Proof. Let S be a simple kG-module with Brauer character ϕ of degree not divisible
by |G : N | and such that dχ,ϕ 6= 0. By 5.1 there exists anOG-lattice L with a unique
maximal submodule M such that χ is the character of L and such that L/M ∼= S.
Note that the character of M is also equal to χ. We will show that one of M or
L is not relatively ON -projective. Arguing by contradiction, suppose that L and
M are relatively ON -projective. By Green’s indecomposability theorem, there are
indecomposable ON -modules Z and U such that L ∼= IndGN (Z) and M ∼= IndGN (U).

Then χ = IndGN (τ), where τ is the character of Z. Since χ = IndGN (τ) is irreducible,
it follows that the different G-conjugates xτ of τ , with x running over a set of
representatives R of G/N in G, are pairwise different. Similarly, χ = IndGN (τ ′),
where τ ′ is the character of U . After replacing U by xU for a suitable element
x ∈ G, we may assume that τ ′ = τ . By the above, we have ResGN (L) ∼=

⊕

x∈R
xZ,

and the characters of these summands are the pairwise different conjugates xτ of
τ . In particular, ResGN (L) has a unique O-pure summand with character τ , and
this summand is isomorphic to Z. We denote this summand abusively again by Z.
Similarly, ResGN (M) has a unique O-pure summand, abusively again denoted by U ,
with character τ . Since M ⊆ L induces an equality K ⊗O M = K ⊗O L, it follows
that K ⊗O U = K ⊗O Z. Moreover, we have U ⊆ K ⊗O Z ∩ L = Z, where the
second equality holds as Z is O-pure in L. Thus the inclusion M ⊆ L is obtained
from inducing the inclusion map U ⊆ Z from N to G. By the construction of M ,
the inclusion M ⊆ L induces a map k ⊗O M → k ⊗O L with cokernel S. Thus we
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have

dimk(S) = codim(k ⊗O M → k ⊗O L) = |G : N |codim(k ⊗O U → k ⊗O Z) .

This contradicts the assumption that ϕ(1) is not divisible by |G : N |. Thus one of
L or M is not relatively ON -projective. �

Corollary 5.3. Let G be a finite group, N a normal subgroup of p-power index,
and let χ ∈ Irr(G). Let P be an anchor of χ. If there exists ϕ ∈ IBr(G) of degree
prime to p such that dχϕ 6= 0, then G = PN .

Proof. Arguing by contradiction, suppose that PN is a proper subgroup of G. Since
G/N is a p-group, it follows that PN is contained in a normal subgroupM of index
p in G. Then M contains every anchor of χ, hence M contains the vertices of any
OG-lattice affording χ. Let ϕ ∈ IBr(G) such that ϕ(1) is prime to p and such
that dχ,ϕ 6= 0. Proposition 5.2 implies however that |G : M | = p divides ϕ(1), a
contradiction. �

We record here an extension of [19, Lemma 3] which will be used in the next
section.

Proposition 5.4. Let G be a finite group, P a Sylow p-subgroup, and χ ∈ Irr(G).

Suppose that ResGP (χ) is irreducible and that there exists an irreducible Brauer char-
acter ϕ of p′-degree of G such that dχ,ϕ 6= 0. Then there exists an OG-lattice L
affording χ with vertex P . In particular, the Sylow p-subgroups of G are the anchors
of χ.

Proof. Let π be a generator of J(O) and let S be a simple kG-module with Brauer
character ϕ. By 5.1, there is an OG-lattice L affording χ such that k ⊗O L has
a simple head isomorphic to S. Let N be the maximal submodule of L. Then
πL ⊂ N and N is an OG-lattice affording χ. The invariant factors of the O-
module L/N are either 1 or π and the number of non-trivial invariant factors of
L/N equals dimk(L/N) = dimk(S). Thus the product of the invariant factors

of L/N equals πdimk S . By hypothesis, ResGP (L) is irreducible. If ResGP (L) has

vertex P , then L has vertex P . So, we may assume that ResGP (L) is relatively
U -projective for some proper subgroup U of P . By Green’s indecomposability
theorem, ResGP (L) = IndPU (M) for some OU -latticeM . By [19, Lemma 3], ResGP (N)
has vertex P , whence N has vertex P . Note that [19, Lemma 3] is stated for O
a localisation of the |P |-th cyclotomic integers, but as remarked in [19, Page 235],
[19, Lemma 3] remains true in our setting. The second assertion of the proposition
follows from Proposition 3.1. �

Proposition 5.5. Let G be a finite group, N a normal subgroup, and let χ ∈
Irr(G) such that χ = IndGN (τ) for some τ ∈ Irr(N). Let V be an ON -lattice with
character τ . Suppose that the composition series of the kN -modules k⊗O

xV , with
x running over a set of representatives of G/N in G, are pairwise disjoint. Then

OGeχ ∼= IndGN (ONeτ ) as G-interior O-algebras. In particular, N contains the
vertices of all lattices affording χ, and N contains the anchors of χ.

Proof. It suffices to show that eτ belongs to OGeχ. Indeed, if this is true, then the

assumptions on χ and τ imply that eχ = TrGN (eτ ), and the different conjugates of eτ
appearing in TrGN (eτ ) are pairwise orthogonal idempotents in OGeχ. In particular,

we have eτOGeτ = ONeτ . It follows from [27, (16.6)] that OGeχ ∼= IndGN (ONeτ ).
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It remains to show that eτ belongs to OGeχ. Let I be a primitive decomposition
of 1 in ON . Let i ∈ I such that eτ i 6= 0. This condition is equivalent to k ⊗O V
having a composition factor isomorphic to the unique simple quotient Ti of the
ON -module ONi. Since the different G-conjugates of the kN -module k⊗O V have
pairwise disjoint composition series, it follows that exτ i = 0 for x ∈ G \ N . Thus
eχi = eτ i ∈ OGeχ for any i ∈ I such that eτ i 6= 0. Taking the sum over all such
i implies that eτ ∈ OGeχ. The last statement follows from the fact that eχ =

TrGN (eτ ) and Higman’s criterion, for instance, or directly from the fact that IndGN
induces a Morita equivalence between ONeτ and OGeχ. �

Corollary 5.6. Let G be a finite group, N a normal subgroup of p-power index,
and let χ ∈ Irr(G) such that χ = IndGN (τ) for some τ ∈ Irr(N). Suppose that dχ,ϕ
is either 1 or 0 for every ϕ ∈ IBr(G). Then N contains the anchors of χ.

Proof. Let V be an ON -lattice affording τ . Let I be a primitive decomposition of
1 in ON . By Green’s indecomposability theorem, I remains a primitive decompo-
sition in OG. Let i ∈ I. We have

χ(i) =
∑

x

xτ(i)

where x runs over a set of representatives R of G/N in G. By the assumptions on
the decomposition numbers of χ, the left side is either 1 or 0. Thus either xτ(i) =
0 for all x ∈ R, or there is exactly one x = x(i) ∈ R with xτ(i) 6= 0. This implies
that the composition series of the different G-conjugates of k ⊗O V are pairwise
disjoint. The result follows from 5.5. �

Proposition 5.7. Let G be a finite group, N a normal subgroup of G, and χ ∈
Irr(G). Suppose that χ is the inflation to G of an irreducible character ψ ∈
Irr(G/N). Let P be an anchor of χ. Then PN/N is an anchor of ψ, and P ∩N is
a Sylow p-subgroup of N .

Proof. Let d ∈ (OGeχ)
P such that TrGP (d) = eχ. The assumptions imply that the

canonical map G→ G/N induces a G-algebra isomorphism OGeχ ∼= OG/Neψ such

that N acts trivially on both algebras. Thus eχ = TrGP (d) = |PN : P |TrGPN (d).
This implies that P is a Sylow p-subgroup of PN , and hence that P ∩ N is a
Sylow p-subgroup of N . Since the isomorphism OGeχ ∼= OG/Neψ sends TrGPN (d)

to Tr
G/N
PN/N (d̄), where d̄ is the canonical image of d, it follows that PN/N contains

an anchor of ψ. Using the fact that P is a Sylow p-subgroup of PN , one easily
checks that any proper subgroup of PN/N is of the form QN/N for some proper
subgroup Q of P containing P ∩N . The previous isomorphism implies that PN/N
is an anchor of ψ. �

Example 5.8. (1) p = 2, G = S3, χ(1) = 2: Then χ lies in a defect zero block of
G, hence by Theorem 1.2, the trivial group is the only anchor of χ.

(2) p = 2, G = S4, χ(1) = 2: Then χ is inflated from the character in part (1).
In this case, by Proposition 5.7 the Klein four subgroup V4 of S4 is the only anchor
of χ. However, the defect groups of the block containing χ (i.e. of the principal
block of S4) are the Sylow 2-subgroups of S4 (i.e. dihedral groups of order 8).

(3) p = 2, G = S5: All irreducible characters of G except the one of degree 6
are of height zero in their block. So their anchors coincide with their defect groups,
by Theorem 1.3 (a) .



ANCHORS 13

Now let χ ∈ Irr(G) with χ(1) = 6. Then χ is induced from an irreducible character
of the alternating group A5 of degree 3. Thus there exists an OG-lattice affording
χ with vertex V4.
On the other hand, χ is labelled by the partition λ = (3, 1, 1) of 5. By the remark
on p. 511 of [28], the Specht module Sλ is indecomposable, and S2×S2 is a vertex
of Sλ, by Theorem 2 in [28]. Thus the anchors of χ are Sylow 2-subgroups of G,
by Theorem 1.2 (b).

6. Navarro vertices

We prove Theorems 1.5 and 1.6.

Theorem 6.1. Let G be a finite p-solvable group. Let χ ∈ Irr(G) and let (Q, δ) be
a Navarro vertex of χ. Supppose that χ◦ ∈ IBr(G). Then Q contains an anchor of
χ. Moreover, if δ = 1Q or if p is odd, then Q is an anchor of χ.

Proof. Since χ◦ ∈ IBr(G), there is a unique OG-lattice L affording χ, up to iso-
morphism. Moreover, k ⊗O L is the unique simple kG-module with Brauer char-
acter χ◦, up to isomorphism. Recall that there is a nucleus (W,γ) of χ such that

χ = IndGW (γ), and Q ∈ Sylp(W ) (cf. [17, p. 2763]). Further, γ ∈ Irr(W ) has
a unique factorization γ = αβ where α ∈ Irr(W ) is p′-special and β ∈ Irr(W ) is

p-special. Going over to Brauer characters, we have χ◦ = IndGW (γ◦) and γ◦ = α◦β◦;
in particular, γ◦, α◦, β◦ ∈ IBr(W ). Let R be a vertex of the unique OW -lattice
affording γ and let R0 be a vertex of the unique kW -module affording γ◦. Then,
up to conjugation in W , R0 ≤ R ≤ Q. Since χ = IndGW (γ), R is also a vertex of
the OG-lattice affording χ and hence by Proposition 3.1 (iii), R is an anchor of χ.
This proves the first assertion.

Since α is p′-special, the p-part of the degree of γ equals the p-part of the degree
of β. Since G is p-solvable, it follows that

|R0| =
|W |p
β(1)p

.

Now suppose that p is odd. Since β◦ is irreducible, by [18, Lemma 2.1], β is
linear. It follows from the above that R0 = Q = R, proving the second assertion
when p is odd. Since δ = ResWQ (β), a similar argument works when δ = 1Q. �

Lemma 6.2. Let G be a finite p-solvable group and χ ∈ Irr(G). Suppose that χ
is p-special and that there exists ϕ ∈ IBr(G) of p′-degree such that dχϕ 6= 0. Then
there exists an OG-lattice affording χ with vertex a Sylow p-subgroup of G.

Proof. This is immediate from Proposition 5.4 and the fact that the restriction
of a p-special character of G to a Sylow p-subgroup of G is irreducible (cf. [6,
Prop. 6.1]). �

The following is due to G. Navarro.

Lemma 6.3. Let G be a finite group of odd order and χ ∈ Irr(G). Suppose that χ
is p-special. Then the trivial Brauer character of G is a constituent of χ◦.

Proof. By the Feit-Thompson theorem, G is solvable and hence p-solvable. Let H
be a p-complement of G and let ζ be a primitive |G|p-th root of unity. By [6, Theo-

rem 6.5], Q[ζ] is a splitting field of χ. Thus ResGH(χ) is a rational valued character

of odd degree. Hence, ResGH(χ) contains a real valued irreducible constituent, say
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α. By Brauer’s permutation lemma, the number of real-valued irreducible charac-
ters of H equals the number of real conjugacy classes of H. Since |H| is odd, α is
the trivial character of H. By Frobenius reciprocity, χ is an irreducible constituent
of IndGH(α). On the other hand, since H is a p-complement of G, IndGH(α) is the
character of the projective indecomposable OG-module corresponding to the trivial
kG-module. �

Combining the two results above yields the Theorem 1.6. In fact we prove more.

Theorem 6.4. Let G be a finite group of odd order, let χ ∈ Irr(G) and let (Q, δ)
be a Navarro vertex of χ. Then there exists an OG-lattice affording χ with vertex
Q. In particular, Q is contained in an anchor of χ.

Proof. Let (W,γ) be a nucleus of χ such that Q is a Sylow p-subgroup of W and

δ = ResWQ (α), where γ = αβ, with α a p′-special character and β a p-special
character of W (cf. [17, Sections 2,3]). By Lemma 6.3, the trivial Brauer character
is a constituent of β◦. By Lemma 6.2, there exists an OW -lattice X affording
β and with vertex Q. Let Y be an OW -lattice affording α. Then V = Y ⊗ X
is an OW -lattice affording γ. We claim that V has vertex Q. Indeed if V is
relatively R-projective, then every indecomposable sumand of Y ∗ ⊗ V is relatively
R-projective. On the other hand, since α has p′-degree, the OW -lattice Y ∗⊗Y has
a direct summand isomorphic to the trivial OW -module. Thus, Y ∗ ⊗ Y ⊗ X has
a direct summand isomorphic to X. Since Q is a vertex of X, and Q is a Sylow
p-subgroup of W , it follows that R is a Sylow p-subgroup of W . Then IndGW (V )

is an OG-lattice with character χ = IndGW (γ). Clearly, IndGW (V ) is relatively OQ-

projective. Suppose if possible that IndGW (V ) is relatively OR-projective for some

proper subgroup R of Q, say IndGW (V ) is a summand of IndGR(X) for some R
properly contained in Q and for some OR-lattice X. By the Mackey formula, V is
a summand of IndWW∩ xR(Res

xR
W∩ xR

xX) for some x ∈ G. This is a contradiction as

| xR| < |Q|. Thus Q is a vertex of IndGW (V ) proving the first assertion. The second
is immediate from the first and Proposition 5.4. �

I. M. Isaacs and G. Navarro provided us with an example of a p-special char-
acter of a p-solvable group none of whose irreducible Brauer constituents have
degree prime to p. Proposition 5.5 can be used to prove that the anchors of the
Isaacs-Navarro example, which we give below, are strictly contained in the Sylow p-
subgroups of the ambient group (so in particular, these characters are not afforded
by any lattice with full vertex).

Example 6.5. [Isaacs -Navarro] Let p = 5 and let M be the semidirect product of
an extraspecial group of order 53 and of exponent 5, acted on faithfully by Q8 where
the action is trivial on the center. Let G =M ≀C5 be the wreath product of M by
a cyclic group of order 5. In G, there is the normal subgroup N =M1 × · · · ×M5,
with each Mi isomorphic to M . Also, there is a cyclic subgroup C of order 5 that
permutes the Mi transitively. Note that M1 has a 5-special character α of degree
5.

Let θ ∈ Irr(N) be the product of α with trivial characters of M2, M3, M4 and
M5. Then θ has degree 5 and χ = θG is 5-special of degree 25.

There is a Sylow 2-subgroup S of G with the form Q1 ×Q2 × ...×Q5, where Qi
is a Sylow 2-subgroup of Mi and the Qi are permuted transitively by C. Now θS
is the product of αQ1

with trivial characters on the other Qi.
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Also, αQ1
is the sum of the irreducible character of degree 2 and the three

nontrivial linear characters, so there is no trivial constituent. It follows that θS has
no C-invariant irreducible constituent. The same is therefore true about χS . Then
each 5-Brauer irreducible constituent of χ has degree divisible by 5.

The construction also shows that if x ∈ G \ N , then θ and xθ have no irre-
ducible Brauer constituents in common. So by Proposition 5.5, the anchors of χ
are contained in N .

In conjunction with Proposition 5.2, the following example provides characters
whose anchors are not contained in Navarro vertices. The construction is similar
to that in the Isaacs-Navarro example above.

Example 6.6. Suppose that M = Op,p′(M), and α is an irreducible p-special

character of M such that ResMOp(M)α is irreducible. Suppose further that there
exists a nontrivial irreducible Brauer character ϕ of M such that dα,ϕ 6= 0. Let β
be the irreducible character of M with Op(M) in the kernel of β and such that β◦

equals the dual ϕ∗ of ϕ. Then β is p′-special.
Let G =M ≀Cp. In G, there is the normal subgroup N =M1×· · ·×Mp with each

Mi isomorphic to M . Let α̃ ∈ Irr(N) be the product of α and the trivial characters

of M2, · · · ,Mp, let β̃ ∈ Irr(N) be the product of β and the trivial characters of
M2, · · · ,Mp and let ϕ̃ be the product of ϕ with the trivial Brauer characters of

M2, · · · ,Mp. Let χ = IndGN (α̃β̃).

Since α̃ is p-special and β̃ is p′-special, by results of [6], α̃β̃ is an irreducible

character of N . By construction, neither α̃ nor β̃ is G-stable. Hence, also by
general results on p-factorable characters, α̃β̃ is not G-stable. Since |G/N | = p, it

follows that χ is an irreducible character of G. Now, since β̃ is not G-stable, it is
easy to see that χ is not p-factorable. On the other hand, N is a maximal normal
subgroup of G. Thus (N, α̃β̃) is a nucleus of G in the sense of [17], and the Sylow
p-subgroups of N are the first components of the Navarro vertices of χ.

We have (α̃β̃)◦ = α̃◦β̃◦, and ϕ̃ is an irreducible Brauer constituent of α̃ and

β̃◦ = ϕ̃∗. Since ϕ̃(1) = ϕ(1) is relatively prime to p, it follows that the trivial

Brauer character of N is a constituent of (α̃β̃)◦. Consequently, the trivial Brauer
character of G occurs as a constituent of χ. Thus, by Proposition 5.2, the anchors
of χ are not contained in N .

7. Lifting

Let G be a finite group and χ ∈ Irr(G). Let P be an anchor of χ. Then
k ⊗O OGeχ is a G-interior k-algebra. Since

(k ⊗O OGeχ)
G = Z(k ⊗O OGeχ)

is a local k-algebra, it follows that k ⊗O OGeχ is a primitive G-interior k-algebra.
Since

k ⊗O (OGeχ)
P ⊆ (k ⊗O OGeχ)

P ,

k ⊗O OGeχ has a defect group Q contained in P . We will see below that we
often (but not always) have equality here. If χ◦ ∈ IBr(G), then there is, up to
isomorphism, a unique OG-lattice L affording χ, and k ⊗O L is the unique simple
kG-module with Brauer character χ◦, up to isomorphism. We have seen above that
in that case the G-interior O-algebra OGeχ is isomorphic to EndO(L). This implies
that the G-interior k-algebra k⊗O OGeχ is isomorphic to Endk(k⊗O L). Thus the
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anchor P of χ is a vertex of L, and the defect group Q of k ⊗O OGeχ is a vertex
of k ⊗O L. The examples 7.1 and 7.2 below illustrate the cases where Q = P and
Q < P , respectively.

Example 7.1. Let G be the symmetric group Sn, for a positive integer n. Let
χ ∈ Irr(G) such that χ◦ ∈ IBr(G), and let L be an OG-lattice affording χ. We
claim that L and k ⊗O L have the same vertices.

Indeed, let λ be the partition of n labelling χ. Since the Specht lattice SλO is
an OG-lattice affording χ, the uniqueness of L implies that SλO

∼= L. Thus the
kG-module Sλk

∼= k ⊗O SλO
∼= k ⊗O L has Brauer character χ◦ and is therefore

simple.
A result by Hemmer (cf. [8]) implies that Sλk lifts to a p-permutation OG-lattice

M . Then K ⊗OM is a simple KG-module; that is, K ⊗OM ∼= SµK
∼= K ⊗O S

µ
O for

some partition µ of n. Moreover, Sµk is isomorphic to k ⊗O M ∼= Sλk ; in particular,
we have

HomkG(S
λ
k , S

µ
k ) 6= 0 6= HomkG(S

µ
k , S

λ
k ).

Suppose first that p > 2. Then [11, Proposition 13.17] implies that λ ≥ µ and
µ ≥ λ, hence µ = λ. The uniqueness of L implies that SλO

∼= L ∼=M ; in particular,
L is a p-permutation OG-lattice. Hence L and k ⊗O L have the same vertices.

It remains to consider the case p = 2. In this case a theorem by James and
Mathas (cf. [12]) implies that either λ is 2-regular, or the conjugate partition λ′ is
2-regular, or n = 4 and λ = (2, 2). The last alternative is trivial. Multiplying by
the sign character, if necessary, we may therefore assume that λ is 2-regular. If µ is
also 2-regular then we certainly have λ = µ. If µ′ is 2-regular then we have λ = µ′,
in a similar way. Now, arguing as in the case p > 2, we conclude that L and k⊗O L
have the same vertices.

Example 7.2. Let p = 2, G = GL(2, 3) and N = SL(2, 3). Let R be the unique
Sylow 2-subgroup of N and H a complement of R in N . Let τ be the 2-dimensional
irreducible character of R and let η be the unique extension of τ to N with deter-
minantal order a power of 2 (cf. Corollary (6.28) in [10]). Let χ be an extension
of η to G. Then χ is 2-special, by [9, Proposition 40.5]. Further, χ◦ is irreducible

and equals IndGN (ψ), where ψ is a linear Brauer character of N . (Note that the
restriction of χ◦ to H is a sum of two distinct irreducible Brauer characters).

Thus, R is a vertex of the unique kG-module affording χ◦ and R is contained in
some (and hence every) vertex of the OG-lattice affording χ. Since χ is not induced
from any character of N , and G/N is a 2-group, Green’s indecomposability theorem
implies that the OG-lattice affording χ is not relatively N -projective. Hence R is
properly contained in a vertex of the OG-lattice affording χ, which is consequently
a Sylow 2-subgroup of G.

Remark 7.3. Let G be a finite p-solvable group and χ ∈ Irr(G) such that χ◦ ∈
IBr(G). Let L be an OG-lattice affording χ. Suppose, as in the above example
that a vertex P of L strictly contains a vertex R of k⊗O L. Let S be an OP -lattice
source of L. We claim that S is not an endopermutation module. Indeed, assume
the contrary. Since P is a vertex of S and since S is endopermutation, k⊗O S is an
indecomposable endopermutation kP -module with vertex P . On the other hand,
k ⊗O S is a direct summand of k ⊗O L, k ⊗O L has vertex R, and R is strictly
contained in P , a contradiction.
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