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Abstract

This thesis presents and extends the J-value framework for assessing expenditure on
risk mitigation, and then applies the method in a comparative risk assessment of UK
electricity generating systems.

The thesis is split into two volumes. The first volume contains part one, in which the
J-value framework is introduced and developed. The loss of life expectancy is a key
parameter in the framework, and general risk models for calculating this parameter
are developed in terms of exposures and responses. Specific examples of radiation
and pollution models are also presented. The “Hazard Elimination Premium” is also
introduced as a useful common metric for risk comparisons.

Part one also contains an assessment of the uncertainty of the J-value and its input
parameters and it is found that the J-value has an internal accuracy of around 3%, but
that other, context dependant parameters can degrade this accuracy. A sensitivity
analysis of the J-value framework also found that the J-value was reasonably robust
against random variation of the input parameters as well as against the use of
simplifying assumptions used in the development of the J-value.

The second volume contains parts two and three. Part two describes the comparative
risk analysis of the electricity generating systems. The analysis is carried out on
nuclear, coal, natural gas, onshore wind and offshore wind. The analysis assesses
human mortality impacts arising from the current and future plants over the sixty
year period from 2010 to 2070 for the entire fuel chain. The results indicate that
nuclear generally has the lowest impacts, while gas, onshore and offshore wind have
indicative impacts that are about an order of magnitude greater, although the
estimates for both wind technologies carry considerable uncertainty. Coal power was
found to present high impacts compared with the other technologies, mainly as a
result of pollution emissions. Total nuclear impacts were found to be sensitive to
assumptions regarding the use of collective dose and the assumptions which are then
used to calculate impacts. For the most pessimistic case, when world exposures are
taken, total nuclear impacts increase by about an order of magnitude, which would
render the risks from nuclear generation comparable with those from gas and wind
generation.

Part three presents the conclusions, further work, bibliography and appendices.
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Nomenclature

List of Roman Symbols

Symbol Meaning Units
A Assets £
Ap Productivity constant
a Age year
Arec Recruitment age year
Aret Retirement age year
B Cost of risk mitigation system £
Bo Risk-neutral maximum reasonable £
spend on risk mitigation system
b Constant exposure rate additional deaths/year
ba Normalised cost of risk mitigation
system
Beoll Collective exposure rate additional man-deaths/year
o] Discrete value of normalised cost of
risk mitigation system
Pmax Maximum normalised reasonable
spend on risk mitigation system
b(x) Exposure rate at time x additional deaths/year
brot(X) Total individual exposure
C Cost of accident £
c(a) Earnings per year at age a £lyear
Ca Normalised cost of accident
Cr Total dose risk coefficient for Sieverts™
radiation exposures
D Difference in expected utilities
Da Number of deaths at age a
Ds Linearised discount factor
D(t) Probability of dying before age t
D(uy,uzle) |Difference in initial and final utility at
given risk aversion ¢
da Number of life table deaths at age a
dr(x) Annual radiation dose Sieverts/year
E Emission rate ngs
E, Number of deaths calculated from
survival proababilities based on
specific model
E(uy) Initial expected utility
E(uy) Final expected utility
€a Life expectancy at discrete age a year
F Expected remaining free time year
F(a) Expected remaining free time at age a |year
f Average free time fraction
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fo

Optimal free time fraction chose by
society as a whole

f4(t) Probability density for death year™
frnale Fraction of population that is male
fu(y) Probability density that the excess year™
mortality resulting from a given
exposure occurs at time y
fr(2) Total probability density for death at |year™
time 7
G GDP per person £lyear
Gc National GDP £lyear
g(ba, €) Derivative of reluctance to invest
g(x) Probability density for death at time x |year™
from given exposure
gd(ta) Probability density function for death |year™
at age t given survival to age a.
Ow fraction of time spent working for
average person in work
gw(t) Fraction of time spent working for
average person of age, t, and in work
H Population entropy
Hr Total man-hours worked in all hours
populations
Hu(t) Total man-hours worked at age t hours
h(a) Hazard rate at age a year”
hw(t) Individual hours worked at age t hours
J Judgement value
Jo(X) Jump function for response to
exposure
Jr Total judgement value
J, Second judgement value
K Capital investment per person £
Kc National capital investment £
K Expected number of accidents as used
in the Poisson distribution
Krad Distributed radiation risk coefficient |year™
Kooll Pollution risk coefficient ug m’
ky Constant
ko Constant
Lc National labour supply man-year
la Number of life-tables survivors to age
a
Mma Discrete central rate of mortality at
age a
m,"e Male central rate of mortality at age a
ma="¢  |Female central rate of mortality at age
a
Mriow Low value of risk multiplier
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Mr.max Maximum risk multiplier
N Number of people affected by
protection system
Nc Number of people in a country
Npop Total size of a given population
Npy Annual person-years worked
Na Mid-year population at age a
n(a) Size of population at age a
Nw(t) Number of people working at age t
@) Electrical energy output Gigawatt-year (GWa)
pL Price of labour £lyear
p(a) Population density at age a year™
Psw(tla) Probability for being employed at age |year™
t given survival to age a
Pw Average probability of being in work
for all persons of working age
Pw(t) Probability for being employed at age |year™
t
pY, Probability density of y accidents
occurring with frequency A
P1 Initial no-accident probability
P2 Final no-accident probability
Q Life-quality index
Qs Life-quality index in terms of income
and free time fraction
Qtd Discounted life-quality index in terms
of income and free time fraction
Q_f Constant value of life-quality index
on an indifference curve
Qx Life-quality index in terms of income
and life expectancy
Q_ Constant value of life quality index
X on an indifference curve
Q1 Version of life-quality index
Q2 Version of life-quality index
q Elasticity parameter
Qa Probability of death at age a
R(a) Expected utility for individual of age,
a
Ry Restoration requirement
Rr(a) Restoration requirement at age a
R120A Reluctance to invest
r Net discount rate year™
rq Discount rate year”
Iy Growth rate year
S(a) Survival probability to age a
S(tla) Survival probability to age t given
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survival to age a.

T Random age of death year
TR Release Period year
t Age, time year
tav Average age in a population year
tay’ Average square age in a population | year®
tay Average cubed age in a population  |year’
ta+.ave Average age of those above age a year
tw.av Average working age year
U(G) Utility of income, G
Uo(e) Initial utility at risk aversion €
Vb(Xq) Value of a delaying a fatality by x4 £
years
V() Value of temporarily preventing a £
fatality for someone of age a
Vo Value of temporarily preventing a £
fatality for someone of unknown age
Vp.av Average value of temporarily £
preventing a fatality
W(a) Cumulative hazard rate at age a
W work-time fraction
Wo Optimal work-time fraction chosen by
society as a whole.
X Average life expectancy year
Xg Average discounted life expectancy |year
X(a) Life expectancy at age a year
Xq(a) Discounted life expectancy at age a  |year
X Time year
Xg Discounted delayed time until death  |year
Y Random number of accidents
y Time elapsed since induction year
Yw Work-life expectancy year
yw(@) Work-life expectancy at age a year
Zp Normal quantile function
z(t]a) Fraction of time someone of age, a,
can expect to be working at age, t
List of Greek Symbols
Symbol Meaning Units
o1 Constant
S Constant
y Constant
obi Step size for normalised cost of
protection system
oc(X) Increase in concentration levels ng.m”
Odis Discrimination limit
oG Maximum reasonable change in a £lyear
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person's income as a result of spending
on a health and safety scheme that will
extend his life

oGN Maximum reasonable change in a £lyear
group of N people’s income as a result
of spending on a health and safety
scheme

Shaps(ta) | Absolute change in hazard rate at age t |year™
given survival to age a.

Shrei(tl2) |Relative change in hazard rate at age t |year™
given survival to age a.

oVN Maximum reasonable spend on a £
protection system for N people who
will experience a gain in life
expectancy of oX,

(5\7N Actual spend on protection system. £

oW(tla) |Change in cumulative hazard rate at
age t given survival to age a

SW Actual spend on risk protection system (£
that protects against physical and
financial risks

0Xcoll Collective loss of life expectancy man-year

0Xg Change in average discounted life year
expectancy

o0Xg(a) |Change in average discounted life year
expectancy at age a

0ZR Maximum reasonable spend on £
financial risk mitigation systems

57 Actual spent on financial risk £
mitigation system

oe Step size for risk aversion

ox(a) Change in random life to come at age |year
a

€ Risk aversion coefficient

Emax Maximum risk aversion

Epp Permission point

s Elasticity of free time fraction with
respect to income

MU Elasticity of marginal utility with
respect to income

nx Elasticity of life expectancy with
respect to income

0 Share of wages in the GDP

A(X) Number of deaths at time x

A Hazard rate when deaths are year'
exponentially distributed

v Deposition velocity ms™
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via(X¢) | Value of a discounted life-year £
Vave Average value of a life-year £
m Initial accident probability
) Final accident probability
p Population density persons/m®
Pty Correlation coefficient between
parameters f and g
of Standard deviation for parameter f units of f
T Age year
do(y) Response function year
X Random life to come when age is year
unknown
x(@) Random life to come at age a year
22, Chi-square test statistic with k —1
B degrees of freedom
®(p) |Inverse normal cumulative distribution
at value p
wo(X) Prolonged response function
w1(X) Integrated prolonged response function
w2(X) Twice integrated prolonged response
function
Q Duration of long exposure year
w1 Time to start of response to exposure |year
> Time to end of response to exposure  |year
List of Abbreviations
COE Compensation of Employees £lyear
GDP Gross Domestic Product £lyear
Ml Mixed Income £lyear
MRS Marginal rate of substitution
RR Relative risk
VODLY |Value of a discounted life-year £
VODLYA|Average value of a discounted life- £
year
VTPF Value of temporarily preventing a £

fatality
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Chapter 1 Introduction

1.1 Statement of Problem

The purpose of the research contained in this thesis is to use the J-value framework
to assess and compare the risks from diverse methods of electricity generation in the
UK.

1.2 Aims and Objectives

The aims of this research are:
1. Validate the J-value framework as a suitable and robust tool for risk
assessment and analysis.
2. Compare, in a consistent manner, the risks posed by various electricity
generating systems in the UK using the J-value framework.

It is intended that these aims will be achieved through the following objectives:

1. Extending the existing framework by incorporating more general risk models
in the loss of life expectancy calculations, and conducting uncertainty and
sensitivity analyses.

2. Use the J-value framework to develop a common metric that can be used to
compare the risks from electricity generating systems on a consistent basis,
i.e. in such a manner that does not bias the results towards any particular
electricity generating system.

3. Develop a framework for the comparative risk analysis that will incorporate
all relevant risks involved in the generation of electricity for each system in a

manner that will ensure a fair and valid comparison.

1.3 Structure

To achieve the aims and objectives set out above, it has been necessary to separate
the comparative risk analysis from the development of the J-value framework. The
thesis thus has three parts. Part one is the valuation of health and safety, in which the

J-value is presented and developed. The first chapter in part one considers the
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historical context and existing literature in this field. The subsequent chapters then
describe in detail the concepts and methods used in deriving the J-value, and develop
them further. Areas in which the existing framework is developed further include:

e A new derivation of the J-value through consideration of the trade-offs made
at an individual and societal level.

e Generalised relative and absolute risk models of the loss of life expectancy
following any given exposure and response pattern. This model is also
applied to the specific case of pollution risks.

e A more rigorous treatment of the measurement and estimation procedures for
the parameters used in the J-value framework, including an assessment of the
tolerances to be placed on each parameter.

e Introduction of the concept of a “Hazard Elimination Premium”, which is the
maximum reasonable amount to spend to completely eliminate a hazard. The
HEP is used extensively in the second part of the thesis.

e A sensitivity analysis of the J-value framework, in which the robustness of
the J-value given the initial assumptions and uncertainty of some of the input

parameters is assessed.

The J-value has been recently extended by Thomas et al (2009, 2010) [190], [191],
[192] to include mitigation of financial risks in addition to physical risks. These
concepts come together to form a “total judgement value”, or Jr-value. The model
behind this extension is shown, and the computational methods employed to
calculate some of its outputs are also presented. Part one then concludes with some

example calculations.

The second part of the thesis applies the methods laid out in part one in a
comparative risk analysis of UK electricity generating systems. The analysis is
carried out on five electricity generating systems in the UK: nuclear, coal, natural
gas, onshore wind and offshore wind, and uses the hazard elimination premium to
compare each technology on an equal footing. This section opens with a literature
review, before discussing the technical procedures of the report, such as scope and
the assumed boundaries of the assessed systems. This is followed by the analysis of

risks from nuclear, fossil fuels, and the wind technologies. Part two concludes with
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the overall results, comparisons with other studies and a discussion of the

significance and limitations of the results.

The third and final part of the thesis considers the overall conclusions, and whether
the aims and objectives have been met in answering the research problem. Areas
requiring further work are also identified and discussed. Part three also contains the

bibliography and appendices.
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Part 1 Valuing Health and Safety

Individuals have always traded risks to their health and life in order to obtain other
benefits. These trades reflect how the individual values his or her life. In a modern
democratic society, it is necessary to make decisions about public safety that
invariably affects the health and the wealth of many individuals. There is now
widespread consensus that any such method used to aid the decision making process
regarding public safety should reflect as far as is possible the preferences which the
individuals in a society place upon their safety. Any such method must be fully
consistent in the way that risks are valued, and should also be transparent. Currently
the most widespread method used for valuing risks are stated preference techniques
used to elicit an individual’s willingness to pay (WTP) for a given risk reduction.
The advantages and disadvantages of this method have been summarised in the
preceding section. The purpose of this thesis is to describe a relatively new technique
for valuing risks known as the “J-value” method, developed by Thomas et al (2006)
[182], [183], and (2009) [188].

The J-value method values risks by using the Life Quality Index (LQI), which is an
indicator for measuring the development of nations, and was developed by Pandey,
Nathwani and Lind (1997) [137], (2004) [157] and (2006) [158], as a means to test
the efficiency of risk management decisions. The central postulate of the LQI
methodology is that the two primary determinants of an individual’s quality of life is
how much free time he can expect to enjoy from now on, and how much he will have
available to spend over this period. The relative importance of these two factors is
then determined by using labour market data to analyse society’s preferences for
how it allocates its time. It is assumed that an individual can choose how much time
he wishes to work for, and accordingly how much free time he has. The more
importance he places upon his free time, the less time he will spend in work.
Conversely, if his preferences are for more money available for consumption, he will
spend more time in work. Thus, the proportion of time which the average individual

will choose to spend in work from now on can be used to weight the two factors
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appropriately. A value for risk can then be inferred by insisting that any decision that
changes a society’s average life expectancy and income (measured by the GDP per
person) must at least preserve the initial LQI, and preferably increase it, i.e. the
change in the LQI must not be negative. If a protection system is known to afford a
given increase in life expectancy to a group of individuals, then the constraint on the
change in the LQI places an upper bound on the amount of money that should be
spent on implementing the scheme. This maximum value can then be taken as
representing the societal cost of risk. If the actual cost of the protection system is
known, then the J-value is the ratio of this cost to the societal cost. The J-value is
therefore a dimensionless positive number. J-values of less than unity indicate that
the protection system costs less than the maximum theoretical cost of risk, and so
represent good value for money. Implementing these schemes will result in an
increased LQI. J-values greater than unity indicate that the cost of the protection
system is greater than the theoretical maximum, and hence should not be
implemented. The J-value can be seen to be a scale on which safety projects and risk
policies may be judged. The scale is universal, in the sense that it is not specific to
any single industry, and all the input parameters are fully objective guantities, most
of which are derived from reliable national and actuarial statistics. The J-value, being

a single dimensionless number, is also transparent and easily interpreted.

The J-value framework has also been extended recently (2010) [192] to include
financial risks to assets. This is formulated around an expected utility model, which
can be used to determine objectively the risk preferences of the individual or
organisation facing the risk, which can then be used to determine the maximum

reasonable spend on eliminating the risk.

Chapter 3 describes the conceptual foundations of the J-value method in depth, and
shows how the J-value can be derived based on considerations of the trade-offs
individuals make between their free time and income, and the trade-off between
safety spend and life expectancy improvement. Chapters 4 to 6 then introduce the
methods and techniques required for calculation of the actuarial parameters: the life
expectancy; the change in life expectancy and the work-life expectancy. It is also
shown how the latter parameter can be used in calculating the work-time fraction: a

key parameter in the J-value framework. Chapter 7 describes how the J-value can be
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used to infer common metrics of the value of life, namely the value of temporarily
preventing a fatality (VTPF), and the value of a discounted life-year (VODLY), and
also introduces the “Hazard Elimination Premium” (HEP), which will be used
extensively in part 2 of this thesis. Chapter 8 presents the measurements of all the
necessary input parameters to the J-value, and also provides an assessment of the
tolerance limits of the J-value. In chapter 9 a sensitivity analysis is performed to
assess the robustness of the J-value to the underlying assumptions. Chapter 10 gives
an introduction to the J, and Jr-values, and describes how the maximum reasonable
spend on financial risks can be determined. Finally, chapter 11 presents some
example calculations, demonstrating the general nature and applicability of the J, J,

and Jy-value methods.
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Chapter 2 Historical Context and Existing Literature

The valuation of health and safety schemes, proposals or policies must also reflect
the value to be placed on physical risk, and consequently, the value placed on human
lifespan. In this section, some of the historical and more recent literature of such
valuations will be reviewed. Particular focus will be given to the various
methodologies that have been used to value these risks. It is common practice to
express risk valuations in terms of how much should be spent on avoiding one
statistical fatality, a measure commonly known as the “value of a statistical life” or
the “value of preventing a fatality”. However, the latter term is somewhat
misleading, as preventing a fatality is in the long run impossible — all individuals will
eventually die. It is for this reason that, for the purposes of this thesis, the term
“Value of Temporarily Preventing a Fatality” (VTPF) will be used. Although there
are many ways to calculate the VTPF, one of the most common methods is the
following: if it has been determined that each member of a population of size N is
willing to pay £v to eliminate a risk that has a probability of 1/N of killing each
member, then an amount totalling £Nv is willing to be spent on eliminating a risk
that is expected to kill one person. Therefore, the VTPF = £Nv. The VTPF is usually
an input into health and safety decision making. However, this is not the case in J-
value analysis — the risk valuation technique that is the main concern of this thesis —

where the VTPF is an output that can be calculated if so required.

The earliest known valuations of human life can be found in the Babylonian Code of
Hammurabi (ca. 1,700 BCE) and the Book of Leviticus of the Hebrew Bible (ca.
1,400 BCE). The former decreed compensation values to be paid by a man that
assaulted or killed another individual, which were based on the relative social status
between the offender and the victim. For example, if one man accidentally killed
another man as the result of an argument, then the offender should pay half a mina to
the victim’s family if the victim was a freeborn man, or one third of a mina, if the
man had been a slave but was now free. Using extremely crude calculation methods,
the VTPF for the free born man is £206, whilst the VTPF for the former slave is
£137, in 2011 prices [91]. In the Book of Leviticus, values were assigned to

consecrated individuals based upon the individual’s productive value to society, with
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males of ages between 20 and 60 being deemed the most valuable, at 50 shekels of
silver. Females of these ages were valued at thirty shekels. This would mean a VTPF
of £412, and £247 respectively, using the same calculations as before. Individuals
outside this age group had lower valuations.

The first formal research into the value of life came some three thousand years later,
but used largely the same methods of valuation. The method of valuing human life in
terms of an individual’s future productivity and earnings came to be known as the
“human capital” method. Some of the first authors to investigate this method were
Adam Smith in 1776 [176], and Ernst Engel in 1883 [74]. A more in depth historical
review of human life valuation is provided by Dublin and Lotka (1930) [68], who
also provide a calculation of a VTPF using this approach. They calculate the net
future earnings of an individual to be approximately $9,802, in 1930 prices, or a
VTPF of about £82,000 in 2011 prices. This approach suffers from some serious
ethical problems, such as the zero value of retirees or those who do not work.
Children are also assigned a relatively small valuation, due to the traditional
economic method of discounting future earnings. According to Schulze (1980) [174],

the early attempts at applying this method to value health and safety programs:

“Have given economists a “black eye” for supposedly advocating that individual
human lives could be valued as the lost economic productivity associated with a

shortened life span”

These problems have meant that there have been relatively few modern attempts at
valuing physical risk using this method, the most notable being Rice (1967) [169],
who used this approach to value the cost to society of illness, disability and death. A
follow up to this study was published ten years later by Cooper and Rice (1976) [41].
Lave and Seskin (1970) [127] have also used this method to value the societal cost of

air pollution.

The human capital approach is an example of one methodology that has been used as
a procedure for valuing mortality risks in a consistent manner. Another important
methodology that is now widely used is the “willingness to pay” (WTP) method. At

the foundation of this method is the belief that public sector decisions regarding how
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to mitigate risks to society should reflect the degree to which the individuals are
willing to pay to do so. Precisely how much an individual is willing to pay must be
determined through techniques that can be classed as either “revealed preference” or

“stated preference”.

Stated preference techniques involve eliciting an individual’s WTP by direct
questioning, and can be further sub-divided into the ‘“contingent valuation” (CV)
method and the “choice experiment” (CE) method. The CV method involves simply
asking a representative sample of individuals how much they would be willing to
pay to reduce a particular risk, whilst the CE method involves indirectly deducing an
individual’s WTP by presenting him with a series of hypothetical alternative
scenarios, which the individual then orders in terms of his preference. This
preference ordering then allows the experimenter to determine the individual’s
marginal rate of substitution (MRS) between risk and wealth, which can then be used
to determine the individual’s WTP for a given risk reduction. Beattie et al (1998)
[16] published a report that tested the consistency of the CV method, finding that the
results were dependent upon the way in which the questions were asked. Carthy et al
(1999) [29] published a follow up study that sought to improve the consistency of
the results by using a CE method instead, eventually concluding that a VTPF for
road fatalities of £1 million was most appropriate (about £1.3 million in 2011
prices). The CV and CE approaches have also been employed by various UK
regulatory bodies to determine safety policy. In a report for the UK Health and
Safety Executive (HSE), Chilton et al (2000) [32] used both the CV and the CE
approaches to establish a WTP “tariff” for risks in different contexts — those from
roads and other public transport, fires, hazardous substances in the workplace,
nuclear power, genetically modified organisms and sport and leisure. The HSE then
commissioned a follow up study, published by Burton et al (2001) [22] following the
Ladbroke Grove rail accident of October 1999, in order to assess how individual
attitudes towards risk changed following a major accident. The procedures used in
this study were essentially the same as in the previous one. A report by Covey et al
(2008) [44] for The Rail Safety and Standards Board also used the CE approach to
determine how to value risks that involved multiple fatalities, track worker fatalities,

child and adult trespasser fatalities, and adult suicides.
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Stated preference techniques have the advantage that they can be used to estimate the
value of any type of risk. There are, however, a number of drawbacks. These include
the tendency for the respondents to give inconsistent answers. For example, as
briefly mentioned above, the same question can elicit different responses, depending
on how the question was asked. This is known as the “framing effect”. Such studies
also usually have to resort to “trimming”, whereby respondent’s answers are
removed from the sample if the experimenter judges them to be either inconsistent or
not representative of the sample as a whole. This process violates the ethical and
democratic principle that all individual’s preferences should be accounted for with
equal weight, and also undermines the fundamental principle that the VTPF should
reflect the willingness to pay of society. Perhaps the most severe drawback of the
stated preference technique is that there is little reason to suspect that an individual’s
preferences for safety, when elicited in an isolated environment devoid of the vast
array of factors that are confronted in everyday life, will be representative of how the

individual makes decisions about his safety in reality.

Revealed preference techniques involve inferring the individual’s WTP for safety
from his or her behaviour. The two most popular methods of doing so are the
“compensating wage” method and the “avertive behaviour” method. The
compensating wage method, which is the most widely used of all WTP methods,
uses data from the labour market to assess the wage differentials for jobs with
varying health and safety risks. It assumes that employees understand the nature and
magnitude of the risks involved, and make informed choices that reflect their
preferences for physical risk. Viscusi and Aldy (2003) [198] published a
comprehensive review of compensating wage studies, showing that there was quite a
large disparity in the VTPF, from around £3 million to £55 million, in 2011 prices.
Avertive behaviour methods use price data of various risk reducing items, such as
smoke detectors and seatbelts to determine WTP. It is assumed that the cost of
buying one extra item is equal to the value of the associated risk reduction. Viscusi
(1993) [197] reviewed seven such studies that inferred a value of risk from cigarette
smoking, property prices in less polluted areas, and prices of inherently safer
automobiles. The VTPF calculated using this method ranged from £0.6 million to £4
million, in 2011 prices. The advantages of the revealed preference techniques are

that they use fairly reliable data, which accounts for the behaviour of many
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individuals, and much of which is freely available. The techniques also reflect to
some degree decisions based on real-world choices, as opposed to the isolated
decisions elicited by the stated preference techniques discussed above. The
disadvantages of these techniques are that the assumptions regarding wage
differentials being caused by differing levels of safety, and the price of a risk
reducing item being equal to the value of the risk, are implausible. Clearly, many
factors can affect wage levels and prices. The assumption that employees make
considered decisions about whether to take a job based only on wage and safety
considerations is also doubtful. The difficulties of these assumptions are borne out

by the large range of the VTPF calculated in this manner.

Another method of valuing physical risk that has been developed recently is based
on the Life Quality Index (LQI) method, first developed in 1997 by Nathwani, Lind
and Pandey [137], [157]. The LQI is a summary indicator that can be used to
measure the development of a nation, based on its Gross Domestic Product (GDP)
per person, and its average life expectancy. By insisting that any protection system at
least maintains the initial LQI, a maximum reasonable cost for the system can be
determined. This cost is then the societal value of the given risk reduction. The
calculation involves using labour market data to infer how individuals prefer to
distribute their time between working, in which income is raised, and leisure, in
which the income is consumed. In this sense, the LQI method can be seen to be a

revealed preference technique for determining the societal WTP for risk reductions.

More recently, the LQI method has been expanded by Thomas et al in 2006, [182],
[183] who introduced the “J-value method” for use in risk management and
assessment, and which is the central concern of this thesis. The J-value is the ratio of
the actual cost of a given risk reduction scheme, to the maximum cost of the risk
given by the LQI method, and is therefore dimensionless. A J-value of less than
unity indicates that the risk reduction scheme costs an acceptable amount, and should
therefore be implemented, whilst a J-value of greater than unity indicates that the
scheme is too expensive, and would impact society’s quality of life adversely. This
method can also be used to calculate a VTPF of £2.5 million in 2011 prices, and with
a 2.5% per annum discount rate. This method has been used to value and assess risks

from a diverse range of sources, such as railway protection systems, the cost-
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effectiveness of drugs, and radioactivity abatement systems. Much of the initial J-
value research centred around radiation protection, in which the exposure to
radiation and subsequent mortality response was stochastically modelled in order to
determine the loss of life expectancy from a given exposure to ionising radiation, see
Thomas et al (2006) [184], (2007) [185] and (2009) [186], [187].

Further recent developments of the J-value method include an extension of the
method to include valuation of environmental risks (2010) [192], and an analysis of
the tolerance of the J-value(2010) [123]. The main advantages of the J-value method
are that the input parameters are objective, being estimated from actuarial or national
statistics. The method is also transparent, the output being a simple dimensionless
number that is easy to interpret. It is also consistent, offering a simple scale by which
risks can be assessed. The disadvantages of the method are that it only values
mortality risks, and cannot be used to assess morbidity, or non-fatal risks. Nor does
the method account for the pain or suffering which may be experienced over the
individual’s remaining lifespan, for example, by using “Quality Adjusted Life-

Years” (QALYSs) that are used in health economics.

The various methods of valuing mortality risks are summarised in Table 1.

-35-



Method |Examples of Major |VTPF Advantages |Disadvantages
Publications (2011 £)
Human Dublin and Lotka [68] | ~82,000 Can be easily |Severe ethical
Capital Rice, [169] calculated problems. Those
Cooper and Rice, [41] from labour  |who do not work
market data. | have no value.
WTP — Beattie et al, [16] 1,300,000 |Can be used to |VVulnerable to
Stated Carthy et al, [29] value any type |framing effects.
Preference |Chilton et al, [32] of risk. The practice of
“trimming” raises
ethical issues.
The answers of the
respondents are out
of everyday
context and may
therefore not be
representative of
true preferences.
WTP — Viscusi, [197] 600,000 — |Uses reliable | Assumption about
Revealed |Viscusi and Aldy, 55,000,000 | labour market |the wage
Preference |[198] data that differential
accounts for  |reflecting the risk
large numbers |level is
of people. implausible.
Data accounts | Assumption that
for behaviours |the price of a risk
in everyday |reducing
context. commodity is
equal to the value
of the risk is also
implausible.
LQl/ Pandey and Nathwani, | 2,600,000 |Input Does not account
J-Value [157][158] parameters are |for morbidity risks
Thomas et al, objective. or QALYSs.
[182][183] National and
actuarial data
is used that
accounts for
millions of
people.
Output is
transparent.

Table 1 Summary of literature on valuation of mortality risks.
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Chapter 3 Conceptual Foundations of the J-Value

3.1 The Life Quality Index

It is impossible to determine each and every factor required to ensure that the highest
quality of life may be enjoyed by all individuals. There are a vast amount of
variables that influence an individual’s welfare, and exactly what is entailed by a
high quality of life is entirely subjective. Any rational analysis of such a complex
and indeterminate concept must attempt to make an appropriate simplification by
identifying the key factors which underlie the concept of quality of life. It is
postulated that the quality of life of an individual can be distilled into two
fundamental factors: how long an individual can expect to live from now on, and
how much the individual has available to spend, both on life’s necessities and on its
luxuries. The first of these factors is encapsulated in the life expectancy, X, which is
measured in years. This factor may be distilled further by recognising that
individuals generally enjoy their life during time that they are free to dispose of as

they wish, in contrast to time that is spent working.

For many people, the distinction between working time and free time is an arbitrary
one, as people often engage in productive work even though they are not compelled
to do so. Nevertheless, individuals will generally wish to retain flexibility over how
they choose to spend their time. The productiveness of a society may be viewed as
the result of a complex trade-off that each individual makes between working time
and free time. In this trade-off the benefit gained from extra income obtained by
working longer hours is balanced against the cost of loss of free time. This suggests
that a more precise indicator of quality of life can be obtained by replacing the life

expectancy with the remaining average free time, F, where:

F=(1-w)X (3.1)
in which w is the average fraction of time spent working from now on. The amount
available to an individual to spend on consumption can be represented by a summary

measure of average income. This is taken as the Gross Domestic Product (GDP) per

person, G (£/year). This figure is chosen for ethical reasons, namely that everyone
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within the nation is treated equally with regards to income. Thus, free time and
average income are taken as being the two main inputs contributing to the single
output of quality of life. In economic theory, inputs are related to outputs through a
“production function”, the most common of which is the Cobb-Douglas production
function, (see e.g. Johansson (1991) [117]). If the output is denoted, Qi, and

represents a “life quality index” of an average person, then G and F are related to Q;

by:
Q =aG’F’ (3.2)
where a1, f and y are dimensionless positive constants. A property of the Cobb-

Douglas function is that any monotonic increasing function of Q; will also suffice as

a life quality index. This property is then used to define a second life quality index,

Qz:

QJ/}'
szﬂij =GF =G (1-w)X (33)

a,

where q = ply is a dimensionless positive constant, and where equation (3.1) has
been used in the last step. It may also be noted that the work time fraction is the

complement of free time fraction, f:
f=(1-w) (34)
which allows equation (3.3) to be recast as:
Q=G*fX (3.5)

where Q is used instead of Q,, as this is the most general form for the life quality
index, and will be used in much of the following derivation. Equation (3.5) expresses
three important considerations for an individual: how long he will live for, the

fraction of his remaining time which is free for him to dispose of as he wishes, and
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the amount of money available to spend over this time. The potential for trade-offs
between these three factors will now be considered. Firstly, it is assumed that free
time fraction and life expectancy cannot be substituted. However, there are some
very low values of f which would be associated with a reduced level of life
expectancy due to overwork. This presumably is not an issue for most individuals. It
therefore seems reasonable to assume that f and X are independent of one another.
Two important trade-offs remain, however. These are the trade-off an individual can
make between income and free time fraction, i.e. between G and f, and the trade-off
between income and life expectancy, i.e. between G and X, which occurs when
spending on a risk reducing protection scheme, or indeed, accepting compensation

for a reduced life expectancy (for example via higher wages in a high risk job).

Consideration of these trade-offs leads to the concept of a maximum reasonable
spend on safety and protection systems. This then allows a judgement or J-value to
be assigned to such a system, which can be expressed as a single equation. Although
the J-value has been derived before from different principles (e.g. see Thomas et al
(2006a) [182]), the following is a new derivation based upon standard economic
theory?. The independence of f and X means that the two tradeoffs described above

can be considered separately, as will be done in the following sections.

3.2 The Trade-Off between Free Time Fraction and Income

In exploring the free time fraction-income trade-off, it is assumed that any such trade
does not affect the individual’s life expectancy. This means that a new life quality
index, Qy, can be formed by dividing the original life quality index, equation (3.5),
by X, without loss of generality:

Q, =< =G'f (3.6)

x| O

This new life quality index is introduced in order that the features of the trade-off

can be explored explicitly. It is apparent from equation (3.6) that it is possible for an

2 Much of this chapter is based upon a paper published by Thomas, Jones and the present author, see
Thomas, Jones and Kearns (2010) [189].
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individual to exchange his income for free time, whilst still retaining his original life

quality index. The set of values of G and f that will render a constant level of life
quality, which will be denoted as Q_f , 1s known as an “indifference curve”, as it is

assumed that the individual is indifferent to how his level of life quality is attained.

The indifference curve must satisfy:

Q, =Gf (3.7)

which can be solved for f or G. Here it will be solved for G, to obtain:

—q
Q

G="r (3.8)

One property of equation (3.8) is that there are an infinite number of indifference
curves, with each one representing a different level of life quality. Also, none of
these indifference curves intersect one another. The indifference curve is also
convex, meaning that the function will always lie below a straight line drawn
between any two points on the line. Convexity of indifference curves directly implies
a diminishing marginal rate of substitution (MRS) of free time fraction for income.
This is the amount of income that must be exchanged for a unit of free time fraction,

and is given as:

——1/q
dac Q G
MRS =—— -~ ____ = 3.9
df — qf VO of (3:9)

Equation (3.9) clearly shows that the MRS diminishes with increasing levels of free
time fraction. The implication of a diminishing MRS is that the higher the free time
fraction enjoyed by the individual, the less willing the individual will be to give up

some income in order to increase free time fraction further.

The amount of income generated by the labour market may also be formally linked

to national average free time fraction by modelling a country’s domestic product.
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This is done by again using a Cobb-Douglas production function, following Pandey
et al (2006) [158]. The output in this instance is the national GDP, denoted as Gg,
and the factors of production are the national capital investment, K¢, and the annual
supply of labour within the country, Lc:

Ge = AKE'LY .10

where Ap is a productivity constant, that accounts for other factors affecting
production, such as technological advancements and education level. The other
parameter @ is the fraction of the GDP paid to workers as wages, as will now be

shown:

The price of labour, p., is the marginal GDP with respect to labour supply, at
constant levels of productivity and capital, i.e.:

D, = dG. _ G, 311
so that:
pLLC
f=rr=<
G, (3.12)

The numerator in equation (3.12), which is the product of the price of labour and the
labour supply, is the total wages paid to employees. Thus equation (3.12) shows that
@ is the wage share of the GDP.

Furthermore, the supply of labour may be seen to be equal to the total population of
a country, N¢, multiplied by the population-averaged work-time fraction:

L. =N.w=N, (- f) (3.13)
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where equation (3.4) has been used in the last step. Substituting into equation (3.10)

gives:
Ge = AKT/NZ(L-f) (3.14)

The GDP per person, G, is then:

G=—=A{—J_ @-f) =A@ f) (3.15)

where K is the capital investment per person.

Equation (3.15) shows that average income is related both inversely and non-linearly
to the free time fraction. This curve is a constraint that is determined by the
collective actions of individuals within a society and links the average individual’s
income to his free time fraction. It will now be assumed that these collective actions
of a society will be such that the life quality is maximised for the average individual,
subject to the above constraint. The maximisation occurs when the indifference
curve defined by equation (3.8) is tangent to the constraint curve defined by equation
(3.15). This situation is demonstrated in Figure 1, which presents data relevant to
UK conditions in 2007. This figure shows the downwards curving income constraint,
and the convex indifference curves. These three curves represent different levels of
the life quality index, Qr. The highest curve gives the highest quality of life. This
curve, however, is unobtainable as it always lies above the constraint line. The
lowest curve has parts that lie within the constraint, but any individual on this curve
can increase his quality of life within the constraint. Hence the curve that maximises
life quality subject to the constraint is tangent to the constraint line. The condition of
tangency is met when the derivatives of the two curves are equal. Figure 1 also
shows shaded regions where low values of free time fraction or very low income
levels may compromise the individual’s health, and are therefore excluded. These
levels are not precisely defined. It is sufficient for these purposes that the trade-off

occurs outside these shaded regions.
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If the point of tangency is located at (fo, Go), then the derivative of the indifference

curve is given by the negative of equation (3.9), evaluated at these points:

de
df

G
- =—-MRS :_q_fz (3.16)

The derivative of the constraint line of equation (3.15) is:

LTI
a |, . 1-1, (3.17)
Matching the derivatives of (3.16) and (3.17) gives:
B 3.18
qfo 1- fo ( . )
which can be solved for g, the only unknown parameter. This gives:
11-f, 1 w,
=-——"= ° (3.19)

0 f, O0l-w,

where, clearly, fo = 1 — wp. The meaning of the parameter q may be further explored

by rearranging equation (3.9) to give:

G df
q:_TEZ_m (3.20)

which is valid for dG/df > 0. The parameter #: is the income elasticity of free time
fraction. Elasticity is a measure of the sensitivity of relative changes in a variable
following a relative change in another variable. The parameter g thus emerges as the

modulus of this elasticity parameter.
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3.3 The Trade-Off between Income and Life Expectancy

The second trade-off investigated is between income and free time fraction. The
nature of this trade-off is different from the first trade-off, which was determined by
a collective bargaining process made at a societal level. The trade-off between
income and life expectancy occurs when health and safety schemes are being
considered. Such a health and safety scheme can be expected to improve life
expectancy by a certain amount, but at a cost. This cost may be borne by each
individual in society, even if the individual does not directly benefit from the health
and safety improvement, in line with the compensation notions of Kaldor (1939)
[120] and Hicks (1939) [92] (see also Boadway and Bruce (1984) [21] and
Johansson (1991) [117]).

The income-life expectancy trade-off is assumed to be independent of the free-time
fraction. This means that a new life quality index, Qx, may be formed, in a similar
manner to equation (3.6), by dividing the general life quality index given by equation

(3.5) by f, which is now being treated as a constant, rather than as a variable. Hence:

Qx =%=qu (3.21)

As is the case with the first trade-off, it is possible for an individual to give up some
income for additional life expectancy, whilst still retaining his initial level of life
quality. It is also clear that excessive spend on life expectancy improvement will
reduce the individual’s life quality, whilst suitably small spends will increase life
quality. Thus the maximum reasonable spend for a health and safety scheme defines

the indifference curves for this trade-off. The set of values of G and X that define the

indifference curve at a constant level of life quality, denoted as Q_X must satisfy:

Q, =G'X (3.22)

which can be solved for G, to obtain:
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—Yaq
Q

-~ (3.23)

G

Equation (3.23) is analogous to equation (3.8), except the variable X is now used in
place of the variable f. Hence, this equation is also convex in the X-G plane. This
means that the MRS of life expectancy for income is also diminishing with

increasing life expectancy, and is given as:

—VYa
MRs =96 _ Q% _G (3.24)
dX gX (Wa) gX

Intuitively, this means that the higher the life expectancy the individual enjoys, the
less willing he will be to give up income in order to raise life expectancy further.

Equation (3.24) can be rearranged to give:

G dX
-dG =37 (3.25)

Here -dG is taken as the infinitesimal amount of income which should be exchanged
for an infinitesimal increase in life expectancy, dX. In practice, these infinitesimal
changes are replaced by small changes in income and life expectancy of -6G and 6X

respectively. Thus, equation (3.25) becomes:
B =——" (3.26)

where the value of g has been calculated from equation (3.19). Thus, the first trade-
off is used to determine the elasticity parameter g, which is then used in calculating
the maximum reasonable income an individual should give up to achieve a given
increase in life expectancy. It may be noted that equation (3.24) can be rearranged to

give:

G dX
A=—% g5~ (3.27)
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which is valid for dG/dX > 0. Equation (3.27) is analogous to equation (3.20). Here,
the parameter #x is the income elasticity of life expectancy. Comparing equations
(3.20) and (3.27), it is obvious that #x = #s. The reason why this is may be seen by

considering the expected free time from now on:

F =X (3.28)

The total differential of (3.28) is:

oF oF

dF = —df + —dX = Xdf + fdX
o o T ax i (3.29)
so that:
dF df dX
Forx (3:30)

In the first trade-off, it was assumed that X was held constant, so that dX = 0. Under
this condition the relative change in the free time fraction is equal to the relative

change in the expected free time remaining:

df _ dF

T F X =const (331)

while in the second trade-off, the assumption was that f was constant, so that df = 0.
Here, it is the relative change in life expectancy that is equal to the relative change in

the expected free time remaining:
~ - (3.32)

f=const

Thus equation (3.20) may be re-expressed as:
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qQ=-n¢ = _Gdf 3.33

T T TF a6, (3.33)
while equation (3.27) may be re-written as:

q=-7x = _SdF 3.34

* T T FdG| (3.34)

Equations (3.33) and (3.34) demonstrate that the income elasticity of expected free
time remaining is the same in both instances. This suggests that the two considered
trade-offs are specific instances of a more fundamental trade-off between income

and expected free time remaining.

3.4 Utility and Discounting in the Life Quality Index

In each of the life quality indices derived above, one constant feature was the G9
term. For 0 < g < 1, this term has the form of a utility function, known as a “power

utility”. If utility is denoted U(G), then the utility of income is:

U(G)=G* 0<q<1 (3.35)

The notion of utility expresses the personal value derived from the consumption of
goods. The bounds on the value of g are necessary to preserve the law of diminishing
marginal utility. This economic law is based on the observation that individuals
value extra gains in commodities more highly when the commodity is scarce than
when it is plentiful. This law, when applied to the G% term, which represents the
utility of income, means that the first amount of earnings will give the individual the
greatest value, as he will be able to afford such essentials as food and clothing.
Subsequent increases in earnings will then be valued at an ever diminishing rate, as
the individual will then begin to spend more on life’s luxuries. The marginal utility
is:
au

e qG* 0<qg<1 (3.36)

-48-



which decreases with increasing income, hence, diminishing marginal utility. An
important economic parameter derived from utility theory is the income elasticity of
marginal utility, nmu. This is given by:

i) ae) ov [

(3.37)

TS T T 9  dGE . G

The negative value of this quantity (which is more useful because it is positive) has
been studied extensively, and is used by the Treasury to determine how to
appropriately discount future effects, see [95]. This negative elasticity has also been
shown to be identically equal to a parameter known as the “coefficient of relative
risk aversion”, or “risk aversion” for short [12], [164]. This parameter describes a
person’s attitude towards risk. If a person has a risk aversion of zero, then he is
described as “risk neutral”. Higher values of risk aversion indicate that the individual
is willing to pay greater amounts in insurance to protect against risk. If the risk

aversion is denoted as ¢, then it is given as:

g=-ny =1-q 0<e<1 (3.38)

As risk is the central focus of this research, the risk aversion parameter is judged to
be a more relevant way of describing and assessing risk, and will replace the
elasticity parameter, g. The bounds on the risk aversion and the elasticity parameter
are a consequence of the use of the power utility function of equation (3.35). The
upper bound on the risk aversion can be removed by instead using a more general
utility function first introduced by Atkinson (1970) for the study of income
inequality [13]. The Atkinson utility function is defined as:

G -1
u(G)=—1_8 £>0,e#1 (3.39)
=InG c=1
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This utility function thus allows for risk aversions greater than unity, and so is a
more general function than the power utility. If this utility function were to be used
to derive the J-value, it would be necessary to substitute this into the life-quality
index, and apply the trade-offs of section 3.2 and 3.3. However, the amount to spend
in order to remain on the Q, indifference curve, which is the maximum reasonable
amount an individual should be prepared to spend to achieve a given increase in life
expectancy, is unaffected by the use of this alternative utility function. In fact, it may
be shown that the maximum spend is unaffected by the use of a more general class of

utility functions given by:

UG)=——— (3.40)

These utility functions are known as “affine transformations” of the power utility
function. The proof of the invariance of the maximum spend under affine
transformations of the utility function is given in Appendix A. As the maximum
reasonable spend is independent of the type of utility function used, the more simple

power utility function will be retained in the rest of the development here.

Substituting the risk aversion, ¢, as given by equation (3.38) into equation (3.19),

which relates the elasticity parameter to measurable and observable quantities, gives:

. 1- (t9+1)w0
ee1= Mo _ 0 (3.41)
01-w, 1-w,

The utility interpretation allows the life quality index to be viewed as the summation
of the annual utilities over the whole of the future lifetime of the average individual.
This interpretation provides a mechanism for extending the life quality index to

include discounting.

It is widely accepted that individuals will prefer commodities that are available for
consumption at the present time to commodities which can only be consumed

sometime in the future. This concept may be applied to determine the utility of future
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income, which can be discounted back to the present value using a chosen discount

rate.

Let the earnings per year averaged across all individuals of age a be c(a) (£/year). If
all individuals have the same utility function, so that for each person, the utility for

that year’s earnings will be:

U(c(a))=(c(a))"" (3.42)

If the income is growing at a real, compound rate, rg, so that the income at a later

age, z, will be given by:

¢(r)=e"""c(a) (3.43)

U(c(r)=e"" " (c(a)) (3.44)

The utility attained at future age = may be discounted back to the present age a by

)

multiplying by € ™) \where ry is the real rate of time preference, which will

also be termed the “discount rate”. Thus the net present utility to an individual of age

a of the income he will generate later in the age interval 7 + dz, is:

e ) (c(r ) dr = e 2B (c(a)f T d
=gtk (o)) d (3.45)
—e"(c(a)) " dr

where r is the net discount rate, given by:

r=r,—(1-er, (3.46)
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Clearly, however, the individual will only be able to benefit from a utility z - a years
later if he is still alive at age z. This aspect may be included by considering survival
probabilities. The probability of an individual surviving to age z given that he has
already survived to age a is denoted as S(z|a). This is also the probability that the
utility given by equation (3.44) will be achieved.

The expected value, R(a), of the future discounted utility for an average individual of
age a, is found by multiplying the discounted utility of equation (3.45) by the
probability that the utility is achieved, S(z|a) , and integrating over all possible

lengths of life to come:

R(a)= Ts(r|a)er(’a)(c(a))l‘gdr
- (cla))*

T

(3.47)
S(z'|a)e_r(7_a)dz'

a

|| Sy 8

Equation (3.47) may be interpreted in light of the equation for life expectancy, X(a),

for an individual of age a, namely:
X(a)= [s(dapz (3.48)

which will be derived in more detail in chapter 4. Comparing equation (3.48) with
the integral on the right hand side of equation (3.47), it is apparent that the latter

integral may be regarded as a “discounted life expectancy”, Xq(a):
Xs(@)= [s(zaf"dz (3.49)

Clearly, equation (3.48) and (3.49) are equal when the discount rate is zero. The
relationship between life expectancy and discounted life expectancy is shown

graphically in Figure 2, which uses mortality data from the ONS [145], and uses a

-52-



net discount rate of 2.5%. Substituting (3.49) into (3.47), and assuming a constant

income i.e.: c(a) = c, the expected value of future discounted utility is:
R(a)=c"*X,(a) (3.50)

For a group of individuals with varying ages, the average value of discounted utility
is found by multiplying R(a) by the probability density for age, p(a), for the

individuals within the group, and integrating over the appropriate age range:
| p(2)R(ala =c* [ p(a)X, (ala=c" X, (3.51)

where Xy is the average life expectancy for a group of individuals of ages between a;
and ay. If the population being considered is the general public, then the integration
limits are a; = 0 and a, = . If the population under consideration is the workforce,
then the limits of integration are a; ~ 18 and a; ~ 65. The parameter, c, is now set
equal to the national average income, rather than the income of the group. This is
done as a result of an ethical decision in order to avoid different treatments of high
earning and low earning income groups with regard to safety spend. The national
average income is estimated by the GDP per person, and so in setting ¢ = G,
equation (3.51) can be seen to be a discounted life quality index of the form given by

equation (3.6):
Qta =G X, (3.52)

The same procedure as laid out in section 3.3 may be followed to derive the effect of
discounting on the income-life expectancy trade-off. The discounted MRS of life

expectancy for income is:

MRS = —— = (3.53)
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Following equations (3.25) and (3.26), the maximum amount of income, -0G, that

should be given up to achieve in increase in discounted life expectancy, 6Xg, is then:
— &= (3.54)

This maximum discounted payment can then be used to derive the maximum amount
a group should be willing to pay for a protection system, which is then used to derive

the J-value.

3.5 The J-Value

The results of the two trade-offs will now be used to derive the J-value. Equation
(3.54) relates the maximum reasonable amount of annual income to give up, JG, in
exchange for an increase in discounted life expectancy, 0Xgq. If the benefits of the risk
reduction are experienced by a population of size, N, then the maximum reasonable
annual amount the population should be willing to pay, which is denoted as oGy, is
the product of the population size and the individual maximum reasonable payment:

&Gy =—NG =——2¢
N 1 X (3.55)

This figure is the maximum annual spend for achieving the given discounted life
expectancy improvement. This annual spend can be related to a single lump sum
spend, by noting that the average length of time over which the cost is paid is equal
to the population’s base discounted life expectancy, Xq. Thus the series of annual
payments can be discounted back to the present time in a similar manner to equation
(3.45), except the period over which the discounting is applied is now equal to Xg.
From equation (3.55), the maximum amount that is reasonable to spend on a health

and safety measure to protect N people between times t and dt is:

&G dt = ;\'—G%dt (3.56)

- X4

-54-



which will have a value discounted back to time, t = 0, of:

e oG, dt =™ F—G% dt (3.57)

-& X4

The maximum amount of money, 6V, a group of N people would then be reasonably
expected to spend on a protection measure that affords them an improved discounted
life expectancy of 0Xgy, expressed as an up-front lump sum, can be found by
integrating equation (3.57) from the time of installation of the measure, which is set
to be at time, t = 0, to the life expectancy of the group at the time of installation,
namely, t = Xg:

t=Xy4
Ny = [e G dt =

t=0

t=X4
J. e 'dt

d t=0

NG 5y
—&
(3.58)

_NG&X, (1—e )

l-¢ ry Xy

which applies when ryq > 0. For the case when rg = 0, it is noted thate” — 1 —yasy

— 0. Hence:

hoe)

-1 3.59
r, X, ( )

as rq — 0. Hence the general expression for the maximum reasonable up-front lump

sum spend on the safety system is:

_NGoX, f1-e™)

YN 1 ” forr, >0
NG_;( fa %o (3.60)
= d forr, =0
1-¢

The final step in deriving the J-value is achieved by linking the maximum reasonable
spend to the actual cost of any such protection system that improves life expectancy.
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If the up-front cost, which will be denoted as b\?N , Is known, then the J-value is the

ratio of the known cost to the maximum reasonable cost:

Ny (1_5)5\7N Iy X4

J= = forr, >0
N _aTaXy d
&, NG L-em) (361)
Z% fOl‘I’d=0
NGoOX

For safety schemes with costs greater than what is the maximum reasonable, J > 1,
indicating that the scheme offers poor value for money, and will result in a reduction
in life quality for the affected population. Schemes that cost less than the maximum
reasonable amount will have J < 1, which means that the scheme offers good value
for money, and will result in an improved life quality for the affected population.
Schemes that have a calculated J-value of unity will preserve the initial life quality.
This can be represented as an indifference curve in the X-G plane, as shown in
Figure 3. This figure uses data from the Office for National Statistics [145], [149].
The point marked on the graph is the average income and life expectancy (with no
discounting) for the population. A move to any other point on the curve would
preserve the life quality index, and so has a J-value of unity. A move into the area
above the curve would increase the life quality index, either by increasing life
expectancy or income, and so such a move would have a J-value of less than unity.
Conversely, a move into the area below the curve would have a corresponding J-

value of greater than unity.

The J-value is thus a dimensionless indicator of the cost-effectiveness of safety
schemes. Aside from the net discount rate, which is usually chosen to be either 0%
per annum, or 2.5% per annum, all the input parameters are fully objective and easily
measurable from reliable statistics. The following three chapters will describe the

techniques and methods needed to estimate these input parameters.
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Chapter 4 Fundamental Relationships between Parameters Used

in Life-Expectancy Calculations

4.1 Characterising and Modelling the Survival of Populations

In this section the technical details required for the calculation of life expectancy are
presented. Life expectancy can be calculated in two ways — the first being through a
general probabilistic theory of survival, where the central concepts are the hazard
rate and the survival probability, which are dependent upon age. These concepts then
allow the age-specific life expectancy to be determined. The second way is through
the life table method, in which a theoretical cohort is exposed to rates of mortality
experienced by a general population, and followed to extinction. The relationships
between these two methods are also described. The theoretical framework of survival
models and life tables is now well established (for example, see Chiang (1968) [31]),
and this chapter gives an overview of the relevant concepts. These concepts are used
extensively in chapter 5, and to a lesser extent in subsequent chapters. One quantity
that has received little attention in the literature is the population-averaged life
expectancy (although Keyfitz (1985) has briefly discussed this, see [126]). This
chapter will thus show how this quantity is calculated, and give some useful

approximations. The discounted life expectancy is also described®.

In order to calculate the average life expectancy, knowledge of the age distribution
of the population is required. It is shown that this distribution can be determined
from the survival probabilities when it is assumed that the population is in a steady
state, such that the number of births each year is always equal to the annual number
of deaths. This special population is also known as the stationary population. A
different age distribution is required if the average life expectancy is to be
determined for a workforce. Here it is assumed that the distribution is uniform
between the age of recruitment and the age of retirement, and zero outside these

ages.

* The derivation of the average life expectancy and it’s discounted equivalent are partly based on the
appendices of Thomas et al (2006c) [184], although some new relations are derived here.
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4.2 The Hazard Rate and the Survival Probability
Suppose the probability of dying between ages t and t + dt is fy(t)dt. Here age is
treated as a continuous variable, so that someone aged 20 and three months has t =
20.25 years. The parameter fy(t) is then the probability density for the random age of
death, T. The cumulative distribution function, D(t), is then the probability of dying
at any point from birth to age t, so that T <'t, and is the integral of the probability

density function from age zero to age t:
D(t)=Pr(T <t)=[ ,(u)du (4.1)
0

The cumulative distribution function is also related to the probability density by:
dD(t
DO _ 1) (42)

For any age, any given individual must have either died or survived. Hence the
probability of either dying or surviving from birth to age t must be equal to unity:

D(t)+S(t)=1 (4.3)
Where S(t) is the probability of surviving from birth to age t. This is also the

probability of dying after age t, which may be related to the probability density of
death by:

S(t)=Pr(T > 1)= [ £, (u)de (4.4)

Differentiating equation (4.2) gives:

ds(t)  dD(t)
&t (45)

so that:
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= =—f(t) (4.6)

The immediate hazard faced by an individual of age t is the probability that T will be
between t and t + dt, given that he has survived so far. The immediate hazard is
denoted h(t)dt, where h(t) is the hazard rate, and is given formally by:

h(t)dt =Pr(t<T <t-+dt|T >t) (4.7)

The conditional probability can be written in terms of the joint probability:

Prit<T <t+dtnT >t)
Pr(T >t)

h(t)dt = (4.8)

Because the event t < T <t + dt guarantees that the event T >t occurs, the equation is

reduced to:

Pr(t<T <t+dt)

hit)de = Pr(T >1)

(4.9)

The probability that death occurs between ages t and t + dt is fy(t)dt, and the
probability that death occurs after age t is S(t), so that:

h(t)dt = 0 (4.10)

and substituting in equation (4.6):

hﬁﬁt:-dzf);2)= 50 (4.11)

Equation (4.11) can be integrated to give:
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S(t)zexp(—jh(t)dtJ=exp(—W(t)) 4.12)
where:
W)=t (4.13)

is the cumulative hazard rate. The probability that an individual will survive to age t,
given that he has already survived to age a, is denoted S(t|a), and is given formally

as:

S(t|a)=Pr(T >t|T >a)
_PrT>tnT >a) (4.14)
~ Pr(T>a)

Because surviving to age t guarantees that the individual will have survived to age a,

this equation simplifies to:

S(tla)= Pr(T : ;)) “s(a) (4.15)

This conditional probability of surviving to age t given that age a has already been

reached can be expressed in terms of the hazard rate as:

exp(—j'h(t)dt) t
S(t]a)= 2 S exp(— | h(t)dtj (4.16)
exp[—_[h(t)dtj :
or:
S(t]a)=exp(-W(t|a)) (4.17)
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Where W(t|a) is the conditional cumulative hazard rate.

4.3 The Survival Probability and Life Expectancy
The life expectancy is the expected value of the future life to come, which is a
random variable. For an individual of age a the random life to come is denoted as

x(@). This is related to another random variable, the age of death T, by:
2@)=T-a (4.18)
The probability density will be the probability of death in the interval t to t + df,

given that the individual has survived to age a, and will be denoted gq(t|a). Following

the arguments of equations (4.7) to (4.10), this will be:

fq (t)
t|a)=—" fort>
=0 fort<a

It can be readily verified that the integral of this quantity of all values of t, is equal to
unity, as would be expected from a probability density function. The quantity
gq(t|a)dt is therefore the probability that the random variable y(a) = T — a will take
the value (t — a), for those that have survived to age a. The expected value of the life
to come, given that age a has already been attained is the life expectancy, X(a), given

as.

E(T-a|T>a)=X(a)

(t-a)g, (t|a)dt

tg,(t )it - g, t] a) (4.20)

t“wm—a

S(a)

Il
Dy 8 D= W]

where equation (4.4) has been used in the last step. The integral on the right hand

side can be integrated by parts. For the integral:
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[GAG:
put:
u=t
du_
dt
dv
—=f,(t
=0
v=D(t)=1-S(t)
using:
Todv . . du
!uadt =[uv]; —!vadt
then:

0 0

[tf, (bt = [t -t Q)] - [@—S(t))et

a a

t—o

because S(0) = 0, this reduces to:

© 0

[t (tht = as(a)+ [ s(t)dt

a a

substituting into (4.20) gives:

X(@)= [ 28 at = [ st ayt
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4.4 Relationship to the Life Table Functions

The life table presents data on mortality rates and length of life for individuals within
a population. The life table in its usual form delineates individuals by gender and
age. In the J-value model individuals are usually not delineated by gender, which is
achieved via a simple averaging process. However, if the problem requires gender to
be delineated (for example a particular workforce may be mostly male), then this can
be easily achieved. In the UK, the life tables are published by the Office for National
Statistics, see [145]. The life table consists of five functions, each of which can be
determined from two pieces of information: the mid-year population, n,, at age a,
and the number of people who die, D,, at age a. The life table functions are discrete
variables, which is a consequence of the fact that each individual is grouped
according to his present (discrete) age. The relationship between the life table

functions and the hazard rate and survival probabilities will now be explored.

The first function of the life table is the central rate of mortality, m,. This is the

average death rate over the interval (a, a + 1), and is defined as:

m, =—* (4.27)

The second function is g,, which is the conditional probability that someone aged
exactly a will survive to age a + 1. This is the number of people who die at age a,
divided by the number of people who have reached age a. Note that the number of
people who have reached age a is not the same as the mid-year population because
there will be a number of people who will reach age a, but will have died before the
population estimate is made. If it is assumed that deaths are distributed uniformly
throughout the interval (a, a + 1), then the number of people who will have died
before the population estimate is made will be D,/2. Thus the number of people who
reach age a is ny + D,/2, and g, is given by:

%=, T24m (4.28)
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Alternatively, if deaths are distributed exponentially over the interval (a, a + 1), then

Qa is related to the central rate by:
q,=1-e™ (4.29)

The next function in the life table is the number of survivors at each age, l,. The life
table uses a hypothetical cohort of individuals which are followed through to
extinction as they experience the observed mortality rates. The initial size of the
cohort, lo, is known as the radix, and is usually taken to be 100,000. Thus, I, is the
number of this initial 100,000 who have survived to age a. If I, is known, then l41

can be determined from:
Lo = (L=0. ), (4.30)

The I5’s can also be related to the radix by:

a-1

L =TT@-a), (4.31)

t=0

The fourth function in the life table is the number of deaths in the hypothetical
cohort at each age, da, given by:

da = qala = Ia _Ia+1 (432)

The last function in the life table is the life expectancy at age a, which is usually
denoted e,. Note that the life expectancy defined in the previous section, which is
denoted X(a), is a continuous function based on general survival probabilities, whilst
ea IS a discrete function describing the average length of life for the hypothetical life
table cohort. The relationship between X(a) and e, will be discussed below. The life

expectancy e, is given by:

e -1 i(u 1) (4.33)
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The correspondences between the life table functions and the probabilistic survival
functions may now be explored. The survival probability may be immediately related
to the number of survivors. The ratio of the number of survivors to the size of the
initial cohort, lo/lp, is the probability of surviving from birth to age a. This is the
survival probability, S(a). Thus, in the context of the life table functions, the survival

probability may be given by:
S(a)=-* (4.34)

It is important to note that S(a) is a general function describing the probability of
survival, whilst the I,’s are specific only to the life table cohort. The notation is also
slightly awkward, in that S(a) is continuous, whilst the l,’s are discrete functions
only defined at specific ages. Nevertheless, this awkwardness can be avoided by
using interpolation methods to estimate the life table functions inside the interval,

e.g. at la+as.
The conditional survival probability, S(t | ) is given by:

II

Ia

S(t]a)= (4.35)

The hazard rate h(a) can be given either by the conditional probability of death, g,,
or by the central rate of mortality, m,, depending on the assumption made regarding
how the deaths are distributed in the interval (a, a + 1). This can be shown by noting

that g, is:

q,=Pr(a<T <a+1|T >a) (4.36)

which can be written as:

_Prla<T <a+1lnT>a) Prla<T<a+1)
%= Pr(T >a) ~ Pr(T>a)

(4.37)
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The probability that death occurs between ages a and a + 1 is equal to the difference
between the probability of surviving to age a and the probability of surviving to age
a+1,ie.:S(@) —S(@atl). This means that g, can be written as:

q, - s(a);é()a+1) (4.38)

If deaths are distributed uniformly over the interval (a, a + 1), then:
f(a+rad)="f,(a) for0O<oda<l (4.39)
The survival probability over the interval is:
S(a+c)=S(a)-f,(a)a for0O<da<1 (4.40)
So that:
S(a+1)=S(a)- f,(a) (4.41)

Substituting (4.41) into (4.38) gives:

S(a) (4.42)

where equation (4.10) has been used in the last step. Hence, when deaths are
uniformly distributed over the interval, then the hazard rate is equal to the
conditional probability of dying in the interval. If, however, the deaths are
distributed exponentially over the interval (a, a + 1), then the hazard rate is equal to
the central rate of mortality, m,. This can be seen by noting that the central rate is

given by:

-69-



a ﬁ (443)

where the denominator is the average survival probability over the interval (a, a + 1).
If deaths are exponentially distributed, then:

f,u)=4e™ fora<u<a+l (4.44)
The survival probability is:
S(u)=e™ for a<u<a+l (4.45)

So that the hazard rate, h(a), is equal to 4, a constant over the interval. Substituting
(4.45) into (4.43) gives:

-Ja -Aa+1)

[ —€
ma = a+l
I e ™du
B o2 _g-iat) (4.46)
- ;1 -A(a+l) _ 5-2a
T o)
=2 =h(a)

Thus, when deaths are exponentially distributed, the hazard rate is equal to the

central rate of mortality.

It is worth noting that, for most populations, the conditional probability of death is
generally very small for most ages. This means that the central rate is approximately
equal to the conditional probability of death, as can be verified from equations (4.28)
and (4.29). This means that:

m, ~q, ~h(a) form,<<1 (4.47)

a
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This approximation is not valid at very young or old ages. Approximating the hazard
rates by the g,’s is generally more realistic, as a uniform distribution of deaths is a
more reasonable assumption than an exponential assumption. However, using the
exponential assumption, which means that the hazard rate is constant between years,

does enable simpler calculations, and is often preferred.

Finally, the continuous life expectancy, X(a), as given by equation (4.26), is equal to
the discrete life expectancy, e,, of equation (4.33). This can be seen by re-writing
(4.33) as:

3 _Iii(lt +It+1):i(s(t|a)+S(t+1|a)) (4.48)

where equation (3.35) has been used. This summation is equal to the integral of the
conditional survival probability from t = a to t = oo, when the trapezium method is
used for numerically evaluating the integral. This means that (4.48) can be written

as:

e, = [slt]a)t=xX(a) (4.49)

t=a

Thus, the life expectancy based on general survival probabilities should be
numerically equal to the life expectancy of the life table cohort, when the trapezium
method is used to evaluate the integral of (4.26) or (4.49).

4.5 Calculation of Life Expectancies in the J-Value Model

In the J-value model, the hazard rates are assumed to be equal to the central rates of
mortality, m,, which are obtained from the latest UK life tables, published annually
by the ONS [145]. Separate tables are published for males and females, and so the
male and female central rates can be averaged by calculating:

h(a) = ma = fmalem.;lwjlle + (1_ fmale )m;emale (450)
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where frae IS the proportion of the population that is male, so that 1 — fyae IS the
proportion that is female. For public hazards, it is usually assumed that male and
female numbers are equal, so that fnae = 0.5, whereas for industrial occupational
hazards, a value of e = 1 may be more suitable.

The hazard rates are then integrated to give the cumulative hazard rate of equation
(4.13). As the central rates of mortality are used for the hazard rates, the hazard rates
are mid-interval values. This means that the integration can be performed by simply

summing the hazard rates:

W(a)=

O ey

h(u)du = Z::h(u) (4.51)

However, there is a problem with the final age interval, since not everybody will be
predicted to die by the end of it. This is remedied by adding an open age interval
after the last one which approximates the mortality of the remaining cohort. The UK
life tables provide data up to the age interval (100, 101), and so the additional age
interval is for (101, o). This approximation is due to Silcocks (2001) [175], who
assumes that the mortality rate of the final interval considered continues indefinitely,
and shows that the final hazard rate, h(101), is:

2h(100)

h(101)= -
100

=2 (4.52)

So that the final cumulative hazard rate is:
W (101) =W (100)+2 (4.53)
The cumulative hazard rates are then used to calculate the survival probabilities,

using equation (4.12). The survival probabilities can then be integrated using the

trapezium rule to determine the life expectancy:
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Kla) =g st - 7 S50 (4.5

The reason that this method is used to calculate life expectancies, rather than simply
taking them from the life tables, is that this method allows the change in life
expectancy to be easily calculated following a change in the hazard rate. The life
expectancies calculated using this method compare well with the life table values.
Exactly how well they correspond is statistically tested in chapter 9, where the
sensitivities of the life expectancy calculations to the assumptions regarding the

hazard rates and the methods of integration are assessed.

In the J-value model, the population-averaged life expectancy is usually required.
The method for averaging over the population will now be described.

4.6 The Steady State Population Distribution

It is assumed that within the general population, the annual number of births is
always equal to the annual number of deaths, so that the total population size is
always constant. Such a population has a fixed age distribution, and is known as the

“steady state”, or “stationary” population [126].

Suppose that the population density at age a is n(a), implying that the number of
people between ages a and a + da is n(a)da. The number n(a) may also be regarded
as the rate at which members of the population are reaching age a. This number will
be equal to the birth rate, n(0), multiplied by the probability of surviving to age a,
S(a):

n(a)=n(0)s(a) (4.55)

The total number in the population, Npop, is the integral of n(a) over all ages:

©

n(a)da = n(O)j S(a)da (4.56)

0

N

Pop =

O, 8
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From equation (4.26), it is noted that:

0

[s(a)a=x(0) (4.57)

0

is the life expectancy at birth. This means that (4.56) may be rearranged to give the
birth rate:

n(0)= (4.58)

= 0 (4.59)
and so the population density, p(a), is:
p(a)= n(a) _ Sta) (4.60)

This is the age structure of the steady state population. It is constant and can be
calculated readily. This distribution is shown in Figure 4, which is based on UK data
from 2007 to 2009. Also shown in this figure is the actual distribution for the UK
population in this time period. There is clearly some difference between the two
distributions. However, as is discussed in more detail in chapter 9, the population-
averaged parameters needed for J-value calculations are relatively insensitive to the
exact distribution used. The steady-state distribution is therefore a simple but

powerful distribution which can give sufficiently accurate results.
The death rate between ages, a and a + da, is given by the number of people in that

age range multiplied by the probability of dying in that interval, given survival to
age, a, i.e. the hazard rate, h(a):
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(4.61)

where equation (4.10) has been used in the last step. The total death rate is found by

integrating over all ages:

p

0

f,(a)da

Tn(a)h(a)da =

O ;8

N
X
(4.62)

which is equal to the birth rate, given by equation (4.58), as is expected in a steady

state population.

4.7 The Average Life Expectancy

The average life expectancy, X, for the general population is given as:

X = T p(a)X (a)a (4.63)

where the age distribution is given by equation (4.60). Although the average life
expectancy can be readily calculated from this equation, it is also possible to gain
further insight into the average life expectancy by noting that:

s(t)dtJda (4.64)
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where equation (4.26) has been used. The order of integration may be reversed to

|

give:

O, 8
D ==y 8

p(t)dtJda = T p(t)@ dajdt = I p(t)tdt (4.65)

0

so that:

©

X = [ p(thdt =t,, (4.66)

0

where t,, is the mean age in the population. Thus, in the steady state population, the

mean life to come is equal to the mean life already experienced.

In the J-value model, it is also necessary to evaluate the average life expectancy for
the workforce, as discussed in section 3.5. In this situation it is inappropriate to use
the general population age distribution. If data is available regarding the age
structure of the workforce under analysis, then this data may be used. However, the
age distribution of a general workforce may be approximated by a simple but

realistic uniform distribution that does not require any input data. This is given by:

p(a)= ——— forarc <a<ap

4.67
=0 otherwise ( )

where arc and ar: are the age of recruitment into the workforce and age at

retirement, respectively. The average life expectancy is:

1 Aret
X=——— [ X (a)a (4.68)

ret — Frec a,

For the UK, appropriate recruitment and retirement ages are 20 and 60, respectively.

Although employment does occur outside these ages, the proportion of these workers
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is relatively small, and so can be disregarded for the purposes of the uniform
distribution model. The general population average life expectancy is usually close
to the working population average life expectancy. For UK data from 2007 to 2009,
the corresponding figures were 41.17 years and 41.16 years for populations with an

equal gender ratio.

4.8 The Effect of Discounting on Life Expectancy

In section 3.4 it was noted that a discounted life expectancy could be derived as:

o]

X4(a)=[s(t|a)e "t (4.69)

where r is the discount rate. This can be re-written as:

(4.70)

REAU)
T

where S4(t) is the discounted survival probability:

Sy (t)=S(t)e™

_ e—W(t)e—rt
(4.71)

where equations (4.12) and (4.13) have been used, and where:

W,(0)= ] (h(u)+ ) 4.72)
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is the discounted cumulative hazard rate (although in this case the effect of
discounting is to increase the cumulative hazard rate, rather than decrease it, as the
term “discounting” may suggest). A discounted hazard rate may also be defined as:

hy(t)=h(t)+r (4.73)

so that:
W,(0)= [, (o) (.79

Hence all the variables required for life expectancy calculations can be viewed as

having a discounted counterpart.

The discounted average life expectancy is:

0

X, = [ p(a)X,(aka (4.75)

0

This can be developed as:

e "2dtda

>
Il

w
YoumS
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e "dtda (4.76)

>
—

(]
~—~

p(t)e"*dtda

Il
O3 O3 Oot—38
D ) 8 D ey 8

the order of integration can be reversed to give:

Il
O3

t
p(t)[ e "“dadt (4.77)
0
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t
p(te™ j e"dadt
0

= T p(tle™ (en—r_l)dt

- %T p(t)1—e " bt

0

O3

the exponential term can be expanded as:

n+1 rntn

1— -t _ N (_1)
¢ nZ:l: n!

(4.78)

(4.79)
= tav - Lt:v
2

=X _Ltjv
2

where equation (4.66) has been used, and where %, is the mean-square age in the
population. Equation (4.79) thus linearly relates the discounted life expectancy to the

undiscounted life expectancy and the discount rate.
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Chapter 5 Calculations for the Change in Life Expectancy

Following a Hazard Perturbation

5.1 Modelling Changes in Life Expectancy

Perhaps the most important parameter of the J-value equation is the change in life
expectancy caused by exposure to a risk, or resulting from its mitigation. This
parameter is especially important when considering the effects of risks that do not
become manifest until many years after the initial exposure to the hazard. The
calculation of this parameter requires some detailed and technical explanation, which
will be given in this section. This section is partly based on Thomas et al (2006c)
[184], who derived equations for the change in life expectancy following a
prolonged radiation exposure, including the effects on individuals entering or leaving
the exposed population. Here a more general model is presented, in which exposures
can result in immediate or delayed responses. Exposures that result in absolute or
relative hazard perturbations (i.e. perturbations where the magnitude is independent
or dependent on the initial hazard rate) are also modelled. Air pollution risks are also

modelled explicitly.

The fundamental concepts for understanding the effects of hazards are those of
exposure and response. Both of these are characterised by probability density
functions. The response of an exposure to a hazard is of particular importance, as it
relates the exposure to the resulting increase in probability of death. In many
situations, exposure to the hazard is characterised by an immediate increase in
mortality rates, which then return to normal when the exposure has stopped. An
example of this would be industrial accidents. There is only a risk of death from an
accident at the workplace during the time spent at work. After an individual leaves
work, he is no longer at risk from this hazard. A hazard with this type of response
may be called an “immediate” hazard. This contrasts with exposures to substances
such as particulate matter, radiation or other carcinogens, where the resulting
increase in mortality occurs some years after the initial exposure. Such types of
response may be called “delayed” hazards. Each hazard has its own characteristic
response following exposure. The general methodology for modelling the exposures

and response, and the consequent change in life expectancy, will now be discussed.
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5.2 Exposures

Suppose that the exposure to a hazard begins at time x = 0, and lasts until time x =
Tr. Let the rate of exposure felt by an individual be b(x). The units of this quantity
are (additional deaths/person-year), although the additional deaths may not occur
until many years in the future. In order to clarify what is meant by this term, it will
be presented for two types of hazard: immediate risks and delayed radiation risks.
For immediate risks, the “exposure” is simply the act of being in a situation where
there is an elevated chance of death. For example, this may be working from a
height, where there is some chance of experiencing a fatal fall. It may also be
travelling in a car or a train, where there is some risk of being in a fatal crash. In
these situations, death occurs either during or shortly after the initial exposure
period, which is the reason why they are referred to as “immediate” risks. If the
additional number of fatalities per year from a given hazard is A(x) in an exposed

population of N (assumed constant), then the individual exposure rate is:

b(x):%x) for0<x<Tg
(5.1)

0 otherwise

This is shown schematically in Figure 5. For delayed radiation risks, the exposures
are in terms of the annual amount of radiation dose received by an individual, d.(x),
measured in Sieverts per year (Sv.year™). In order to relate the dose to the additional
number of deaths, this is multiplied by the total dose-risk coefficient, cr (Sv''). The

individual exposure rate for radiation is then:

b(x)=c,d, (x) for 0 <x < Tg

(5.2)
=0 otherwise
The total individual exposure, by, is the integral of the exposure rate:
b, = [ b(x)ax (5.3)
0
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This is the additional fatalities per person exposed to the hazard, which is also the
probability of death resulting from the exposure. The fraction of all fatalities caused
by the exposure in the interval x to x + dx will then be b(x)dx/by:, implying that the

probability density for causing death from exposure will be g(x), given by:

(5.4)

5.3 Responses

As was discussed above, risks can be thought of as having “characteristic” responses.
The response is the period of time over which excess mortality is assumed to occur
following an exposure, expressed as a probability density function. Suppose that
fu(y)dy is the probability that the excess mortality resulting from the exposure occurs
between times y and y + dy. The variable, y is the time that has elapsed between the
time of induction, X, and the current time, z, so that y = z — x. This is shown in Figure
6. The probability that both an exposure occurs between times x to x + dx, and an

excess mortality is observed between times y and y + dy, will be:

f,, (y)a(x)dxdy = f,, (z —x)g(x)dxd (5.5)
But death at time 7z could have resulted from exposure over the preceding possible
times, x. The total probability density for death at time z, fr(z), resulting from

exposure from any time, is the integral of (5.5) from the start of the exposure to the

current time, z:

£ (2)= ] fu e =g (56)

5.4 Increase in Hazard Rate — Absolute and Relative Models

An individual who is exposed to some hazard will experience an increased

probability of death. This is modelled mathematically by perturbing the hazard rate,
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h(a), for an individual of age a. The perturbation can be modelled in two ways: by
using an “absolute risk” model; or by using a “relative risk” model. In an absolute
risk model, the additional hazard rate is independent of the individual’s existing
probability of death, whilst in a relative risk model the additional hazard rate is

proportional to the initial hazard rate.

The probability density given in (5.6) is based on the assumption that excess
mortality is certain to occur. In an absolute risk model, the probability density that an
individual will die at time 7 as a direct result of the exposure, is the product of the
probability of death from the exposure, by, and the probability density for death at
time z, fr(z). This is then the additional hazard rate faced by the individual. If the
individual is aged a at the start of the exposure, then after ¢ years his age will be
t = a + 7. The additional hazard rate faced by an individual of age t, given initial

exposure at age a, is denoted oxapns(tja), where:

T

a’]abs(t I a) = btot fT (T): btotj. fM (T - X)g (X)dX
° (5.7)

In a relative risk model, the increase in the hazard rate faced by an individual of age
t, given initial exposure at age a, dhy(tja), is proportional to the hazard rate h(t).
Since the hazard rate is the probability density of immediate death, this parameter
replaces the excess mortality probability density function, fu(y). However, it is still
necessary to retain some way of modelling the distribution of the excess mortalities.
This is done by introducing the function ¢o(y), which plays a similar role to fu(y),
except that it is not a probability distribution. It is also dimensionless, which is

required for consistency. The two functions are related to each other by:

f(y) == ¢ (y)
I¢o(y)dy

0

(5.8)
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The integral in the denominator can thus be thought of as the number of effective
mortality years experienced following an exposure. The perturbed hazard rate is
then:

20, (t12)= hit) [ 4t - - xb(x)ax (59)

5.5 Increase in Cumulative Hazard Rate

Following a perturbation in the hazard rate, the cumulative hazard rate, W(t) will be
increased to:

Wi(t)+ W (t|a)= [[h(u) + oh(u | aldu

(5.10)
= Ih(u)du + J‘éh(u |a)du

a

where the lower bound on the second integral has been changed fromu =0to u = a,
as the change in the hazard rate only occurs at ages equal to or greater than the

present age a. This means that:

t

W(t]a)= Iéh(u | a)du (5.11)

a

where J0W(t|a) is the increase in the cumulative hazard rate at age t, following an
exposure at age a, and oA(.) refers to either the absolute or relative change in hazard

rate, depending on the risk model used.

5.6 Decrease in Life Expectancy

From equations (4.12) and (4.26), the life expectancy can be written as:

X(a)=€" et (5.12)

a
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Following a perturbation in the hazard rate, the life expectancy decreases by an

amount:

X (a)- X (a) = ") [ e MO gy (5.13)

a

so that:

X(a)= eW(a)Te’W“)(l— e"”’("a))dt
" (5.14)
- % j S(t)L— e it

For small changes in the cumulative hazard rate, the exponential term can be

approximated, using e” = 1 — x. The change in life expectancy at age a is then:

X(a)~x ——

5(a)

S(t)ow (t] a)dt (5.15)

» =8

5.7 Decrease in Average Life Expectancy

The change in average life expectancy following a hazard rate perturbation can then
be calculated by averaging the change in age-dependent life expectancy over the

required population distribution:
X =.[ p(a)oX (a)da (5.16)
0

where the population age distributions are determined for the general public and the

workforce, as described in section 4.7.

Thus, in order to calculate the change in average life expectancy all that is required is
knowledge of the distribution of the exposure rate, b(x), and of the mortality

-86-



response distribution, fy(y). Some simple, limiting distributions of these functions
will now be explored, and the corresponding change in life expectancy will be

calculated.

5.8 Limiting Exposure and Response Distributions

Although equations (5.7) to (5.16) allow for the calculation of the change in life
expectancy following a hazard perturbation, it is instructive to investigate some of
the limiting distributions of the exposure and response functions, and the consequent
behaviour of the perturbed hazard rate and associated functions. The limiting
distributions are when the exposures and responses are either very short or
indefinitely long, and maintained at a constant level throughout. There are therefore
four limiting distributions which may be investigated. These are shown in Table 2,
which lists the exposure distribution, the excess mortality distribution, the change in
hazard rate, and the change in cumulative hazard rate for absolute and relative risk
models. One result of note is that the change in hazard rate for a short exposure and
long response is the same as for a long exposure with a short response in the relative
risk model. The change in cumulative hazard rate and thus change in life expectancy
will therefore also be the same. For the absolute risk model, the short exposure/long
response hazard perturbation is only different from the long exposure/short response
hazard perturbation by a scaling factor, Q, which is the length of time which the
response lasts for following a single exposure.

Once the cumulative hazard rates are calculated for the limiting exposures, the
associated change in life expectancy and average life expectancy can be calculated,
using equations (5.15) and (5.16). However, some of these limiting distributions may
be developed further to give a simple expression for the changes in life expectancy.

These will now be shown.

Firstly, the shortest hazard rate perturbation will arise when there is a point exposure
at x = 0, with an immediate response, with no delayed component. This will occur,
for example, following an explosion, which lasts for a short period of time, and will
only cause fatalities at that instant. Although in reality any event must have a finite

duration, for the purposes of modelling, the exposure can be modelled as only
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occurring at a single point. The exposure distribution and the response distribution
are therefore defined only at a single point, as given in Table 2. These will be

repeated below, for clarity:

b(x)=b forx =0 617
5.17
=0 otherwise

and:

fu(y)=1 fory=0 5.18)
=0 otherwise '

so that, for the absolute risk model:

t—

N t12)= [ 6t xp(c)ox

0
=bf,, (t—a) (5.19)
=b fort=a

=0 otherwise

For the relative risk model, the dimensionless ¢o(y) function is used instead of fy(y):

o, (t]a)=bh(t)(t-a)
=bh(a) fort=a (5.20)

=0 otherwise
The change in the cumulative hazard rate is:
MWi(t|a)=b fort>a (5.21)

for the absolute risk model, and:
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SW(t|a)=bh(a) fort>a (5.22)

for the relative risk model. The change in life expectancy is then:

1
S(a)

=bX(a)

X(a)~ S(t)ow (t | a)dt

D Gy 8

(5.23)

for absolute risks. This means the change in life expectancy is directly proportional
to the initial life expectancy, with the constant of proportionality equal to the excess
mortality rate. For relative risks, the change in life expectancy is given by:

X (a)~bh(a)X(a) (5.24)
The change in average life expectancy in the absolute risk model is then:

SX =bX (5.25)

For relative risks, the change in average life expectancy is:

X = bj p(a)h(a)x (a)da (5.26)

ot—,8
ge]
—
QD
~—
>
—
QD
~—
=
—_
Q
~—
o
)]
Il

(
&dt]da (5.27)

Il
Ot——8 O3 O« 8
>
—
QD

the order of integration can then be reversed to give:
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T h(a)@o p(tbtjda =

0

p(t)ﬁ h(a)daJdt
p(t (t)at

(5.28)

Ot——,8 O——3

the integral in equation (5.26) thus emerges as the population-averaged cumulative
hazard rate. This can be developed still further, by noting that:

) — [s()ins(t)t

ot -
—TS(t)In S(t)dt (5.29)
) TS(t)dt
=H 0

where H is known as the population entropy, as defined by Keyfitz (1985) [126]. The

change in life expectancy is then:

X =bH (5.30)

Although the developments of equations (5.20) to (5.30) are only strictly true for
exposures to the general population, it is also possible to define related measures for
exposures to the working population, where instead of having an integral with
bounds from zero to infinity; the bounds will be the age at recruitment and the age of
retirement. The two measures will be similar, however, and so the above will usually
be a satisfactory approximation for the working population as well. Thus, for the
simple limiting distribution of a point exposure with immediate response, the change
in average life expectancy is given by the simple equations (5.25) and (5.30),
although these only apply to small exposure rates, so that the linear approximation
used in (5.15) will be valid. For larger exposure rates, the more accurate exponential
version in (5.14) should be used. Doing so would not present any difficulties, but

would not result in the simple formulas just presented.
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In the absolute risk model, the other limiting exposures may also be developed
further into simple expressions. As has already been discussed, the hazard rate
perturbation following a short exposure with long response will be equal up to a
scaling factor to the perturbation following a long exposure with a short response.

Table 2 gives the change in cumulative hazard rate as:

SW(t)a)= b(z a) (5.31)

which is a generalised version of the two limiting distributions. The parameter Q is
the length of duration of the response following a single exposure. For a short
exposure with a prolonged duration, a value of Q = 100 would be appropriate, whilst
for a prolonged exposure with a short response, a value of 2 = 1 should be used. The

resulting change in life expectancy is:

(5.32)
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(5.33)

Il
T
Ot—=—8 Ot—==—8 O

Reversing the order of integration gives:
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X = %Etp(t)_:[ dadt — I p(t)_(i)' adadt}

( )dt} (5.34)

ol e

0
s
_ZQ av

where t%,, is the mean-square age. Thus, in the limiting case when either there is a
short exposure with long response duration, or a long exposure with a short response
duration, the change in average life expectancy is directly proportional to the mean-

square age of the population, and to the exposure rate.

A similar, related expression for the change in life expectancy following a prolonged
exposure to a hazard that has a long response duration may also be derived for the
absolute risk model. Table 2 gives the increase in the cumulative hazard rate for such

an exposure as:

MWi(t|a)= b(tZ—Qa)z = %[t2 +a’ —2ta] (5.35)

The associated change in life expectancy is:

e}

b @ js(t)[tz—zta+a2]dt
(s(tr dt—iT Syt + 22 ( )

S(a)

(5.36)

@

a

The change in average life expectancy is:
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(5.37)

Reversing the order of integration gives:
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t2 t 0 t 0 t a2
p(t)?jdadt —f p(t)tf adadt +j p(t)tf7 dadt}
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p(t)E dt— | p(t)E dt + | p(t)E dt}
2 ! 2 ! 6 (5.38)
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where t°,, is the mean-cube age. Thus, in the limiting case when there is a prolonged
exposure with long response duration, which represents the maximum limiting case,
the change in average life expectancy is directly proportional to the mean-cube age

of the population, and to the exposure rate.

Although the change in life expectancy can be calculated for the relative risk model
from equations (5.15) and (5.16), and from the change in the cumulative hazard rate
given in Table 2 for these limiting distributions, there are no such simple expressions
for the change in average life expectancy as there are for the absolute risk model. It
is also worth noting that the above equations have been developed under the
assumption that the exposed population is the general population. When the working
population is considered, the equations will not be valid as the integration limits will
need modifying. Also, prolonged exposures experienced whilst at work will only be
felt until the age of retirement at the latest. This means that the change in cumulative
hazard rate would need to be modified accordingly.
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5.9 Modelling the Effects of Radiation and Pollution

The general framework for estimating changes in life expectancy laid out above may
now be used to model more specific risks, namely, those from exposures to radiation

and pollution.

The effects of exposure to radiation are modelled by following the treatment of Lord
Marshall et al (1982) [134], and Thomas et al (2006 — 07) [118], [184], [185]. These
treatments recognise the fact that, following an exposure to radiation there is a
substantial period in which no effects are seen. After this there are stochastic effects
for a long duration in which increased mortality will result, although these stochastic
effects will eventually die out. This effect can be modelled by assuming that the
additional fatalities occur between times w; and w, after exposure, where reasonable
values are w; = 10 years and w, = 40 years. It is also assumed that the excess
mortality period is uniform between these years. All previous treatments have
assumed that the effects of radiation follow the absolute risk framework, and this is
also assumed by the International Commission on Radiological Protection (ICRP),
who recommends internationally recognised radiation risk values which are used in

setting safety levels worldwide. The excess mortality distribution is therefore given

by:

1 formw; <y<w,
Q w,-o (5.39)

=0 otherwise

where Q = w; — w; is the duration of the latent stochastic effects following a single
exposure, which will be taken as 30 years. This distribution may also be modelled

more conveniently using step or jJump functions, Jy(x), given as:

J,(x)=1 forx>0
(5.40)
=0 forx<0

The mortality distribution is then given by:
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1
fM(y)za(‘]p(y_a)l)_‘]p(y_a)Z)) (5.41)
It may be observed from equation (5.8) that:
4(y)=3,(y-@)-3,(y-,) (5.42)

as:

el

[#,(yhy =0 (5:43)

0

Thus the effects of a short exposure to radiation are modelled as having no effect for
ten years, before increasing mortality risk for a thirty year period, whence all effects

die out. This distribution is shown in Figure 7.

As has been discussed above, exposures to radiation are expressed in terms of the
annual amount of radiation dose received by an individual, which is measured in
Sieverts per year (Sv.year™). Radiation doses are related to the additional number of
deaths by multiplying the annual dose by the dose-risk coefficient, cr (Sv''). The
dose-risk coefficient is determined from the 2007 ICRP recommendations [113],
who recommend a “detriment adjusted” lifetime cancer risk coefficient of 0.055 Sv™
for the general population, and 0.041 Sv™ for those of working age. These detriment
adjusted figures include non-fatal effects of radiation. However, in life expectancy
calculations, the required risk coefficient must only refer to fatal effects, and so the
above figures are inappropriate. Although the required figures are not given
explicitly by the ICRP, they can be calculated from data they present, which is 0.041
Sv* for the general population, and 0.032 Sv™ for the working population. However,
if these figures were applied to the change in life expectancy calculations, they
would underestimate the actual loss of life expectancy experienced by individuals in
the population. This is because not all individuals would experience the full effect of
the delayed risk, as they may die before the effects have occurred. In order to

accommodate for those who do not experience the full risk, the ICRP nominal risk
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figure needs to be adjusted upwards. The method for doing this is given in Thomas
and Jones [187], who show that the ICRP risk coefficients need to be multiplied by a
compensating factor. Using the latest data, the compensating factor is given as 1.43
for the general population and 1.32 for the working population. The appropriate dose
risk coefficient, cr, is then the product of the ICRP figure and the compensating

factor, for both the general and the working population. This is:

¢, =0.058 for the general population
(5.44)
=0.042 for the working population

It has been assumed in the above discussion that the working population is entirely
composed of males. If the workforce is assumed to be composed of equal amounts of
men and women, then the compensating factor is decreased to 1.27 and cr is reduced
to 0.041. For a working population entirely composed of females, the compensating

factor is 1.23 and the risk coefficient is 0.039. These values are shown in Table 3.

The exposure rate, b(x), is given by:

b(x)=c,d, (x) (5.45)

where d((x) is the annual dose received (Sv.year™). One further issue which needs
noting is that the ICRP also recommend that if any individual were to be exposed to
particularly high doses or high dose rates, then a “dose and dose rate effectiveness
factor” (DDREF) should be applied to the risk estimates. The recommended value
for DDREF is 2. It is assumed that this applies to doses greater than 100 mSv.
Therefore, the exposure rate is more accurately given as:

b(x)=cd,(x) ford,<0.1

(5.46)
=2c¢.d,(x) ford,>0.1

However, the event of an individual receiving a dose of this magnitude would be

exceedingly rare in normal circumstances, and so this effect will not be considered in
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the rest of this section, but will be considered at a later stage when assessing the

impacts of a large nuclear accident.

For a uniform exposure to a radiation dose of d, Sieverts lasting for Tgr years, the
exposure rate is given as:

b(x)=c,d,[L-3,(x~Ty)) (5.47)

The hazard rate increase is then equal to:

t-a

an(tfa)= [ f,, (t—a—x)o(x)dx

i el !(Jp(t—a—a)l—x)—\]p(t—a—a)z—x))(l—Jp(x—TR))dx (5.48)

t-a

zkraddr ]‘¢O(t_a_x)(1_‘]p(X_TR)>jX

0

where Krag = C1/Q is the risk coefficient per year, also known as the distributed risk
coefficient. It can be seen that any values of x > Tr will not contribute to the integral.
This means that (5.48) can be re-written as:

Sh(ta)=Kk,,d, j ¢, (t —a—x)dx (5.49)

The variable of integration can now be changed. Put:

z=t—-a-x

dz = —dx
X=0=>z=t-a
X=Ty=>z=t-a-T;

(5.50)

Hence:
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t-a-Tg

= kraddr t:[a¢0 (Z)dz (551)

t-a-Tg

= kraddr!//o (t - a)

where wo(t — a) is the prolonged hazard perturbation pattern, following the notation
of Thomas et al [118], [184], [185]. This can be written out in full as:

wo(0)=(r-m)J,(r-m)-(r -0, )3, (r - )

(5.52)
_(T_a)l _TR)‘] p(T_a)l _TR)+(T_0)2 _TR)‘]p(T_a)Z _TR)

The perturbed hazard rate can then be used to determine the perturbed cumulative

hazard rate, and consequently the change in life expectancy and average life

expectancy using the equations shown above. The perturbed cumulative hazard rate

is:

éW(t|a):Jt‘5h(u|a)du

a

: (5.53)
= kraddr J.l//o (U - a)dU
Proceeding again by changing the variable of integration, by putting:
z=u-a
dz = du
u=a=1z=0 (5:54)
uU=t=>z=t-a
so that:
t-a
oWlt|a)=k,,,d Z)dz
( | ) rad>'r .([VIO( ) (555)

= kraderI(t - a)
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where w4 (t — a) is the integrated prolonged hazard rate pattern, again following the

notation of Thomas et al. This can be written out in full as:

1
—E(r—a)l—TR)zJp(r—a)l—TR) (5.56)

The change in life expectancy, by equation (5.15) is then:

1

S(a)

X(a)=

S(t)ow (t | a)dt

D — 8

(5.57)

S(thy,(t—a)
a

and the change in average life expectancy is:

a

H
O'—.8

—a)js (thy, (t —a)dtda (5.58)

for the general population, this can be developed as:

rad ' r

5@ty ¢ - aloda

>
v~
o
wn
—_
Q
\_/

‘
<
-
—

—a)dtda (5.59)

>

J (O (t - a)itda

Il
=~
g
o
Ot——8 O—8 Semm 3
D —— 8 D 8

reversing the order of integration gives:

© t

X =K oqd, [ )]y (t — a)dat (5.60)

0 0
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The variable of integration can be changed, by putting:

z=t—-a
dz =-da
a=0=>1z=t (5.61)
a=t=12=0
Hence:
t 0
J“/’l( - a)da =—Jy/1(2)d2
0 t
t
= [w(2)ez (662
0
:‘//2(t)

where y,(t) is the twice-integrated prolonged hazard rate pattern, which can be

written out in full as:

(D)= -0, o) -0, o)
_%(T_a)l_TR)S‘]p(T_a)l_TR) (5.63)

1
+6(7_w2 _TR)3‘]p(T_a)2 _TR)

the average change in life expectancy is thus:

0

X =ked, [ p(thy ()t (5.64)

0

The integral can be readily evaluated using life table data, and by setting w; = 10
years and w, = 40 years, for any given exposure duration Tg. Although the above
equation only applies to the general population, an equivalent calculation could

readily be made for the working population from equation (5.58).
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The effects of pollution can be modelled in a similar manner to those of radiation. It
has long been recognised that inhalation of pollutants can increase mortality. Most of
the data used for modelling pollution effects have been based on the 2009
Committee on the Medical Effects of Air Pollutants (COMEAP) recommendations
[39]. The main difference between pollution risks and radiological risks are that
pollution risks are presented as relative risks, in contrast to the absolute risk model of

radiation effects.

The COMEAP report discusses the fact that pollution has been observed to cause
immediate effects, and so it is assumed that there is no incubation period. The report
did not discuss the duration of time for which these effects are observed, and so to
estimate this, data regarding the effects of cigarette smoking (which results in
exposures to similar kinds of pollutants) were used, see Kawachi et al (1993) [122],
and Kenfield et al (2008) [125]. The studies have found that, upon cessation of
smoking, risks begin decreasing immediately, although it can take over twenty years
for the risks to return to those that have never smoked. However, the authors note
that other studies have found evidence supporting both much shorter and much
longer time periods than this. The studies also find that over 75% of the risk decrease
occurred before the 15" year of cessation. It was therefore decided to use 15 years as
the time taken for stochastic effects of a short exposure to pollution to die out. As for
radiation risks, a rectangular excess mortality function will be used to model the
distribution. Although such a rectangular function will overestimate the risks as they
decrease up to the 15" year, the function will also underestimate the excess risks
which still remain after the 15" year. These two features will tend to cancel each
other out, so that on average, the rectangular function does not lose too much
accuracy. However, a better model would be to fit a parametric curve to the observed
data, which would be a linear or exponential decline. These issues remain for further
work. As the relative risk framework is being used, the excess mortality distribution

is given by the dimensionless ¢y(y) function:

¢O(y):l_‘]p(y_a)2) (5.65)

-101-



where in this case, w, =15 years (and w1 = 0 years, so that Jy(y — w1) = 1 for all y).
This distribution is shown in

Figure 8.

The COMEAP report also recommended that the best indicator for pollution effects
was exposure to PM2.5 particulate matter (particles with diameter less than or equal
to 2.5 um), and that exposure to other larger particulate matter and industrial
pollutants such nitrogen dioxide, carbon monoxide and ozone are not associated with
significantly increased mortality when the effect of PM2.5 is accounted for. The
report finds evidence suggesting that sulphur dioxide does increase mortality, but
decides against recommending quantification of direct effects of this pollutant,
noting that there were difficulties in separating the effects of particulate matter and
sulphur dioxide exposure. Thus, the hazard rate perturbation for pollution is
expressed in terms of exposures to increases in the concentration of PM2.5
particulate matter, which is measured in units of micro-grams per cubic metre (pg.

m™3). The exposure rate, b(x) is then given by:
b(x) = Ko (x) (5.66)

where Kpor is the exposure-risk coefficient for pollution (ng™m?), and dc(x) is the
increase in concentration (pg.m™) associated with pollutant emissions at time x. The
COMEAP report’s main recommendation is that the relative risk following an
increase in PM2.5 concentration of 10 pg.m™ will be 6%. The relative risk is related

to the exposure risk coefficient by:
RR =g (5.67)

see, for example, [166]. Since a concentration increase of 10 pg.m'?’ leads to relative
risk increase of 6%, then RR = 1.06 when dc¢ = 10 pg.m™. The exposure risk
coefficient can thus be determined as:

o= |n(;R) _ |n(i(.)oe) _58x10° pg'm? (5.69)
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The 95% confidence limits for the relative risk are given in the COMEAP report as
2% to 11%, meaning that the 95% confidence limits for the pollution exposure-risk
coefficient are (2.0 — 10.4) x10 ug™m?>. It is also worth mentioning that this risk
coefficient does not need adjusting in the manner described for radiation risks above,

as the coefficient does not express the lifetime at risk as the radiation coefficients do.

For a uniform exposure to a pollution concentration of d¢ (ug.m™) lasting for Tg
years, the exposure rate is given as:

b(X) = kpoll&(l_ Jp (X -Tq )) (5.69)

the hazard rate perturbation is then:

iy (t12)=h(t) [ 4,1 - )i
L (5.70)
= (ke [(1-3,(t—a-o,)J1-3,(x-T, )

This can be developed in a similar manner as for radiation exposures above, to give:
N (t | a) = h(t)kpoll& ‘//o(t - a) (5.71)

where yo(t — @) is as given above, except with w; set equal to zero. Writing out in
full:

WO(T)ZT_(T_wz)Jp(T_wz)_(T_TR)‘]p(T_TR)
+(T—a)2 —TR)Jp(z'—a)2 —TR)

(5.72)

The hazard rate perturbation can then be used to calculate the increase in the
cumulative hazard rate, and hence the change in life expectancy and change in
average life expectancy. However, because of the presence of the hazard rate h(t) in
the calculations, there does not exist any simple solutions involving the integrated

hazard rate patterns, w1(t) and w»(t).
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Estimating the increase in concentration, dc, presents some difficulties, as this datum
is not usually published. However, data will normally be available for the emission
rate of the pollutant. In order to determine concentration increase from emission
rates, it is necessary to model the dispersion mechanisms of the plume of pollution.
The ExternE project has employed some sophisticated models in order to determine
concentration increases, and the impacts on the population [77]. It has been noted
that it is possible to simplify the calculations considerably with a simple model
which nevertheless gives good approximations to the more complex model. This
model was developed by Rabl et al (2005) [80], and is known as the “uniform world
model”. In this model, the collective increase in concentration is related to the

emission rate E (ug.s™), via the following equation:

& :% (5.73)

In which p is the population density of the area over which the pollution is dispersed,
and is taken as 80 people.m™, which is the value for central Europe, including both
land and sea [80]. The parameter v is the deposition velocity of pollution and is taken
as 0.0027 ms™ for PM2.5 [178].

As equation (5.73) gives the collective increase in concentration experienced by the
entire population affected, the resulting calculation will give the collective change in
average life expectancy. The collective change in average life expectancy is equal to
NoX and so, for the purposes of determining J-values, an estimation of the actual
number of exposed people is not required. One further point is that strictly speaking,
the change in life expectancy calculation should be performed using European
mortality rates. However, this has not been done here, as only UK data was used.
Using UK mortality rates will, nevertheless, give conservative results, as the UK has
lower mortality rates than the rest of Europe taken as a whole [206], so that the life
expectancy is higher. Changes in life expectancy are broadly proportional to the
initial life expectancy, for example, see equation (5.25). Consequently the calculated
change in life expectancy for widely circulated PM2.5 emissions will be an
overestimate of the more accurate figure that would be determined if European

mortality statistics were used.
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5.10 Accounting for those Entering and Leaving the Population during

a Prolonged Exposure

The above analysis of the change in life expectancy following a prolonged exposure
has, up until now, been assuming that those exposed to the hazard are alive at the
start of the exposure. A more accurate calculation would account for members who
enter and leave the population during a prolonged exposure. For the general public,
only those entering the population by being born in the midst of an exposure need to
be accounted for. Members of the public who might not experience the full
prolonged exposure because of death are already accounted for in the method laid
out above. For the working population, individuals may enter the population through
recruitment, and may leave through retirement. There may be other processes by
which people enter and leave the exposed population, such as relocation, redundancy
or through injury, but these including these processes would require a more

sophisticated analysis than is warranted here.

The methods for calculating the effects of exposure to members of the public born
during a prolonged exposure, and to members of the workforce who are recruited
and who retire during a prolonged exposure, are given by Thomas et al (2009) [186],
[185] and Jones et al (2007) [118]. These methods will be briefly outlined below.

Members of the public who are born immediately after the start of the prolonged
exposure which lasts for Tg years will be subject to an exposure that lasts for Tg
years. If it is assumed that the exposure rate is constant, and if the response is
modelled with a step function, as was done for radiation and pollution, then the
increase in hazard rate will be proportional to the prolonged hazard perturbation

pattern:
on(t]a)ec yo(t—a) (5.74)

where wo(z) is given by:
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2)=[g(y)dy (5.75)

z-Tg

see equation (5.51). The dependence on the exposure time Tr can be made explicit
by writing wéTR)(z). The member born immediately after the start of the prolonged

exposure will have age a = 0. The hazard rate perturbation will then be proportional

to:

(] 0)oc ™ (t) (5.76)

If the other factors, such as exposure rate and whether the hazard follows the
absolute or relative risk model, are known, then the hazard rate perturbation at future
age t for an individual of initial age zero can be determined. This can then be used to
determine the cumulative hazard rate and hence the change in life expectancy at age

ZEro.

An individual born i years after the exposure will not experience the full prolonged
exposure. Instead, he well experience Tr — i years of the exposure. His initial age

will still be zero, and so his hazard rate perturbation can be modelled as:

hO(t]0)oc = (t) (5.77)

where the dependence of the hazard rate perturbation on the number of years since

the initial exposure, i, has been made explicit, and where, for clarity:

wi j¢o )dy = j¢o (5.78)
2~(Tg-i)

7T+

The hazard rate perturbation will then lead to a change in life expectancy at age zero
of éX(‘)(O), where again, the dependence i has been made explicit. Individuals born

in the range 0 < i < Tg will continue to experience the prolonged hazard, but an

individual born Tg years or more after the exposure will face no exposure. Under the
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assumption of a steady state population, the number of individuals being born each
year is constant. The average loss of life expectancy for all members still to be born,

which will be denoted as 6 Xporn, Will then be:

Tfax(i)(o)on

born ™
TR

X (5.79)

The total number of individuals, N,, who will be born in the period of the exposure,
Tr, is simply the product of the steady state birth-rate, n(0), given by equation (4.58),
and Tg:

N, = n(O)T, = Ny, % (5.80)

The total population that experiences the exposure will be the sum of the existing

population and those born during the time of exposure:

T T
NTot = NPop + NPop WRO) = NPop(l_{_WRo)j (581)

The average loss of life expectancy for this group of people, which will be denoted
as oXan will then be the weighted average of the loss of life expectancy of those

already alive during the exposure and those who will be born during it:

T T
. - N popOX + NPOPWRO)éXbom ) X +WRo)éxb°f“
Neop (1+ TR) [1+ TRJ (5.82)
X (0) X (0)
_ X(0)X + T2 X porn
X(0)+T,

Modelling the recruitment and retirement of a working population can be done in a

similar manner. For example, the recruitment process can be seen as being similar to
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the birth process, but the initial age will be ar, i.e. about 20, rather than zero for

those born, so they will have a hazard rate perturbation of:
(] @) or g™t~ 2 (5.83)

which can then be used to calculate the change in life expectancy, oX (‘)(arec), as long

as the exposure rate, and whether the hazard is an absolute or a relative risk-type, are

known. The change in average life expectancy is:

(5.84)

The retirement process does pose some additional complications, in that individuals
need to be partitioned according to the amount of time they will be exposed to the
prolonged hazard, with individuals who are about to retire seeing none of the
prolonged hazard, whilst those workers who are below age art — Tgr, Where a is
about 60, will experience the full exposure. Putting ay as the maximum age an
employee can have and still see the full exposure:

Ay =&,y — g (5.85)

The hazard rate perturbation for an individual aged ay + i at the start of the

prolonged exposure will be:
hW(t)a, +i)cy(t—(a, +i)) (5.86)

which can be used to calculate the change in life expectancy, éX“)(aM +i), and the

average change in life expectancy of those retiring will be:
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[oxO(ay, +ii (5.87)

Finally, the group of workers in the age range arec < a < am, Who experience the full

prolonged exposure will have a hazard rate perturbation of:
(¢ | @y, +1)oc y(t —(aee +1)) (5.88)

for 0 < i < (am — arec). This can then be used to calculate the change in life

expectancy, X “(a,,, +i). The average change in life expectancy of this group will

rec

be:

rec (5.89)

The average change in life expectancy for the entire workforce who experiences

some of the prolonged perturbation will be the weighted average:

TR (éx rec T oX ret )+ (aret — e — TR )éx work
Aot — g +TR

é>(all—work = (590)

5.11 The Effect of Discounting on the Hazard Rate Perturbations

It was shown in section 4.7 that the effect of discounting was to modify the hazard
rate to:

hy (t)=h(t)+r (5.91)

where r is the discount rate. This discounted hazard rate then allows the discounted

cumulative hazard rate, discounted survival probability, discounted life expectancy,
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and discounted average life expectancy to be determined from the associated
calculations. In the absolute risk model, the perturbed hazard rate is independent of

the initial hazard rate, and so discounting has no effect:
d’]d.abs(t | a) = d-]abs(t | a) (592)

The associated change in the cumulative hazard rate will also be unaffected by the

discount rate. The change in life expectancy will be:

X 4(8) = —— [ 8, (0w (¢ | (5.93)

which is dependent on the discount rate. The discounted average change in life
expectancy is then calculated in the usual manner. For the relative risk model, the

discounted hazard rate perturbation is:

s, (t12)= (h0) + ) [ 2 - x)(x)x
© (5.94)
=, (t|a)+r f¢0 (t —a— x)o(x)dx

The associated change in the cumulative hazard rate will also be dependent on the

discount rate:

t

W, (t] )= [ oy o (u] a)t (5.95)

a

which can then be used to calculate 6Xy(a) and dXy, in the same manner as discussed

above.
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b(x)

Tr

Figure 5 Exposure rate, b(x), over time, x.

fm(y)

v

Figure 6 Probability density for the mortality period, y.
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v

Figure 7 The excess mortality probability distribution for radiation-induced cancer.

do(y) N

w2

v

Figure 8 The excess mortality distribution for pollution-induced mortality.
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Exposure | Response |b(x) fu(y)/ ,(y) Ohaps(t]a)/ oW(t|a)
Type Type Ohy(tla) (abs/rel)
Short Short =laty=0 = b/ bh(t) for t = | = b/ bh(a) for t
= 0 otherwise | a >a
=bforx=0 = 0 otherwise
Short Long = 0 otherwise | = Q1 = bQ/ bh(t) = b(t-a)Q"/
for0<y<Q |fort>a b(W(t)- W(a))
fort>a
Long Short =laty=0 = b/ bh(t) for t> | =b(t-a)/
= 0 otherwise | a b(W(t)- W(a))
=bforx>0 fort=a
Long Long = =0 = bQ(t-a)/ =b2Q) (t-a)¥
for0<y<Q | bh(t)(t-a) b(fh(u)(u-a)du)
fort>a fort>a

Table 2 Hazard rate perturbations for limiting exposure and response distributions, assumed to be
uniform over the specified period. The parameter Q is the length of time which the prolonged
response lasts for. For a long response lasting for the rest of the exposed individual’s life, a value of Q

~ 100 years would be appropriate.

Population Type Compensating Factor Dos?-Risk Coefficient, ct
(Sv))

General Population 1.43 0.058

Working Population, 1.32 0.042

100% Males

Working Population, 50:50|1.27 0.041

Gender Split

Working Population, 1.23 0.039

100% Females

Table 3 Values of the compensating factor and dose-risk coefficient for different populations, using

latest data.
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Chapter 6 Fundamental Relationships for the Calculation of
Work-Life Expectancy and the Work-Time Fraction

6.1 Characterising Working Time Behaviour

The preceding two sections described the technical details required for calculating
the average length of time remaining for a population, knowledge of which is
required in the J-value framework. It is also necessary to calculate the average length
of working time remaining for a population. This is needed to determine the average
work-time fraction, wp, which is required for the calculation of the risk aversion
coefficient in the J-value, as discussed in section 3.2. The average work-time fraction
is the average fraction of time the population will spend in work from now on.
Related to this parameter is its complement, the average free time fraction,
fo = 1 — wp. This section describes the methodology for calculating these parameters,
which are related to the life expectancy calculations of chapter 4. Indeed, it is shown
that the average life expectancy is required to calculate wy. Also needed is the
average work-life expectancy, which is the population averaged length of working

time remaining.

6.2 The Work-Time Fraction

Consider an individual of age a in a population with age probability distribution
p(a). The individual’s life expectancy is X(a). This is the expected value of his life to
come from now on. If the individual expects to work for y,(a) years from now on,
which will be termed the work-life expectancy, then his average free time remaining

from now on, F(a), will be:

F(a)=X(a)-y,(a) (6.1)

Averaging over the entire population gives the average free time remaining, F, in

terms of the average life expectancy and the average work-life expectancy, y:
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F= I p(a)F(a)da = I p(a)x (a)da - I p(a)y. (a)da (6.2)

which may also be expressed as:

F :[ —%jx (6.3)

Comparing this equation with (3.1), it is clear that the average work-time fraction in

the population, w, is given by:
w=Jv (6.4)

In section 3.2 it was explained how the work-time fraction relates to the elasticity
parameter, g, which is used to describe the trade-offs that are made in maximising
the life-quality index. It was assumed that, on average, society’s preferences for
working will be such that the trade-off between income and free time is optimised
for life-quality. This then allowed the optimal work-time fraction, wp, to be defined,
which was assumed to be equal to the average work-time fraction for the population,

so that wg = w.

In order to calculate wy, the average work-life expectancy needs to be estimated. The

method for doing this will now be presented.

6.3 Work-Life Expectancy
It will be assumed that both the population and the job market are in a steady state.
The probability, psw(t|a), of the average individual of age a being in work at a future
age t, is the probability that he will have survived to that age, S(t|a), multiplied by
the probability that a person of age, t, is in work, py(t):
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p.. () = p, (DS (Ha)= pw(t)% (6.5)

If the average person of age, t, works for a fraction of the time, gu(t), when in work,
then the fraction of time, z,(t|a), someone of age a can expect to be working at future
aget,is:

2,(tla) = g, (1) pw(t)% (6.6)

Thus the amount of time that such a person can expect to work between ages t and
t + dt will be z,(t|a)odr, and the total time that someone of age, a, can expect to work
from now on, y.(a), may be found by integrating from the current age over all

possible future ages to the end of life:

0

)= Juttat = (1 [0.0p,00) 67

a

In the simplest case, the probability that a person of age t is in work, py(t), and the
fraction of the time the average person of that age spends in work, gu(t), may be

regarded as uniform over the working age, and zero outside it:

p, ({)=0 fort <t,.
=p, fort,.. St <t (6.8)
=0 fort>t,
and:
g, =0 fort <t,.
=0, fort,.. St <ty (6.9)
= fort >t

ret

where ty IS the starting age for work, while ty is the retirement age, so that
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g, p,(t)=0 fort <t
= gw pW for trec S t < tret (610)
=0 fort>t

ret

Substituting from equation (6.10) into equation (6.7) gives:

trel
y, (a)=JuPu JS(t)dt fora<t,,

S(a)

tret
= QSW(Z;V ! S(t)dt  fort, <a<t,,

=0 fora>t

tsrec

(6.11)

ret

The assumption of a uniformly distribution for the employment probability, pu(t),
and hours of work, guw(t), is somewhat simplistic. The sensitivity of the work-time
parameters to the type of distribution is assessed in chapter 9, where the uniform
distribution is compared to observed data for the UK, which appears more normally
distributed.

When using the more general equation (6.7), the average work-life expectancy is

then given by:

(6.12)

!
. (6.13)
!

The employment rate, py(t), can be written as:
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o, (1)= "V (6.14)

where ny(t) is the number of people working at age t, and n(t) is the number alive at

age t. The fraction of time spent working is:

g,(t)= q%(;) (6.15)

where hy(t) is the weekly hours worked at age t, and 168 is the number of hours in a

week. The average work-life expectancy is then:

(6.16)

where equation (4.60) has again been used to substitute p(t)/n(t) for 1/Npy,, Where
Npgp IS the total population size, and where Hy(t) = ny(t)hu(t) is the total person-

hours worked per week at age t. The order of integration can be reversed to give:

1 0 t
= H_(t)| dadt
Yo 168Npop-£ W()£ a

(6.17)
L -

= tH,, (t)dt
168N 0

Pop 0

If the simple case of uniformly distributed working hours between the age of

recruitment, tc and the age of retirement, ty¢, is used, then:

H, ()= fort, <t<t, (6.18)

=0 otherwise
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where Hr is the total person hours worked per week in the population, a figure which
can be readily obtained from national statistics, as will be described in more detail in
chapter 8. The average work-life expectancy is then:

tret
HT

= tdt
Y 168N Pop (tret - trec )t:[c
. HT (trzet _trzec)
168N (b —tree) 2
_ HT (tret + trec )(tret B trec) (619)
168N o, (e — trec ) 2
_ (tret +trec) HT
2 168N op
= tW av HT
“ 168N

Pop

where the ratio (te + trec) / 2 is the average working age in the population, ty ay,

under the uniform distribution assumption.

6.4 Approximations for the Work-Time Fraction

The average work-time fraction can then be estimated, from equation (6.4), as:

_ yw _ tw.av HT

X X 168N,

_ tw.av HT (620)
"1, 168Ny,

where equation (4.66) has been used. It may be noted that the average working age is
generally very close to the average population age. It was mentioned in section 4.7
that the average age using 2007 — 2009 UK data was around 41.2 years. The average
age working age of a uniformly distributed working population is 40 years. Their
ratio is thus close to unity. This means that the average work-time fraction may be

approximated as:
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HT
W=
168N

(6.21)

Pop

The two quantities can be estimated readily from national population and labour
market statistics, as will be described in chapter 8. In practice, the more accurate
(6.20) is used in the estimation. Although the above equations are suitable for
measuring w, more insight can be gained into this parameter by noting that the ratio
H+1/168 is the total hours worked in the average week divided by the number of hours
in a week. This quantity is therefore the number of person-weeks worked per week.
This can be scaled up by multiplying the numerator and denominator by the number
of weeks in a year. The scaled up quantity is then the annual person-years worked,

Npy, and so:

wr — (6.22)

The average work-time fraction thus emerges as the annual per capita person-years
worked within the population. This is effectively the procedure advocated by Pandey
et al (2006) [158].

-120-



Chapter 7 The Value of Life and Life-Years

7.1 The Value of Delaying a Fatality

The methods for using the J-value framework to derive more commonly used
valuations of human life will now be presented. The starting point is deriving the
value of delaying an immediate fatality by some nominal amount. The maximum
reasonable value to spend on increasing life expectancy is given by equation (3.60).
This would be such that the J-value was unity. This can be generalised to other
situations in which J # 1 by multiplying by J:

NGoX,, [L—e ")

Ny =1J forr, >0
1-¢ ry Xy (7.1)
N
_ g NEX, forr, =0
1-¢

The value, V[EN)(Xd), of delaying an imminent threat of death by x4 discounted years

is found by integrating (7.1) from X, =0" to X, =X,, where 0" indicates the fact

that death is imminent but has not actually happened:

Xdq  A-TaXg
VI (x, )= IN -2 jl © X, forr, >0
° 1-g3 1,X,

’ (7.2)
:JNiIdXd:JNixd forr, =0
1-¢5 l-¢

If only one individual is concerned, then N = 1 in equation (7.2), and using the

notation V, (x,) =V (x,), then:

Xgq  A-TeXg
Vp(x,)=1 G Il ® X, forr, >0
l-¢7 X
0 7 (7.3)
:Jixd forr, =0
l-¢
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The integral in equation (7.3) has no closed form solution, but can be evaluated
numerically. In order to retain accuracy, the integral is expressed as a series sum,

which is much easier to evaluate. This is done by first making the replacement:

zZ=r,X,
dz =r,dX, 24
Xy4=0=>2z=0 (7.4)
Xg=Xyg =>Z=IXy =2
so that:
Xdl_e—rdxd 1 Zl_efz
| dX, == dz (7.5)
o Ta Xy fyo 2
The Taylor series expansion for e is:
L& (-1) 2
e’ = 7.6
ZO v (7.6)
so that:
o (_ n-1_n
PCI ol e .7)
n-1 n!
and:
1_ e—z 0 (_ 1)"‘1 7 n-1
=) ——— 7.8
Z nzzl“ n! (7.8)
The integral therefore becomes:
Z -z Z n-1_n-1
1-e = (-1 z
dz = ~—————qz 7.9
! z !nz_ll n! (7:9)
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As the integral of a sum is equal to the sum of an integral, equation (7.9) can be

written as:
Z » (_ 1)n—1 anl 0 (_ 1)n—1 Z o
!nz_igdn! z:nZ:l: o E[Z dz
© _1 nflz n
stz (7.10)
n=1 .
5 ()" ()
B HZ:; nn!
substituting into (7.5):
Xg —rgXq » (—1 n-1 n

which can be readily evaluated numerically. The sum converges to the correct
solution very rapidly. After two terms, the error is about 2%, and after three terms,
the error is about 0.3%, for typical values of rq and x4. Even for high values of ry and

Xq, the error is still less than 1% after three terms.

7.2 The Value of Temporarily Preventing a Fatality, VTPF

The above analysis of the value of delaying a fatality by x4 years may be extended to
the case where the immediate threat to life is completely eliminated, returning the
individual back to his initial state. The more common term for this value is the VPF
— the value of preventing a fatality. However, this phrase is a circumlocution, as it is
impossible to prevent a fatality — all individuals will eventually die. Hence the phrase
adopted here is the “value of temporarily preventing a fatality”, or VTPF, which
acknowledges this problem.

The maximum number of years an individual can gain from having an immediate
threat to his life removed is his initial discounted life expectancy in the absence of
the threat. If the age of the individual is known, then this maximum value is thus
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Xq(a). If the age of the individual is unknown, then the average discounted life
expectancy, Xq4, will be the best estimate of the number of years gained from
temporarily preventing the fatality. Thus the VTPF may be written as Vp(X(a)), or

more simply, Vp(a), for when age is known, where:

G Xd(a)l_e—l’dxd

Vo(a)=1J dX forr, >0
(@)= 17 [ o, d
0 (7.12)
_3C X,(a) forr, =0
l-¢
or when the age is unknown:
Xga  A=1gXy
vszlG jl ex dX,  forr, >0
“¢0 fal (7.13)
:Jixd forr, =0
l-¢

The VTPF when age is unknown may be used as an indicator of the population
averaged VTPF. Another way of averaging would be to integrate the age-dependent

VTPF over the population distribution:

0

Voa = | P@V; (@) (7.14)

0

when the discount rate is zero, these two methods of averaging are identical. For ryq >

0, the values are still close, with the age-independent VTPF being slightly higher.

7.3 The Value of a Discounted Life-Year, VODLY

The value of a discounted life year, v4(Xq), is the amount that should be paid to
extend life by one year. This is equal to the difference in the value of a delayed
fatality between a delay of x4 + 1 years and xq4 years:

Vg (Xd ):VD (Xd +1)_VD (Xd ) (7.15)
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so that:

Vy(xg)=1J dX , forr, >0
(7.16)
forr, =0

The integral may be evaluated by noting that it can be developed as a sum, following
the same method as was shown in section 7.1, except with the limits of integration

changed. This means the sum will be altered to:

Xg+1

1-g "%
j rd Xd

Z+ry a2
dx, =L [ 17¢ &
Iy 7 Z

Xq

1 o (_1)n—1 Z+1y

=== Iz”‘ldz
Z

" "~ n!n_l (7.17)
e (AN )

B ry 7= nn
s n-1 n
:iZ&z“Hi_,_r_dj _1J

ry 7= nn Z

Since rq/Z = 1/x4 will typically be small, the bracketed term may be approximated as:

X X (7.18)
_n
Xd
substituting back into (7.17) gives:
AR PP RN VPR
Z" = :
r, X, Z‘ n! r,X, nzﬂ“ n! (rxa) (7.19)

Comparing (7.19) with (7.7), it is apparent that:
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1 & (=) n l—e%
Z( 7 (rx, y =128 (7.20)
r(Xqy sz N ryXq
and so the VODLY is:

vd(xd):\llil_e forr, >0
éé‘ My Xy (721)

=J— forr, =0

1-¢

The VODLY is thus dependent upon the length of the achieved delay, but only at
high discount rates and large delays. For low discount rates or delays, the VODLY is

approximately constant.

7.4 An Alternative Model of the VODLY, the VODLYA
An alternative characterisation of the VODLY, which will be called the VODLYA,
would be the average value of a discounted life-year, vq, achieved by returning the
individual to his or her normal life expectancy. This is simply equal to the ratio of
the VTPF to the initial life expectancy of an individual, X(a):

_Ve(a)
Vae(@) =5 @ (7.22)
or, when age is not known:
VP
ave X ( )

By comparing the above equation with equations (7.12) and (7.13), it can be seen
that the VODLYA is equal to the VODLY when the discount rate is zero. They are

also close for non-zero discount rates.
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7.5 The Hazard Elimination Premium, HEP
The VTPF, VODLY and VODLYA all provide a valuation for the extension of life

by a certain amount of time. It is also possible to define a value for a given level of
risk reduction, and it is natural to first consider the value of completely eliminating a
given risk. In such a situation, an individual or a population would be exposed to
some detrimental hazard that is causing a reduction in life expectancy. Upon
elimination of the hazard, the life expectancy is returned to the average value for the
general public. Such a measure thus provides a maximum reasonable amount to be
spent on completely eliminating a given risk, and is termed the “Hazard Elimination

Premium”, or HEP.

This measure has useful applications in the field of comparative risk analysis, in
which different risk-exposing systems will produce costs on an exposed population,
and the best system is the one which minimises this cost for a given output. The HEP
calculates the total improvement in life expectancy in absence of the risk, and
monetises it to produce a common measure of this cost. The HEP is given by
equation (7.1), repeated below:

NGoX , (1—e ")

oV =1J forr, >0
1-¢ ry Xy (7.1)
N
_ g NEX, forr, =0
1-¢

where here the change in discounted life expectancy, oXjy is the life expectancy
gained from complete elimination of the hazard. The maximum reasonable HEP
occurs when J = 1. For a comparative risk analysis to be consistent, then the same
value of J should be used for each system studied. However, there may be various
practical constraints whereby using different values of J would be warranted. For
example, safety regulations may require a disproportion factor to be incorporated
into cost considerations for certain systems. The factor of J could then be used for

this disproportion factor.
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The HEP is a novel concept introduced here for use in the second part of this thesis,
in which a comparative risk analysis of UK electricity generating systems is
performed. Here the systems under scrutiny are the entire fuel chains involved with
various methods of electricity generation, from fuel extraction to waste disposal.
These produce costs to the public and workers in terms of extra mortality from
pollution and radiation exposure, as well from accidents. Using the tools presented in
the preceding chapters i.e. those of the life quality index and J-value, which
incorporate models of survival and mortality, and models of working time behaviour,
the risks involved with the electricity generation systems under comparison can be
objectively measured. These can then be combined using equation (7.1) to produce a
set of HEPs for each electricity generating system, in terms of the maximum
reasonable amount to spend on risk elimination per unit of electricity generated,
which can then be used to compare the different aspects of risk posed by each

system.
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Chapter 8 Measurement of the Parameters Required for J-Value

Analysis and their Tolerances

8.1 Quantifying Parameters and their Uncertainty

The preceding sections have laid out the methods and procedures necessary for the
calculation of the parameters required in the J-value model. In this section the
estimates of each of these parameters is presented. The methods for estimating the
uncertainty of the parameters is also discussed and where possible, the 95%
tolerance limits are shown. Some of the work contained in this chapter has been
previously published by the author, see Kearns (2010) [123]. However, the majority

Is either new or is a further extension of the previous work.

The J-value, as given by equation (3.61), is comprised of seven parameters. These
are also dependent upon further parameters. Other parameters extraneous to the J-
value, such as the VTPF and VODLY may also be calculated from these quantities.
Five of the seven J-value parameters can be objectively measured from reliable
statistics, a defining feature of the J-value. The only parameters which are not
objectively measured are the discount rate, rg, and the net discount rate, r. The
former parameter is usually fixed so that the latter parameter is equal to either 0%
per annum or 2.5% per annum, but can also be varied to assess sensitivities, as will
be described later. The remaining parameters can be classed as either “context-
dependent” parameters or “context-independent” parameters. The context-dependent
parameters are those which depend on the specific nature of the protection system,
and so cannot be determined a priori. These parameters are: the change in

discounted life expectancy, 6Xg; the number of individuals affected by the protection
system, N; and the actual cost of the protection system, é\iN. The context-

independent parameters are those which are constant for each protection system, and
can be evaluated without knowledge of the protection system. These are: the GDP
per person, G; the risk aversion coefficient, ¢; the average life expectancy, X; and the
growth rate, rq. These parameters, in turn, are dependent upon other parameters, such
as the age distribution, p(a), the survival probability, S(a), the work-time fraction,
Wp, etc. Each parameter will now be discussed in turn, and the estimate will be

presented.
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It is also important that some attempt is made to quantify the uncertainty associated
with these measurements. The uncertainty is presented in terms of the tolerance
limits. The methods for doing this will also be discussed. Although many of the
parameters can be assessed for uncertainty, it is not possible to do this for each one.
In particular, those that are not used directly in the J-value equation will not have
their uncertainty quantified. Important to the uncertainty analysis is the consideration
of the propagation of uncertainty conditions, which relates the uncertainty on a
particular variable to the uncertainty of some function of that variable. These
considerations allow the tolerance limits on the J-value to be estimated. The
propagation of uncertainty is determined by a weighted sum of squares method. If a
function, f, is dependent upon k variables, denoted as x;, for i =1, 2, ..., k, so that:

f = (X, Xy, Xgrov X, ) (8.1)

and if the variance of each of the x;’s, denoted as o , are known, then the variance

of f, o2, is given by:

2 2 2
ol = ot ol + a oL+t a o’
ox ) o \ox, ) x ) (8.2)

and the standard deviation is the square root of the variance. The “corr” term
represents the contribution to the uncertainty when two or more variables are
correlated with each other. For example, if the variables x; and x, are correlated with

correlation coefficient p ., but all other variables are independent of each other,

then the correlations term would be equal to:

corr—Ziia o 8.3
axl axz X1 szXLXz ( ' )

Once the standard deviation has been obtained, the last remaining piece of

information required for knowledge of the tolerance limits is the distribution. As will
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be discussed, many of the parameters have normal distributions. The 95% tolerance
limits for such distributions then lie at approximately + two standard deviations from

the mean.

8.2 Gross Domestic Product per Person, G
The Gross Domestic Product (GDP) of a country is a measure of economic activity.
It is the value of all goods and services produced within the country over the year.

The GDP per person is the GDP divided by the total population of the country:

_ GDP
N

G

(8.4)

Pop

In the UK, these figures are published annually by the Office for National Statistics
(ONS), in a publication entitled “United Kingdom National Accounts: The Blue
Book” [149]. The latest value of G, as taken from the Blue Book 2010, is £22,538.

In order to assess the uncertainty on G, it is first necessary to estimate the standard
deviation of the estimates of the GDP and the population. These uncertainties will

then be related to the standard deviation on G by:

2
62_( oG jzo_z Lo ) .
¢ L86GDP) " | oNy,, ) "

oG oG

+ ZmWO-GDPO-NPUPpGDP,NPOp (8.5)

Pop

2 o 2 o
:GZ(—GGDF’) +G2(—NP°”J —2G2 e e
GDP N GDP N, ’

so that:

2 2
%6 _ |[ Bcor n O Neop _9 Topp I Neoy 0 (8.6)
G GDP N pop GDP N, e
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where pgy. .~ is the correlation coefficient between the population size and the

GDP. The values of the GDP and Npop, are also given in the Blue Book. For 2009, the
GDP was £1.39 trillion and Npo, was 61.8 million.

The uncertainty on the GDP measurement is estimated from [144], which gives data
on the subsequent revisions in the estimates of the GDP in a previous publication of
the Blue Book. It is assumed that the most up to date value of the GDP will be
subject to similar revisions, and that this is the major source of uncertainty on the
GDP estimate. The total revisions after the initial Blue Book publication give the
relative standard deviation, or coefficient of variation, on the GDP as 0.1%.

The uncertainty on the population can also be estimated from data published by the
ONS. An analysis performed by the ONS of 2001 Census data showed that the 95%
confidence interval for the 2001 population estimate for England and Wales was
+0.2% of the mean estimate [143]. The relative standard deviation is then 0.2%/1.96
= 0.1%. Had data for the whole of the UK been pooled, rather than just for England
and Wales, the error would have been smaller. Although this estimate was for the
2001 population, it will be assumed that the uncertainty is also applicable to the

present day population estimate.

The final estimate required to calculate equation (8.6) is the correlation coefficient
between the GDP and the population. This can be estimated from ONS time series
data [153], which provides the historical values of the GDP and the national
population from 1948 to 2008. It is then possible determine how the two vary
together, and hence obtain p. Performing this calculation gives p = 0.94: The time
series data is shown in Figure 10.

Using the above values in equation (8.6) gives the relative standard error on the GDP
per person, oc/G as 0.03%. The estimates of the GDP and the population are made
by summing a large number of independent records, and so, by the central limit
theorem, the uncertainty on each of the estimates will be normally distributed. Thus,
G is the ratio of two normally distributed and correlated random variables with

different means and standard deviations. The uncertainty on G then follows the ratio
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distribution, see [94]. This distribution, which cannot be expressed simply, is shown
in Figure 9. The distribution is not normal — it is much more sharply peaked. The
associated distribution if the uncertainties were normally distributed is also shown in
this figure for reference. It is not known what the 95% tolerance limits are for such a
distribution, but they will be closer to the mean than for the normal distribution
(where the 95% limits are at around +2c), which also means that the tolerance

interval will be smaller.

8.3 Net Discount Rate, r, Discount Rate, rq and Growth Rate, ry

In order to discount the life expectancy and the change in life expectancy, it is
necessary to evaluate the net discount rate, r. The net discount rate is a linear
combination of the discount rate (or real rate of time preference), ry, and the annual
growth rate, ry, as given in equation (3.46). The growth rate can be evaluated from
the Treasury Green Book [95], who use ry = 2% per annum. The discount rate can
then be chosen to set the net discount rate to be either 0% or 2.5%, which are the two
discount rates usually used in J-value analysis, although higher discount rates may
also be used. In order to get r = 0%, then it is necessary to set rq = (1- ) X ry = 0.3%
per annum. To get r = 2.5% it is necessary to put rqy = 2.8% per annum. Different
values of the discount rate can also be used to assess the sensitivity of the life
expectancy and the J-value to discounting. As the net discount rate is not a directly

measured quantity, it will be assumed that there is no uncertainty on this parameter.

8.4 Discounted Average Life Expectancy, X4, and Other Related

Actuarial Parameters

The method for calculating the life expectancy and the other related variables is
presented in chapter 4. The fundamental variable in these calculations is the age-
dependent hazard rate, h(a). All other actuarial parameters can be calculated once
these are known. As was discussed in section 4.4, the way the hazard rate is
determined is dependent upon whether deaths are assumed to be uniformly or
exponentially distributed over the interval (a, a+1). Section 4.5 discussed the current

assumption used in J-value calculations, which is to assume that deaths are
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exponentially distributed, so that the central rate of mortality is used for the hazard

rate. The sensitivity of the results to this assumption is assessed in chapter 9.

The central rates of mortality for the UK population are available in the Office for
National Statistics’ Interim Life Tables [145]. These are presented in terms of male
and female mortality rates, which can then be combined using equation (4.50).
Section 4.5 also describes the end correction used to account for the mortality of the
final age group of the population.

Section 4.6 details the method used to calculate the population distribution, p(a),
under the assumption the population is in a steady state. Again, all that is required to
calculate this distribution are the hazard rates. This steady state population
distribution is shown in Figure 4, along with actually observed UK population
distribution. The effect of using the simplified distribution on the results is assessed
in Chapter 9. The probability distribution is also used in calculating other
parameters, such as the moments of the distribution. The first moment — the mean
age, was shown in section 4.7 to be equal to the average (undiscounted) life
expectancy. The value of this parameter is discussed in the next paragraph. In
sections 4.8 and 5.8, it was shown how the second moment can be used in
approximating the effect of the discount rate on the average life expectancy, and also
the value of the change in life expectancy for prolonged exposures and short
responses and vice versa. The third moment was also found to be useful for
calculating the change in life expectancy for prolonged exposures and prolonged
responses. As the population is assumed to be in a steady state, these moments are
constant over time for the population. The second moment of the distribution, which
is the mean-square age, is equal to 2,304 years®. The third moment, the mean-cube
age, is equal to 147,311 years®. One other parameter which can be calculated from
the distribution is the population entropy, H, derived in equation (5.29) as a key
parameter in the change in life expectancy resulting from a short relative risk
exposure. For most populations, the population entropy lies between zero and unity.
Populations that have constant mortality rates over all ages, so that the distribution
declines exponentially, will have a population entropy of unity, whilst populations in
which the majority of deaths occur within a narrow age range will have a low

entropy near zero, for example, see the discussion by Goldman and Lord (1986) [89].
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The trend is thus for populations to reduce their entropy as they become more

developed over time. For the UK for 2007-2009, the population entropy was 0.13.

The discounted life expectancy, Xq(a), and discounted average life expectancy, Xq,
are shown in Figure 11 for discount rates of 0% and 2.5%. Life expectancy at birth,
Xq4(0), is 79.6 and 34.0 years respectively. The average life expectancy is 41.2 and
22.9 years respectively. These numbers are for the general population, and assume
that there is a 50% male/female split at all ages. For a working population distributed
uniformly between ages 20 and 60, and which is composed entirely of males,
average life expectancies are 39.5 and 23.9 years for discount rates of 0% and 2.5%

respectively.

As the discounted average life expectancy is an important parameter in the J-value
equation, as given by (3.61), the tolerance limits will be analysed for this parameter.

This is done using the following method:

Suppose and individual is selected at random from the population as a whole. The
individual will be of random age, A”. If we know the value of this random age, such
that A" = a (which is taken to mean that the age is between a and a+1), then we may
categorise the individual into an age category. The selected individual will have a
random life to come, y(a), but that life to come, even though random, will be

conditioned by the fact the individual has age, a. The relationship is defined formally

by:
2@)={zja<A <a+1 (8.7)

where y is the unconditioned random life to come. The expected value, X(a), of the
life to come of an individual of age, a, is the average value of the expected life to

come for all n(a) individuals of age a in the population:

i;‘ 8.8)

() E[Z()_ (a)
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However, if we do not know the age of the randomly selected individual, our best

estimate of his life to come will be the weighted, average value, X, over all ages:

K€l
[E[x(a)] (8.9)

X (a)

o [T =M

The arguments advanced for treating random life to come, y, transfer one-to-one to
the case of the random square of life to come, x*. Hence the random square of life

to come, given that the individual’s age is a, is:
7@)={fa<A <a+1f (8.10)

while the expected value of the square of life to come of an individual of age, a, is

given formally by

e[z (a)]= é(lz(a))(k) (8.10)

n(a)

Then, if we do not know the age of the randomly selected individual, our best
estimate of the square of his life to come will be the weighted, average value over all

ages:

[E[x?@)]
p(2)E[x*(a)lda

E[x?]=
(8.12)

o—8 oM

The variance of random life to come for individuals selected at random in the

population will be var[;g], given by:
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var[z]=E[*]- (E[]? (8.13)

which may be expanded using equations (8.9) and (8.12):

varlz]=E[E¢* (a)]|- (8.14)

But formally, the variance of random life to come, given that the person is aged, a, is

given by:
(8.15)

Moreover, it is known, by equation (D.18) of Thomas, Jones and Kearns (2010)

[189], that the variance of random life to come for an individual of age, a, is:
Var[;((a)] =2X (aXta+.ave - a) -X Z(a) (816)

where, from equation (D.15) of op. cit., t, .., iS the average age of those above age,

a.
ta+ ave — ;Ttp(t)dt (817)
™ pla)x(a);

Comparing equations (8.15) and (8.16) shows that:

E[*(a)|=2X (@)t,, e —a) (8.18)

Substituting from equation (8.18) into equation (8.14) gives:
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var[y]=E[2X (a)t,, oo —)]- X?

. (8.19)

J‘ a)(ta+ave a)ja X2
0

This may be developed further, by noting that:

[ p@)X (a)t,. . ~akia

= p(a)x (a)ta+.aveda -

|
|
{

(8.20)

tp(t)dtda — j ap(a
0

tp(t)dtda—ja

0

|
|

® ) 8
°
“—+
—
o
—
o
D

where equations (8.17), (4.26) and (4.60) have been used in the development. The

order of integration can be reversed to give:

0

]ctp dtda — jajp t)dtda

O 3 8

QD

00

Ttp _[ f _[adadt

0 (8.21)
p(t)t2dt

0
1
2

O'—.S

where t%, is the mean-square age of the population, as discussed above. This means
that:

Ele[x*(@)] = EX ()., o - )] = 2 (8.22)

The square of the random life to come averaged over all ages of death and over the
population is therefore equal to the mean-square age of the population. It has also
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been established, via equation (4.66), that the average life expectancy, which is the
random life to come averaged over all ages of death and over the population (see
equation (4.20)), is equal to the mean age in the population. Thus, both the first and
second moments of the distribution of the life to come averaged over all ages of
death and all ages are equal to the first and second moments of the age distribution.
In fact, this may be shown to be true for all moments, a proof of which is given in
Appendix B. Thus the general result is that, under steady state conditions, the

moments of life to come are equal to the moments of life lived.

Substituting into equation (8.19):

var[y]=t2, - X? = E[t?]- x?
—Eft*]-g[t] (8.23)
= var[t]

where equation (4.66) has been used, and where the expectation operator E[.] has
been introduced to avoid confusion. Thus the variance of the life to come averaged

over all ages is therefore equal to the variance of the age distribution.

Using latest UK data, the standard deviation for an individual picked at random,

without knowledge of the individual’s age, is about 24 years.

In order to derive the variance of the average life expectancy for a whole population
of size Npgp, it is assumed that the age distribution of the population is unknown.

Each individual can then be treated as having a random life to come of value y which

has mean value X and variance, o, as given by equation (8.23). By the Central

Limit Theorem, for large Npop, the average of the Npo, random variables will be

approximately normally distributed with mean X and variancevar[;(]/NPop . Hence
the variance of average life expectancy for a whole population is:
var var|t
var[X |= 2] _ varlt] (8.24)

N

Pop Pop
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For the UK, var[y] = 609 years®. Dividing by the population size of 61.8 million, the
variance of the average life expectancy is approximately 1x10° years?, and the
standard deviation is 0.003 years. For the normal distribution, the 95% tolerance
limits lie at £1.966 from the mean. The 95% tolerance interval for the average life

expectancy is therefore 41.166 — 41.177 years.

8.5 Share of Wages in the GDP, @

The wage share of the GDP, #, which was introduced in section 3.2, needs to be
estimated in order to estimate the risk aversion coefficient, ¢, as given by equation
(3.41). The wage share may be determined from national statistics. In the UK, the
ONS publish this datum in many publications. Here, data from the monthly
“Economic & Labour Market Review” [150] will be used. When estimating 6, there
exists a problem of defining exactly what constitutes wages. Most national accounts
use the term “compensation of employees” to refer to wages paid by employers to
employees. The ONS define “compensation of employees” as the “Total
remuneration payable to employees in cash or in kind. Includes the value of social
contributions payable by the employer” [149]. The main drawback of this definition
is that it neglects the income of the self employed, which in some countries can

represent a large fraction of the GDP.

It will be recalled that the wage share was defined in section 3.2, equation (3.10) in a
“production function”, a function that relates two inputs, or “factors of production”
to the output produced. In this case, the factors of production were labour and
capital, and the output was the Gross Domestic Product. The production function
defined in equation (3.10) was of a special type, known as a “Cobb-Douglas”
production function, in which the two factors of production are exponentially
weighted and formed into a product. A consequence of the Cobb-Douglas production
for GDP is that the share of wages should remain constant over time and across
countries. This is because if wage rates were to rise relative to capital income, then
industries would employ fewer people in order to minimise the loss of profit. If
wages were to fall relative to capital, industries could employ more people for the
same profit. Thus the wage rate and the employment rate are always engaged in a

trade-off, and this trade-off renders 6 approximately constant. For further details of
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this process, see Wolfson (1978) [205]. Using the definition of wages as being equal
to only the compensation of employees, 8 does not appear to be constant, either over
long periods of time or across countries, as shown by Gollin (2002) [88]. Gollin
attributes these discrepancies to the practice of neglecting the income of the self
employed in the definition of wages. Changing the definition of wages to include the
self employed as well as compensation of employees gives new estimates of the
wage share that are remarkably consistent with the predictions of the Cobb-Douglas
theory. It is for this reason that the income of the self employed is included with the

compensation of employees in calculating @ for use in J-value analysis.

The income of the self-employed can be very difficult to measure in some countries.
In the UK, the ONS provide estimates of self employed income under the term
“mixed income”. The ONS define this as: “The balancing item on the generation of
income account for unincorporated businesses owned by households. The owner or
members of the same household often provide unpaid labour inputs to the business.
The surplus is therefore a mixture of remuneration for such labour and return to the
owner as entrepreneur” [149]. The last sentence of this quote highlights the
difficulty with using mixed income for the self-employed contribution to the GDP.
This is that the UK national accounts do not determine how much of the self-
employed income is taken as a wage, and how much is fed back into the
unincorporated business, which would count as capital formation. This problem has
been noted by the ONS, see [193], who solve the problem by assuming the share of
mixed income taken as profit is equal to the share of the GDP paid as compensation
of employees. For example, if compensation of employees is 60% of the total GDP,
then one should assume that 60% of the mixed income is taken by the self-employed
as wages, with the rest going as capital formation. Hence, 0 is estimated from the

national accounts as:

_ COE N COE Ml
GDP GDPGDP

(8.25)

where COE stands for “compensation of employees” and MI stands for “mixed
income”, both of which are published in the Economic & Labour Market Review

[150]. This publication also gives historical data.

-141-



Figure 12 shows 6 for the UK from 1955. The average value over this time period is
0.603, and the standard deviation is 0.032. However, as can be clearly seen, there is a
large peak at 1975, which began in the early 70’s and returned to normal levels
during the 80’s. This period corresponds to a period of great industrial unrest in the
UK. The period from 1984 to present is more stable, and is judged to be a better
indicator of the future than the period 1955 to present. Consequently it will be this
time series that will be used to calculate 8. The average value for this period is 0.573
and the standard deviation is 0.012, as shown in Figure 13. The coefficient of

variation, or relative standard deviation, for @ is thus 2%.

8.6 Work-Life Parameters and Risk Aversion, &

Chapter 6 discussed the methods for determining the average work-life expectancy,
Yw, and the work time fraction, wp. The only required parameters for estimating y
were the total hours worked per week in the population, and the size of the
population. The total time worked per week can be estimated from the ONS
publication “Labour Market Statistics”, [146], which is published regularly. Data for
2009 indicate that there were 913 million hours worked per week, on average. The
size of the population has already been discussed as being 61.8 million. Using
equation (6.19), the average work-life expectancy is 3.5 years. The work time
fraction is then this number divided by the average life expectancy. However, rather
than using a present value, the work-time fraction is time averaged over the same
period as for 4. This is because this parameter has remained remarkably constant
over recent decades. Historical data from Labour Market Statistics and the Interim
Life Tables can be used to estimate the past values. Life expectancy has increased
linearly over this period, whilst the average work-life expectancy has fluctuated
between 3.4 to 3.8 years. The average value for the work-time fraction for the period
from 1984 to present is 0.091, and the standard deviation is 0.002, so that the

coefficient of variation is about 2%. The time series is shown in Figure 13.

The risk aversion coefficient, &, can then be calculated from equation (3.41). As time
series data for both wy and € have been determined, the corresponding risk aversion

figures can also be determined over this period. These values are shown in Figure 13.
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The risk aversion appears to be quite stable, with a mean value of 0.825, and a
standard deviation of 0.005. The coefficient of variation is therefore 0.6%. As the
risk aversion is used in the J-value equation, the tolerance limits will be analysed for
this parameter. As the standard deviation is known, all that is required in order to
place these limits is the distribution. A null hypothesis is formed that the data is

distributed normally. This hypothesis is then tested using a normal-quantile plot.

A normal quantile plot compares the observed dataset against the data that would be
seen if it were normally distributed. The observed data is first sorted by rank order,
and the cumulative proportion is then calculated. The cumulative proportion is

denoted p. This is then plotted against the quantile function, z,, defined as:
z,=07(p) (8.26)

Where ®(p) is the inverse cumulative distribution function of the normal
distribution, and is the value that would be observed at the pth quantile for a
normally distributed random variable with mean of zero and standard deviation of
unity. ®(p) is hence defined as:

2

db(p):% j e 2dx (8.27)

To test whether the null hypothesis can be rejected, a relevant test statistic is
computed, which can then be compared to a critical value at a given level of
significance. If the test statistic is less than the critical value, the null hypothesis may
be confidently rejected. The relevant test statistic in this case is the correlation
coefficient, which measures how closely the data and the z, value change together. If
the correlation coefficient were unity, the distribution would be perfectly normal.
Table 4 shows the results obtained with the observed dataset for the risk aversion
from 1984 to present. The correlation coefficient is 0.976. The significance level for
this test is 5%, and the critical value at this level is 0.957, meaning that correlation
coefficients below this value would be sufficient to reject the null hypothesis of

normally distributed data. Hence, as the correlation coefficient was found to be
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greater than the critical value, so the null hypothesis may not be rejected. Therefore,
it may be inferred that the risk aversion is distributed normally, with a probability of
less than 5% that the distribution occurred by chance. Table 5 presents these results.
The normal-quantile plot is shown in Figure 14.

For the normal distribution, the 95% tolerance limits lie at +1.96c from the mean.

The 95% tolerance interval for the risk aversion is then 0.814-0.835.

8.7 Change in Discounted Life Expectancy, X4

As discussed in section 8.1, the J-value parameters can be classed as either “context-
dependent” or “context-independent”, with the former referring to parameters that
cannot be determined without prior knowledge of the specifics of the safety system,
and the latter referring to those that can. Up until now, this section has been
concerned with the estimates of the context-independent parameters. The change in
discounted life expectancy, however, is an example of a context-dependent
parameter. Chapter 5 details the methods that can be used in order to estimate this
parameter. The unknown variables for these calculations are the exposure rate at
time x, b(x), the length of time which the exposure lasts for, Tg, and the probability
density of the response of the exposure y years after the exposure, fr(y). Also
required is knowledge of whether the risk causes an absolute or relative increase in
the initial hazard rate. In section 5.8, some “limiting distributions” were introduced
in order to provide some simplified calculations. The limiting distributions used
were when the exposure and response functions were short, and when they were long
and uniform. The shortest change in life expectancy, which follows from a short

exposure with a short response, was found to be:

OoX =bX  for absoluterisks
=bH for relative risks

(8.28)
These may also be discounted following the procedure laid out in section 5.11. For
similar values of b, the relative risk equation will be smaller than for absolute risks,
as H < X (see section 8.4). However, smaller change in life expectancies may also be

achieved when the response is delayed, for example with radiation risks, where the
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response does not become active until ten years after the initial exposure. Upper
limits of the change in life expectancy would correspond to long exposures and long
responses. It was shown in section 5.8 that, for such situations, the change in life
expectancy is proportional to the second and third moment of the population
distribution. However, an upper limit for the change in life expectancy may more

easily be defined as the initial life expectancy itself, i.e.:

X =X (8.29)

This is because, in the worst case situation, when instant death occurs, the group of
individuals will lose all their life expectancy they had remaining. In such situations,
it may be inappropriate to use the equations of section 5.8, because it was assumed
that the exposure rate, b(x), was small enough so that the additional survival
probability could be approximated with a linear expansion. In situations where there
is large loss of life, this assumption will no longer be appropriate, and so the original
equations must be used. The loss of accuracy in the life expectancy calculations from
using in the linear expansion, for different exposure rates, is investigated in chapter
9.

Thus, although it is not possible to give exact calculations of the change in life
expectancy following a hazard exposure without the specific details of the risk, it is
possible to give indicative ranges of what the change in life expectancy may be. A
lower bound of oX for situations in which there is an immediate one-off exposure
with an immediate short response (which may correspond to being in the vicinity of
some large explosion, for example), is given by equation (8.28). However, if the risk
will result in a response with some delay, such as is the case with radiation
exposures, then the change in life expectancy may be lower than this bound. If the
delay is sufficiently long enough, there will be no change in life expectancy at all, so
that the lower bound for delayed risks is zero. The upper bound for the change in life
expectancy is simply the initial life expectancy, X. Introducing discounting can be
done as described in section 5.11, but does not pose any additional complications.
For example, the upper bound is reduced from X to Xg.
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It is also not possible to determine the tolerance limits exactly for the change in life
expectancy, unless information of the specific risk is available. Nevertheless, it is
also possible to determine a “limiting uncertainty” for this parameter, by making a
few assumptions. The assumptions are conservative, so that the uncertainty will tend
to be overestimated, rather than underestimated. The method for determining this

“limiting uncertainty” will now be described.

Let the frequency of the accident be A per year. The Poisson distribution gives the

probability, p{*’, of y such accidents occurring in the time-interval of length, T, as:

—k y

p) = Pr(y = y)= X

fory=0,1,2.. (8.30)

where Y is the random number of accidents, and k is the expected number of

accidents in the interval:
k=E(Y)=AT (8.31)

From (8.30) and (8.31), the probability of no accidents in the interval (sothat Y =y =
0) is:

Pr(y =0)=p{" =e ™" (8.32)

Hence the probability of one or more accidents in the interval is given by Pr(Y > 1),

where:
PrYy >1)=p{) =1— p@ =1—e* (8.33)

Let us assume that the probability of experiencing an early death as a result of the

accident among the exposed group is p,. Very often p, <<1, especially when the

group is large. For an individual in the exposed group, therefore, the probability of

early death as a result of the accident is p{*'p, because the probabilities are
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independent. This combined probability may be called the probability of being
affected, p, :

P = PPy (8.34)

For simplicity, consider a protection system that eliminates completely the chance of
the accident. Let the improvement in lifetime for an individual of age a, brought
about by the protection system be Jy(a). Clearly, & (a) will depend on many random
hazards the individual faces apart from the specific accident being prevented, and so
will be a random number. It may not be a small quantity: its value could be 80 years

or more when an infant is being protected.

Let us consider an accident where death, if it is to occur, is immediate, coincident
with the accident. This could apply to an explosion on a petrochemical plant, for
example. This risk would be described by a point response function with an instant
response, as was discussed in section 5.8 and previously in this section. In such a
case, the installation of the protection system will have the effect of restoring the life
to come amongst those who would otherwise experience immediate death to its value
in the absence of the accident. In this first group of potentially affected people, an

individual of age a, will experience a change in life to come:
§(a), = {zla< A" <a+1j=4(a) (8.35)

where the notation follows that used in section 8.4, i.e. where dy(a), y(a)and A" are

random numbers.
The second group of unaffected people will contain some members who have the

same age, a, and who would have survived the accident unscathed. For them, there

is no change in life to come, and so:

g (a), =0 (8.36)
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The expected value of the first group’s change in life to come is:
Els(a), |=E[xa < A" <a+1]=E[x(a)] (8.37)

while the expected value of the second group’s change in life to come is:
Els(a),]=E[0]=0 (8.38)

Any given individual in the potentially exposed cohort of people (for example those

living near a factory producing toxic chemicals) will have a probability, p,, , of
being in the first group and a probability, 1— p, , of being in the second group. This

probability is also equal to the ratio of number of eventual deaths from the accident,
A, to the total number of people exposed to the accident, N, i.e.: A/N. This quantity
may also be seen to be the integrated exposure rate, by, of equation (5.3), which is
the probability of death following an exposure. In this situation, where the exposure
occurs at a single point, the integrated exposure rate is equal to the single exposure

rate, b. Therefore the expected value, éX(a), of the life to come of an individual of

age a, is given by:

X (a)=E[oy(a)]
= Pas E[@Z(a)h]"' (1_ Past )E[@Z(alg]
= Parr E[l(a)]"' (l_ Pas )XO
= paffE[Z(a)]
= paffx(a)
=bX(a)

(8.39)

which is the same as the change in life expectancy found in the limiting case of a
point exposure and short response found in section 5.8, equation (5.23). However, if
we do not know the age of the randomly selected individual, our best estimate of his

change in life to come, &y , will be the weighted, average value, 6X , over all ages:
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o = Eloy]= Elox, ] X @]

p(a)oX (a)da (8.40)

Il
O =8

Il
=)
>

which confirms equation (5.25).

The same arguments apply to the square of change in life to come. Individuals in the
first group of potentially people who have age a, will experience a squared change in

life to come:
&), =\z’la< A <a+lf=1%(a) (8.41)

Individuals of the same age in the second group of unaffected people, who would
have survived the accident unscathed, experience no change in life to come. Hence,
for those of age a, the change in life to come and its square will both be zero:

&*(@@), =0 (8.42)

The expected value of the first group’s squared change in life to come is:

E[@tz(a)(l]= E[zz\a <A<a+1]=E[;*(a) (8.43)

while the expected value of the second group's squared change in life to come is, of

course zero:

£l (a), |- El0]-0 (8.44)

The expected value of the square of life to come of an individual of age a, is given

by:
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Elor*(a)]= pur El57*(a), [+ - pe JEl5 *(a) |
= P E[7*(@)]+ (- py )x0 (8.45)
= P L7 (@)
= bE[*(a)]

If we do not know the age of the randomly selected individual, our best estimate of
the square of his change life to come, E[&,{Z], will be the weighted, average value

over all ages:

Elor |- Elor* )] E[bE[zz(a)]]
p(a)oE[x*(a)

=b°f p(2)E[7 (2

_be[y?]

O"—;S

(8.46)

where equation (8.12) has been used. The variance of random change in life to come

for individuals selected at random in the population will be var[&,z], given by:

var[dy | = E[&Z]—(E[&DZ

el |-y 6
Using equations (8.40) and (8.46), we may write:
var[sy]= bE[y*]-b?X (8.48)
=b(E[¢*]-bx?)
By equation (8.13):
E[y?]=var(y)+ X2 (8.49)
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Hence:

var[gy | = b(var(z)+ X 2(1—b)) (8.50)

In many cases, b <<1, and so:

var[gy ]~ blvar(y)+ X ?)

o (8.51)

where equation (8.23) has been used. The fact that b will be non-negative means that

for all possible values of b:0<b <1, var[dy] will be bounded above by:

var[gy]<t2, (8.52)

In the case where the protection system acts to avert a reduction in life to come
rather than averting immediate death, once again there will be an affected group,
Group 1, whose life to come would have been reduced in the absence of the
protection system, and an unaffected group, Group 2, whose life to come would not
have been affected whether or not the protection system was in place. The
probability of being in Group 1 is pa and the probability of being in Group 2 is
1 — pasr. If the risk being averted is still a point exposure, then the exposure rate, b is
still equal to pas, but the exposure now refers to some delayed risk, for example,
radiation, in which case, b = ctd,, where cr is the risk coefficient, and d, is the dose

received, see equation (5.45).

Consider those of age, a, in Group 1. The installation of the protection system will

avert their loss of part of their life to come, so that:

(@), ={R, xJa< A <a+1] (8.53)

where R, may be termed the restoration requirement, and will be a random number
bounded in (0,1):
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0<R <1 (8.54)

The life to come will be conditioned by the age a, and so, in the most general case,
will the restoration requirement. For example the same dose of toxin might reduce
the life to come of people of different ages by the same absolute amount, leading to a
different fractional reduction in life to come. The restoration requirement has the
same numerical value as that fractional reduction, and so would be different for
people of different ages in this case. However, once age a, is specified the two
parameters may reasonably be regarded as independent of each other. In the case
considered, it is asserted that sensitivity to the same toxin amongst individuals of the
same age would not be related generally to how long those individuals will live,
which will be conditioned by a very large range of independent factors: occupation,

marital status, hobbies, consumption of alcohol etc. Hence:

(RaJa<A <a+l}={R|a<A <a+ijx{ya<A <a+1}

_R(a)a) (8:59)

where Rr(a):Og Rr(a)gl is the restoration requirement appropriate for age a.

Hence:

(@), =R (a)x(a) (8.56)
The expected value of change in life to come for those of age a in the first group is:
Elo(a), |- E[R ()x()] = E[R (2)E[x(a)] (8.57)

while the expected value of the second group’s change in life to come is:

Els(a),]=E[0]=0 (8.58)
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The expected value, éX(a), of the life to come of an individual of age, a, is given

by:

X (a)=E[dy(a)]
= P Elo(a), ]+ - po JE[32 @), ]
= P E[R, (@)E[x(a)]+ (L~ pyy )x0 (8.59)
= p.«E[R, (Q)[E[x(a)]
=bE[R, (a)E[x(a)]

However, if we do not know the age of the randomly selected individual, our best

estimate of his change life to come, &y, will be the weighted, average value, oX ,

over all ages:

= E[or ] = E[5X ()] = E[bE[R, () E[ ()]

Tp (a)bE[R, (a)]X (a)da (8.60)

~b] pla)E[R, (2)]X (a)ia

For the square of the change in life to come, individuals in the first group of people

who have age a, will experience a squared change in life to come given by:
(R 2f|a< A <a+1f=R(a)r*(a) (8.61)

since the squares of independent random variables will also be independent.

Meanwhile, those of the same age in the second group of unaffected people will
experience no change in life to come. Hence, the square of change in life to come for

them is zero, whatever their age:

&*(@@), =0 (8.62)
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The expected value of the first group's squared change in life to come may be

written:

el 2(a11]= E[R(a)x(a)]= E[R?(2)[E[+2(a)] (8.63)

while the expected value of the second group's squared change in life to come is, of

course zero:

by (a), ]= Elo]=0 (8.64)

As the probability of being in the affected group is p,,, the expected value of the

square of life to come of an individual of age a, is given by:

Elor*(a)]= puEl57*(a), [+ - pe JEl5 2(a) |
= Pasr E[er (a)]E [ZZ (a)]+ (1_ Pas )X 0 (8.65)
= Pag E[er (a)]E [7(2 (a)]
=bE[R(a)E[£(a)]

If we do not know the age of the randomly selected individual, our best estimate of
the square of his change life to come, E[&/], will be the weighted, average value

over all ages:

Elor 2 |= Elsr *(a)|= EpER* @)E[+* (2)]
_b[ p(a)E[R*(a)JE[£*(a)ia

(8.66)

The variance of random change in life to come, &y, for individuals selected at

random in the population will be var[&;(], given by equation (8.47).

Using equations (8.60) and (8.66), we may write:
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varlsz]=b] pla)E[R? @E[* (@)

0

(8.67)
b [jp 2E[R, (2] ahaj

Now the variance, var[R_(a)], is given by:

var[R, (a)] = E[R?(a)]- {E[R (2]} (8.68)
so that:

E[R? (2)]= ver[R, (@)]+ E[R. (2)] (8.69)
An analogous route leads to:

Ex*(a)]= var[z(2)]+ E[x(2)]} (8.70)
Substituting from equations (8.67) and (8.69) into equation (8.70) gives:
wrl]=b plalas, ()] IR (@ el (o)« L) e

(8.71)

For the case where the protection system averts immediate death for those in the
affected, first group, the restoration requirement is equal to unity, since all life to

come is restored:
R (a)=1foralla (8.72)

This is deterministic, with:
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(8.73)

In this case, equation (8.67) defaults to equation (8.50), as we would expect. Since

the last term in equation (8.71) must be positive, we may conclude that:

0

var[gy]<b| p(a )(var[R +{E[R.(a Xvar (@) +{E[@))} )1 (8.74)

0

Because R (a)is bounded on (0,1), it follows that the absolute maximum value of

var[R, (a)] is 1/4, see Jacobsen (1969) [116]. This is based on the distribution being
bimodal, and concentrated at the extreme values. The same paper demonstrates that

the maximum variance of a unimodal distribution on (0,1) is 1/9. Meanwhile, it is

immediately clear that the maximum value of E[R, (a)] and hence {E[R, (a)]\* is 1.0.

Using these figures makes it clear that Var[éX] is bounded above for all possible
probability distributions for restoration requirement, Rr(a), for all values of age, a,

by:

0

b[ p(a)fvar[z(a)] + E[x(a)]}" Ha
=>b[ p(a)E[z*(a)bia

var S

Nl
o

(6]
8

(8.75)
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where equation (8.23) has been used in the last step. If the probability distribution for
the restoration requirement is unimodal, then the upper bound condition is replaced

by a slightly smaller value:
var[gy | < %btjv (8.76)

The conditions (8.75) and (8.76) bear a strong similarity to condition (8.52) on the
upper bound for var[éX] when the protection system is preventing an accident that

would cause only immediate deaths if it occurred.

Because of the small increase that condition (8.75) brings over either of the other
possible conditions, (8.76), it will be sufficient for most purposes to use the most

conservative estimate of the limiting upper bound implied by condition (8.75), for

which we shall use the terminology, “lim var[@(] ”
. 9,
lim var[gy | = 20t (8.77)

Thus using values calculated in section 8.4, i.e., t%a = 2,304 years®, the limiting
variance on the change in random life to come is 2,880b years®. This may be
compared with 2,560b years® if a unimodal distribution is used. Moreover, if
immediate-death equation (8.51) is used then the variance on the change in random
life to come is 2,304b years®. Clearly the three figures are similar. Health and safety
regulations state that, in the workplace, the probability of being killed in an accident
must be no larger than 10 per year, but the figures are usually of the range 10 to
10 per year. Using these figures, the limiting variance on the change in life to come
ranges from 0.003 to 3 years®. The variance on the change in average life expectancy
is then this variance divided by the number of people affected by the hazard. A
typical workforce will number between 100 and 1,000. The variance in the change in
life expectancy, var[6X], then ranges from 3x10° to 0.003 years®. The standard
deviation then ranges from 0.002 to 0.2 years. Compared to the initial change in life

expectancy calculated from such hazard rates, these numbers are large. The
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coefficient of variation is around 400 to 4,000%. The distribution will also be
normal, as the figures are determined from summing together the change in life to
come of a number of people. However, because the numbers presented here are only
illustrative, no tolerance limits will be placed on the change in average life
expectancy parameter. It is sufficient to note that, unless there are a very large
number of people affected by the hazard (in excess of 100,000), the tolerance
interval will be relatively wide, when compared to the central change in life

expectancy. However, in absolute terms, the interval will usually be fairly small.

8.8 Other Context-Dependent Parameters

In addition to the change in average life expectancy, there are two other parameters
which are dependent upon the specific nature of the safety system. These are the

number of people benefitting from the system, N, and the cost of the protection

system, &V, .

In J-value analysis it is often the case that the number of people affected by the
safety system does not need estimation. This is because the change in life expectancy
is proportional to the hazard rate, which itself is inversely proportional to the number
of people affected, as shown, for example, in equations (5.1) and (5.25). Thus the
product of the number of people affected and the change in life expectancy is
approximately independent of N. This parameter therefore will usually not contribute
any significant uncertainty to the J-value.

The cost of the safety system is assumed to be provided in the details of the safety
system itself. An alternative formulation, however, may be to investigate the range
of acceptable costs that would still give J-values less than or equal to unity. Little can
be said about the uncertainty of the cost of the safety system, except that it is
unbounded, being potentially very large. It is therefore important when conducting J-
value analyses that some kind of indication of how variation in the cost would affect
the results is given. Alternatively, an indication can be given for the permitted

variation in the cost estimate that would still maintain a reasonable J-value.
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8.9 The J-Value

The J-value is given by equation (3.61), repeated below:

é\iN (1_8)6\7N ry X

1=200 forr, >0
Ny NGoX [L_ewk) 7
:% forrd:()

NG&X

This can be simplified by noting that, for small ry:

r-dXd ~1+ rdXd

1—g X 2
putting:

D, =1+-%2-%

allows the J-value to be re-written as:

J= (L- &)V (1+ rdxdj
NGoX 4 2
(1—5)6\7

L8V
NGoX,

(3.60)

(8.78)

(8.79)

(8.80)

Which is valid for all rg, and Ds is termed the “linearised discount factor”. The

methods and results of measuring each of the parameters in the above equation have

been laid out in the preceding sections. The uncertainties, which result from either

the measurement process itself, or from the natural variation of the parameters, have

also been quantified as far as is possible. These individual uncertainties will then

propagate through the J-value calculation to give an uncertainty on the J-value itself.

As has been discussed, it is not possible to determine the uncertainty from the

context-dependent parameters — the change in life expectancy, the number of people

affected, and the cost of the safety system — although an indication of the magnitude
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of the uncertainty on the change in life expectancy was given in section 8.7. A full
analysis of the uncertainty of the J-value therefore cannot be given without details of
the protection system. However, it is possible to provide an analysis of the “intrinsic
uncertainty” of the J-value. This is the uncertainty resulting from the context-
independent parameters. This is then a minimum level of uncertainty that will always
be present in any J-value estimate, which will increase once knowledge of the
uncertainties of the context-dependent parameters is achieved. Intrinsic uncertainty
on the J-value will result from uncertainty on the estimate of the GDP per person, G,
the risk aversion, ¢, and the discount factor, Dz, which itself results from uncertainty
on the discounted average life expectancy, Xq. The standard deviation on the J-value

is then given by the weighted sum-of-squares method:

2 2 2
o, = A ol + o9 oi+ a ol (8.81)
og oG aD, f

which can be written as:

N ARBNES
J 1-¢ G D,

note the presence of the 1 — ¢ term in the denominator of the first term on the right

hand side of the equation. This equation therefore gives the coefficient of variation,
or the relative standard deviation of the J-value. In order to place tolerance limits, it
is necessary to determine the distribution of the J-value. However, this has not been
possible, as the uncertainty results from the product of three variables, two of which
are taken as having a normal distribution, and the third of which is taken as having
the ratio distribution. The variables all have different means and standard deviations.
The distribution of such a random product does not appear to have been studied
before. It would be possible to infer a distribution via simulation, but this has not
been attempted, and remains for further work. Instead, it will be assumed that 95%
coverage of the distribution can be achieved with +2 standard deviations about the

mean, i.e. assuming that the distribution approximates the normal distribution.
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The uncertainty on the discount factor can be expressed as:

- _[an ]a
D — Xq
Xy (8.83)

It was shown in section 8.4 that the standard deviation on the life expectancy was
0.003 years. The discount rate is not assumed to contribute any uncertainty, and so
this value will also be true of the discounted life expectancy. For a value of ry of 5%,
which represents a maximum discount rate that would be used, the standard
deviation on Dy is then 8x10™. The associated coefficient of variation is 0.004%,
which is clearly small. The minimum value is when rq is zero, in which case the

discount factor is also zero, and there is no uncertainty.

The above results can then be used to determine the uncertainty on the J-value.
Because of the fact that uncertainties are combined in a sum-of-squares manner, the
sum is dominated by the largest value, which in this case is the risk aversion term.
The GDP per person and the discount factor both produce uncertainties that are
negligible, and so can be disregarded from the calculation. The uncertainty on the J-

value is then:

o, o, 0.005

J 1-¢ 1-0825 (8.84)
— 2.86%

The “internal accuracy” of the J-value has thus been found to be 2.86%. The 95%
tolerance interval, which is taken as two standard deviations, is £5.7%. However, the
other case dependent input parameters may also contribute to this uncertainty. If it is
possible to assess the uncertainty of the change in life expectancy, then the
correlation between this parameter and the initial life expectancy (which will be
present in the J-value equation for non-zero discount rates), also needs to be

accounted for. The method for accounting for correlations has already been

-161-



discussed in section 8.1. As the change in life expectancy is approximately linearly
dependent upon the initial life expectancy (c.f. equation (5.25)), the correlation

coefficient between these two parameters is unity.

8.10 The VTPF, VODLY and VODLYA

Chapter 7 showed how the J-value framework could be used to derive valuations of
human lifespan. This was done by first deriving the value of delaying a fatality by
some arbitrary number of years. The value of temporarily preventing a fatality
(VTPF) is then a specific instance of this, when the delay is set equal to the life
expectancy of the individual concerned. This then corresponds to a situation in
which a hazard that will cause immediate death to an individual is permanently
eliminated, so that the individual regains his or her initial life expectancy. The
VTPF, which is therefore age-dependent, is denoted as Vp(a), and is given by
equation (7.12). It will be assumed in this section that J = 1 is used in the valuations.
It was also shown that two average values of the VTPF may be derived, one
evaluated at Xg(a) = Xy, which may be the case when age is not known, and another
one in which the Vp(a) values are averaged over the population, as given by
equations (7.13) and (7.14). These two averages were shown to be equal at a 0%
discount rate. Using the numbers presented throughout this section, the average
VTPF at a 0% discount rate is calculated as about £5.30M. At a 2.5% discount rate,
the average VTPF when age is not known is £2.54M, and the population-averaged
VTPF is £2.49M. These two average measures are therefore close. Figure 15 shows
the average values of the VTPF, and the age dependencies at these two discount

rates.

Also derived was the value of a discounted life-year (VODLY), and a related
measure, the VODLYA, which is the average value of a discounted life-year over an
individual’s remaining life. For zero discount rate, both the VODLY and VODLYA
are equal and constant, valued simply as G/(1 — ¢), which is about £129,000. For
non-zero discount rates, the VODLY depends on which year of an individual’s life is
being saved. For example, if it is the next year of life that will be saved, then the
value is simply equal to the undiscounted VODLY. However, if the year of life that

will be saved is some time in the future, then the value will be discounted, and so
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will be slightly less than the first-year value. The VODLYA is also age-dependent if
the discount rate is non-zero. At age zero, the VODLYA has the smallest value, as
there are the maximum possible number of years over which to discount. The
VODLYA returns to the undiscounted value by the maximum age, when there are no

more life-years to discount over. These values are shown in Figure 16.

As the VTPF, VODLY and VODLYA are not inputs to the J-value, no analysis of
the associated tolerance limits has been performed. However, the largest contribution
to the uncertainty will come from the risk aversion coefficient, ¢, as it did with the J-
value, with the other parameters contributing a negligible uncertainty. Hence, the
coefficient of variation for each of the three valuations of life described above will
be 2.87%. As with the J-value, the distribution is not known, and so the tolerance

interval cannot be set.

The values of all the parameters described above are summarised in Table 6.
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Figure 9 Probability distribution of the GDP per person estimate. Also shown is what the distribution
would look like if it were normal.
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Assumed 50% male female split at all ages. Average life expectancies are 41.2 and 22.9 years at 0%
and 2.5% discount rate respectively.
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Figure 12 Historical data showing the variation in the wage share of the GDP, 6, for the UK from
1955. Note the large peak at 1975, during a period of considerable industrial unrest. During this
period the mean wage share was 0.603, or about 60%, and the standard deviation was 0.032, so that
the coefficient of variation is about 5%.
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Figure 13 Time series data from the work time fraction, wy, the wage share of the GDP, 6, and the
risk aversion, ¢, for available data from 1984 to 2008.
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Figure 15 Values of the age dependent VTPF, and the age-averaged VTPF, for discount rates 0% and
2.5%. The average values of the VTPF are £5.3 million and £2.5 million, respectively. These are
evaluated at J = 1.
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Cumulative

Sorted | Proportion,

Data p Zp
0.8127 0.0385| -1.7688
0.8152 0.0769 | -1.4261
0.8176 0.1154 | -1.1984
0.8183 0.1538 | -1.0201
0.8199 0.1923 | -0.8694
0.8208 0.2308 | -0.7363
0.8217 0.2692 | -0.6151
0.8218 0.3077 | -0.5024
0.8240 0.3462 | -0.3957
0.8249 0.3846 | -0.2934
0.8252 0.4231| -0.1940
0.8259 0.4615| -0.0966
0.8260 0.5000 0.0000
0.8262 0.5385 0.0966
0.8266 0.5769 0.1940
0.8267 0.6154 0.2934
0.8276 0.6538 0.3957
0.8277 0.6923 0.5024
0.8279 0.7308 0.6151
0.8279 0.7692 0.7363
0.8280 0.8077 0.8694
0.8287 0.8462 1.0201
0.8301 0.8846 1.1984
0.8335 0.9231 1.4261
0.8346 0.9615 1.7688

Table 4 Data for the normal-quantile plot to test the risk aversion for normality.

Correlation Coefficient

Critical Value, a = 0.05

0.98

0.957

The null hypothesis may not be rejected at this level of significance.

Table 5 Results of the normal-quantile plot.
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Parameter

Value (95% Tolerance
Limit)

GDP per Person, G (Ely)

22,538 (22,531 — 22,545)

Discount Rate, rq (/y)

0.3%/2.8%

Growth Rate, rq (1y)

2.0%

Net Discount Rate, r (/y)

0% /2.5%

Life Expectancy, X (years) (general population
distribution, 50% male/female ratio, 0%
discount rate)

41.17 (41.166 —41.177)

Mean square age , t°y, (years®) (general 2,304
population distribution, 50% male/female

ratio, 0% discount rate)

Mean cube age , t°,, (years®) (general 147,311
population distribution, 50% male/female

ratio, 0% discount rate)

Population entropy, H 0.13
Theta, 6 0.573
Work-Time Fraction, wg 0.091

Risk Aversion, ¢

0.825 (0.814 _ 0.835)

The J-value (J)

N/A (£5.7%)

VTPF, Vp (£), (general population distribution, | 5,300,000
50% male/female ratio, 0% discount rate)
VODLY/VODLYA (£), (0% discount rate) 129,000

Table 6 Values of parameters
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Chapter 9 Sensitivity Analysis of the J-Value Framework

9.1 The Purpose of Sensitivity Analysis

The sensitivity of the J-value framework to the inherent variability of the input
parameters and to the numerous explicit and implicit assumptions necessarily used in
developing the model may now be analysed. Such analyses give indications of areas
in which the assumptions may need to be used carefully. They may also indicate
areas where perhaps less care may be required than had previously been suspected. A
sensitivity analysis can also be used to add strength to conclusions, or highlight areas

that require further development.

A benefit of the J-value framework is that there is only one key output, the J-value
itself. This is dependent upon a number of input parameters. Furthermore, these
input parameters can be objectively determined. These factors mean that assessing
the J-value framework for sensitivities can be done in a fairly straightforward

manner, as will now be described.

9.2 The Sensitivity Coefficients of the J-Value

The initial step in assessing sensitivities is to calculate the sensitivity coefficients of
the J-value. Although not yet apparent, this has already been partially done in section
8.9. The sensitivity coefficients of an output with a number of inputs are simply the
partial derivatives of the output with respect to each of the inputs. Equation (8.81)
relates the uncertainty of the J-value to the uncertainty of the context-independent
parameters. This can be expanded further by including all the J-value input

parameters:

a3\
(a) () o+ (S o
? a1 Y a1 Y
o2 +| B | g2 [ e
* | Gev, ) Tt G, | 7

The sensitivity coefficients are then these partial derivatives. The derivatives can be

(9.1)

evaluated readily. As the J-value is a product of factors, all the partial derivatives
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will be proportional to J, and this can be divided out of the equation to give the
coefficient of variation on the J-value in terms of the new sensitivity coefficients,
and the uncertainties of the input parameters: it will also be assumed, for simplicity,
that there is no correlation between the change in life expectancy and the discount

factor, Dy.

SR (9.2)

These sensitivity coefficients then weight the variances of the input parameters. As
each coefficient is the reciprocal of the input parameter, it follows that the smaller
the input parameter, the greater the sensitivity coefficient. The uncertainty on the
number of people affected by the risk reduction, N, does not contribute much
uncertainty, as the J-value is approximately independent of this parameter. Therefore
this term and its coefficient may be disregarded from the equation. The GDP per
person has been shown to have a relatively small coefficient of variation. Its
sensitivity coefficient will also be small, as the GDP per person is a large term in the
J-value. This will also usually apply to the cost of the safety system, which usually is
at least of the order of £10,000, and can be many orders of magnitude larger than
this. Thus, although the uncertainty over this figure may be considerable, the
sensitivity coefficient will usually mean that this uncertainty carries little weighting
onto the uncertainty of the J-value. However, the possibility that the uncertainty on
the cost of the safety system is sufficiently large to dominate the J-value can never
be ruled out.

The sensitivity coefficient for the discount factor is only defined for non-zero
discount rates, as the uncertainty on Dy is zero for a 0% discount factor. For a
discount rate of 2.5%, the discount factor is about 1.5, so that the sensitivity
coefficient is 0.67. While this is larger than the coefficients of the GDP per person
and the cost of the safety system, it is still relatively small when compared to the

remaining coefficients of the risk aversion and the change in life expectancy. The
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sensitivity coefficient of the risk aversion is different from the other parameters in
that it is the reciprocal of the complement of the risk aversion, 1 — ¢ that appears in
the equation. As ¢ = 0.825, the complement is equal to 0.175, and the reciprocal is
5.7. The final factor is the change in life expectancy. Although this parameter is
context-dependent, and as such cannot be determined a priori, an indication can be
given of its magnitude. Although the maximum possible average loss of life
expectancy is the initial life expectancy, X = 41.2 years, situations where the
protection system offers this kind of benefit are rare. Typical values of the change in
life expectancy are from 10° to 102 years. The sensitivity coefficient can then be

large compared to the others.

Thus, an analysis of the sensitivity coefficients of the J-value indicates that the J-
value is most sensitive to the uncertainties and assumptions regarding the risk
aversion and the change in life expectancy. Therefore the assumptions made in
calculating these parameters will be analysed and tested to see how the calculations
compare when more realistic data is used. As the change in life expectancy is closely
related to the initial life expectancy, (e.g. see equation (5.25)), the assumptions made

in calculating this parameter will also be analysed.

9.3 Sensitivity Analysis of the Life Expectancy Calculations

Calculating the change in life expectancy requires determination of many of the
same parameters as the calculation of the initial life expectancy. Indeed, the
calculation is actually performed by first calculating the initial life expectancy, and
then perturbing the hazard rates. Therefore, analysing the sensitivity of the change in
life expectancy parameter will require an analysis of the sensitivity of the initial life

expectancy. In this section, such a sensitivity analysis is presented.

Chapter 4 has already presented the methods required to calculate the life

expectancy. The method can be broken down into a series of steps:

1. Calculate the hazard rates, h(a),
2. Calculate the cumulative hazard rates, W(a),

3. Calculate the survival probabilities, S(a),
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4. Calculate the life expectancies, X(a),
5. Calculate the probability densities, p(a),
6. Calculate the average life expectancy, X.

The effect of discounting does not need to be considered here, and so it will be
assumed throughout that the discount rate is zero. In these steps, there are a number
of assumptions that need to be made in order to perform the calculation. These
assumptions can be varied, and consequently different life expectancies will be
produced. The question therefore arises as to which life expectancy is the most
accurate. This question can be answered by assuming that the “correct” life
expectancies are the ones given by the ONS in their life tables. The method that best
approximates the ONS life tables is therefore judged to be the most accurate life
expectancies. The discrepancy between the model’s calculation and the ONS
calculation can be tested statistically. The test can answer whether the difference is
statistically significant or not. A null hypothesis is therefore formed that the ONS
life table data are distributed according to the model’s method. The test performed is

Pearson’s Chi-Square Test. The test statistic, y72,, is determined from the summed

squared difference between the number of deaths associated in a cohort facing the

calculated survival probabilities, denoted as E,, and the number of deaths from the

life table function, d,, from equation (4.32):

< (E, —d
gh = el (93)
a=0 Ea
where:
éa = n(éa - S’\avrl) (94)

and where k - 1 is the number of degrees of freedom, see, for example, London
(1997) [132]. As there are 101 ages in the life table (from age 0 to 100), then k = 101
and the number of degrees of freedom is 100. The parameter n is the sample size,
which is the assumed initial size of the cohort that is subject to the hazard rates. This

is also equal to the radix, lo, of the standard life table, and is taken as 100,000. The
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S, are the survival probabilities estimated from the model. If the 72, test statistic is

greater than some critical value, then the null hypothesis may be rejected. An upper

one-sided test is performed at the 5% significance level. The critical value of the
upper tail y/, statistic at this level is the value at which the complement of the

cumulative distribution function of the chi-square distribution with 100 degrees of
freedom is equal to 5%. This can be computed from tables, and is approximately
equal to 124. If the value of the test statistic is greater than this value, then the null
hypothesis is rejected in favour of the alternative hypothesis, namely, that the ONS
data is not distributed according to the model under test. The lower the value of the
test statistic, the closer the ONS data is to the model. The model that produces the
lowest value will be accepted as representing the most accurate life expectancy

calculations.

There are a number of assumptions which can be tested. The first is the assumption
about the correct value to use for the hazard rate, h(a). In chapter 4 it was argued that
either of two functions could be used to approximate the hazard rate. These were the
central rate of mortality, m,, which was shown to be correct if deaths are distributed
exponentially throughout the interval (a, a + 1), and the probability of death, g,
which was shown to be correct if deaths are distributed uniformly over the interval
(a, a + 1). These two approximations can then be tested. In addition to these, two

other approximations to the hazard rate are also tested. These are:

h(a)=-In(l-q,) (9.5)

which also assumes that deaths are distributed exponentially throughout the interval,
and should therefore give similar results to the approximation when h(a) is
approximated by m,. Another approximation is given by a quintic polynomial
representation of the hazard rate, see Haberman (1994) [90] and McCutcheon (1983)
[135]. In this approximation, the hazard rate is given by:

-178-



25— 48(1_ qa)+ 36(1_ qa)(l_ qa+l)
h(a) = i _16(1_ qa)(l_ Qa1 )(1_ qa+2) fora<2
+ 3(1_ Q. )(1_ qa+1)(1_ Qasz )(1_ qa+3)

. i ° (9.6)
:i{_(l_qaz) (1—qa—1) +8(1_qa*1) } fora>2
12 |-8(1-q,,)+31-0q,,)1-q,.,)
with:
Cm 1+0.5m, 9.7
=M 1+1/12(7m, +5m, )+1/3(m,m,) 0
and:
q, =m, 1-0.5m,, fora>1
1+5/12(m, —m,,)-1/6(m,m,_,) (49)

and qo is as given in the life table. Although the quintic polynomial approximation to
the hazard rate is complex and cumbersome, it will also be tested against the life-
table data.

Another assumption that can be tested is the integration method for the cumulative
hazard rate function, W(a). As was discussed in section 4.5, when the central rates of
mortality are used as the hazard rate, the cumulative hazard rate can be can be
calculated by summing up the hazard rates. However, in more general circumstances
this assumption may not be applicable. Therefore, different methods of integration
are also tested against the empirical data. These other methods are the trapezium
method of integration, with the step length taken as one year. This is equal to the

sum, but with the endpoints only contributing half the weight of the other points, i.e.:

f@mziﬁligﬁ (9.9)

D C— T
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The cumulative hazard rate can be estimated in an iterative manner through:

a+l a+l

W(a+1):f (u)du '[h )du+.[h

+ [h(u)du (9.10)
=W (a)+ [Mj

2

and where W(0) = 0. Another method of integration is Simpson’s method, which

approximates the integral as a quadratic polynomial:

j:f x)dx~ ){ (a)+ 4f(azbj+f(b)} (9.11)

The cumulative hazard rate is then estimated by:

w(a+1):w(a)+%[h(a)+ 4h(a+%j+ h(a+1)j 0.12)

Clearly, Simpson’s method requires that the hazard rate is evaluated at age a + %.
Elandt-Johnson (1980) [70] gives a general approximation as:

1
h(a+§) ~q, (9.13)

which can then be used to evaluate the integral.

One final assumption that is tested against empirical data is the use of the final age
band, as an “end correction” to account for the mortality experience of those older
than 101. This correction was discussed further in section 4.5. Here the effect of

including such a correction will be tested.
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The tests then include four hazard rate approximations, three numerical integral

approximations, and two approximations that do and do not include the end
correction. There are therefore 24 separate tests. For each of these, the y/, statistic

can be calculated and tested against the critical value. These 24 tests are shown in
Figure 17. The most immediate result is the importance of the use of the end

correction. All the tests performed without the end correction had 7, values in

excess of the critical value, and therefore had their null hypothesis rejected in favour
of the alternative hypothesis — that the life table data did not match up with the
model. Another result is that the trapezium rule is generally a poor fit for the data,
with three of the four hazard rate tests with the end correction being rejected. This
compares with two tests for the summation method, and no tests for Simpson’s
method. Although all of the hazard rates tested with Simpson’s method were less
than the critical value, they were not the tests that were closest to the empirical data.
The most accurate tests were those that used the summation method and the hazard
rates equal to m, and -In(1-qg,). The use of g, for the hazard rate was not found to be
accurate. Surprisingly, the quintic polynomial approximation also performed poorly,
except in the case when the Trapezium method was used. The overall conclusion of
these tests is that the end correction should be used, and that the hazard rate of -In(1-
ga) and the trapezium method of numerical integration for the cumulative hazard rate
should be used for most accuracy. However, using the central rate of mortality, m,
for the hazard rate does not degrade this accuracy very much, and is easier to
calculate, as it is given directly in the life tables. Therefore this variable is
recommended for use as the hazard rate. These tests thus validate the assumptions
used in section 4.5, where the procedures used in calculating the J-value were

explained.

Another feature of the change in life expectancy calculations that can be tested is the
validity of the linear approximation used in approximating the effect of a hazard rate
perturbation on the life expectancy, as used between equations (5.14) and (5.15). The
linear approximation is unbounded in the additional hazard rate, whilst the true value
is bounded, so that the change in life expectancy is never greater than the initial life
expectancy. Figure 18 shows the difference between the two methods. They are very

close for low additional hazard rates, but begin to diverge at an additional hazard rate
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of 0.1 year™. At this hazard rate the percentage difference is 5% and the change in
life expectancy is about 4 years. This is judged to be the upper limit of practicability
for the linear approximation. The calculations rapidly diverge after this. At an
additional hazard rate of 0.5 year™, the difference is about 30%. These calculations
apply to the situation where there is a single exposure resulting in a risk of
immediate death. Prolonged risks will result in higher changes in life expectancy,
and hence greater divergences between the linear and true calculations at lower
additional hazard rates. Therefore, any calculations of an individual change in life
expectancy of about 4 years or greater based on the linear model should instead be

done using the true calculations.

9.4 Sensitivity Analysis of the Risk Aversion Calculations

Section 9.2 discussed that the two variables with the highest sensitivity coefficients
were the change in life expectancy and the risk aversion coefficient. The previous
section has investigated a number of the assumptions which were made in the
calculations of the life expectancy and the subsequent change in life expectancy
following a perturbation of the hazard rate. Here the assumptions underlying the risk

aversion calculations will be investigated.

The risk aversion is dependent upon the share of wages in the GDP, 6, and the
optimal work time fraction, wo, see equation (3.41). The value of # was taken
directly from observed data, and so there were few assumptions made in the
calculation. The calculation of wy, however, requires that a number of simplifying
assumptions be made, as was described in chapter 6. It was shown that the work time
fraction is equal to the ratio of the work-life expectancy to the life expectancy, as
given by equation (6.4). In calculating these two parameters, it was assumed that a),
the population is in a steady state, and b) that time spent working is distributed
uniformly between recruitment and retirement ages. These two assumptions may

now be examined in further depth.

Throughout most of the development so far, it has been assumed that the population
is in a steady state, so that the number of people born each year is equal to the

number of people dying each year. This assumption produces a certain population
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distribution that can be readily calculated from the survival probabilities. This
distribution is described in more detail in section 4.6. However, actual populations
are rarely in a steady state, as they are affected by varying fertility rates,
immigration, emigration and health care improvements which reduce mortality. It
therefore is pertinent to compare the results of the calculations of population-
averaged values that are based on the steady state assumption with the values
obtained when actual population figures are used. Data for the actual population size
at each age is available for the UK from the ONS [148], from which the probability

distribution can be readily estimated.

The other assumption was made in deriving the work-life expectancy, where it was
assumed that the time spent working was uniformly distributed over working
lifetime, which was taken to start at age 20 and end at age 60. This can be compared
against empirical data on time spent working at each age and employment rates,
which again is available from the ONS, see [146] and [147]. These then allow the
parameters gy(t) (the fraction of time a worker spends in work at current age t) and
pw(t) (the probability of being employed at age t) to be determined, which can then
be used to calculate y,(a) and y,, from equations (6.7) and (6.12). The distribution of
gw(t), pw(t) and their product, gw(t)pw(t), are shown in Figure 19 and Figure 20 for the
uniform assumption and the actual data. As can be seen, the actual data appears more
bell-shaped, with people beginning work before age 20, and retiring after age 60.
This data allows a comparison of the calculations of y,, obtained under each
circumstance. Because Yy, is also a population averaged parameter, it will also
depend on the assumption used for the population distribution. There are then four

values of y,, that will result from the different assumptions.

The parameters tested for sensitivity to these assumptions are the average life
expectancy, X, the work-life expectancy, y,, the work-time fraction, wp, and the risk
aversion, ¢. Four values are determined for the two population distributions and two
working time distributions (although the life expectancy is not affected by the
working time distribution). The results are shown from Table 7 to Table 10. Note
that the data used was from 2008, so that the steady state and uniform working time
assumption will not be the same as those presented earlier in chapter 8, as more

recent data was used in estimating those figures.
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The tables show that the effect of using the actual population distribution increases
the life expectancy by about 2%. For the other parameters, the largest difference
from the simple steady state population and uniform working distribution
assumptions is when both actual distributions are used. The actual distributions
increase the work-life expectancy by about 5%, while the work-time fraction
increases by about 3%. The effect on the risk aversion is that it is reduced by less
than 1%. Thus, the use of actual observed distributions does not affect the risk
aversion by much. Furthermore, the simpler distributions lead to a greater risk
aversion estimate. In the context of the J-value, this will mean that slightly higher
spending on safety will be allowed. The simple distributions are therefore more
conservative than the actual distributions.

The risk aversion is thus insensitive to changes in the underlying assumptions about
the population and working time. Using the simpler distributions is computationally
easier and more efficient, and produces slightly more conservative results. The

sensitivity analysis therefore validates the use of the simplifying distributions.

The conclusion of the sensitivity analyses is that the uncertainty on the J-value is
most sensitive to the uncertainty on the life expectancy and the risk aversion, as
these parameters were found to have the greatest sensitivity coefficients. The change
in life expectancy was assessed for sensitivity by testing the underlying life
expectancy calculations against ONS life table data. This allowed the assumptions to
be picked in order to minimise the difference in the calculations between the model
output and the ONS data, thus optimising the accuracy of the life expectancy
calculations in the model. The linear approximation used in perturbing the hazard
rate for the calculation of the change in life expectancy was also assessed. It was
found that for changes life expectancies less than around 4 years, the difference
between the linear approximation and the true value was less than 5%, which was
judged to be acceptable. However, if the linear model produced a change in life
expectancy greater than this, then it would be necessary to recalculate without the
linear approximation in order to retain accuracy. Testing the underlying assumptions
of the risk aversion showed that use of the simplified population and working time

distributions was justified, as they did not affect the risk aversion by much, and also
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produced more conservative results, in addition to being simpler to calculate. Thus, it
is concluded that the J-value is reasonably robust to the use of such simplifying

assumptions.
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Figure 17 Result of Pearson’s chi-square test for 24 tests of: 1. three methods of integrating the
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rate (g, m, -In(1-q) and a quintic polynomial), and 3. the effect of using the end correction for the final
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Life Expectancy, X
(years)

Steady State
Population

Actual Population

41.04

41.82

Table 7 Life expectancy under different population distributions.

Work-Life Expectancy, | Steady State Actual Population
Yw (years) Population

Uniform Working Time 3.43 3.53

Actual Working Time 3.48 3.59

Table 8 Work-life expectancy under different population and working time distributions.

Work-Time Fraction, Steady State Actual Population
Wo Population

Uniform Working Time 0.083 0.084

Actual Working Time 0.085 0.086

Table 9 Work-time fraction under different population and working time distributions.

Risk Aversion, ¢ Steady State Actual Population
Population

Uniform Working Time 0.838 0.836

Actual Working Time 0.835 0.833

Table 10 Risk aversion under different population and working time distributions. The wage share
0 is taken as 0.563, which was calculated for 2008 data.
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Chapter 10 Extending the J-Value Framework to Include

Mitigation of Financial Risks

10.1 The J, and Jt-Values

So far, the focus of this thesis has been on introducing and developing the concepts
underpinning the valuation of health and safety using the J-value framework. The
risks concerned have been physical risks — those that affect human life. Recently,
however, the J-value framework has been extended by Thomas et al (2010) [190],
[191], [192], to include valuation of financial risks. These are risks to either an
individual or an organisation’s assets that can be somehow mitigated. A method has
been developed that enables the maximum amount that should be spent on mitigating
a given risk to be determined. If the amount that the individual or organisation has
actually allocated to spend on mitigation is known, then the ratio of the actual spend
to the maximum theoretical spend can be calculated. This ratio of financial risks is
then the Jo-value. It is then straightforward to generalise to the case where both
physical and financial risks are mitigated. If a scheme is being considered that will
reduce both risks to assets and risks to life, then the maximum amount that should be
spent on the scheme is equal to the sum of the maximum amount that should be
spent on reducing physical risk and the maximum amount that should be spent on
reducing risks to assets. The ratio of the actual amount spent on the scheme to this
theoretical amount is the Jr-value, or “total judgement value”. In this section the
methods for determining the maximum spend shall be briefly laid out. Full details of
the methods are described in the above references.

10.2 The Baseline, Risk Neutral Spend on Risk Reduction

In order to introduce some of the concepts, a simple case will be presented where the
organisation is assumed to be risk neutral. If the probability and cost of the accident
are known, then the amount that should be spent on reducing the risk can be
determined easily. This risk neutral cost is then the baseline cost. In the following
sections, it will be shown how the effect of risk-averse decision making increases the
cost above this baseline value. Risk aversion is represented in the form of a utility

function. In chapter 3, the utility of income, U(G), was introduced. It was also
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discussed that there are various types of utility functions that can be used, but that
two particularly important ones are the power utility function and the Atkinson
utility function, which allows ¢ > 1 to be used. These are given by equations (3.35)
and (3.39) respectively. In chapter 3, the simpler power utility function was
favoured. However, in this section, the Atkinson utility will be used instead. Another
change is that the utility of assets, A will used, rather than utility of income. The

utility of assets is then given by:

A1
U(A)= - £>0,e#1 (10.1)
=InA e=1

Risk neutrality corresponds to ¢ = 0, in which case the utility is:

U(A)=A-1 (10.2)

which is thus the difference between current assets and one unit of the asset. In most
cases, A>>1, and U(A) = A, so that the utility of assets is just the assets itself. In this
situation, the amount to spend on reducing a risk to the assets can be easily
determined. If there is a probability, z;, that the original assets, A, will be reduced by
an amount, C, so that the final assets are A — C, then the expected value of the assets

will be:

7, (A-C)+(@Q—-7,)A=A-rC (10.3)

and the expected loss is 7, C. If there is a scheme that can completely eliminate the
risk, but will cost an amount, B, to implement, so that total assets would be A — B,
then it would only be reasonable to implement the scheme if doing so increased or at
least maintained the expected value of the assets in absence of the scheme. Thus, it

must satisfy:

A-B>=A-7C (10.4)

Therefore, the maximum amount that should be spent on the scheme, By, is:
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B, =7,C (10.5)

The maximum value to spend on mitigation is therefore equal to the expected loss
resulting from the risk. If the scheme does not completely eliminate the risk
altogether, but instead reduces the probability from z; to 7z, then the maximum

amount to spend is instead:

B, =(7,—7,)C (10.6)

which again is the expected value of the loss. Thus, in the risk neutral case, the
decisions are made based on expected monetary losses. However, if preferences for
risk are considered, then spends must be based on expected loss of utility, rather than
loss of assets. This (usually) entails an additional premium, which can be expressed
in terms of a “maximum risk multiplier” of the baseline, expected monetary loss,
Mr.max. I the maximum reasonable spend on mitigating risks is denoted 6Z, then it is
given by:

Ay =m,..B (10.7)

The method for calculating the maximum risk multiplier will be shown in the

following section.

10.3 Accounting for Risk Aversion Using the ABCD Model’

The ABCD model draws together four important aspects of decision making when
regarding risk, three of which were introduced in the previous section. The
organisation (or individual) is assumed to have assets, A (for the UK measured in £),
and faces accident costs, C (£) with probability, 71 = 1 — p; (where p; is the
probability of no accident occurring). The affected party is considering spending an
amount B (£) on an environmental protection system that will reduce the probability

of incurring those accident costs from z; to 7 = 1 — py, for the common case where

" This section largely follows [199].
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my is already small (the choice of the letter “B” to denote the cost of the protection
system may be regarded as a “balancing” expenditure in certain circumstances). The
expected utilities before, E(u;), and after, E(u,), the risk-mitigating system is
introduced are calculated using the Atkinson utility function (3.39). The final

element is the difference in expected utility, D:
D(u,,u, | £)=E(u,)-E(u,) (10.8)
where dependence on the risk-aversion has been made explicit, and where:
E(u)=pU(A)+L-p U (A-C) (10.9)
and:
E(u,)=p,U(A-B)+(@1-p, U(A-B-C) (10.10)

The protection system should be installed only if D is negative or, in the limiting

case, D = 0.

It is convenient to define another variable, the “reluctance to invest” in the safety
system, Ri0a, as the change in the organisation’s utility, D, normalised to the utility

of the starting assets, uo(e) = U(A):

_ D(ul’uz |5)

R120A - uO(g)
_ A’ [l_ca ]q _[1_ba —C, ]q (1011)
= AY -1 + pl(l_[l_ca ]q )_ pz([l_ba ]q —[l—ba —c,

where g = 1 — ¢, and the lower-case letters b, and c, indicate normalised costs:
ba = B/A is the cost of the safety system normalised to the assets, c; = C/A is the

accident cost normalised to the assets.
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A value of Riz0a = 1 corresponds to a 100% reluctance to invest — the case where the
cost of the safety system reduces to zero the expected utility of the organisation. A
positive reluctance to invest (0 < Riz0a < 1) indicates that the system is poor value for
money, whereas a negative reluctance (Ri2a < 0) corresponds to a desire to invest in
the system. It has been shown [190] that as risk-aversion increases, the absolute
value of the reluctance decreases towards zero. A scheme that is good value at ¢ = 0
and a second scheme that would be rejected outright at ¢ = 0, because of its poor
value, both converge towards Riza = O at large values of risk-aversion. Hence the
risk-averse decision maker is unable to discriminate between the merits or demerits
of the two schemes at large ¢. This is the “point of indiscriminate decision” and
occurs where |Rizoa| = Jais, With dgis ~ 10 being the discrimination limit. This gives
an upper limit to the value of the risk-aversion, which is denoted as emax.

As was shown in the previous section, when the risk aversion is zero, then decisions
are made in purely financial terms, and the maximum that should be spent on the
protection system is equal to the reduction in the expected cost of an accident:

B, = (pz - pl)C
10.12
= (”1 — 7 )C ( )
or equivalently:
by = (7[1 — 7 )Ca (10.13)

The risk multiplier, m,, is defined as the ratio of the actual (normalised) cost of the
protection scheme, b, to the expected monetary savings it will produce:
mr = ba/bo Z 0.

Thomas et al (2010b)[191] have also shown that for a given protection scheme, the
reluctance to invest exhibits a minimum value, and this minimum occurs at a risk-
aversion of ¢ = gy, called the “permission point”. This corresponds to the point of
maximum desire to invest in the protection scheme. To calculate the permission

point a lower bound is set at ey, = 0, since only risk-averse decisions are considered
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and not risk-seeking behaviour. There is an upper bound at epp = emax Where emax is
the risk-aversion at the point of indiscriminate decision. Within these bounds, the
minimum of Ryz0a follows three distinct patterns, illustrated in Figure 21. Pattern (1):
there is a positive reluctance to invest at zero risk-aversion which decreases
monotonically with increasing risk-aversion until the permission point meets the
point of indiscriminate decision at &pp = emax. Pattern (2): the reluctance to invest is a
(negative) minimum at &p, = 0, corresponding to the case when the safety system is
justified on purely financial grounds, and Ria increases monotonically with risk-
aversion until the point of indiscriminate decision. Pattern (3): if the reluctance to
invest is close to (positive or negative) zero at zero risk-aversion, then there is a
minimum in the Rioa function at 0 < gy, < emax. These three different patterns are

important to keep in mind when evaluating the optimum risk-aversion below.

Calculating the optimum risk-aversion requires the numerical computation of the
risk-aversion and the normalised safety spend at the permission point (epp and by
respectively), together with their maximum values which occur at the point of
indiscriminate decision (emax and bpax). The latter can also be expressed in terms of
the “maximum risk multiplier”, Mmax, given bY Mimax = bmax/bo, With by defined

above.

The risk-aversion at the permission point, gy, is defined at the minimum of Riga.
Differentiating Rizoa With respect to q vyields the objective function g(bs, ¢).

Recalling that g = 1 — ¢, the objective function is given as:

drR dR _
g(ba,8)= dlCZIOA _ d1éop _ In(Al q)R:LZOP -0 (10.14)

where Riy0p is the reluctance to invest in the safety scheme assuming a power utility

function:

RlZOP =P, +(1_ pl)(l_ca )q _(1_ba )q (10-15)

and its derivative is:
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deZOP

dq = (1_ pl)(l_ca)q In(l_ca)_(l_ba)q Iog(l_ba) (10.16)

The roots of equation (10.14) yield the desired risk-aversion, &pp.

Graphical analysis of the variation of g(ba, €) with b, for fixed &, shows that the
function has two different regimes when ¢ < 1 and when ¢ > 1. For ¢ < 1, the
objective function has two roots on the positive and negative going slopes of the
function as shown in Figure 22 and Figure 23. As discussed in more detail later, the
first of these roots are sought out. For ¢ > 1, there is only one root, near to by = 1
(Figure 24 and Figure 25). Finding the roots is made difficult at high values of ¢ by

the rapid change in slope as shown in Figure 23 and Figure 25.

Equation (10.14), cannot be solved analytically, and so must be solved numerically.
Two distinct approaches to these computations have been taken which were
developed independently so that results from the two methods could be compared
and used to increase confidence in their accuracy. The first approach was to use the
secant method. This naturally follows on from the referred derivative method used in
[191], but it uses a finite difference approximation for the derivative of Rixa rather
than an analytical expression. The permission point, g5, is incremented as the
independent variable towards ey = emax, Yielding values of by, and bmax. The second
approach was a technique which was named the “Golden Bisection Method”. The
minimum in the Rixa function is found using a Golden Section Search, without
recourse to an analytical derivative. The independent variable is taken as b, rather
than &, incrementing towards bp, = bmax. The point of indiscriminate decision is
evaluated using the Bisection Method, yielding values for emax and bmax. The very
different nature of this algorithm promotes useful diversity in the calculations.

Equation (10.14) can be solved for the objective function using the method of
referred derivatives (see Thomas (1997) [181] and (1999) [1]), which was used in
Thomas et al (2010b) [191], and which lends itself to computation in a spreadsheet
format. The computation can also be extended to more accurate and robust software

based algorithms. The initial approach to solving equation (10.14) for the objective
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function that will be presented here consisted of applying the secant method — a
modification of the Newton—Raphson iterative method that uses a finite difference
approximation (see e.g. Press (1992) [165]). In the iteration the roots of the objective
function are solved holding g constant, and solving for the value of b, = by, at the

permission point for a given value of ¢. The iterative procedure for this is given by:

2,

" b+ ) ol )0 ot

with the iteration continuing until g(e,bi+1) < 10° and where 6b = 10° is a small
increment in b;. Each solution of equation (10.17), for increasing values of ¢, will

give the permission pair, (bpp, &pp)-

The procedure progresses by first finding a value for byy(e = 0). Here we use b as a
seed value in the iteration. The corresponding value of the risk multiplier, my, is
denoted by mrow = bpp(0)/bo. This then proceeds to higher values of b, = byp(e + Jde)
by adding fixed increments, de, up to & = emax, Where, at some point the desire to
invest, -Riz0a, Will become smaller than dgis, and the procedure will stop with

€ = Epp = Emax; ba = bpp = Dmax and My = Mymax.

The above analysis caters for normalised costs for the protection system in the range
Dpp(0) < ba < bpp(emax), With the corresponding risk multipliers in the range Myow < My
< Mmmax. It is assumed that a normalised cost less than bp,(0), is not possible for risk-
averse decision makers, although modifying this assumption to include risk seeking
decision makers would be a topic for further research.

The Golden Section Search method (see Press (1992) [165]) for determining the
permission point pairs (epp ,bpp) finds the minimum in the Rixoa function without
requiring derivatives of the function. The algorithm first looks for an approximate
value of &y, by evaluating Riooa at discrete values of ¢ with a step size of de = 0.1,
over the range of ¢ up to the point where the absolute value of Ry is less than the
value, dgis, at the point of indiscriminate decision. If a local minimum is identified
then a more accurate estimate of ¢y, is obtained by applying a golden section search

in the region of the minimum, which ensures that the minimum is found. If there is
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not a local minimum in the approximate solution — for example, if the minimum is
too close to ¢ = 0 (i.e. ¢ < 20¢) — then an iterative approach is taken by decreasing
the step size and recalculating &y, in the region of the minimum, repeating the
procedure until the required accuracy is achieved.

An approximate value of the risk-aversion at the point of indiscriminate decision,
emax,» Was found as above, by evaluating Riza at discrete intervals of . This value
was refined by applying the Bisection method [165] to evaluate the roots of |Riza| —

dgis = 0 about the approximate solution.

Thus, a brief overview of the methods for calculating the maximum risk multiplier
Mr.max, Nave been laid out. This parameter then allows the maximum reasonable
spend on mitigating financial to be determined, as will be described below. No
analytical solution for the maximum risk multiplier can be determined. Indeed, the
value is dependent upon the probability of occurrence and the consequence of the
risk faced, as well as the initial assets of the organisation (or individual). For further
details of the computational methods used in calculating the limits to risk aversion,
see Waddington et al (forthcoming) [199].

10.4 The Maximum Reasonable Spend and the New J-Values
Once the maximum risk multiplier has been determined through numerical methods,
the maximum reasonable spend can be computed, from equation (10.7), repeated
below:
Z,=m, B, (10.7)

The value By is the expected monetary loss resulting from the risk. However, the
expected monetary loss may be complicated by factors such as the possibility of the
accident occurring multiple times, and the growth of the organisation. These issues
are more fully addressed in Thomas and Jones (2010) [192]. Nevertheless, treating

Bo as being equal to the expected monetary loss will be a good approximation in the

case of low accident probability and low growth rates.

-199-



The Jp-value (or second judgement value) is then the ratio of the actual amount spent

on mitigating the risk, denoted as &Z , to the maximum reasonable spend:

J, =22 (10.18)

If a system protects against both risks to human life as well as to assets, and will cost

SW to implement, then it is also possible to calculate a “total judgement value”, Jr:

(10.19)

where 6V is the maximum reasonable spend on protecting human life, as given by
equation (3.60). The Jr-value may be interpreted in a similar manner to the J-value,
in that Jr-values in the range from zero to unity will be deemed as cost-beneficial,
while Jr-values in excess of unity indicate that the scheme offers poor value for
money, and should not be implemented. Thus the Jr-value provides a new and full
criterion for the adoption or otherwise of a protection scheme to guard against both

financial and human costs.

This concludes the exposition and development of the theory and methods required
by the J-value framework for the valuation of health and safety, as well as the more
recent addition of financial risks. This framework provides original and objective
techniques for decision making that encompass a wide variety of types of risk yet
still retains an output that is transparent and simple to interpret, and more
importantly, provides consistency to a field in which decisions regarding sensible
levels of expenditure on a given benefit can vary by eleven orders of magnitude (see
Tengs et al (1995) [180]).

The final chapter of part 1 will provide some example calculations in order to

illustrate to broad applicability of the techniques.
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Figure 21 Response of the reluctance to invest (R120a) With increasing risk aversion (g), for different
normalised costs of the safety system (-0.1 < b < 0.6). Assets (A) are £180,000, normalised accident
cost (c) is 0.995, and the probabilities of no accident with and without the safety system are p, = 1 and
p; = 0.9 respectively.
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Figure 22 The derivative of the reluctance to invest when ¢ = 0.5 and ¢ = 0.9, illustrating the two
roots of the objective function g(e, b) = 0. The assets are A = £180,000 and all accident probabilities
are considered.
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Figure 23 The derivative of the reluctance to invest when ¢ = 0.9 and ¢ = 0.999, illustrating the two
roots of the objective function g(e, b) = 0. Other parameters are the same as Figure 22. Note the steep
gradient in the region around the second root.
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Figure 24 The derivative of the reluctance to invest when & = 1.5 and ¢ = 0.9, illustrating the single
root of the objective function g(e, b) = 0. Other parameters are the same as Figure 22
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Figure 25 The derivative of the reluctance to invest when ¢ = 1.5 and ¢ = 0.999, illustrating the single
root of the objective function g(e, b) = 0. Other parameters are the same as Figure 22. Note the steep

gradient in the region around the root.
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Chapter 11 Example Calculations

11.1 Example Calculations for the J-Value

In this section some example calculations will be shown in order to demonstrate the
broad applicability of the J-value. The next three sections will provide calculations
for the J-value by considering impact assessments for various health and safety
schemes. Following this will be a calculation of the J, and Jy value of a protection
scheme to mitigate the risk of a large nuclear accident. Finally, a J-value analysis of
the ancient VTPF will be provided.

11.2 HSE’s Impact Assessment of Various Policies to Limit

Occupational Exposures to Respirable Crystalline Silica

A review by the HSE of occupational exposure to respirable crystalline silica (RCS)
found that workers were exposed to unacceptable risks. They produced a regulatory
impact assessment of four proposed exposure limits, see HSE (2005) [101]. These
limits were: i) 0.3 mg.m™, which then was the current limit, but would have been
more strictly enforced, as it was suspected that a substantial number of workers were
exposed to concentrations in excess of these limits; ii) 0.1 mg.m?; iii) 0.05 mg.m*,

and iv) 0.01 mg.m=.

The benefits of these limits were calculated in the document as reduced numbers of
deaths from silicosis and lung cancer. Although there were also other benefits
assessed in the document, such as prevented disabilities, medical costs and lost
output, these are not included here, as only mortality effects are relevant to J-value
analysis. It is estimated that policy i) would result in 36 less lung cancer deaths.
Policy ii) would reduce lung cancer deaths by 185 while iii) reduced them by 300,
and iv) reduced deaths by 455. The number of reduced deaths from silicosis was
taken to be the same as for lung cancer. In order to convert these figures into a loss
of life expectancy, it was necessary to use national mortality statistics [151] which
give data on the age of death from those diseases, from which the average loss of life
expectancy per death can be determined. The standard deviation of the loss of life

expectancy can also be calculated from the data. These statistics show that lung
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cancer deaths cause, on average, 13.8 years of lost life per death, whilst silicosis
deaths results in 7.3 years of lost life. These numbers can then be multiplied by the
number of avoided deaths to arrive at the total improvement in life-expectancy
afforded by the regulation, which is equal to NoX. These are listed in Table 11. The
HSE document also lists costs associated with each option. Maximum and minimum
cost estimates are given, and these can be averaged to determine a mean cost. J-
values can then be determined with the values of the parameters as given in Table 6.
The costs of the scheme and the J-values are shown in Table 12, along with the 95%
confidence limits. In calculating the tolerance limits, it was assumed that the low and
high estimates of the cost of the scheme represented 95% confidence limits, which
then allows the standard deviation to be determined. No discounting will be
presented here.

As can be seen, the only scheme which has a J-value less than unity is option i), that
is, the option to more strictly enforce current limits. However, it is worth noting that
there will likely be additional uncertainties associated with the number of deaths
avoided by the regulations, as cancer and silicosis involve latent effects, making it
difficult to assess the effects of exposures with much accuracy. Given that there will
likely be further uncertainties, it seems reasonable to view option ii), which has a J-
value slightly greater than the J = 1 threshold, as an acceptable figure. Also, when
other factors, such as disability costs etc. are considered alongside the J-values,
option ii) would be viewed with further favour. To summarise, option i) gives the
best value for money, but option ii) may also be considered acceptable given the

uncertainty.

The conclusions of the HSE document agreed to some extent with the J-value
analysis. It was found that only option i) offered value for money. However, the HSE
considered the occupational risks with this option as unacceptable, and so rejected

this option, instead favouring option ii).
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11.3 Department of Health’s Proposal to Reduce the Number of

Unnecessary CT Scans

The Department of Health (DH) has recently published a regulatory impact
assessment that investigated the use of Computed Tomography (CT) scans in
asymptomatic individuals, see Department of Health (2011) [63]. These scans can
help in detecting conditions, but expose patients to ionising radiation, which carries
health risks, and as such, needs to be justified. The Committee on Medical Aspects
of Radiation in the Environment (COMARE) has provided some recommendations
which would reduce the risks if implemented. DH’s impact assessment reviews the

costs and benefits of enforcing COMARE’s recommendations.

The report assumes that there are approximately 3,000 individuals who have scans
every five years between the age of 40 and 70. Each scan is taken as delivering to the
individual a dose of 10 mSv, so that a 40 year old will receive an additional dose of
70 mSv from the extra scans over his or her lifetime. This information alone is
sufficient to calculate the loss of life expectancy resulting from these scans. The
exposure can be modelled as a series of short exposures, as is indicated in Figure 26.
The effect of a single radiation exposure on the additional risk is discussed in section
5.9, which assumes that no response will be observed for the first 10 years, due to
the latency of cancer development. There will then be a step change which lasts for
30 years, before the risk response returns to zero. When a series of these responses,
which are delayed by five years each, are added together, the overall response is a
pyramid shape, shown in Figure 27. The averaging is performed over the population

that is at least age 40. The average life expectancy of this cohort is 22.3 years.

The cost of implementing the recommendations is given in the assessment as
£45,000 per annum. This is based on 3,000 scans each costing £300, total cost
£0.9m, and assuming 5% of this is taken as surplus (presumably after deducting for
the costs of operating the scanner and staff costs). The undiscounted present value
over the remaining lifetime of the individuals is then £45,000x22.3 = £1,003,500.
The J-value for this scheme is 0.31, meaning that implementing COMARE’s
recommendations will give good value for money. This was also the conclusion of

DH’s impact assessment. The data is shown in Table 13. No uncertainty estimates
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are available for the cost of the scheme or the number of people. The tolerance limit
is therefore only calculated from the parameters in which the uncertainty is already
known. The tolerance limits are therefore small in this case. Again, discounting is

not considered.

11.4 Department of Health’s Proposal to Reduce the Number of MRSA

Infections

Another regulatory impact assessment by the DH, which was published in 2009,
reviewed proposals to reduce the number of MRSA infections and deaths in NHS
hospitals, see Deparment of Health (2009) [62]. Although the number of MRSA
infections had decreased by 74% since 2003, it was felt that there was still
substantial variation across hospitals, and the DH believed that there was scope for
further reductions. In the impact assessment, two options for reduction were
considered. Option i) involved setting targets based around the median. Hospitals
with infection rates above the median were required to reduce either to the median or
by 20%, whichever was greater. Hospitals below the median were required to reduce
by either 20% or to the lower quartile, whichever was least. Option ii) was for all
hospitals with rates above the lower quartile to reduce to the lower quartile.

The report assumes that i) would lead to a reduction in MRSA deaths of 86.3 per
year, whilst option ii) would reduce MRSA deaths by 109.3 per year. The ONS
report that death rates for MRSA are highest amongst the over 85’s [152], although
MRSA can affect people of all ages. It will be assumed that the average age of death
for MRSA is then 85 years. The life expectancy of an 85 year old is about 5.6 years.
Thus is will be assumed that each MRSA death causes a loss of life expectancy of
5.6 years.

The assessment assumes that option i) would result in extra staff costs of £7.5
million whilst option ii) would result in extra staff costs of £19.08 million. It was
also noted that these costs should be multiplied by 2.4 to account for lost opportunity
costs associated with not being able to spend this money in other areas. There would
also be some reduction in costs associated with avoided treatments of those who

would otherwise have been infected. For option i) these benefits were £1.95 million
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per annum, whilst for option ii) these benefits were £2.47 million per annum. The
total cost of i) was then £16.05 million, whilst for ii) the total cost was £43.32
million per annum. These details are then sufficient to calculate the J-value of the
two options. The data is presented in Table 14. In assessing the tolerances, no
attempt has been made to account for uncertainty on the cost of the scheme, as the
data was not available. Equation (8.77) was used to estimate the standard deviation
on the change in life expectancy. This calculation requires knowledge of the
probability of being affected by MRSA, b, This is given in [62] as 6.3x107, resulting
from 3,211 MRSA cases in 2008. The standard deviation on the total change in life
expectancy, NoX, can then be calculated as 0.65 years for option i), and 0.82 years

for option ii).

As can be seen from Table 14, both options have J-values less than unity, and so
offer good value for money. However, option i) has the lower J-value and so would

be the preferred option. This was the same conclusion as in the impact assessment.

11.5 Example Calculations for the J, and Jr-Value: Mitigating Large

Nuclear Accidents

This example uses notional, but realistic figures for a protection system that
mitigates the risk of a large nuclear accident. The example is taken from [192].
Suppose an organisation with assets of £10 billion owns a nuclear power plant that
has a lifetime of 50 years. It is considering installing a protection system that will
reduce the frequency of large accidents from 2x107 per year to 5x10°® per year. The
new protection system would last the life of the plant and would cost SW = £4.5M,
a sum that would include all finance and maintenance costs. A risk analysis has
shown that if an accident were to occur, then 5 workers would be killed immediately,
while 40 would be exposed to a one-off dose of 300 mSv. Moreover, 500 members
of the general public living in a small town close to the plant would receive a one-off
dose of 200 mSv, while the remaining 5000 inhabitants of the same town would
receive a single dose of 150 mSv. In addition, there would be environmental costs of
£5 bn, covering evacuation, relocation, business disruption, decontamination and

clean up, amongst others. Should the protection system be installed?
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First, it is necessary to determine the average loss of life expectancy resulting from
the accident. The dose to the members of each group, and their respective loss of life
expectancy, is given in Table 15, where it is shown that the average loss of life
expectancy for all those exposed is 0.4 years. These calculations assume a 0%
discount rate. The collective loss of life expectancy is then 2,218 years. It was shown
in Jones and Thomas (2009) [119] that the average change in life expectancy
following a reduction in accident frequency over the lifetime at risk is approximately
equal to the product of the average loss of life expectancy following a single
accident, the lifetime and the change in frequency. Performing this calculation, the
average change in life expectancy over the life of the plant with the given accident
reduction is then 3.99x10™ years, and the collective change in life expectancy is 2.2
years. The maximum reasonable spend on protection is then 6V = £284,939.

The justifiable spend at risk neutrality can be determined from equation (10.6), as:
Bo = £3,165,746. It was shown in Thomas et al (2010a) [191] and Thomas and Jones
(2010) [192] that the maximum risk multiplier in this situation is m; max = 1.34.
Hence from equation (10.7), 6Zg = £4,242,100.

If it is assumed that the cost of the protection system can be partitioned into human
costs and environmental costs, then it is possible to calculate the J,-value. Suppose
that, of the total amount SW , an amount 3xJVy has been apportioned to human
protection, where the factor of three may arise because of considerations of societal

risk or gross disproportion. The J,-value is then:

oW —36V,  £4,500,00 — £854,817
5 £4,242,100

J, =0.86 (11.1)

and thus, based on financial considerations alone, the scheme would represent good
value for money. However, for a Jr-value analysis, it is necessary to consider all

costs. The Jr-value is then:

A

W £4,500,00 ~
Zo+ N, £4,242100 + £284,939

J; 0.99 (11.2)
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Thus, Jr < 1 and installation of the protection system would be justified.

11.6 J-Value Analysis of the Ancient VTPF

In chapter 2, it was noted that civilisations have been valuing life for millennia. The
earliest known valuations of life date back to ca. 1700 BCE, with the Babylonian
Code of Hammurabi, and 1400 BCE, with the Book of Leviticus. It was found, using
extremely crude calculations, that these Ancient VTPF’s were around £100-£400, in
current prices. It is possible to perform a rudimentary J-value analysis of these
valuations to determine the cost-effectiveness of the health and safety policies of
ancient civilisation. Of course, the analysis will not have a high degree of accuracy,

but it may nevertheless prove to be informative.

The J-value of the VTPF is given by a rearranged version of either equation (7.13) or
(7.14). Discounting will not be included, and so these equations will be identical.

Therefore:

J- (1—G€X)\/p (11.3)

where Vp will be taken to lie in the range £100-£400. Estimates of the world GDP
per person have been made for times stretching back to 1 Million BCE [47]. For
1600 BCE (the closest date to the VTPF estimates), the global GDP per person is
given as $121, the units of currency are 1990 international dollars. International
dollars are dollars that have been adjusted for purchasing power parity (PPP). This
can be converted into 1990 UK pounds by multiplying by the ratio of current UK
GDP to UK GDP measured in international dollars, which is given by the IMF
(2011) [114]. This ratio is about 0.645. The figure can then be adjusted for inflation
using ONS time series data on the GDP [153], which amounts to multiplying by
2.26, to give the world GDP per person in 1600 BCE in 2010 UK pounds. This value
is £177. It will be assumed that the world GDP per person in 1600 BCE is a
sufficiently good estimator of the GDP per person in the Mesopotamian and Eastern

Mediterranean region around this time.
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In order to estimate the average life expectancy, life table data from ancient Rome
was obtained [194]. It is assumed the mortality experience in ancient Rome was
similar to that of the civilisations being assessed. The data gives both life expectancy
and the population distribution, from which the average life expectancy can be
calculated. This was found to be 29 years, although the figure is strongly affected by
infant mortality.

The final parameter that needs estimating is the ancient risk aversion, ¢. To estimate
this, it is necessary to first estimate the ancient work-time fraction, w, and the ancient
wage share of the GDP, 6. In section 8.5, it was noted that the wage share is
predicted to be constant over time and across countries. It was also noted that this
has been experimentally verified. It will be assumed, then, that this constant wage
share can be extrapolated back to ancient civilisations. As the UK wage share was
found to be about 58%, it will be assumed that the ancient wage share is similar to
this. A rounded figure of 60% will therefore be used. The work time fraction is
estimated by assuming that individuals would spend the majority of their life
working, and so would have little free time. If it is assumed that an individual will
commence work at age 8, and will work for the rest of his life, until age 50, and that
he will work for one hundred hours a week, then his work-time fraction will be 0.5.
Similar figures would also apply to most individuals in the society, so that this figure
would be appropriate as an average work time fraction. This then enables the risk

aversion to be calculated. However, this raises an immediate problem.

With the figures given above, the risk aversion is about -0.7, i.e. it iS negative,
indicating risk seeking behaviour. So far, it has been assumed that the fraction of
time spent working will be low enough to give risk averse behaviour, which in turn
is required if the law of diminishing marginal utility is to be satisfied. This law, that
successive amounts of a commodity will be valued at a diminishing rate, is one of
the most well established laws in utility theory. However, in the situation where
considerable proportions of an individual’s life would be spent working, then risk
aversion is negative, and the marginal utility increases with the amount of
commodity. Thus, in order to proceed with this analysis this law must be given up

here. However, the effect of long working hours being associated with risk seeking

-213-



behaviour and increasing marginal utility is an interesting result which may be

considered further in the future.
Thus, the J-value of the ancient VTPF may now be calculated:

J:(1—5)\4, O L17xV, OV,

GX £177x29 £3,000

(11.4)

thus, for values of Vp in the range £100 - £400, the J-value of the VTPF is in the
range 0.03 — 0.13. If the work-time fraction is varied up to a high value of 0.8, then
the J-value is still considerably less than unity, at 0.52. Thus, this fairly rudimentary

analysis indicates that the ancient VTPF’s were cost-beneficial.
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Figure 26 Dose received by individual of age a who is undergoing scans at future age t.
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Figure 27 The response of the additional risk faced by an individual of current age a at future age t,
following an exposure type given in Figure 26.
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Regulatory Lung Silicosis Lung Silicosis Total Life
Exposure Cancer Deaths Cancer Life-Years| Years
Limit (mg. Deaths Avoided Life- Gained Gained,
m?) Avoided Years NoX (+1
Gained S.D)
i)0.3 36 36 497 262 759
(£29.2)
i) 0.1 185 185 2,553 1,348 3,900
(x150)
iii) 0.05 300 300 4,139 2,186 6,325
(£243)
iv) 0.01 455 455 6,278 3,315 9,593
(£369)

Table 11 Deaths avoided and life-years gained for the four exposure limits from HSE’s assessment of
methods to reduce occupational exposures to respirable crystalline silica.

Regulatory Exposure Average Cost of Scheme J-value (95%
Limit (mg.m™) (EM) (1 S.D) Tolerance Limit
- +2 6,/J)
i) 0.3 5.2 (x0.05) 0.050 (0.048-
0.058)
i) 0.1 644.0 (£3.06) 1.3(1.2-1.4)
iii) 0.05 3,528.0 (+38.3) 4.3 (3.9-4.8)
iv) 0.01 13,343.5 (673.2) 11 (9.3-12)
Table 12 Cost of scheme and J-values using Table 11 data.
Proposal to Individual Initial Life Cost, = J-Value (N
Implement change in Expectancy, | 45,000*X | =3,000)
COMARE’s Average Life | X(years) (E) (95%
Recommendations | Expectancy, Tolerance
0X (years) Limit - +2
GJ/J)
8.3x10° 22.3 1,003,500 | 0.31(0.30-
0.33)

Table 13 Data for DH’s proposal to implement COMARE’s recommendations.

Proposal to Annual Cost (£) Annual Life J-Value (95%
Reduce Years Gained, Tolerance
Number of NoX (years) Limit - £2 ¢3/J)
MRSA Deaths

i) 16,050,000 479.0 0.26 (0.25-0.28)
i) 43,320,000 606.6 0.55 (0.52-0.59)

Table 14 Data for DH’s proposal to reduce the number of MRSA deaths.
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Group Group Size Dose (Sv) Loss of Life
Expectancy per
Person (year)

Public 5000 0.15 0.354

Public 500 0.2 0.472

Plant Operators 5 Killed 38.795

immediately

Plant Operators 40 0.3 0.401

Average loss of life expectancy per person, 6.X (years) 0.400

Collective loss of life expectancy, No.X (years) 2,218

Table 15 Loss of life expectancy to public and workers following a notional large nuclear accident.
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