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Abstract 

 

This thesis presents and extends the J-value framework for assessing expenditure on 

risk mitigation, and then applies the method in a comparative risk assessment of UK 

electricity generating systems. 

 

The thesis is split into two volumes. The first volume contains part one, in which the 

J-value framework is introduced and developed. The loss of life expectancy is a key 

parameter in the framework, and general risk models for calculating this parameter 

are developed in terms of exposures and responses. Specific examples of radiation 

and pollution models are also presented. The “Hazard Elimination Premium” is also 

introduced as a useful common metric for risk comparisons. 

 

Part one also contains an assessment of the uncertainty of the J-value and its input 

parameters and it is found that the J-value has an internal accuracy of around 3%, but 

that other, context dependant parameters can degrade this accuracy. A sensitivity 

analysis of the J-value framework also found that the J-value was reasonably robust 

against random variation of the input parameters as well as against the use of 

simplifying assumptions used in the development of the J-value. 

 

The second volume contains parts two and three. Part two describes the comparative 

risk analysis of the electricity generating systems. The analysis is carried out on 

nuclear, coal, natural gas, onshore wind and offshore wind. The analysis assesses 

human mortality impacts arising from the current and future plants over the sixty 

year period from 2010 to 2070 for the entire fuel chain. The results indicate that 

nuclear generally has the lowest impacts, while gas, onshore and offshore wind have 

indicative impacts that are about an order of magnitude greater, although the 

estimates for both wind technologies carry considerable uncertainty. Coal power was 

found to present high impacts compared with the other technologies, mainly as a 

result of pollution emissions. Total nuclear impacts were found to be sensitive to 

assumptions regarding the use of collective dose and the assumptions which are then 

used to calculate impacts. For the most pessimistic case, when world exposures are 

taken, total nuclear impacts increase by about an order of magnitude, which would 

render the risks from nuclear generation comparable with those from gas and wind 

generation. 

 

Part three presents the conclusions, further work, bibliography and appendices. 
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Nomenclature 

 

List of Roman Symbols 

Symbol Meaning Units 

A Assets £ 

AP Productivity constant  

a Age year 

arec Recruitment age year 

aret Retirement age year 

B Cost of risk mitigation system £ 

B0 Risk-neutral maximum reasonable 

spend on risk mitigation system 

£ 

b Constant exposure rate additional deaths/year 

ba Normalised cost of risk mitigation 

system 

 

bcoll Collective exposure rate additional man-deaths/year 

bi Discrete value of normalised cost of 

risk mitigation system 

 

bmax Maximum normalised reasonable 

spend on risk mitigation system 

 

b(x) Exposure rate at time x additional deaths/year 

btot(x) Total individual exposure  

C Cost of accident £ 

c(a) Earnings per year at age a £/year 

ca Normalised cost of accident  

cT Total dose risk coefficient for 

radiation exposures 

Sieverts
-1

 

D Difference in expected utilities  

Da Number of deaths at age a  

Df Linearised discount factor  

D(t) Probability of dying before age t  

D(u1,u2|ε) Difference in initial and final utility at 

given risk aversion ε 

 

da Number of life table deaths at age a  

dr(x) Annual radiation dose Sieverts/year 

E Emission rate μgs
-1

 

aÊ  Number of deaths calculated from 

survival proababilities based on 

specific model 

 

E(u1) Initial expected utility  

E(u2) Final expected utility  

ea Life expectancy at discrete age a year 

F Expected remaining free time year 

F(a) Expected remaining free time at age a year 

f Average free time fraction  
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f0 Optimal free time fraction chose by 

society as a whole 

 

fd(t) Probability density for death year
-1

 

fmale Fraction of population that is male  

fM(y) Probability density that the excess 

mortality resulting from a given 

exposure occurs at time y 

year
-1

 

fT(η) Total probability density for death at 

time η 

year
-1

 

G GDP per person £/year 

GC National GDP £/year 

g(ba, ε) Derivative of reluctance to invest  

g(x) Probability density for death at time x 

from given exposure 

year
-1

 

gd(t|a) Probability density function for death 

at age t given survival to age a. 

year
-1

 

gw fraction of time spent working for 

average person in work 

 

gw(t) Fraction of time spent working for 

average person of age, t, and in work 

 

H Population entropy  

HT Total man-hours worked in all 

populations 

hours 

Hw(t) Total man-hours worked at age t hours 

h(a) Hazard rate at age a year
-1

 

hw(t) Individual hours worked at age t hours 

J Judgement value  

Jp(x) Jump function for response to 

exposure 

 

JT Total judgement value  

J2 Second judgement value  

K Capital investment per person £ 

KC National capital investment £ 

k Expected number of accidents as used 

in the Poisson distribution 

 

krad Distributed radiation risk coefficient year
-1

 

kpoll Pollution risk coefficient μg
-1

m
3
 

k1 Constant  

k2 Constant  

LC National labour supply man-year 

la Number of life-tables survivors to age 

a 

 

ma Discrete central rate of mortality at 

age a 

 

ma
male

 Male central rate of mortality at age a  

ma
female

 Female central rate of mortality at age 

a 

 

mrlow Low value of risk multiplier  
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mr.max Maximum risk multiplier  

N Number of people affected by 

protection system 

 

NC Number of people in a country  

NPop Total size of a given population  

Npy Annual person-years worked  

na Mid-year population at age a  

n(a) Size of population at age a  

nw(t) Number of people working at age t  

O Electrical energy output Gigawatt-year (GWa) 

pL Price of labour £/year 

p(a) Population density at age a year
-1

 

psw(t|a) Probability for being employed at age 

t given survival to age a 

year
-1

 

pw Average probability of being in work 

for all persons of working age 

 

pw(t) Probability for being employed at age 

t 

year
-1

 

p
(y)

λ Probability density of y accidents 

occurring with frequency λ 

 

p1 Initial no-accident probability  

p2 Final no-accident probability  

Q Life-quality index  

Qf Life-quality index in terms of income 

and free time fraction 

 

Qf,d

 
Discounted life-quality index in terms 

of income and free time fraction 

 

fQ
 

Constant value of life-quality index 

on an indifference curve 

 

QX Life-quality index in terms of income 

and life expectancy 

 

XQ  
Constant value of life quality index 

on an indifference curve 

 

Q1 Version of life-quality index  

Q2 Version of life-quality index  

q Elasticity parameter  

qa Probability of death at age a  

R(a) Expected utility for individual of age, 

a 

 

Rr Restoration requirement  

Rr(a) Restoration requirement at age a  

R120A Reluctance to invest  

r Net discount rate year
-1

 

rd Discount rate year
-1

 

rg Growth rate year
-1

 

S(a) Survival probability to age a  

S(t|a) Survival probability to age t given  
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survival to age a. 

T Random age of death year 

TR Release Period year 

t Age, time year 

tav Average age in a population year 

tav
2
 Average square age in a population year

2
 

tav
3
 Average cubed age in a population year

3
 

ta+.ave Average age of those above age a year 

tw.av Average working age year 

U(G) Utility of income, G  

u0(ε) Initial utility at risk aversion ε  

VD(xd) Value of a delaying a fatality by xd 

years 

£ 

Vp(a) Value of temporarily preventing a 

fatality for someone of age a 

£ 

Vp Value of temporarily preventing a 

fatality for someone of unknown age 

£ 

Vp.av Average value of temporarily 

preventing a fatality 

£ 

W(a) Cumulative hazard rate at age a  

w work-time fraction  

w0 Optimal work-time fraction chosen by 

society as a whole. 

 

X Average life expectancy year 

Xd Average discounted life expectancy year 

X(a) Life expectancy at age a year 

Xd(a) Discounted life expectancy at age a year 

x Time year 

xd Discounted delayed time until death year 

Y Random number of accidents  

y  Time elapsed since induction year 

yw Work-life expectancy year 

yw(a) Work-life expectancy at age a year 

zp Normal quantile function  

zw(t|a) Fraction of time someone of age, a, 

can expect to be working at age, t 

 

 

List of Greek Symbols 

Symbol Meaning Units 

α1 Constant  

β Constant  

γ Constant  

δbi Step size for normalised cost of 

protection system 

 

δc(x) Increase in concentration levels μg.m
-3

 

δdis Discrimination limit  

δG Maximum reasonable change in a £/year 
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person's income as a result of spending 

on a health and safety scheme that will 

extend his life 

δGN Maximum reasonable change in a 

group of N people’s income as a result 

of spending on a health and safety 

scheme 

£/year 

δhabs(t|a) Absolute change in hazard rate at age t 

given survival to age a. 

year
-1

 

δhrel(t|a) Relative change in hazard rate at age t 

given survival to age a. 

year
-1

 

δVN Maximum reasonable spend on a 

protection system for N people who 

will experience a gain in life 

expectancy of dX  

£ 

NV̂  Actual spend on protection system. £ 

δW(t|a) Change in cumulative hazard rate at 

age t given survival to age a 

 

Ŵ  Actual spend on risk protection system 

that protects against physical and 

financial risks 

£ 

δXcoll Collective loss of life expectancy man-year 

δXd Change in average discounted life 

expectancy 

year 

δXd(a) Change in average discounted life 

expectancy at age a 

year 

δZR Maximum reasonable spend on 

financial risk mitigation systems 

£ 

Ẑ  Actual spent on financial risk 

mitigation system 

£ 

δε Step size for risk aversion  

δχ(a) Change in random life to come at age 

a 

year 

ε Risk aversion coefficient  

εmax Maximum risk aversion  

εpp Permission point  

ηf Elasticity of free time fraction with 

respect to income 

 

ηMU Elasticity of marginal utility with 

respect to income 

 

ηX Elasticity of life expectancy with 

respect to income 

 

θ Share of wages in the GDP  

Λ(x) Number of deaths at time x  

λ Hazard rate when deaths are 

exponentially distributed 

year
-1

 

ν Deposition velocity ms
-1
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νd(xd) Value of a discounted life-year £ 

νave Average value of a life-year £ 

π1 Initial accident probability  

π2 Final accident probability  

ρ Population density persons/m
3
 

ρf,g Correlation coefficient between 

parameters f and g 

 

ζf Standard deviation for parameter f units of f 

η Age year 

ϕ0(y) Response function year
-1

 

χ Random life to come when age is 

unknown 

year 

χ(a) Random life to come at age a year 

2

1k  
Chi-square test statistic with k – 1 

degrees of freedom 

 

Φ
-1

(p) Inverse normal cumulative distribution 

at value p 

 

ψ0(x) Prolonged response function  

ψ1(x) Integrated prolonged response function  

ψ2(x) Twice integrated prolonged response 

function 

 

Ω Duration of long exposure year 

ω1 Time to start of response to exposure year 

ω2 Time to end of response to exposure year 

 

List of Abbreviations 

COE Compensation of Employees £/year 

GDP Gross Domestic Product £/year 

MI Mixed Income £/year 

MRS Marginal rate of substitution  

RR Relative risk  

VODLY Value of a discounted life-year £ 

VODLYA Average value of a discounted life-

year 

£ 

VTPF Value of temporarily preventing a 

fatality 

£ 
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Chapter 1 Introduction 

 

1.1 Statement of Problem 

The purpose of the research contained in this thesis is to use the J-value framework 

to assess and compare the risks from diverse methods of electricity generation in the 

UK. 

 

1.2 Aims and Objectives 

The aims of this research are: 

1. Validate the J-value framework as a suitable and robust tool for risk 

assessment and analysis. 

2. Compare, in a consistent manner, the risks posed by various electricity 

generating systems in the UK using the J-value framework. 

 

It is intended that these aims will be achieved through the following objectives: 

1. Extending the existing framework by incorporating more general risk models 

in the loss of life expectancy calculations, and conducting uncertainty and 

sensitivity analyses. 

2. Use the J-value framework to develop a common metric that can be used to 

compare the risks from electricity generating systems on a consistent basis, 

i.e. in such a manner that does not bias the results towards any particular 

electricity generating system. 

3. Develop a framework for the comparative risk analysis that will incorporate 

all relevant risks involved in the generation of electricity for each system in a 

manner that will ensure a fair and valid comparison. 

 

1.3 Structure  

To achieve the aims and objectives set out above, it has been necessary to separate 

the comparative risk analysis from the development of the J-value framework. The 

thesis thus has three parts. Part one is the valuation of health and safety, in which the 

J-value is presented and developed. The first chapter in part one considers the 
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historical context and existing literature in this field. The subsequent chapters then 

describe in detail the concepts and methods used in deriving the J-value, and develop 

them further. Areas in which the existing framework is developed further include: 

 A new derivation of the J-value through consideration of the trade-offs made 

at an individual and societal level. 

 Generalised relative and absolute risk models of the loss of life expectancy 

following any given exposure and response pattern. This model is also 

applied to the specific case of pollution risks. 

 A more rigorous treatment of the measurement and estimation procedures for 

the parameters used in the J-value framework, including an assessment of the 

tolerances to be placed on each parameter. 

 Introduction of the concept of a “Hazard Elimination Premium”, which is the 

maximum reasonable amount to spend to completely eliminate a hazard. The 

HEP is used extensively in the second part of the thesis. 

 A sensitivity analysis of the J-value framework, in which the robustness of 

the J-value given the initial assumptions and uncertainty of some of the input 

parameters is assessed. 

 

The J-value has been recently extended by Thomas et al (2009, 2010) [190], [191], 

[192] to include mitigation of financial risks in addition to physical risks. These 

concepts come together to form a “total judgement value”, or JT-value. The model 

behind this extension is shown, and the computational methods employed to 

calculate some of its outputs are also presented. Part one then concludes with some 

example calculations. 

 

The second part of the thesis applies the methods laid out in part one in a 

comparative risk analysis of UK electricity generating systems. The analysis is 

carried out on five electricity generating systems in the UK: nuclear, coal, natural 

gas, onshore wind and offshore wind, and uses the hazard elimination premium to 

compare each technology on an equal footing. This section opens with a literature 

review, before discussing the technical procedures of the report, such as scope and 

the assumed boundaries of the assessed systems. This is followed by the analysis of 

risks from nuclear, fossil fuels, and the wind technologies. Part two concludes with 
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the overall results, comparisons with other studies and a discussion of the 

significance and limitations of the results.  

 

The third and final part of the thesis considers the overall conclusions, and whether 

the aims and objectives have been met in answering the research problem. Areas 

requiring further work are also identified and discussed. Part three also contains the 

bibliography and appendices. 

 

 

  



 -27-  

 

Part 1 Valuing Health and Safety 

 

Individuals have always traded risks to their health and life in order to obtain other 

benefits. These trades reflect how the individual values his or her life. In a modern 

democratic society, it is necessary to make decisions about public safety that 

invariably affects the health and the wealth of many individuals. There is now 

widespread consensus that any such method used to aid the decision making process 

regarding public safety should reflect as far as is possible the preferences which the 

individuals in a society place upon their safety. Any such method must be fully 

consistent in the way that risks are valued, and should also be transparent. Currently 

the most widespread method used for valuing risks are stated preference techniques 

used to elicit an individual’s willingness to pay (WTP) for a given risk reduction. 

The advantages and disadvantages of this method have been summarised in the 

preceding section. The purpose of this thesis is to describe a relatively new technique 

for valuing risks known as the “J-value” method, developed by Thomas et al (2006) 

[182], [183], and (2009) [188].  

 

The J-value method values risks by using the Life Quality Index (LQI), which is an 

indicator for measuring the development of nations, and was developed by Pandey, 

Nathwani and Lind (1997) [137], (2004) [157] and (2006) [158], as a means to test 

the efficiency of risk management decisions. The central postulate of the LQI 

methodology is that the two primary determinants of an individual’s quality of life is 

how much free time he can expect to enjoy from now on, and how much he will have 

available to spend over this period. The relative importance of these two factors is 

then determined by using labour market data to analyse society’s preferences for 

how it allocates its time. It is assumed that an individual can choose how much time 

he wishes to work for, and accordingly how much free time he has. The more 

importance he places upon his free time, the less time he will spend in work. 

Conversely, if his preferences are for more money available for consumption, he will 

spend more time in work. Thus, the proportion of time which the average individual 

will choose to spend in work from now on can be used to weight the two factors 
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appropriately. A value for risk can then be inferred by insisting that any decision that 

changes a society’s average life expectancy and income (measured by the GDP per 

person) must at least preserve the initial LQI, and preferably increase it, i.e. the 

change in the LQI must not be negative. If a protection system is known to afford a 

given increase in life expectancy to a group of individuals, then the constraint on the 

change in the LQI places an upper bound on the amount of money that should be 

spent on implementing the scheme. This maximum value can then be taken as 

representing the societal cost of risk. If the actual cost of the protection system is 

known, then the J-value is the ratio of this cost to the societal cost. The J-value is 

therefore a dimensionless positive number. J-values of less than unity indicate that 

the protection system costs less than the maximum theoretical cost of risk, and so 

represent good value for money. Implementing these schemes will result in an 

increased LQI. J-values greater than unity indicate that the cost of the protection 

system is greater than the theoretical maximum, and hence should not be 

implemented. The J-value can be seen to be a scale on which safety projects and risk 

policies may be judged. The scale is universal, in the sense that it is not specific to 

any single industry, and all the input parameters are fully objective quantities, most 

of which are derived from reliable national and actuarial statistics. The J-value, being 

a single dimensionless number, is also transparent and easily interpreted.  

 

The J-value framework has also been extended recently (2010) [192] to include 

financial risks to assets. This is formulated around an expected utility model, which 

can be used to determine objectively the risk preferences of the individual or 

organisation facing the risk, which can then be used to determine the maximum 

reasonable spend on eliminating the risk. 

 

Chapter 3 describes the conceptual foundations of the J-value method in depth, and 

shows how the J-value can be derived based on considerations of the trade-offs 

individuals make between their free time and income, and the trade-off between 

safety spend and life expectancy improvement. Chapters 4 to 6 then introduce the 

methods and techniques required for calculation of the actuarial parameters: the life 

expectancy; the change in life expectancy and the work-life expectancy. It is also 

shown how the latter parameter can be used in calculating the work-time fraction: a 

key parameter in the J-value framework. Chapter 7 describes how the J-value can be 
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used to infer common metrics of the value of life, namely the value of temporarily 

preventing a fatality (VTPF), and the value of a discounted life-year (VODLY), and 

also introduces the “Hazard Elimination Premium” (HEP), which will be used 

extensively in part 2 of this thesis. Chapter 8 presents the measurements of all the 

necessary input parameters to the J-value, and also provides an assessment of the 

tolerance limits of the J-value. In chapter 9 a sensitivity analysis is performed to 

assess the robustness of the J-value to the underlying assumptions. Chapter 10 gives 

an introduction to the J2 and JT-values, and describes how the maximum reasonable 

spend on financial risks can be determined. Finally, chapter 11 presents some 

example calculations, demonstrating the general nature and applicability of the J, J2 

and JT-value methods.  
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Chapter 2 Historical Context and Existing Literature 

 

The valuation of health and safety schemes, proposals or policies must also reflect 

the value to be placed on physical risk, and consequently, the value placed on human 

lifespan. In this section, some of the historical and more recent literature of such 

valuations will be reviewed. Particular focus will be given to the various 

methodologies that have been used to value these risks. It is common practice to 

express risk valuations in terms of how much should be spent on avoiding one 

statistical fatality, a measure commonly known as the “value of a statistical life” or 

the “value of preventing a fatality”. However, the latter term is somewhat 

misleading, as preventing a fatality is in the long run impossible – all individuals will 

eventually die. It is for this reason that, for the purposes of this thesis, the term 

“Value of Temporarily Preventing a Fatality” (VTPF) will be used. Although there 

are many ways to calculate the VTPF, one of the most common methods is the 

following: if it has been determined that each member of a population of size N is 

willing to pay £v to eliminate a risk that has a probability of 1/N of killing each 

member, then an amount totalling £Nv is willing to be spent on eliminating a risk 

that is expected to kill one person. Therefore, the VTPF = £Nv. The VTPF is usually 

an input into health and safety decision making. However, this is not the case in J-

value analysis – the risk valuation technique that is the main concern of this thesis – 

where the VTPF is an output that can be calculated if so required. 

 

The earliest known valuations of human life can be found in the Babylonian Code of 

Hammurabi (ca. 1,700 BCE) and the Book of Leviticus of the Hebrew Bible (ca. 

1,400 BCE). The former decreed compensation values to be paid by a man that 

assaulted or killed another individual, which were based on the relative social status 

between the offender and the victim. For example, if one man accidentally killed 

another man as the result of an argument, then the offender should pay half a mina to 

the victim’s family if the victim was a freeborn man, or one third of a mina, if the 

man had been a slave but was now free. Using extremely crude calculation methods, 

the VTPF for the free born man is £206, whilst the VTPF for the former slave is 

£137, in 2011 prices [91]. In the Book of Leviticus, values were assigned to 

consecrated individuals based upon the individual’s productive value to society, with 
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males of ages between 20 and 60 being deemed the most valuable, at 50 shekels of 

silver. Females of these ages were valued at thirty shekels. This would mean a VTPF 

of £412, and £247 respectively, using the same calculations as before. Individuals 

outside this age group had lower valuations. 

 

The first formal research into the value of life came some three thousand years later, 

but used largely the same methods of valuation. The method of valuing human life in 

terms of an individual’s future productivity and earnings came to be known as the 

“human capital” method. Some of the first authors to investigate this method were 

Adam Smith in 1776 [176], and Ernst Engel in 1883 [74]. A more in depth historical 

review of human life valuation is provided by Dublin and Lotka (1930) [68], who 

also provide a calculation of a VTPF using this approach. They calculate the net 

future earnings of an individual to be approximately $9,802, in 1930 prices, or a 

VTPF of about £82,000 in 2011 prices. This approach suffers from some serious 

ethical problems, such as the zero value of retirees or those who do not work. 

Children are also assigned a relatively small valuation, due to the traditional 

economic method of discounting future earnings. According to Schulze (1980) [174], 

the early attempts at applying this method to value health and safety programs: 

 

“Have given economists a “black eye” for supposedly advocating that individual 

human lives could be valued as the lost economic productivity associated with a 

shortened life span” 

 

These problems have meant that there have been relatively few modern attempts at 

valuing physical risk using this method, the most notable being Rice (1967) [169], 

who used this approach to value the cost to society of illness, disability and death. A 

follow up to this study was published ten years later by Cooper and Rice (1976) [41].  

Lave and Seskin (1970) [127] have also used this method to value the societal cost of 

air pollution. 

 

The human capital approach is an example of one methodology that has been used as 

a procedure for valuing mortality risks in a consistent manner. Another important 

methodology that is now widely used is the “willingness to pay” (WTP) method. At 

the foundation of this method is the belief that public sector decisions regarding how 
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to mitigate risks to society should reflect the degree to which the individuals are 

willing to pay to do so. Precisely how much an individual is willing to pay must be 

determined through techniques that can be classed as either “revealed preference” or 

“stated preference”.  

 

Stated preference techniques involve eliciting an individual’s WTP by direct 

questioning, and can be further sub-divided into the “contingent valuation” (CV) 

method and the “choice experiment” (CE) method. The CV method involves simply 

asking a representative sample of individuals how much they would be willing to 

pay to reduce a particular risk, whilst the CE method involves indirectly deducing an 

individual’s WTP by presenting him with a series of hypothetical alternative 

scenarios, which the individual then orders in terms of his preference. This 

preference ordering then allows the experimenter to determine the individual’s 

marginal rate of substitution (MRS) between risk and wealth, which can then be used 

to determine the individual’s WTP for a given risk reduction. Beattie et al (1998) 

[16] published a report that tested the consistency of the CV method, finding that the 

results were dependent upon the way in which the questions were asked. Carthy et al 

(1999) [29] published a follow up study that sought to improve the consistency of 

the results by using a CE method instead, eventually concluding that a VTPF for 

road fatalities of £1 million was most appropriate (about £1.3 million in 2011 

prices). The CV and CE approaches have also been employed by various UK 

regulatory bodies to determine safety policy. In a report for the UK Health and 

Safety Executive (HSE), Chilton et al (2000) [32] used both the CV and the CE 

approaches to establish a WTP “tariff” for risks in different contexts – those from 

roads and other public transport, fires, hazardous substances in the workplace, 

nuclear power, genetically modified organisms and sport and leisure. The HSE then 

commissioned a follow up study, published by Burton et al (2001) [22] following the 

Ladbroke Grove rail accident of October 1999, in order to assess how individual 

attitudes towards risk changed following a major accident. The procedures used in 

this study were essentially the same as in the previous one. A report by Covey et al 

(2008) [44] for The Rail Safety and Standards Board also used the CE approach to 

determine how to value risks that involved multiple fatalities, track worker fatalities, 

child and adult trespasser fatalities, and adult suicides.  
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Stated preference techniques have the advantage that they can be used to estimate the 

value of any type of risk. There are, however, a number of drawbacks. These include 

the tendency for the respondents to give inconsistent answers. For example, as 

briefly mentioned above, the same question can elicit different responses, depending 

on how the question was asked. This is known as the “framing effect”. Such studies 

also usually have to resort to “trimming”, whereby respondent’s answers are 

removed from the sample if the experimenter judges them to be either inconsistent or 

not representative of the sample as a whole. This process violates the ethical and 

democratic principle that all individual’s preferences should be accounted for with 

equal weight, and also undermines the fundamental principle that the VTPF should 

reflect the willingness to pay of society. Perhaps the most severe drawback of the 

stated preference technique is that there is little reason to suspect that an individual’s 

preferences for safety, when elicited in an isolated environment devoid of the vast 

array of factors that are confronted in everyday life, will be representative of how the 

individual makes decisions about his safety in reality.  

 

Revealed preference techniques involve inferring the individual’s WTP for safety 

from his or her behaviour. The two most popular methods of doing so are the 

“compensating wage” method and the “avertive behaviour” method. The 

compensating wage method, which is the most widely used of all WTP methods, 

uses data from the labour market to assess the wage differentials for jobs with 

varying health and safety risks. It assumes that employees understand the nature and 

magnitude of the risks involved, and make informed choices that reflect their 

preferences for physical risk. Viscusi and Aldy (2003) [198] published a 

comprehensive review of compensating wage studies, showing that there was quite a 

large disparity in the VTPF, from around £3 million to £55 million, in 2011 prices. 

Avertive behaviour methods use price data of various risk reducing items, such as 

smoke detectors and seatbelts to determine WTP. It is assumed that the cost of 

buying one extra item is equal to the value of the associated risk reduction. Viscusi 

(1993) [197] reviewed seven such studies that inferred a value of risk from cigarette 

smoking, property prices in less polluted areas, and prices of inherently safer 

automobiles. The VTPF calculated using this method ranged from £0.6 million to £4 

million, in 2011 prices. The advantages of the revealed preference techniques are 

that they use fairly reliable data, which accounts for the behaviour of many 
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individuals, and much of which is freely available. The techniques also reflect to 

some degree decisions based on real-world choices, as opposed to the isolated 

decisions elicited by the stated preference techniques discussed above. The 

disadvantages of these techniques are that the assumptions regarding wage 

differentials being caused by differing levels of safety, and the price of a risk 

reducing item being equal to the value of the risk, are implausible. Clearly, many 

factors can affect wage levels and prices. The assumption that employees make 

considered decisions about whether to take a job based only on wage and safety 

considerations is also doubtful. The difficulties of these assumptions are borne out 

by the large range of the VTPF calculated in this manner.  

 

Another method of valuing physical risk that has been developed recently is based 

on the Life Quality Index (LQI) method, first developed in 1997 by Nathwani, Lind 

and Pandey [137], [157]. The LQI is a summary indicator that can be used to 

measure the development of a nation, based on its Gross Domestic Product (GDP) 

per person, and its average life expectancy. By insisting that any protection system at 

least maintains the initial LQI, a maximum reasonable cost for the system can be 

determined. This cost is then the societal value of the given risk reduction. The 

calculation involves using labour market data to infer how individuals prefer to 

distribute their time between working, in which income is raised, and leisure, in 

which the income is consumed. In this sense, the LQI method can be seen to be a 

revealed preference technique for determining the societal WTP for risk reductions. 

 

More recently, the LQI method has been expanded by Thomas et al in 2006, [182], 

[183] who introduced the “J-value method” for use in risk management and 

assessment, and which is the central concern of this thesis. The J-value is the ratio of 

the actual cost of a given risk reduction scheme, to the maximum cost of the risk 

given by the LQI method, and is therefore dimensionless. A J-value of less than 

unity indicates that the risk reduction scheme costs an acceptable amount, and should 

therefore be implemented, whilst a J-value of greater than unity indicates that the 

scheme is too expensive, and would impact society’s quality of life adversely. This 

method can also be used to calculate a VTPF of £2.5 million in 2011 prices, and with 

a 2.5% per annum discount rate. This method has been used to value and assess risks 

from a diverse range of sources, such as railway protection systems, the cost-
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effectiveness of drugs, and radioactivity abatement systems. Much of the initial J-

value research centred around radiation protection, in which the exposure to 

radiation and subsequent mortality response was stochastically modelled in order to  

determine the loss of life expectancy from a given exposure to ionising radiation, see 

Thomas et al (2006) [184], (2007) [185] and (2009) [186], [187].  

 

Further recent developments of the J-value method include an extension of the 

method to include valuation of environmental risks (2010) [192], and an analysis of 

the tolerance of the J-value(2010) [123]. The main advantages of the J-value method 

are that the input parameters are objective, being estimated from actuarial or national 

statistics. The method is also transparent, the output being a simple dimensionless 

number that is easy to interpret. It is also consistent, offering a simple scale by which 

risks can be assessed. The disadvantages of the method are that it only values 

mortality risks, and cannot be used to assess morbidity, or non-fatal risks. Nor does 

the method account for the pain or suffering which may be experienced over the 

individual’s remaining lifespan, for example, by using “Quality Adjusted Life-

Years” (QALYs) that are used in health economics. 

 

The various methods of valuing mortality risks are summarised in Table 1. 
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Method Examples of Major 

Publications 

VTPF 

(2011 £) 

Advantages Disadvantages 

Human 

Capital 

Dublin and Lotka [68] 

Rice, [169] 

Cooper and Rice, [41] 

~82,000 

 

Can be easily 

calculated 

from labour 

market data. 

Severe ethical 

problems. Those 

who do not work 

have no value. 

WTP – 

Stated 

Preference 

Beattie et al, [16] 

Carthy et al, [29] 

Chilton et al, [32] 

1,300,000 Can be used to 

value any type 

of risk.  

Vulnerable to 

framing effects. 

The practice of 

“trimming” raises 

ethical issues. 

The answers of the 

respondents are out 

of everyday 

context and may 

therefore not be 

representative of 

true preferences. 

WTP – 

Revealed 

Preference 

Viscusi, [197] 

Viscusi and Aldy, 

[198] 

600,000 – 

55,000,000 

Uses reliable 

labour market 

data that 

accounts for 

large numbers 

of people. 

Data accounts 

for behaviours 

in everyday 

context. 

Assumption about 

the wage 

differential 

reflecting the risk 

level is 

implausible. 

Assumption that 

the price of a risk 

reducing 

commodity is 

equal to the value 

of the risk is also 

implausible. 

LQI/ 

J-Value 

Pandey and Nathwani, 

[157][158]  

Thomas et al, 

[182][183]  

2,600,000 Input 

parameters are 

objective.  

National and 

actuarial data 

is used that 

accounts for 

millions of 

people. 

Output is 

transparent.  

Does not account 

for morbidity risks 

or QALYs. 

Table 1 Summary of literature on valuation of mortality risks. 
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Chapter 3 Conceptual Foundations of the J-Value 

3.1 The Life Quality Index 

It is impossible to determine each and every factor required to ensure that the highest 

quality of life may be enjoyed by all individuals. There are a vast amount of 

variables that influence an individual’s welfare, and exactly what is entailed by a 

high quality of life is entirely subjective. Any rational analysis of such a complex 

and indeterminate concept must attempt to make an appropriate simplification by 

identifying the key factors which underlie the concept of quality of life. It is 

postulated that the quality of life of an individual can be distilled into two 

fundamental factors: how long an individual can expect to live from now on, and 

how much the individual has available to spend, both on life’s necessities and on its 

luxuries. The first of these factors is encapsulated in the life expectancy, X, which is 

measured in years. This factor may be distilled further by recognising that 

individuals generally enjoy their life during time that they are free to dispose of as 

they wish, in contrast to time that is spent working. 

 

For many people, the distinction between working time and free time is an arbitrary 

one, as people often engage in productive work even though they are not compelled 

to do so. Nevertheless, individuals will generally wish to retain flexibility over how 

they choose to spend their time. The productiveness of a society may be viewed as 

the result of a complex trade-off that each individual makes between working time 

and free time. In this trade-off the benefit gained from extra income obtained by 

working longer hours is balanced against the cost of loss of free time. This suggests 

that a more precise indicator of quality of life can be obtained by replacing the life 

expectancy with the remaining average free time, F, where: 

 

  XwF  1  (3.1)   

 

in which w is the average fraction of time spent working from now on. The amount 

available to an individual to spend on consumption can be represented by a summary 

measure of average income. This is taken as the Gross Domestic Product (GDP) per 

person, G (£/year). This figure is chosen for ethical reasons, namely that everyone 
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within the nation is treated equally with regards to income. Thus, free time and 

average income are taken as being the two main inputs contributing to the single 

output of quality of life. In economic theory, inputs are related to outputs through a 

“production function”, the most common of which is the Cobb-Douglas production 

function, (see e.g. Johansson (1991) [117]). If the output is denoted, Q1, and 

represents a “life quality index” of an average person, then G and F are related to Q1 

by: 

 

 
 FGQ 11   

(3.2)   

 

where α1, β and γ are dimensionless positive constants. A property of the Cobb-

Douglas function is that any monotonic increasing function of Q1 will also suffice as 

a life quality index. This property is then used to define a second life quality index, 

Q2: 

 

  XwGFG
Q

Q qq 







 1

1

1

1
2




 (3.3)   

 

where q = β/γ is a dimensionless positive constant, and where equation (3.1) has 

been used in the last step. It may also be noted that the work time fraction is the 

complement of free time fraction, f: 

 

  wf  1  (3.4)   

 

which allows equation (3.3) to be recast as: 

 

 fXGQ q  (3.5)   

 

where Q is used instead of Q2, as this is the most general form for the life quality 

index, and will be used in much of the following derivation. Equation (3.5) expresses 

three important considerations for an individual: how long he will live for, the 

fraction of his remaining time which is free for him to dispose of as he wishes, and 
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the amount of money available to spend over this time. The potential for trade-offs 

between these three factors will now be considered. Firstly, it is assumed that free 

time fraction and life expectancy cannot be substituted. However, there are some 

very low values of f which would be associated with a reduced level of life 

expectancy due to overwork. This presumably is not an issue for most individuals. It 

therefore seems reasonable to assume that f and X are independent of one another. 

Two important trade-offs remain, however. These are the trade-off an individual can 

make between income and free time fraction, i.e. between G and f, and the trade-off 

between income and life expectancy, i.e. between G and X, which occurs when 

spending on a risk reducing protection scheme, or indeed, accepting compensation 

for a reduced life expectancy (for example via higher wages in a high risk job). 

 

Consideration of these trade-offs leads to the concept of a maximum reasonable 

spend on safety and protection systems. This then allows a judgement or J-value to 

be assigned to such a system, which can be expressed as a single equation. Although 

the J-value has been derived before from different principles (e.g. see Thomas et al 

(2006a) [182]), the following is a new derivation based upon standard economic 

theory
2
. The independence of f and X means that the two tradeoffs described above 

can be considered separately, as will be done in the following sections. 

 

3.2 The Trade-Off between Free Time Fraction and Income 

In exploring the free time fraction-income trade-off, it is assumed that any such trade 

does not affect the individual’s life expectancy. This means that a new life quality 

index, Qf, can be formed by dividing the original life quality index, equation (3.5), 

by X, without loss of generality: 

 

 fG
X

Q
Q q

f 
 

(3.6)   

 

This new life quality index is introduced in order that the features of the trade-off 

can be explored explicitly. It is apparent from equation (3.6) that it is possible for an 

                                                 

2
 Much of this chapter is based upon a paper published by Thomas, Jones and the present author, see 

Thomas, Jones and Kearns (2010) [189]. 
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individual to exchange his income for free time, whilst still retaining his original life 

quality index. The set of values of G and f that will render a constant level of life 

quality, which will be denoted as fQ , is known as an “indifference curve”, as it is 

assumed that the individual is indifferent to how his level of life quality is attained. 

The indifference curve must satisfy: 

 

 fGQ q

f   
(3.7)   

 

which can be solved for f or G. Here it will be solved for G, to obtain: 

 

 
q

q

f

f

Q
G

1

1



 

(3.8)   

 

One property of equation (3.8) is that there are an infinite number of indifference 

curves, with each one representing a different level of life quality. Also, none of 

these indifference curves intersect one another. The indifference curve is also 

convex, meaning that the function will always lie below a straight line drawn 

between any two points on the line. Convexity of indifference curves directly implies 

a diminishing marginal rate of substitution (MRS) of free time fraction for income. 

This is the amount of income that must be exchanged for a unit of free time fraction, 

and is given as: 

 

 
  qf

G

qf

Q

df

dG
MRS

q

q

f


11

1

 

(3.9)   

 

Equation (3.9) clearly shows that the MRS diminishes with increasing levels of free 

time fraction. The implication of a diminishing MRS is that the higher the free time 

fraction enjoyed by the individual, the less willing the individual will be to give up 

some income in order to increase free time fraction further. 

 

The amount of income generated by the labour market may also be formally linked 

to national average free time fraction by modelling a country’s domestic product. 
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This is done by again using a Cobb-Douglas production function, following Pandey 

et al (2006) [158]. The output in this instance is the national GDP, denoted as GC, 

and the factors of production are the national capital investment, KC, and the annual 

supply of labour within the country, LC: 

 

 

CCPC LKAG  1

 (3.10)   

 

where AP is a productivity constant, that accounts for other factors affecting 

production, such as technological advancements and education level. The other 

parameter θ is the fraction of the GDP paid to workers as wages, as will now be 

shown: 

 

The price of labour, pL, is the marginal GDP with respect to labour supply, at 

constant levels of productivity and capital, i.e.: 

 

 
C

C

C

C
L

L

G

dL

dG
p




 
(3.11)   

 

so that: 

 

 
C

CL

G

Lp


 
(3.12)   

 

The numerator in equation (3.12), which is the product of the price of labour and the 

labour supply, is the total wages paid to employees. Thus equation (3.12) shows that 

θ is the wage share of the GDP.  

 

Furthermore, the supply of labour may be seen to be equal to the total population of 

a country, NC, multiplied by the population-averaged work-time fraction: 

 

  fNwNL CCC  1  (3.13)   
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where equation (3.4) has been used in the last step. Substituting into equation (3.10) 

gives: 

 

   fNKAG CCPC   11
 (3.14)   

 

The GDP per person, G, is then: 

 

    



fAKf
N
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G
G

C
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C

C 
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







 



11 1

1

 (3.15)   

 

where K is the capital investment per person. 

 

Equation (3.15) shows that average income is related both inversely and non-linearly 

to the free time fraction. This curve is a constraint that is determined by the 

collective actions of individuals within a society and links the average individual’s 

income to his free time fraction. It will now be assumed that these collective actions 

of a society will be such that the life quality is maximised for the average individual, 

subject to the above constraint. The maximisation occurs when the indifference 

curve defined by equation (3.8) is tangent to the constraint curve defined by equation 

(3.15). This situation is demonstrated in Figure 1, which presents data relevant to 

UK conditions in 2007. This figure shows the downwards curving income constraint, 

and the convex indifference curves. These three curves represent different levels of 

the life quality index, Qf. The highest curve gives the highest quality of life. This 

curve, however, is unobtainable as it always lies above the constraint line. The 

lowest curve has parts that lie within the constraint, but any individual on this curve 

can increase his quality of life within the constraint. Hence the curve that maximises 

life quality subject to the constraint is tangent to the constraint line. The condition of 

tangency is met when the derivatives of the two curves are equal. Figure 1 also 

shows shaded regions where low values of free time fraction or very low income 

levels may compromise the individual’s health, and are therefore excluded. These 

levels are not precisely defined. It is sufficient for these purposes that the trade-off 

occurs outside these shaded regions.  
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If the point of tangency is located at (f0, G0), then the derivative of the indifference 

curve is given by the negative of equation (3.9), evaluated at these points: 

 

 
0

0

, 00

qf

G
MRS

df

dG

Gf



 

(3.16)   

 

The derivative of the constraint line of equation (3.15) is: 

 

 
0
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00

f

G
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(3.17)   

 

Matching the derivatives of (3.16) and (3.17) gives: 
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0
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G
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G
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(3.18)   

 

which can be solved for q, the only unknown parameter. This gives: 
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(3.19)   

 

where, clearly, f0 = 1 – w0. The meaning of the parameter q may be further explored 

by rearranging equation (3.9) to give: 

 

 f
dG

df

f

G
q   (3.20)   

 

which is valid for dG/df > 0. The parameter ηf is the income elasticity of free time 

fraction. Elasticity is a measure of the sensitivity of relative changes in a variable 

following a relative change in another variable. The parameter q thus emerges as the 

modulus of this elasticity parameter. 

 



 -45-  

3.3 The Trade-Off between Income and Life Expectancy 

The second trade-off investigated is between income and free time fraction. The 

nature of this trade-off is different from the first trade-off, which was determined by 

a collective bargaining process made at a societal level. The trade-off between 

income and life expectancy occurs when health and safety schemes are being 

considered. Such a health and safety scheme can be expected to improve life 

expectancy by a certain amount, but at a cost. This cost may be borne by each 

individual in society, even if the individual does not directly benefit from the health 

and safety improvement, in line with the compensation notions of Kaldor (1939) 

[120] and Hicks (1939) [92] (see also Boadway and Bruce (1984) [21] and 

Johansson (1991) [117]). 

 

The income-life expectancy trade-off is assumed to be independent of the free-time 

fraction. This means that a new life quality index, QX, may be formed, in a similar 

manner to equation (3.6), by dividing the general life quality index given by equation 

(3.5) by f, which is now being treated as a constant, rather than as a variable. Hence: 

 

 XG
f

Q
Q q

X 

 
(3.21)   

 

As is the case with the first trade-off, it is possible for an individual to give up some 

income for additional life expectancy, whilst still retaining his initial level of life 

quality. It is also clear that excessive spend on life expectancy improvement will 

reduce the individual’s life quality, whilst suitably small spends will increase life 

quality. Thus the maximum reasonable spend for a health and safety scheme defines 

the indifference curves for this trade-off. The set of values of G and X that define the 

indifference curve at a constant level of life quality, denoted as XQ , must satisfy: 

 

 XGQ q

X   (3.22)  

 

which can be solved for G, to obtain: 
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q

q

f

X

Q
G

1

1

  (3.23)   

 

Equation (3.23) is analogous to equation (3.8), except the variable X is now used in 

place of the variable f. Hence, this equation is also convex in the X-G plane. This 

means that the MRS of life expectancy for income is also diminishing with 

increasing life expectancy, and is given as: 

 

 
  qX

G

qX

Q

dX

dG
MRS

q

q

f


11

1

 (3.24)   

 

Intuitively, this means that the higher the life expectancy the individual enjoys, the 

less willing he will be to give up income in order to raise life expectancy further. 

Equation (3.24) can be rearranged to give:  

 

 
X

dX

q

G
dG   (3.25)   

 

Here -dG is taken as the infinitesimal amount of income which should be exchanged 

for an infinitesimal increase in life expectancy, dX. In practice, these infinitesimal 

changes are replaced by small changes in income and life expectancy of -δG and δX 

respectively. Thus, equation (3.25) becomes:  

 

 
X

X

q

G
G


   (3.26)   

 

where the value of q has been calculated from equation (3.19). Thus, the first trade-

off is used to determine the elasticity parameter q, which is then used in calculating 

the maximum reasonable income an individual should give up to achieve a given 

increase in life expectancy. It may be noted that equation (3.24) can be rearranged to 

give: 

 

 X
dG

dX

X

G
q   (3.27)   



 -47-  

 

which is valid for dG/dX > 0. Equation (3.27) is analogous to equation (3.20). Here, 

the parameter ηX is the income elasticity of life expectancy. Comparing equations 

(3.20) and (3.27), it is obvious that ηX = ηf. The reason why this is may be seen by 

considering the expected free time from now on: 

 

 fXF   (3.28)   

 

The total differential of (3.28) is: 
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so that: 

 

 
X

dX

f

df

F

dF
  (3.30)   

 

In the first trade-off, it was assumed that X was held constant, so that dX = 0. Under 

this condition the relative change in the free time fraction is equal to the relative 

change in the expected free time remaining: 

 

 
constXF

dF

f

df



  (3.31)   

 

while in the second trade-off, the assumption was that f was constant, so that df = 0. 

Here, it is the relative change in life expectancy that is equal to the relative change in 

the expected free time remaining: 

 

 

constfF

dF

X

dX



  (3.32)   

 

Thus equation (3.20) may be re-expressed as: 
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X

f
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dF
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G
q    (3.33)   

 

while equation (3.27) may be re-written as:  

 

 

f

X
dG

dF

F

G
q    (3.34)   

 

Equations (3.33) and (3.34) demonstrate that the income elasticity of expected free 

time remaining is the same in both instances. This suggests that the two considered 

trade-offs are specific instances of a more fundamental trade-off between income 

and expected free time remaining. 

 

3.4 Utility and Discounting in the Life Quality Index 

In each of the life quality indices derived above, one constant feature was the G
q
 

term. For 0 < q < 1, this term has the form of a utility function, known as a “power 

utility”. If utility is denoted U(G), then the utility of income is: 

 

   10            qGGU q  (3.35)   

 

The notion of utility expresses the personal value derived from the consumption of 

goods. The bounds on the value of q are necessary to preserve the law of diminishing 

marginal utility. This economic law is based on the observation that individuals 

value extra gains in commodities more highly when the commodity is scarce than 

when it is plentiful. This law, when applied to the G
q
 term, which represents the 

utility of income, means that the first amount of earnings will give the individual the 

greatest value, as he will be able to afford such essentials as food and clothing. 

Subsequent increases in earnings will then be valued at an ever diminishing rate, as 

the individual will then begin to spend more on life’s luxuries. The marginal utility 

is: 

 

 10              1   qqG
dG

dU q  (3.36)   
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which decreases with increasing income, hence, diminishing marginal utility. An 

important economic parameter derived from utility theory is the income elasticity of 

marginal utility, ηMU. This is given by: 
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(3.37)   

 

The negative value of this quantity (which is more useful because it is positive) has 

been studied extensively, and is used by the Treasury to determine how to 

appropriately discount future effects, see [95]. This negative elasticity has also been 

shown to be identically equal to a parameter known as the “coefficient of relative 

risk aversion”, or “risk aversion” for short [12], [164]. This parameter describes a 

person’s attitude towards risk. If a person has a risk aversion of zero, then he is 

described as “risk neutral”. Higher values of risk aversion indicate that the individual 

is willing to pay greater amounts in insurance to protect against risk. If the risk 

aversion is denoted as ε, then it is given as:  

 

 10           1   qMU
 (3.38)   

 

As risk is the central focus of this research, the risk aversion parameter is judged to 

be a more relevant way of describing and assessing risk, and will replace the 

elasticity parameter, q. The bounds on the risk aversion and the elasticity parameter 

are a consequence of the use of the power utility function of equation (3.35). The 

upper bound on the risk aversion can be removed by instead using a more general 

utility function first introduced by Atkinson (1970) for the study of income 

inequality [13]. The Atkinson utility function is defined as: 
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This utility function thus allows for risk aversions greater than unity, and so is a 

more general function than the power utility. If this utility function were to be used 

to derive the J-value, it would be necessary to substitute this into the life-quality 

index, and apply the trade-offs of section 3.2 and 3.3. However, the amount to spend 

in order to remain on the 
XQ  indifference curve, which is the maximum reasonable 

amount an individual should be prepared to spend to achieve a given increase in life 

expectancy, is unaffected by the use of this alternative utility function. In fact, it may 

be shown that the maximum spend is unaffected by the use of a more general class of 

utility functions given by: 

 

    
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 (3.40)   

 

These utility functions are known as “affine transformations” of the power utility 

function. The proof of the invariance of the maximum spend under affine 

transformations of the utility function is given in Appendix A. As the maximum 

reasonable spend is independent of the type of utility function used, the more simple 

power utility function will be retained in the rest of the development here. 

 

Substituting the risk aversion, ε, as given by equation (3.38) into equation (3.19), 

which relates the elasticity parameter to measurable and observable quantities, gives: 
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  (3.41)   

 

The utility interpretation allows the life quality index to be viewed as the summation 

of the annual utilities over the whole of the future lifetime of the average individual. 

This interpretation provides a mechanism for extending the life quality index to 

include discounting. 

 

It is widely accepted that individuals will prefer commodities that are available for 

consumption at the present time to commodities which can only be consumed 

sometime in the future. This concept may be applied to determine the utility of future 
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income, which can be discounted back to the present value using a chosen discount 

rate. 

 

Let the earnings per year averaged across all individuals of age a be c(a) (£/year). If 

all individuals have the same utility function, so that for each person, the utility for 

that year’s earnings will be: 

 

       


1
acacU  (3.42)   

 

If the income is growing at a real, compound rate, rg, so that the income at a later 

age, η, will be given by: 

 

      acec
arg 




  (3.43)   

 

and the utility of this income will be: 

 

          

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

11
acecU
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 (3.44)   

 

The utility attained at future age η may be discounted back to the present age a by 

multiplying by 
 arde
 

, where rd is the real rate of time preference, which will 

also be termed the “discount rate”. Thus the net present utility to an individual of age 

a of the income he will generate later in the age interval η + dη, is: 
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(3.45)   

 

where r is the net discount rate, given by: 

 

   gd rrr  1  (3.46)   
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Clearly, however, the individual will only be able to benefit from a utility η - a years 

later if he is still alive at age η. This aspect may be included by considering survival 

probabilities. The probability of an individual surviving to age η given that he has 

already survived to age a is denoted as S(η|a). This is also the probability that the 

utility given by equation (3.44) will be achieved. 

 

The expected value, R(a), of the future discounted utility for an average individual of 

age a, is found by multiplying the discounted utility of equation (3.45) by the 

probability that the utility is achieved, S(η|a) , and integrating over all possible 

lengths of life to come: 
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 (3.47)   

 

Equation (3.47) may be interpreted in light of the equation for life expectancy, X(a), 

for an individual of age a, namely: 

 

     


daSaX
a






  (3.48)   

 

which will be derived in more detail in chapter 4. Comparing equation (3.48) with 

the integral on the right hand side of equation (3.47), it is apparent that the latter 

integral may be regarded as a “discounted life expectancy”, Xd(a): 

 

       


 deaSaX
a

ar

d 




  (3.49)   

 

Clearly, equation (3.48) and (3.49) are equal when the discount rate is zero. The 

relationship between life expectancy and discounted life expectancy is shown 

graphically in Figure 2, which uses mortality data from the ONS [145], and uses a 
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net discount rate of 2.5%. Substituting (3.49) into (3.47), and assuming a constant 

income i.e.: c(a) = c, the expected value of future discounted utility is: 

 

    aXcaR d

 1  (3.50)   

 

For a group of individuals with varying ages, the average value of discounted utility 

is found by multiplying R(a) by the probability density for age, p(a), for the 

individuals within the group, and integrating over the appropriate age range: 
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 (3.51)   

 

where Xd is the average life expectancy for a group of individuals of ages between a1 

and a2. If the population being considered is the general public, then the integration 

limits are a1 = 0 and a2 = ∞. If the population under consideration is the workforce, 

then the limits of integration are a1 ~ 18 and a2 ~ 65. The parameter, c, is now set 

equal to the national average income, rather than the income of the group. This is 

done as a result of an ethical decision in order to avoid different treatments of high 

earning and low earning income groups with regard to safety spend. The national 

average income is estimated by the GDP per person, and so in setting c = G, 

equation (3.51) can be seen to be a discounted life quality index of the form given by 

equation (3.6): 

 

 ddf XGQ  1

,  (3.52)   

 

The same procedure as laid out in section 3.3 may be followed to derive the effect of 

discounting on the income-life expectancy trade-off. The discounted MRS of life 

expectancy for income is: 

 

   dd X
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 (3.53)   
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Following equations (3.25) and (3.26), the maximum amount of income, -δG, that 

should be given up to achieve in increase in discounted life expectancy, δXd, is then:  
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d

X

XG
G


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


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1
 (3.54)   

 

This maximum discounted payment can then be used to derive the maximum amount 

a group should be willing to pay for a protection system, which is then used to derive 

the J-value.  

 

3.5 The J-Value 

The results of the two trade-offs will now be used to derive the J-value. Equation 

(3.54) relates the maximum reasonable amount of annual income to give up, δG, in 

exchange for an increase in discounted life expectancy, δXd. If the benefits of the risk 

reduction are experienced by a population of size, N, then the maximum reasonable 

annual amount the population should be willing to pay, which is denoted as δGN, is 

the product of the population size and the individual maximum reasonable payment: 
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 (3.55)   

 

This figure is the maximum annual spend for achieving the given discounted life 

expectancy improvement. This annual spend can be related to a single lump sum 

spend, by noting that the average length of time over which the cost is paid is equal 

to the population’s base discounted life expectancy, Xd. Thus the series of annual 

payments can be discounted back to the present time in a similar manner to equation 

(3.45), except the period over which the discounting is applied is now equal to Xd. 

From equation (3.55), the maximum amount that is reasonable to spend on a health 

and safety measure to protect N people between times t and dt is:  
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 (3.56)   
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which will have a value discounted back to time, t = 0, of: 
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 (3.57)   

 

The maximum amount of money, δVN, a group of N people would then be reasonably 

expected to spend on a protection measure that affords them an improved discounted 

life expectancy of δXd, expressed as an up-front lump sum, can be found by 

integrating equation (3.57) from the time of installation of the measure, which is set 

to be at time, t = 0, to the life expectancy of the group at the time of installation, 

namely, t = Xd:   
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(3.58)   

 

 

which applies when rd > 0. For the case when rd = 0, it is noted that e
-y

 → 1 – y as y 

→ 0. Hence: 
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 (3.59)   

 

as rd → 0. Hence the general expression for the maximum reasonable up-front lump 

sum spend on the safety system is: 
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 (3.60)   

 

The final step in deriving the J-value is achieved by linking the maximum reasonable 

spend to the actual cost of any such protection system that improves life expectancy. 
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If the up-front cost, which will be denoted as NV̂ , is known, then the J-value is the 

ratio of the known cost to the maximum reasonable cost: 
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 (3.61)   

 

For safety schemes with costs greater than what is the maximum reasonable, J > 1, 

indicating that the scheme offers poor value for money, and will result in a reduction 

in life quality for the affected population. Schemes that cost less than the maximum 

reasonable amount will have J < 1, which means that the scheme offers good value 

for money, and will result in an improved life quality for the affected population. 

Schemes that have a calculated J-value of unity will preserve the initial life quality. 

This can be represented as an indifference curve in the X-G plane, as shown in 

Figure 3. This figure uses data from the Office for National Statistics [145], [149]. 

The point marked on the graph is the average income and life expectancy (with no 

discounting) for the population. A move to any other point on the curve would 

preserve the life quality index, and so has a J-value of unity. A move into the area 

above the curve would increase the life quality index, either by increasing life 

expectancy or income, and so such a move would have a J-value of less than unity. 

Conversely, a move into the area below the curve would have a corresponding J-

value of greater than unity. 

 

The J-value is thus a dimensionless indicator of the cost-effectiveness of safety 

schemes. Aside from the net discount rate, which is usually chosen to be either 0% 

per annum, or 2.5% per annum, all the input parameters are fully objective and easily 

measurable from reliable statistics. The following three chapters will describe the 

techniques and methods needed to estimate these input parameters. 
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Figure 1 Indifference curves of quality of life against the income constraint. 
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Figure 2 Discounted life expectancy versus life expectancy at r = 2.5% pa, based on ONS figures. 
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Figure 3 J = 1 indifference curve for income against (undiscounted) life expectancy. 
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Chapter 4 Fundamental Relationships between Parameters Used 

in Life-Expectancy Calculations 

4.1 Characterising and Modelling the Survival of Populations 

In this section the technical details required for the calculation of life expectancy are 

presented. Life expectancy can be calculated in two ways – the first being through a 

general probabilistic theory of survival, where the central concepts are the hazard 

rate and the survival probability, which are dependent upon age. These concepts then 

allow the age-specific life expectancy to be determined. The second way is through 

the life table method, in which a theoretical cohort is exposed to rates of mortality 

experienced by a general population, and followed to extinction. The relationships 

between these two methods are also described. The theoretical framework of survival 

models and life tables is now well established (for example, see Chiang (1968) [31]), 

and this chapter gives an overview of the relevant concepts. These concepts are used 

extensively in chapter 5, and to a lesser extent in subsequent chapters. One quantity 

that has received little attention in the literature is the population-averaged life 

expectancy (although Keyfitz (1985) has briefly discussed this, see [126]). This 

chapter will thus show how this quantity is calculated, and give some useful 

approximations. The discounted life expectancy is also described
4
. 

 

In order to calculate the average life expectancy, knowledge of the age distribution 

of the population is required. It is shown that this distribution can be determined 

from the survival probabilities when it is assumed that the population is in a steady 

state, such that the number of births each year is always equal to the annual number 

of deaths. This special population is also known as the stationary population. A 

different age distribution is required if the average life expectancy is to be 

determined for a workforce. Here it is assumed that the distribution is uniform 

between the age of recruitment and the age of retirement, and zero outside these 

ages.  

 

                                                 

4
 The derivation of the average life expectancy and it’s discounted equivalent are partly based on the 

appendices of Thomas et al (2006c) [184], although some new relations are derived here. 
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4.2 The Hazard Rate and the Survival Probability 

Suppose the probability of dying between ages t and t + dt is fd(t)dt. Here age is 

treated as a continuous variable, so that someone aged 20 and three months has t = 

20.25 years. The parameter fd(t) is then the probability density for the random age of 

death, T. The cumulative distribution function, D(t), is then the probability of dying 

at any point from birth to age t, so that T ≤ t, and is the integral of the probability 

density function from age zero to age t: 

 

      

t

d duuftTtD
0

Pr  (4.1)  

 

The cumulative distribution function is also related to the probability density by: 

 

 
 

 tf
dt

tdD
d  (4.2)  

 

For any age, any given individual must have either died or survived. Hence the 

probability of either dying or surviving from birth to age t must be equal to unity: 

 

     1 tStD  (4.3)  

 

Where S(t) is the probability of surviving from birth to age t. This is also the 

probability of dying after age t, which may be related to the probability density of 

death by: 
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


t

d duuftTtS Pr  (4.4)   

 

Differentiating equation (4.2) gives: 
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so that: 
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 

 tf
dt

tdS
d  (4.6)   

 

The immediate hazard faced by an individual of age t is the probability that T will be 

between t and t + dt, given that he has survived so far. The immediate hazard is 

denoted h(t)dt, where h(t) is the hazard rate, and is given formally by: 

 

    tTdttTtdtth  |Pr  (4.7)   

 

The conditional probability can be written in terms of the joint probability: 
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Because the event t < T ≤ t + dt guarantees that the event T > t occurs, the equation is 

reduced to: 
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 (4.9)   

 

The probability that death occurs between ages t and t + dt is fd(t)dt, and the 

probability that death occurs after age t is S(t), so that: 
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 
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and substituting in equation (4.6): 
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Equation (4.11) can be integrated to give: 
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where: 

 

    
t
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 (4.13)   

 

is the cumulative hazard rate. The probability that an individual will survive to age t, 

given that he has already survived to age a, is denoted S(t|a), and is given formally 

as: 
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Because surviving to age t guarantees that the individual will have survived to age a, 

this equation simplifies to: 
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This conditional probability of surviving to age t given that age a has already been 

reached can be expressed in terms of the hazard rate as: 
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or: 

 

     atWatS |exp|   (4.17)   
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Where W(t|a) is the conditional cumulative hazard rate. 

 

4.3 The Survival Probability and Life Expectancy 

The life expectancy is the expected value of the future life to come, which is a 

random variable. For an individual of age a the random life to come is denoted as 

χ(a). This is related to another random variable, the age of death T, by: 

 

   aTa   (4.18)   

 

The probability density will be the probability of death in the interval t to t + dt, 

given that the individual has survived to age a, and will be denoted gd(t|a). Following 

the arguments of equations (4.7) to (4.10), this will be: 
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It can be readily verified that the integral of this quantity of all values of t, is equal to 

unity, as would be expected from a probability density function. The quantity 

gd(t|a)dt is therefore the probability that the random variable χ(a) = T – a will take 

the value (t – a), for those that have survived to age a. The expected value of the life 

to come, given that age a has already been attained is the life expectancy, X(a), given 

as: 
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 (4.20)   

 

where equation (4.4) has been used in the last step. The integral on the right hand 

side can be integrated by parts. For the integral: 
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put: 
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using: 
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then: 

 

 

       

        















a
tt

a

a

a

d

dttSataaSattSt

dttSttStdtttf

limlim              

1

 (4.24)   

 

because S(∞) = 0, this reduces to: 
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substituting into (4.20) gives: 
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aX |  (4.26)   
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4.4 Relationship to the Life Table Functions 

The life table presents data on mortality rates and length of life for individuals within 

a population. The life table in its usual form delineates individuals by gender and 

age. In the J-value model individuals are usually not delineated by gender, which is 

achieved via a simple averaging process. However, if the problem requires gender to 

be delineated (for example a particular workforce may be mostly male), then this can 

be easily achieved. In the UK, the life tables are published by the Office for National 

Statistics, see [145]. The life table consists of five functions, each of which can be 

determined from two pieces of information: the mid-year population, na, at age a, 

and the number of people who die, Da, at age a. The life table functions are discrete 

variables, which is a consequence of the fact that each individual is grouped 

according to his present (discrete) age. The relationship between the life table 

functions and the hazard rate and survival probabilities will now be explored. 

 

The first function of the life table is the central rate of mortality, ma. This is the 

average death rate over the interval (a, a + 1), and is defined as: 

 

 
a

a
a

n

D
m   (4.27)   

 

The second function is qa, which is the conditional probability that someone aged 

exactly a will survive to age a + 1. This is the number of people who die at age a, 

divided by the number of people who have reached age a. Note that the number of 

people who have reached age a is not the same as the mid-year population because 

there will be a number of people who will reach age a, but will have died before the 

population estimate is made. If it is assumed that deaths are distributed uniformly 

throughout the interval (a, a + 1), then the number of people who will have died 

before the population estimate is made will be Da/2. Thus the number of people who 

reach age a is na + Da/2, and qa is given by: 
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(4.28)   
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Alternatively, if deaths are distributed exponentially over the interval (a, a + 1), then 

qa is related to the central rate by: 

 

 am

a eq


1  (4.29)   

 

The next function in the life table is the number of survivors at each age, la. The life 

table uses a hypothetical cohort of individuals which are followed through to 

extinction as they experience the observed mortality rates. The initial size of the 

cohort, l0, is known as the radix, and is usually taken to be 100,000. Thus, la is the 

number of this initial 100,000 who have survived to age a. If la is known, then la+1 

can be determined from: 

 

   aaa lql  11
 (4.30)   

 

The la’s can also be related to the radix by: 

 

   0

1

0

1 lql
a

t

ta 




  (4.31)   

 

The fourth function in the life table is the number of deaths in the hypothetical 

cohort at each age, da, given by: 

 

 1 aaaaa lllqd  (4.32)   

 

The last function in the life table is the life expectancy at age a, which is usually 

denoted ea. Note that the life expectancy defined in the previous section, which is 

denoted X(a), is a continuous function based on general survival probabilities, whilst 

ea is a discrete function describing the average length of life for the hypothetical life 

table cohort. The relationship between X(a) and ea will be discussed below. The life 

expectancy ea is given by: 
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The correspondences between the life table functions and the probabilistic survival 

functions may now be explored. The survival probability may be immediately related 

to the number of survivors. The ratio of the number of survivors to the size of the 

initial cohort, la/l0, is the probability of surviving from birth to age a. This is the 

survival probability, S(a). Thus, in the context of the life table functions, the survival 

probability may be given by: 

 

  
0l

l
aS a  (4.34)   

 

It is important to note that S(a) is a general function describing the probability of 

survival, whilst the la’s are specific only to the life table cohort. The notation is also 

slightly awkward, in that S(a) is continuous, whilst the la’s are discrete functions 

only defined at specific ages. Nevertheless, this awkwardness can be avoided by 

using interpolation methods to estimate the life table functions inside the interval, 

e.g. at la+1/2. 

 

The conditional survival probability, S(t | a) is given by: 

 

  
a

t

l

l
atS |  (4.35)   

 

The hazard rate h(a) can be given either by the conditional probability of death, qa, 

or by the central rate of mortality, ma, depending on the assumption made regarding 

how the deaths are distributed in the interval (a, a + 1). This can be shown by noting 

that qa is: 

 

  aTaTaqa  |1Pr  (4.36)   

  

which can be written as: 
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The probability that death occurs between ages a and a + 1 is equal to the difference 

between the probability of surviving to age a and the probability of surviving to age 

a + 1, i.e.: S(a) – S(a+1).  This means that qa can be written as: 

 

 
   

 aS

aSaS
qa

1
  (4.38)   

 

If deaths are distributed uniformly over the interval (a, a + 1), then: 

 

 

             

   afaaf dd       for 0 < δa ≤ 1

         

 (4.39)   

 

The survival probability over the interval is: 

 

       aafaSaaS d        for 0 < δa ≤ 1

         
 (4.40)   

 

So that: 

 

 

         

     afaSaS d1  (4.41)   

 

Substituting (4.41) into (4.38) gives: 

 

 

 
 aS

af
q d

a 

 

  ah  

(4.42)   

 

where equation (4.10) has been used in the last step. Hence, when deaths are 

uniformly distributed over the interval, then the hazard rate is equal to the 

conditional probability of dying in the interval. If, however, the deaths are 

distributed exponentially over the interval (a, a + 1), then the hazard rate is equal to 

the central rate of mortality, ma. This can be seen by noting that the central rate is 

given by: 
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
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

1

1
a

a

a

duuS

aSaS
m  

(4.43)   

 

where the denominator is the average survival probability over the interval (a, a + 1). 

If deaths are exponentially distributed, then: 

 

   1for         auaeuf u

d

  (4.44)   

 

The survival probability is: 

 

   1for         auaeuS u  (4.45)   

 

So that the hazard rate, h(a), is equal to λ, a constant over the interval. Substituting 

(4.45) into (4.43) gives: 
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(4.46)   

 

Thus, when deaths are exponentially distributed, the hazard rate is equal to the 

central rate of mortality. 

 

It is worth noting that, for most populations, the conditional probability of death is 

generally very small for most ages. This means that the central rate is approximately 

equal to the conditional probability of death, as can be verified from equations (4.28) 

and (4.29). This means that: 

 

  ahqm aa 

   

for ma << 1

         

 (4.47)   
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This approximation is not valid at very young or old ages. Approximating the hazard 

rates by the qa’s is generally more realistic, as a uniform distribution of deaths is a 

more reasonable assumption than an exponential assumption. However, using the 

exponential assumption, which means that the hazard rate is constant between years, 

does enable simpler calculations, and is often preferred. 

 

Finally, the continuous life expectancy, X(a), as given by equation (4.26), is equal to 

the discrete life expectancy, ea, of equation (4.33). This can be seen by re-writing 

(4.33) as: 
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where equation (3.35) has been used. This summation is equal to the integral of the 

conditional survival probability from t = a to t = ∞, when the trapezium method is 

used for numerically evaluating the integral. This means that (4.48) can be written 

as: 

 

    






t

at

a aXdtatSe |  (4.49)   

 

Thus, the life expectancy based on general survival probabilities should be 

numerically equal to the life expectancy of the life table cohort, when the trapezium 

method is used to evaluate the integral of (4.26) or (4.49). 

 

4.5 Calculation of Life Expectancies in the J-Value Model 

In the J-value model, the hazard rates are assumed to be equal to the central rates of 

mortality, ma, which are obtained from the latest UK life tables, published annually 

by the ONS [145]. Separate tables are published for males and females, and so the 

male and female central rates can be averaged by calculating: 

 

     female

amale

male

amalea mfmfmah  1  (4.50)   
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where fmale is the proportion of the population that is male, so that 1 – fmale is the 

proportion that is female. For public hazards, it is usually assumed that male and 

female numbers are equal, so that fmale = 0.5, whereas for industrial occupational 

hazards, a value of fmale = 1 may be more suitable. 

 

The hazard rates are then integrated to give the cumulative hazard rate of equation 

(4.13). As the central rates of mortality are used for the hazard rates, the hazard rates 

are mid-interval values. This means that the integration can be performed by simply 

summing the hazard rates: 

 

       
aa

uhduuhaW
00

 (4.51)   

 

However, there is a problem with the final age interval, since not everybody will be 

predicted to die by the end of it. This is remedied by adding an open age interval 

after the last one which approximates the mortality of the remaining cohort. The UK 

life tables provide data up to the age interval (100, 101), and so the additional age 

interval is for (101, ∞). This approximation is due to Silcocks (2001) [175], who 

assumes that the mortality rate of the final interval considered continues indefinitely, 

and shows that the final hazard rate, h(101), is: 

 

  
 

2
1002

101
100


m

h
h  (4.52)   

 

So that the final cumulative hazard rate is: 

 

     2100101 WW  (4.53)   

 

The cumulative hazard rates are then used to calculate the survival probabilities, 

using equation (4.12). The survival probabilities can then be integrated using the 

trapezium rule to determine the life expectancy: 
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The reason that this method is used to calculate life expectancies, rather than simply 

taking them from the life tables, is that this method allows the change in life 

expectancy to be easily calculated following a change in the hazard rate. The life 

expectancies calculated using this method compare well with the life table values. 

Exactly how well they correspond is statistically tested in chapter 9, where the 

sensitivities of the life expectancy calculations to the assumptions regarding the 

hazard rates and the methods of integration are assessed. 

 

In the J-value model, the population-averaged life expectancy is usually required. 

The method for averaging over the population will now be described. 

 

4.6 The Steady State Population Distribution 

It is assumed that within the general population, the annual number of births is 

always equal to the annual number of deaths, so that the total population size is 

always constant. Such a population has a fixed age distribution, and is known as the 

“steady state”, or “stationary” population [126]. 

 

Suppose that the population density at age a is n(a), implying that the number of 

people between ages a  and a + da is n(a)da. The number n(a) may also be regarded 

as the rate at which members of the population are reaching age a. This number will 

be equal to the birth rate, n(0), multiplied by the probability of surviving to age a, 

S(a): 

 

      aSnan 0  (4.55)   

 

The total number in the population, NPop, is the integral of n(a) over all ages: 

 

      
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From equation (4.26), it is noted that: 

 

    0
0

XdaaS 


 (4.57)   

 

is the life expectancy at birth. This means that (4.56) may be rearranged to give the 

birth rate: 

 

  
 0

0
X

N
n

Pop
  (4.58)   

 

Substituting the birth rate into (4.55): 

 

  
 

 0X

aSN
an

Pop
  (4.59)   

 

and so the population density, p(a), is: 

 

  
   

 0X

aS

N

an
ap

Pop

  (4.60)   

 

This is the age structure of the steady state population. It is constant and can be 

calculated readily. This distribution is shown in Figure 4, which is based on UK data 

from 2007 to 2009. Also shown in this figure is the actual distribution for the UK 

population in this time period. There is clearly some difference between the two 

distributions. However, as is discussed in more detail in chapter 9, the population-

averaged parameters needed for J-value calculations are relatively insensitive to the 

exact distribution used. The steady-state distribution is therefore a simple but 

powerful distribution which can give sufficiently accurate results. 

 

The death rate between ages, a and a + da, is given by the number of people in that 

age range multiplied by the probability of dying in that interval, given survival to 

age, a, i.e. the hazard rate, h(a): 
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(4.61)   

 

where equation (4.10) has been used in the last step. The total death rate is found by 

integrating over all ages: 

 

 

   
 

 



00

0
daaf

X

N
daahan d

Pop

 

     0X

N Pop
  

(4.62)   

 

which is equal to the birth rate, given by equation (4.58), as is expected in a steady 

state population.  

 

4.7 The Average Life Expectancy 

The average life expectancy, X, for the general population is given as: 

 

    daaXapX 
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
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 (4.63)   

 

where the age distribution is given by equation (4.60). Although the average life 

expectancy can be readily calculated from this equation, it is also possible to gain 

further insight into the average life expectancy by noting that: 
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where equation (4.26) has been used. The order of integration may be reversed to 

give: 
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 (4.65)   

 

so that: 

 

   avtdtttpX  


0

 (4.66)   

 

where tav is the mean age in the population. Thus, in the steady state population, the 

mean life to come is equal to the mean life already experienced.  

 

In the J-value model, it is also necessary to evaluate the average life expectancy for 

the workforce, as discussed in section 3.5.  In this situation it is inappropriate to use 

the general population age distribution. If data is available regarding the age 

structure of the workforce under analysis, then this data may be used. However, the 

age distribution of a general workforce may be approximated by a simple but 

realistic uniform distribution that does not require any input data. This is given by: 
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(4.67)   

 

where arec and aret are the age of recruitment into the workforce and age at 

retirement, respectively. The average life expectancy is: 

 

  daaX
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X
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1  (4.68)   

 

For the UK, appropriate recruitment and retirement ages are 20 and 60, respectively. 

Although employment does occur outside these ages, the proportion of these workers 
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is relatively small, and so can be disregarded for the purposes of the uniform 

distribution model. The general population average life expectancy is usually close 

to the working population average life expectancy. For UK data from 2007 to 2009, 

the corresponding figures were 41.17 years and 41.16 years for populations with an 

equal gender ratio. 

 

4.8 The Effect of Discounting on Life Expectancy 

In section 3.4 it was noted that a discounted life expectancy could be derived as: 
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where r is the discount rate. This can be re-written as: 
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where Sd(t) is the discounted survival probability: 
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where equations (4.12) and (4.13) have been used, and where: 
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is the discounted cumulative hazard rate (although in this case the effect of 

discounting is to increase the cumulative hazard rate, rather than decrease it, as the 

term “discounting” may suggest). A discounted hazard rate may also be defined as: 

 

     rththd   (4.73)   

 

so that: 
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Hence all the variables required for life expectancy calculations can be viewed as 

having a discounted counterpart. 

 

The discounted average life expectancy is: 
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This can be developed as: 
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the order of integration can be reversed to give: 
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the exponential term can be expanded as: 
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substituting into (4.77) gives: 
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where equation (4.66) has been used, and where t
2
av is the mean-square age in the 

population. Equation (4.79) thus linearly relates the discounted life expectancy to the 

undiscounted life expectancy and the discount rate. 
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Figure 4 Population distributions calculated from UK data for 2007-2009. 
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Chapter 5 Calculations for the Change in Life Expectancy 

Following a Hazard Perturbation 

5.1 Modelling Changes in Life Expectancy 

Perhaps the most important parameter of the J-value equation is the change in life 

expectancy caused by exposure to a risk, or resulting from its mitigation. This 

parameter is especially important when considering the effects of risks that do not 

become manifest until many years after the initial exposure to the hazard. The 

calculation of this parameter requires some detailed and technical explanation, which 

will be given in this section. This section is partly based on Thomas et al (2006c) 

[184], who derived equations for the change in life expectancy following a 

prolonged radiation exposure, including the effects on individuals entering or leaving 

the exposed population. Here a more general model is presented, in which exposures 

can result in immediate or delayed responses. Exposures that result in absolute or 

relative hazard perturbations (i.e. perturbations where the magnitude is independent 

or dependent on the initial hazard rate) are also modelled. Air pollution risks are also 

modelled explicitly. 

 

The fundamental concepts for understanding the effects of hazards are those of 

exposure and response. Both of these are characterised by probability density 

functions. The response of an exposure to a hazard is of particular importance, as it 

relates the exposure to the resulting increase in probability of death. In many 

situations, exposure to the hazard is characterised by an immediate increase in 

mortality rates, which then return to normal when the exposure has stopped. An 

example of this would be industrial accidents. There is only a risk of death from an 

accident at the workplace during the time spent at work. After an individual leaves 

work, he is no longer at risk from this hazard. A hazard with this type of response 

may be called an “immediate” hazard. This contrasts with exposures to substances 

such as particulate matter, radiation or other carcinogens, where the resulting 

increase in mortality occurs some years after the initial exposure. Such types of 

response may be called “delayed” hazards. Each hazard has its own characteristic 

response following exposure. The general methodology for modelling the exposures 

and response, and the consequent change in life expectancy, will now be discussed. 
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5.2 Exposures 

Suppose that the exposure to a hazard begins at time x = 0, and lasts until time x = 

TR. Let the rate of exposure felt by an individual be b(x). The units of this quantity 

are (additional deaths/person-year), although the additional deaths may not occur 

until many years in the future. In order to clarify what is meant by this term, it will 

be presented for two types of hazard: immediate risks and delayed radiation risks. 

For immediate risks, the “exposure” is simply the act of being in a situation where 

there is an elevated chance of death. For example, this may be working from a 

height, where there is some chance of experiencing a fatal fall. It may also be 

travelling in a car or a train, where there is some risk of being in a fatal crash. In 

these situations, death occurs either during or shortly after the initial exposure 

period, which is the reason why they are referred to as “immediate” risks. If the 

additional number of fatalities per year from a given hazard is Λ(x) in an exposed 

population of N (assumed constant), then the individual exposure rate is: 

 

            
 

 
N

x
xb


  for 0 < x ≤ TR

  

                          

0

       

otherwise 

      

(5.1)   

 

This is shown schematically in Figure 5. For delayed radiation risks, the exposures 

are in terms of the annual amount of radiation dose received by an individual, dr(x), 

measured in Sieverts per year (Sv.year
-1

). In order to relate the dose to the additional 

number of deaths, this is multiplied by the total dose-risk coefficient, cT (Sv
-1

). The 

individual exposure rate for radiation is then: 

 

 
             xdcxb rT  for 0 < x ≤ TR

  

                        

0

          

otherwise

    

(5.2)   

 

The total individual exposure, btot, is the integral of the exposure rate: 

 

  



0

dxxbbtot
 (5.3)   
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This is the additional fatalities per person exposed to the hazard, which is also the 

probability of death resulting from the exposure. The fraction of all fatalities caused 

by the exposure in the interval x to x + dx will then be b(x)dx/btot, implying that the 

probability density for causing death from exposure will be g(x), given by: 

 

  
 

totb

xb
xg   (5.4)   

 

5.3 Responses 

As was discussed above, risks can be thought of as having “characteristic” responses. 

The response is the period of time over which excess mortality is assumed to occur 

following an exposure, expressed as a probability density function. Suppose that 

fM(y)dy is the probability that the excess mortality resulting from the exposure occurs 

between times y and y + dy. The variable, y is the time that has elapsed between the 

time of induction, x, and the current time, η, so that y = η – x. This is shown in Figure 

6. The probability that both an exposure occurs between times x to x + dx, and an 

excess mortality is observed between times y and y + dy, will be: 

 

          dxdxgxfdxdyxgyf MM   (5.5)   

 

But death at time η could have resulted from exposure over the preceding possible 

times, x. The total probability density for death at time η, fT(η), resulting from 

exposure from any time, is the integral of (5.5) from the start of the exposure to the 

current time, η: 

 

       




0

dxxgxff MT
 (5.6)   

 

5.4 Increase in Hazard Rate – Absolute and Relative Models  

An individual who is exposed to some hazard will experience an increased 

probability of death. This is modelled mathematically by perturbing the hazard rate, 
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h(a), for an individual of age a. The perturbation can be modelled in two ways: by 

using an “absolute risk” model; or by using a “relative risk” model. In an absolute 

risk model, the additional hazard rate is independent of the individual’s existing 

probability of death, whilst in a relative risk model the additional hazard rate is 

proportional to the initial hazard rate. 

 

The probability density given in (5.6) is based on the assumption that excess 

mortality is certain to occur. In an absolute risk model, the probability density that an 

individual will die at time η as a direct result of the exposure, is the product of the 

probability of death from the exposure, btot, and the probability density for death at 

time η, fT(η). This is then the additional hazard rate faced by the individual. If the 

individual is aged a at the start of the exposure, then after η years his age will be        

t = a + η. The additional hazard rate faced by an individual of age t, given initial 

exposure at age a, is denoted δhabs(t|a), where: 

 

 

       

   








at

M

MtotTtotabs

dxxbxatf

dxxgxfbfbath

0

0

                

|





 (5.7)   

 

In a relative risk model, the increase in the hazard rate faced by an individual of age 

t, given initial exposure at age a, δhrel(t|a), is proportional to the hazard rate h(t). 

Since the hazard rate is the probability density of immediate death, this parameter 

replaces the excess mortality probability density function, fM(y). However, it is still 

necessary to retain some way of modelling the distribution of the excess mortalities. 

This is done by introducing the function ϕ0(y), which plays a similar role to fM(y), 

except that it is not a probability distribution. It is also dimensionless, which is 

required for consistency. The two functions are related to each other by: 

 

 
 

 

 




0

0

0

dyy

y
yfM



  

(5.8)   
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The integral in the denominator can thus be thought of as the number of effective 

mortality years experienced following an exposure. The perturbed hazard rate is 

then: 

 

        




at

rel dxxbxatthath
0

0|   (5.9)   

 

5.5 Increase in Cumulative Hazard Rate  

Following a perturbation in the hazard rate, the cumulative hazard rate, W(t) will be 

increased to: 

 

 

         

t

duauhuhatWtW
0

|| 

 

                         

    

t

a

t

duauhduuh |
0

  

(5.10)   

 

where the lower bound on the second integral has been changed from u = 0 to u = a, 

as the change in the hazard rate only occurs at ages equal to or greater than the 

present age a. This means that: 

 

    
t

a

duauhatW ||   (5.11)   

 

where δW(t|a) is the increase in the cumulative hazard rate at age t, following an 

exposure at age a, and δh(.) refers to either the absolute or relative change in hazard 

rate, depending on the risk model used. 

 

5.6 Decrease in Life Expectancy  

From equations (4.12) and (4.26), the life expectancy can be written as: 

 

      




a

tWaW dteeaX  (5.12)   
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Following a perturbation in the hazard rate, the life expectancy decreases by an 

amount: 

 

           




a

atWtWaW dteeaXaX |  (5.13)   

 

so that: 
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a

atW

a
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dtetS
aS
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|

|

1
1

         

1





 (5.14)   

 

For small changes in the cumulative hazard rate, the exponential term can be 

approximated, using e
-x

 ≈ 1 – x. The change in life expectancy at age a is then: 

 

  
 

   



a

dtatWtS
aS

aX |
1

  (5.15)   

 

5.7 Decrease in Average Life Expectancy  

The change in average life expectancy following a hazard rate perturbation can then 

be calculated by averaging the change in age-dependent life expectancy over the 

required population distribution: 

 

    



0

daaXapX   (5.16)   

 

where the population age distributions are determined for the general public and the 

workforce, as described in section 4.7.  

 

Thus, in order to calculate the change in average life expectancy all that is required is 

knowledge of the distribution of the exposure rate, b(x), and of the mortality 
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response distribution, fM(y). Some simple, limiting distributions of these functions 

will now be explored, and the corresponding change in life expectancy will be 

calculated. 

 

5.8 Limiting Exposure and Response Distributions  

Although equations (5.7) to (5.16) allow for the calculation of the change in life 

expectancy following a hazard perturbation, it is instructive to investigate some of 

the limiting distributions of the exposure and response functions, and the consequent 

behaviour of the perturbed hazard rate and associated functions. The limiting 

distributions are when the exposures and responses are either very short or 

indefinitely long, and maintained at a constant level throughout. There are therefore 

four limiting distributions which may be investigated. These are shown in Table 2, 

which lists the exposure distribution, the excess mortality distribution, the change in 

hazard rate, and the change in cumulative hazard rate for absolute and relative risk 

models. One result of note is that the change in hazard rate for a short exposure and 

long response is the same as for a long exposure with a short response in the relative 

risk model. The change in cumulative hazard rate and thus change in life expectancy 

will therefore also be the same. For the absolute risk model, the short exposure/long 

response hazard perturbation is only different from the long exposure/short response 

hazard perturbation by a scaling factor, Ω, which is the length of time which the 

response lasts for following a single exposure. 

 

Once the cumulative hazard rates are calculated for the limiting exposures, the 

associated change in life expectancy and average life expectancy can be calculated, 

using equations (5.15) and (5.16). However, some of these limiting distributions may 

be developed further to give a simple expression for the changes in life expectancy. 

These will now be shown. 

 

Firstly, the shortest hazard rate perturbation will arise when there is a point exposure 

at x = 0, with an immediate response, with no delayed component. This will occur, 

for example, following an explosion, which lasts for a short period of time, and will 

only cause fatalities at that instant. Although in reality any event must have a finite 

duration, for the purposes of modelling, the exposure can be modelled as only 
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occurring at a single point. The exposure distribution and the response distribution 

are therefore defined only at a single point, as given in Table 2. These will be 

repeated below, for clarity: 

 

 
  bxb   for x = 0

 

        

0  otherwise 
(5.17)   

 

and: 

 

 
  1yfM

  for y = 0

 

           

0   otherwise 
(5.18)   

 

so that, for the absolute risk model: 

 

 

           

     




at

Mabs dxxbxatfath
0

|

 

                              

 atbfM 

 

                              

b  for t = a

 

             

0  otherwise 

(5.19)   

 

For the relative risk model, the dimensionless ϕ0(y) function is used instead of fM(y): 

 

 

     attbhathrel  0| 

 

                              

 abh  for t = a

 

           

0  otherwise 

(5.20)   

 

The change in the cumulative hazard rate is: 

 

   batW |  for t ≥ a

 

(5.21)   

 

for the absolute risk model, and: 
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    abhatW |  for t ≥ a (5.22)   

 

for the relative risk model. The change in life expectancy is then: 

 

 
 

 
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 abX

dtatWtS
aS

aX
a



 


         

|
1

  (5.23)   

 

for absolute risks. This means the change in life expectancy is directly proportional 

to the initial life expectancy, with the constant of proportionality equal to the excess 

mortality rate. For relative risks, the change in life expectancy is given by: 

 

      aXabhaX   (5.24)   

 

The change in average life expectancy in the absolute risk model is then: 

 

 bXX   (5.25)   

 

For relative risks, the change in average life expectancy is: 

 

      



0

daaXahapbX  (5.26)   

 

This can be further developed by noting that: 
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(5.27)   

 

the order of integration can then be reversed to give: 
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the integral in equation (5.26) thus emerges as the population-averaged cumulative 

hazard rate. This can be developed still further, by noting that: 
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(5.29)   

 

where H is known as the population entropy, as defined by Keyfitz (1985) [126]. The 

change in life expectancy is then: 

 

 bHX   (5.30)   

 

Although the developments of equations (5.20) to (5.30) are only strictly true for 

exposures to the general population, it is also possible to define related measures for 

exposures to the working population, where instead of having an integral with 

bounds from zero to infinity; the bounds will be the age at recruitment and the age of 

retirement. The two measures will be similar, however, and so the above will usually 

be a satisfactory approximation for the working population as well. Thus, for the 

simple limiting distribution of a point exposure with immediate response, the change 

in average life expectancy is given by the simple equations (5.25) and (5.30), 

although these only apply to small exposure rates, so that the linear approximation 

used in (5.15) will be valid. For larger exposure rates, the more accurate exponential 

version in (5.14) should be used. Doing so would not present any difficulties, but 

would not result in the simple formulas just presented. 
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In the absolute risk model, the other limiting exposures may also be developed 

further into simple expressions. As has already been discussed, the hazard rate 

perturbation following a short exposure with long response will be equal up to a 

scaling factor to the perturbation following a long exposure with a short response. 

Table 2 gives the change in cumulative hazard rate as: 
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atb
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(5.31)   

 

which is a generalised version of the two limiting distributions. The parameter Ω is 

the length of duration of the response following a single exposure. For a short 

exposure with a prolonged duration, a value of Ω = 100 would be appropriate, whilst 

for a prolonged exposure with a short response, a value of Ω = 1 should be used. The 

resulting change in life expectancy is: 
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(5.32)   

 

The change in average life expectancy is then: 
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(5.33)   

 

Reversing the order of integration gives: 
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(5.34)   

 

where t
2

av is the mean-square age. Thus, in the limiting case when either there is a 

short exposure with long response duration, or a long exposure with a short response 

duration, the change in average life expectancy is directly proportional to the mean-

square age of the population, and to the exposure rate. 

 

A similar, related expression for the change in life expectancy following a prolonged 

exposure to a hazard that has a long response duration may also be derived for the 

absolute risk model. Table 2 gives the increase in the cumulative hazard rate for such 

an exposure as: 
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The associated change in life expectancy is: 
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 (5.36)   

 

The change in average life expectancy is: 
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(5.37)   

 

Reversing the order of integration gives: 
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(5.38)   

 

where t
3

av is the mean-cube age. Thus, in the limiting case when there is a prolonged 

exposure with long response duration, which represents the maximum limiting case, 

the change in average life expectancy is directly proportional to the mean-cube age 

of the population, and to the exposure rate. 

 

Although the change in life expectancy can be calculated for the relative risk model 

from equations (5.15) and (5.16), and from the change in the cumulative hazard rate 

given in Table 2 for these limiting distributions, there are no such simple expressions 

for the change in average life expectancy as there are for the absolute risk model. It 

is also worth noting that the above equations have been developed under the 

assumption that the exposed population is the general population. When the working 

population is considered, the equations will not be valid as the integration limits will 

need modifying. Also, prolonged exposures experienced whilst at work will only be 

felt until the age of retirement at the latest. This means that the change in cumulative 

hazard rate would need to be modified accordingly. 
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5.9 Modelling the Effects of Radiation and Pollution  

The general framework for estimating changes in life expectancy laid out above may 

now be used to model more specific risks, namely, those from exposures to radiation 

and pollution. 

 

The effects of exposure to radiation are modelled by following the treatment of Lord 

Marshall et al (1982) [134], and Thomas et al (2006 – 07) [118], [184], [185]. These 

treatments recognise the fact that, following an exposure to radiation there is a 

substantial period in which no effects are seen. After this there are stochastic effects 

for a long duration in which increased mortality will result, although these stochastic 

effects will eventually die out. This effect can be modelled by assuming that the 

additional fatalities occur between times ω1 and ω2 after exposure, where reasonable 

values are ω1 = 10 years and ω2 = 40 years. It is also assumed that the excess 

mortality period is uniform between these years. All previous treatments have 

assumed that the effects of radiation follow the absolute risk framework, and this is 

also assumed by the International Commission on Radiological Protection (ICRP), 

who recommends internationally recognised radiation risk values which are used in 

setting safety levels worldwide. The excess mortality distribution is therefore given 

by: 

  

           

 
12

11

 



yfM

  for ω1 ≤ y < ω2 

                           

0             otherwise

 

(5.39)   

 

where Ω = ω2 – ω1 is the duration of the latent stochastic effects following a single 

exposure, which will be taken as 30 years. This distribution may also be modelled 

more conveniently using step or jump functions, Jp(x), given as: 

 

          
  1xJ p

  for x ≥ 0 

                                 

0   for x < 0 
(5.40)   

 

The mortality distribution is then given by: 
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       
21

1
 


 yJyJyf ppM

 (5.41)   

 

It may be observed from equation (5.8) that: 

 

      210   yJyJy pp
 (5.42)   

 

as: 

 

   


dyy
0

0  (5.43)   

 

Thus the effects of a short exposure to radiation are modelled as having no effect for 

ten years, before increasing mortality risk for a thirty year period, whence all effects 

die out. This distribution is shown in Figure 7. 

 

As has been discussed above, exposures to radiation are expressed in terms of the 

annual amount of radiation dose received by an individual, which is measured in 

Sieverts per year (Sv.year
-1

). Radiation doses are related to the additional number of 

deaths by multiplying the annual dose by the dose-risk coefficient, cT (Sv
-1

). The 

dose-risk coefficient is determined from the 2007 ICRP recommendations [113], 

who recommend a “detriment adjusted” lifetime cancer risk coefficient of 0.055 Sv
-1

 

for the general population, and 0.041 Sv
-1

 for those of working age. These detriment 

adjusted figures include non-fatal effects of radiation. However, in life expectancy 

calculations, the required risk coefficient must only refer to fatal effects, and so the 

above figures are inappropriate. Although the required figures are not given 

explicitly by the ICRP, they can be calculated from data they present, which is 0.041 

Sv
-1

 for the general population, and 0.032 Sv
-1

 for the working population. However, 

if these figures were applied to the change in life expectancy calculations, they 

would underestimate the actual loss of life expectancy experienced by individuals in 

the population. This is because not all individuals would experience the full effect of 

the delayed risk, as they may die before the effects have occurred. In order to 

accommodate for those who do not experience the full risk, the ICRP nominal risk 
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figure needs to be adjusted upwards. The method for doing this is given in Thomas 

and Jones [187], who show that the ICRP risk coefficients need to be multiplied by a 

compensating factor. Using the latest data, the compensating factor is given as 1.43 

for the general population and 1.32 for the working population. The appropriate dose 

risk coefficient, cT, is then the product of the ICRP figure and the compensating 

factor, for both the general and the working population. This is: 

 

 
058.0Tc  for the general population 

      

042.0   for the working population 
(5.44)   

 

It has been assumed in the above discussion that the working population is entirely 

composed of males. If the workforce is assumed to be composed of equal amounts of 

men and women, then the compensating factor is decreased to 1.27 and cT  is reduced 

to 0.041. For a working population entirely composed of females, the compensating 

factor is 1.23 and the risk coefficient is 0.039. These values are shown in Table 3. 

 

The exposure rate, b(x), is given by: 

 

    xdcxb rT  (5.45)   

 

where dr(x) is the annual dose received (Sv.year
-1

). One further issue which needs 

noting is that the ICRP also recommend that if any individual were to be exposed to 

particularly high doses or high dose rates, then a “dose and dose rate effectiveness 

factor” (DDREF) should be applied to the risk estimates. The recommended value 

for DDREF is 2. It is assumed that this applies to doses greater than 100 mSv. 

Therefore, the exposure rate is more accurately given as: 

 

 
   xdcxb rT    for dr ≤ 0.1 

        xdc rT2   for dr > 0.1 
(5.46)   

 

However, the event of an individual receiving a dose of this magnitude would be 

exceedingly rare in normal circumstances, and so this effect will not be considered in 
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the rest of this section, but will be considered at a later stage when assessing the 

impacts of a large nuclear accident. 

 

For a uniform exposure to a radiation dose of dr Sieverts lasting for TR years, the 

exposure rate is given as: 

 

     RprT TxJdcxb  1  (5.47)   

 

The hazard rate increase is then equal to: 
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(5.48)  

 

where krad = cT/Ω is the risk coefficient per year, also known as the distributed risk 

coefficient. It can be seen that any values of x ≥ TR will not contribute to the integral. 

This means that (5.48) can be re-written as: 

 

     
RT

rrad dxxatdkath
0

0|   (5.49)   

 

The variable of integration can now be changed. Put: 

 

 

RR TatzTx

atzx

dxdz

xatz









0
 (5.50)   

 

Hence: 
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 (5.51)   

 

where ψ0(t – a) is the prolonged hazard perturbation pattern, following the notation 

of Thomas et al [118], [184], [185]. This can be written out in full as: 

 

 

         22110   pp JJ

 
       RpRRpR TJTTJT  2211   

(5.52)   

 

The perturbed hazard rate can then be used to determine the perturbed cumulative 

hazard rate, and consequently the change in life expectancy and average life 

expectancy using the equations shown above. The perturbed cumulative hazard rate 

is: 
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 (5.53)   

 

Proceeding again by changing the variable of integration, by putting: 
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 (5.54)   

 

so that: 
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where ψ1(t – a) is the integrated prolonged hazard rate pattern, again following the 

notation of Thomas et al. This can be written out in full as: 
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 (5.56)   

 

The change in life expectancy, by equation (5.15) is then: 
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(5.57)   

 

and the change in average life expectancy is: 
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for the general population, this can be developed as: 
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(5.59)   

 

reversing the order of integration gives: 

 

     dtdaattpdkX

t

rrad  



0 0

1  (5.60)   
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The variable of integration can be changed, by putting: 
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Hence: 
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where ψ2(t) is the twice-integrated prolonged hazard rate pattern, which can be 

written out in full as: 
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 (5.63)   

 

the average change in life expectancy is thus: 

 

    dtttpdkX rrad 



0

2  (5.64)   

 

The integral can be readily evaluated using life table data, and by setting ω1 = 10 

years and ω2 = 40 years, for any given exposure duration TR. Although the above 

equation only applies to the general population, an equivalent calculation could 

readily be made for the working population from equation (5.58). 
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The effects of pollution can be modelled in a similar manner to those of radiation. It 

has long been recognised that inhalation of pollutants can increase mortality. Most of 

the data used for modelling pollution effects have been based on the 2009 

Committee on the Medical Effects of Air Pollutants (COMEAP) recommendations 

[39]. The main difference between pollution risks and radiological risks are that 

pollution risks are presented as relative risks, in contrast to the absolute risk model of 

radiation effects.  

 

The COMEAP report discusses the fact that pollution has been observed to cause 

immediate effects, and so it is assumed that there is no incubation period. The report 

did not discuss the duration of time for which these effects are observed, and so to 

estimate this, data regarding the effects of cigarette smoking (which results in 

exposures to similar kinds of pollutants) were used, see Kawachi et al (1993) [122], 

and Kenfield et al (2008) [125]. The studies have found that, upon cessation of 

smoking, risks begin decreasing immediately, although it can take over twenty years 

for the risks to return to those that have never smoked. However, the authors note 

that other studies have found evidence supporting both much shorter and much 

longer time periods than this. The studies also find that over 75% of the risk decrease 

occurred before the 15
th

 year of cessation. It was therefore decided to use 15 years as 

the time taken for stochastic effects of a short exposure to pollution to die out. As for 

radiation risks, a rectangular excess mortality function will be used to model the 

distribution. Although such a rectangular function will overestimate the risks as they 

decrease up to the 15
th

 year, the function will also underestimate the excess risks 

which still remain after the 15
th

 year. These two features will tend to cancel each 

other out, so that on average, the rectangular function does not lose too much 

accuracy. However, a better model would be to fit a parametric curve to the observed 

data, which would be a linear or exponential decline. These issues remain for further 

work. As the relative risk framework is being used, the excess mortality distribution 

is given by the dimensionless ϕ0(y) function: 

 

    20 1   yJy p  (5.65)   
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where in this case, ω2 =15 years (and ω1 = 0 years, so that Jp(y – ω1) = 1 for all y). 

This distribution is shown in  

Figure 8. 

 

The COMEAP report also recommended that the best indicator for pollution effects 

was exposure to PM2.5 particulate matter (particles with diameter less than or equal 

to 2.5 μm), and that exposure to other larger particulate matter and industrial 

pollutants such nitrogen dioxide, carbon monoxide and ozone are not associated with 

significantly increased mortality when the effect of PM2.5 is accounted for. The 

report finds evidence suggesting that sulphur dioxide does increase mortality, but 

decides against recommending quantification of direct effects of this pollutant, 

noting that there were difficulties in separating the effects of particulate matter and 

sulphur dioxide exposure. Thus, the hazard rate perturbation for pollution is 

expressed in terms of exposures to increases in the concentration of PM2.5 

particulate matter, which is measured in units of micro-grams per cubic metre (μg. 

m
-3

). The exposure rate, b(x) is then given by: 

 

    xckxb poll  (5.66)   

 

where kpoll is the exposure-risk coefficient for pollution (μg
-1

m
3
), and δc(x) is the 

increase in concentration (μg.m
-3

) associated with pollutant emissions at time x. The 

COMEAP report’s main recommendation is that the relative risk following an 

increase in PM2.5 concentration of 10 μg.m
-3

 will be 6%. The relative risk is related 

to the exposure risk coefficient by: 

 

 ckpolleRR


  (5.67)   

 

see, for example, [166]. Since a concentration increase of 10 μg.m
-3

 leads to relative 

risk increase of 6%, then RR = 1.06 when δc = 10 μg.m
-3

. The exposure risk 

coefficient can thus be determined as: 

 

 
    3108.5

10

06.1lnln 
c
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k poll


 μg

-1
m

3
 (5.68)   
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The 95% confidence limits for the relative risk are given in the COMEAP report as 

2% to 11%, meaning that the 95% confidence limits for the pollution exposure-risk 

coefficient are (2.0 – 10.4) ×10
-3

 μg
-1

m
3
. It is also worth mentioning that this risk 

coefficient does not need adjusting in the manner described for radiation risks above, 

as the coefficient does not express the lifetime at risk as the radiation coefficients do. 

 

For a uniform exposure to a pollution concentration of δc (μg.m
-3

) lasting for TR 

years, the exposure rate is given as: 

 

     Rppoll TxJckxb  1  (5.69)   

 

the hazard rate perturbation is then: 
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 (5.70)   

 

This can be developed in a similar manner as for radiation exposures above, to give: 

 

      atckthath pollrel  0|   (5.71)   

 

where ψ0(t – a) is as given above, except with ω1 set equal to zero. Writing out in 

full: 
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 (5.72)   

 

The hazard rate perturbation can then be used to calculate the increase in the 

cumulative hazard rate, and hence the change in life expectancy and change in 

average life expectancy. However, because of the presence of the hazard rate h(t) in 

the calculations, there does not exist any simple solutions involving the integrated 

hazard rate patterns, ψ1(t) and ψ2(t). 
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Estimating the increase in concentration, δc, presents some difficulties, as this datum 

is not usually published. However, data will normally be available for the emission 

rate of the pollutant. In order to determine concentration increase from emission 

rates, it is necessary to model the dispersion mechanisms of the plume of pollution. 

The ExternE project has employed some sophisticated models in order to determine 

concentration increases, and the impacts on the population [77]. It has been noted 

that it is possible to simplify the calculations considerably with a simple model 

which nevertheless gives good approximations to the more complex model. This 

model was developed by Rabl et al (2005) [80], and is known as the “uniform world 

model”. In this model, the collective increase in concentration is related to the 

emission rate E (μg.s
-1

), via the following equation: 

 

 
v

E
c


   (5.73)   

 

In which ρ is the population density of the area over which the pollution is dispersed, 

and is taken as 80 people.m
-3

, which is the value for central Europe, including both 

land and sea [80]. The parameter v is the deposition velocity of pollution and is taken 

as 0.0027 ms
-1

 for PM2.5 [178].  

 

As equation (5.73) gives the collective increase in concentration experienced by the 

entire population affected, the resulting calculation will give the collective change in 

average life expectancy. The collective change in average life expectancy is equal to 

NδX and so, for the purposes of determining J-values, an estimation of the actual 

number of exposed people is not required. One further point is that strictly speaking, 

the change in life expectancy calculation should be performed using European 

mortality rates. However, this has not been done here, as only UK data was used. 

Using UK mortality rates will, nevertheless, give conservative results, as the UK has 

lower mortality rates than the rest of Europe taken as a whole [206], so that the life 

expectancy is higher. Changes in life expectancy are broadly proportional to the 

initial life expectancy, for example, see equation (5.25). Consequently the calculated 

change in life expectancy for widely circulated PM2.5 emissions will be an 

overestimate of the more accurate figure that would be determined if European 

mortality statistics were used. 
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5.10 Accounting for those Entering and Leaving the Population during 

a Prolonged Exposure  

The above analysis of the change in life expectancy following a prolonged exposure 

has, up until now, been assuming that those exposed to the hazard are alive at the 

start of the exposure. A more accurate calculation would account for members who 

enter and leave the population during a prolonged exposure. For the general public, 

only those entering the population by being born in the midst of an exposure need to 

be accounted for. Members of the public who might not experience the full 

prolonged exposure because of death are already accounted for in the method laid 

out above. For the working population, individuals may enter the population through 

recruitment, and may leave through retirement. There may be other processes by 

which people enter and leave the exposed population, such as relocation, redundancy 

or through injury, but these including these processes would require a more 

sophisticated analysis than is warranted here. 

 

The methods for calculating the effects of exposure to members of the public born 

during a prolonged exposure, and to members of the workforce who are recruited 

and who retire during a prolonged exposure, are given by Thomas et al (2009) [186], 

[185] and Jones et al (2007) [118]. These methods will be briefly outlined below. 

 

Members of the public who are born immediately after the start of the prolonged 

exposure which lasts for TR years will be subject to an exposure that lasts for TR 

years. If it is assumed that the exposure rate is constant, and if the response is 

modelled with a step function, as was done for radiation and pollution, then the 

increase in hazard rate will be proportional to the prolonged hazard perturbation 

pattern: 

 

    atath  0|   (5.74)   

  

where ψ0(z) is given by: 
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    




z

Tz R

dyyz 00   (5.75)   

 

see equation (5.51). The dependence on the exposure time TR can be made explicit 

by writing 
  zRT

0 . The member born immediately after the start of the prolonged 

exposure will have age a = 0. The hazard rate perturbation will then be proportional 

to: 

 

     tth RT

00|    (5.76)   

 

If the other factors, such as exposure rate and whether the hazard follows the 

absolute or relative risk model, are known, then the hazard rate perturbation at future 

age t for an individual of initial age zero can be determined. This can then be used to 

determine the cumulative hazard rate and hence the change in life expectancy at age 

zero. 

 

An individual born i years after the exposure will not experience the full prolonged 

exposure. Instead, he well experience TR – i years of the exposure. His initial age 

will still be zero, and so his hazard rate perturbation can be modelled as: 

 

 
     tth

iTi R 00|   (5.77)   

 

where the dependence of the hazard rate perturbation on the number of years since 

the initial exposure, i, has been made explicit, and where, for clarity: 

 

 
    

 

 





z

iTz

z

iTz

iT

RR

R dyydyyz 000   (5.78)   

 

The hazard rate perturbation will then lead to a change in life expectancy at age zero 

of   0iX , where again, the dependence i has been made explicit. Individuals born 

in the range 0 ≤ i < TR will continue to experience the prolonged hazard, but an 

individual born TR years or more after the exposure will face no exposure. Under the 



 -107-  

assumption of a steady state population, the number of individuals being born each 

year is constant. The average loss of life expectancy for all members still to be born, 

which will be denoted as δXborn, will then be: 

 

 

  

R

T

i

born
T

diX

X

R


 0

0

  
(5.79)   

 

The total number of individuals, N2, who will be born in the period of the exposure, 

TR, is simply the product of the steady state birth-rate, n(0), given by equation (4.58), 

and TR: 

 

  
 0

02
X

T
NTnN R

PopR   (5.80)   

 

The total population that experiences the exposure will be the sum of the existing 

population and those born during the time of exposure: 
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PopPopTot  (5.81)   

 

The average loss of life expectancy for this group of people, which will be denoted 

as δXall will then be the weighted average of the loss of life expectancy of those 

already alive during the exposure and those who will be born during it: 

 

 

 

 

 

 

 
  R

bornR

R

born
R

R
Pop

born
R

PopPop

all

TX

XTXX

X

T

X
X

T
X

X

T
N

X
X

T
NXN

X


































0

0
         

0
1

0

0
1

0







 (5.82)   

 

Modelling the recruitment and retirement of a working population can be done in a 

similar manner. For example, the recruitment process can be seen as being similar to 
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the birth process, but the initial age will be arec, i.e. about 20, rather than zero for 

those born, so they will have a hazard rate perturbation of: 

 

 
     rec

iT

rec

i atath R 


0|   (5.83)   

 

which can then be used to calculate the change in life expectancy,   rec

i aX , as long 

as the exposure rate, and whether the hazard is an absolute or a relative risk-type, are 

known. The change in average life expectancy is: 

 

 

  

R

T

rec

i

rec
T

diaX

X

R


 0



  
(5.84)   

 

The retirement process does pose some additional complications, in that individuals 

need to be partitioned according to the amount of time they will be exposed to the 

prolonged hazard, with individuals who are about to retire seeing none of the 

prolonged hazard, whilst those workers who are below age aret – TR, where aret is 

about 60, will experience the full exposure. Putting aM as the maximum age an 

employee can have and still see the full exposure: 

 

 RretM Taa   (5.85)   

 

The hazard rate perturbation for an individual aged aM + i at the start of the 

prolonged exposure will be: 

 

 
       iatiath M

i

M

i  0|   (5.86)   

 

which can be used to calculate the change in life expectancy, 
  iaX M

i  , and the 

average change in life expectancy of those retiring will be: 
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i
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diiaX
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 
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(5.87)   

 

Finally, the group of workers in the age range arec ≤ a ≤ aM, who experience the full 

prolonged exposure will have a hazard rate perturbation of: 

 

 
       iatiath rec

i

rec

i  0|   (5.88)   

 

for 0 ≤ i ≤ (aM – arec). This can then be used to calculate the change in life 

expectancy,   iaX rec

i  . The average change in life expectancy of this group will 

be: 

 

 

   

   

Rrecret

Taa

rec

i

recM

aa

rec

i

work

Taa

diiaX

aa

diiaX

X

Rrecret

recM





















0

0

           







 (5.89)   

 

The average change in life expectancy for the entire workforce who experiences 

some of the prolonged perturbation will be the weighted average: 

 

 
   

Rrecret

workRrecretretrecR
workall

Taa

XTaaXXT
X




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
  (5.90)   

 

5.11 The Effect of Discounting on the Hazard Rate Perturbations  

It was shown in section 4.7 that the effect of discounting was to modify the hazard 

rate to: 

 

     rththd   (5.91)   

 

where r is the discount rate. This discounted hazard rate then allows the discounted 

cumulative hazard rate, discounted survival probability, discounted life expectancy, 
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and discounted average life expectancy to be determined from the associated 

calculations. In the absolute risk model, the perturbed hazard rate is independent of 

the initial hazard rate, and so discounting has no effect: 

 

    athath absabsd ||.    (5.92)   

 

The associated change in the cumulative hazard rate will also be unaffected by the 

discount rate. The change in life expectancy will be: 

 

  
 
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d dtatWtS
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  (5.93)   

 

which is dependent on the discount rate. The discounted average change in life 

expectancy is then calculated in the usual manner. For the relative risk model, the 

discounted hazard rate perturbation is: 

 

 

        

     










at

rel

at

reld

dxxbxatrath

dxxbxatrthath

0

0

0

0.

|                  

|





 (5.94)   

  

The associated change in the cumulative hazard rate will also be dependent on the 

discount rate: 

 

    dtauhatW

t

a

reldd  || .  (5.95)   

 

which can then be used to calculate δXd(a) and δXd, in the same manner as discussed 

above. 
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Figure 5 Exposure rate, b(x), over time, x. 

 

Figure 6 Probability density for the mortality period, y. 
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Figure 7 The excess mortality probability distribution for radiation-induced cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8 The excess mortality distribution for pollution-induced mortality. 
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Exposure 

Type 
Response 

Type 
b(x) fM(y)/  y0  δhabs(t|a)/ 

δhrel(t|a) 
δW(t|a) 

(abs/rel) 
Short Short 

= b for x = 0 
= 0 otherwise 

= 1 at y = 0 
= 0 otherwise 

= b/ bh(t) for t = 

a 
= 0 otherwise 

= b/ bh(a) for t 

≥ a 

Short Long = Ω
-1

/1  
for 0 ≤ y < Ω 

= bΩ
-1

/ bh(t) 
for t ≥ a 

= b(t-a)Ω
-1

/ 

b(W(t)- W(a)) 
for t ≥ a 

Long Short 

= b for x ≥ 0 

= 1 at y = 0 
= 0 otherwise 

= b/ bh(t) for t ≥ 

a 
= b(t-a)/ 

b(W(t)- W(a)) 
for t ≥ a 

Long Long = Ω
-1

/1  
for 0 ≤ y < Ω 

= bΩ
-1

(t-a)/ 

bh(t)(t-a) 
for t ≥ a 

= b(2Ω)
-1

(t-a)
2
/ 

b(∫h(u)(u-a)du) 
for t ≥ a 

Table 2 Hazard rate perturbations for limiting exposure and response distributions, assumed to be 

uniform over the specified period. The parameter Ω is the length of time which the prolonged 

response lasts for. For a long response lasting for the rest of the exposed individual’s life, a value of Ω 

~ 100 years would be appropriate. 

 

 

Population Type Compensating Factor Dose-Risk Coefficient, cT  

(Sv
-1

) 

General Population 1.43 0.058 

Working Population, 

100% Males 

1.32 0.042 

Working Population, 50:50 

Gender Split 

1.27 0.041 

Working Population, 

100% Females 

1.23 0.039 

Table 3 Values of the compensating factor and dose-risk coefficient for different populations, using 

latest data. 
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Chapter 6 Fundamental Relationships for the Calculation of 

Work-Life Expectancy and the Work-Time Fraction 

6.1 Characterising Working Time Behaviour 

The preceding two sections described the technical details required for calculating 

the average length of time remaining for a population, knowledge of which is 

required in the J-value framework. It is also necessary to calculate the average length 

of working time remaining for a population. This is needed to determine the average 

work-time fraction, w0, which is required for the calculation of the risk aversion 

coefficient in the J-value, as discussed in section 3.2. The average work-time fraction 

is the average fraction of time the population will spend in work from now on. 

Related to this parameter is its complement, the average free time fraction,               

f0 = 1 – w0. This section describes the methodology for calculating these parameters, 

which are related to the life expectancy calculations of chapter 4. Indeed, it is shown 

that the average life expectancy is required to calculate w0. Also needed is the 

average work-life expectancy, which is the population averaged length of working 

time remaining. 

 

6.2 The Work-Time Fraction 

Consider an individual of age a in a population with age probability distribution 

p(a). The individual’s life expectancy is X(a). This is the expected value of his life to 

come from now on. If the individual expects to work for yw(a) years from now on, 

which will be termed the work-life expectancy, then his average free time remaining 

from now on, F(a), will be: 

 

      ayaXaF w  (6.1)   

 

Averaging over the entire population gives the average free time remaining, F, in 

terms of the average life expectancy and the average work-life expectancy, yw: 
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000
 (6.2)   

 

which may also be expressed as: 

 

 X
X

y
F w









 1  (6.3)   

 

Comparing this equation with (3.1), it is clear that the average work-time fraction in 

the population, w, is given by: 

 

 
X

y
w w  (6.4)   

 

In section 3.2 it was explained how the work-time fraction relates to the elasticity 

parameter, q, which is used to describe the trade-offs that are made in maximising 

the life-quality index. It was assumed that, on average, society’s preferences for 

working will be such that the trade-off between income and free time is optimised 

for life-quality. This then allowed the optimal work-time fraction, w0, to be defined, 

which was assumed to be equal to the average work-time fraction for the population, 

so that w0 = w. 

 

In order to calculate w0, the average work-life expectancy needs to be estimated. The 

method for doing this will now be presented. 

 

6.3 Work-Life Expectancy 

It will be assumed that both the population and the job market are in a steady state. 

The probability, psw(t|a), of the average individual of age a being in work at a future 

age t, is the probability that he will have survived to that age, S(t|a), multiplied by 

the probability that a person of age, t, is in work, pw(t): 
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    
 aS

tS
tpatStpatp wwsw )()()( 

 
(6.5)   

 

If the average person of age, t, works for a fraction of the time, gw(t), when in work, 

then the fraction of time, zw(t|a), someone of age a can expect to be working at future 

age t, is: 

 

 
 
 aS

tS
tptgatz www )()()( 

 
(6.6)   

 

Thus the amount of time that such a person can expect to work between ages t and    

t + dt will be zw(t|a)δt, and the total time that someone of age, a, can expect to work 

from now on, yw(a), may be found by integrating from the current age over all 

possible future ages to the end of life: 
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In the simplest case, the probability that a person of age t is in work, pw(t), and the 

fraction of the time the average person of that age spends in work, gw(t), may be 

regarded as uniform over the working age, and zero outside it: 
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 (6.8)   

 

and: 
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 (6.9)   

 

where trec is the starting age for work, while tret is the retirement age, so that 
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Substituting from equation (6.10) into equation (6.7) gives: 
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(6.11)   

 

The assumption of a uniformly distribution for the employment probability, pw(t), 

and hours of work, gw(t), is somewhat simplistic. The sensitivity of the work-time 

parameters to the type of distribution is assessed in chapter 9, where the uniform 

distribution is compared to observed data for the UK, which appears more normally 

distributed. 

 

When using the more general equation (6.7), the average work-life expectancy is 

then given by: 
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This expression can be simplified first by noting that, from equation (4.60): 
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The employment rate, pw(t), can be written as: 
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w   (6.14)   

 

where nw(t) is the number of people working at age t, and n(t) is the number alive at 

age t. The fraction of time spent working is: 
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where hw(t) is the weekly hours worked at age t, and 168 is the number of hours in a 

week. The average work-life expectancy is then: 
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(6.16)   

 

where equation (4.60) has again been used to substitute p(t)/n(t) for 1/NPop, where 

NPop is the total population size, and where Hw(t) = nw(t)hw(t) is the total person-

hours worked per week at age t. The order of integration can be reversed to give: 
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(6.17)   

 

If the simple case of uniformly distributed working hours between the age of 

recruitment, trec and the age of retirement, tret, is used, then:  
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where HT is the total person hours worked per week in the population, a figure which 

can be readily obtained from national statistics, as will be described in more detail in  

chapter 8. The average work-life expectancy is then: 
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 (6.19)   

 

where the ratio (tret + trec) / 2 is the average working age in the population, tw.av, 

under the uniform distribution assumption.  

 

6.4 Approximations for the Work-Time Fraction 

The average work-time fraction can then be estimated, from equation (6.4), as: 
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 (6.20)   

 

where equation (4.66) has been used. It may be noted that the average working age is 

generally very close to the average population age. It was mentioned in section 4.7 

that the average age using 2007 – 2009 UK data was around 41.2 years. The average 

age working age of a uniformly distributed working population is 40 years. Their 

ratio is thus close to unity. This means that the average work-time fraction may be 

approximated as: 
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The two quantities can be estimated readily from national population and labour 

market statistics, as will be described in  chapter 8. In practice, the more accurate 

(6.20) is used in the estimation. Although the above equations are suitable for 

measuring w, more insight can be gained into this parameter by noting that the ratio 

HT/168 is the total hours worked in the average week divided by the number of hours 

in a week. This quantity is therefore the number of person-weeks worked per week. 

This can be scaled up by multiplying the numerator and denominator by the number 

of weeks in a year. The scaled up quantity is then the annual person-years worked, 

Npy, and so: 

 

 
Pop

py

N

N
w   (6.22)   

 

The average work-time fraction thus emerges as the annual per capita person-years 

worked within the population. This is effectively the procedure advocated by Pandey 

et al (2006) [158]. 
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Chapter 7 The Value of Life and Life-Years 

7.1 The Value of Delaying a Fatality 

The methods for using the J-value framework to derive more commonly used 

valuations of human life will now be presented. The starting point is deriving the 

value of delaying an immediate fatality by some nominal amount. The maximum 

reasonable value to spend on increasing life expectancy is given by equation (3.60). 

This would be such that the J-value was unity. This can be generalised to other 

situations in which J ≠ 1 by multiplying by J:   
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The value, 
  )( d

N xV
D

, of delaying an imminent threat of death by xd discounted years 

is found by integrating (7.1) from  0dX  to dd xX  , where 0  indicates the fact 

that death is imminent but has not actually happened: 
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If only one individual is concerned, then N = 1 in equation (7.2), and using the 

notation   )()( 1

dDdD xVxV  , then: 
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The integral in equation (7.3) has no closed form solution, but can be evaluated 

numerically. In order to retain accuracy, the integral is expressed as a series sum, 

which is much easier to evaluate. This is done by first making the replacement: 

 

 

ZxrzxX

zX

dXrdz

Xrz

dddd

d

dd

dd









00
 (7.4)   

 

so that: 
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The Taylor series expansion for e
-z
 is:  
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so that: 
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and: 
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The integral therefore becomes: 
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As the integral of a sum is equal to the sum of an integral, equation (7.9) can be 

written as: 
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substituting into (7.5): 
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which can be readily evaluated numerically. The sum converges to the correct 

solution very rapidly. After two terms, the error is about 2%, and after three terms, 

the error is about 0.3%, for typical values of rd and xd. Even for high values of rd and 

xd, the error is still less than 1% after three terms. 

 

7.2 The Value of Temporarily Preventing a Fatality, VTPF 

The above analysis of the value of delaying a fatality by xd years may be extended to 

the case where the immediate threat to life is completely eliminated, returning the 

individual back to his initial state. The more common term for this value is the VPF 

– the value of preventing a fatality. However, this phrase is a circumlocution, as it is 

impossible to prevent a fatality – all individuals will eventually die. Hence the phrase 

adopted here is the “value of temporarily preventing a fatality”, or VTPF, which 

acknowledges this problem. 

 

The maximum number of years an individual can gain from having an immediate 

threat to his life removed is his initial discounted life expectancy in the absence of 

the threat. If the age of the individual is known, then this maximum value is thus 
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Xd(a). If the age of the individual is unknown, then the average discounted life 

expectancy, Xd, will be the best estimate of the number of years gained from 

temporarily preventing the fatality. Thus the VTPF may be written as VP(X(a)), or 

more simply, VP(a), for when age is known, where: 
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or when the age is unknown: 
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The VTPF when age is unknown may be used as an indicator of the population 

averaged VTPF. Another way of averaging would be to integrate the age-dependent 

VTPF over the population distribution: 
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when the discount rate is zero, these two methods of averaging are identical. For rd > 

0, the values are still close, with the age-independent VTPF being slightly higher.  

 

7.3 The Value of a Discounted Life-Year, VODLY 

The value of a discounted life year, vd(xd), is the amount that should be paid to 

extend life by one year. This is equal to the difference in the value of a delayed 

fatality between a delay of xd + 1 years and xd years: 
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so that: 
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The integral may be evaluated by noting that it can be developed as a sum, following 

the same method as was shown in section 7.1, except with the limits of integration 

changed. This means the sum will be altered to: 
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Since rd/Z = 1/xd will typically be small, the bracketed term may be approximated as: 
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substituting back into (7.17) gives: 
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Comparing (7.19) with (7.7), it is apparent that: 
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and so the VODLY is: 

 

 

 

0for                     
1

 0for       
1

1














d

d

dd

xr

dd

r 
G

J

r
xr

eG
Jxv

dd




 (7.21)   

 

The VODLY is thus dependent upon the length of the achieved delay, but only at 

high discount rates and large delays. For low discount rates or delays, the VODLY is 

approximately constant. 

 

7.4 An Alternative Model of the VODLY, the VODLYA 

An alternative characterisation of the VODLY, which will be called the VODLYA, 

would be the average value of a discounted life-year, vav, achieved by returning the 

individual to his or her normal life expectancy. This is simply equal to the ratio of 

the VTPF to the initial life expectancy of an individual, X(a): 
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or, when age is not known: 
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By comparing the above equation with equations (7.12) and (7.13), it can be seen 

that the VODLYA is equal to the VODLY when the discount rate is zero. They are 

also close for non-zero discount rates. 

 



 -127-  

 

7.5 The Hazard Elimination Premium, HEP 

The VTPF, VODLY and VODLYA all provide a valuation for the extension of life 

by a certain amount of time. It is also possible to define a value for a given level of 

risk reduction, and it is natural to first consider the value of completely eliminating a 

given risk. In such a situation, an individual or a population would be exposed to 

some detrimental hazard that is causing a reduction in life expectancy. Upon 

elimination of the hazard, the life expectancy is returned to the average value for the 

general public. Such a measure thus provides a maximum reasonable amount to be 

spent on completely eliminating a given risk, and is termed the “Hazard Elimination 

Premium”, or HEP. 

 

This measure has useful applications in the field of comparative risk analysis, in 

which different risk-exposing systems will produce costs on an exposed population, 

and the best system is the one which minimises this cost for a given output. The HEP 

calculates the total improvement in life expectancy in absence of the risk, and 

monetises it to produce a common measure of this cost. The HEP is given by 

equation (7.1), repeated below: 
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where here the change in discounted life expectancy, δXd is the life expectancy 

gained from complete elimination of the hazard. The maximum reasonable HEP 

occurs when J = 1. For a comparative risk analysis to be consistent, then the same 

value of J should be used for each system studied. However, there may be various 

practical constraints whereby using different values of J would be warranted. For 

example, safety regulations may require a disproportion factor to be incorporated 

into cost considerations for certain systems. The factor of J could then be used for 

this disproportion factor. 
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The HEP is a novel concept introduced here for use in the second part of this thesis, 

in which a comparative risk analysis of UK electricity generating systems is 

performed. Here the systems under scrutiny are the entire fuel chains involved with 

various methods of electricity generation, from fuel extraction to waste disposal. 

These produce costs to the public and workers in terms of extra mortality from 

pollution and radiation exposure, as well from accidents. Using the tools presented in 

the preceding chapters i.e. those of the life quality index and J-value, which 

incorporate models of survival and mortality, and models of working time behaviour, 

the risks involved with the electricity generation systems under comparison can be 

objectively measured. These can then be combined using equation (7.1) to produce a 

set of HEPs for each electricity generating system, in terms of the maximum 

reasonable amount to spend on risk elimination per unit of electricity generated, 

which can then be used to compare the different aspects of risk posed by each 

system. 
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Chapter 8 Measurement of the Parameters Required for J-Value 

Analysis and their Tolerances 

8.1 Quantifying Parameters and their Uncertainty 

The preceding sections have laid out the methods and procedures necessary for the 

calculation of the parameters required in the J-value model. In this section the 

estimates of each of these parameters is presented. The methods for estimating the 

uncertainty of the parameters is also discussed and where possible, the 95% 

tolerance limits are shown. Some of the work contained in this chapter has been 

previously published by the author, see Kearns (2010) [123]. However, the majority 

is either new or is a further extension of the previous work. 

 

The J-value, as given by equation (3.61), is comprised of seven parameters. These 

are also dependent upon further parameters. Other parameters extraneous to the J-

value, such as the VTPF and VODLY may also be calculated from these quantities. 

Five of the seven J-value parameters can be objectively measured from reliable 

statistics, a defining feature of the J-value. The only parameters which are not 

objectively measured are the discount rate, rd, and the net discount rate, r. The 

former parameter is usually fixed so that the latter parameter is equal to either 0% 

per annum or 2.5% per annum, but can also be varied to assess sensitivities, as will 

be described later. The remaining parameters can be classed as either “context-

dependent” parameters or “context-independent” parameters. The context-dependent 

parameters are those which depend on the specific nature of the protection system, 

and so cannot be determined a priori. These parameters are: the change in 

discounted life expectancy, δXd; the number of individuals affected by the protection 

system, N; and the actual cost of the protection system, NV̂ . The context-

independent parameters are those which are constant for each protection system, and 

can be evaluated without knowledge of the protection system. These are: the GDP 

per person, G; the risk aversion coefficient, ε; the average life expectancy, X; and the 

growth rate, rg. These parameters, in turn, are dependent upon other parameters, such 

as the age distribution, p(a), the survival probability, S(a), the work-time fraction, 

w0, etc. Each parameter will now be discussed in turn, and the estimate will be 

presented. 
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It is also important that some attempt is made to quantify the uncertainty associated 

with these measurements. The uncertainty is presented in terms of the tolerance 

limits. The methods for doing this will also be discussed. Although many of the 

parameters can be assessed for uncertainty, it is not possible to do this for each one. 

In particular, those that are not used directly in the J-value equation will not have 

their uncertainty quantified. Important to the uncertainty analysis is the consideration 

of the propagation of uncertainty conditions, which relates the uncertainty on a 

particular variable to the uncertainty of some function of that variable. These 

considerations allow the tolerance limits on the J-value to be estimated. The 

propagation of uncertainty is determined by a weighted sum of squares method. If a 

function, f, is dependent upon k variables, denoted as xi, for i = 1, 2, ..., k, so that: 
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and the standard deviation is the square root of the variance. The “corr” term 

represents the contribution to the uncertainty when two or more variables are 

correlated with each other. For example, if the variables x1 and x2 are correlated with 

correlation coefficient 
21xx , but all other variables are independent of each other, 

then the correlations term would be equal to: 
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Once the standard deviation has been obtained, the last remaining piece of 

information required for knowledge of the tolerance limits is the distribution. As will 
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be discussed, many of the parameters have normal distributions. The 95% tolerance 

limits for such distributions then lie at approximately ± two standard deviations from 

the mean. 

 

8.2 Gross Domestic Product per Person, G 

The Gross Domestic Product (GDP) of a country is a measure of economic activity. 

It is the value of all goods and services produced within the country over the year. 

The GDP per person is the GDP divided by the total population of the country: 

 

 
PopN

GDP
G   (8.4)   

 

 In the UK, these figures are published annually by the Office for National Statistics 

(ONS), in a publication entitled “United Kingdom National Accounts: The Blue 

Book” [149]. The latest value of G, as taken from the Blue Book 2010, is £22,538. 

 

In order to assess the uncertainty on G, it is first necessary to estimate the standard 

deviation of the estimates of the GDP and the population. These uncertainties will 

then be related to the standard deviation on G by: 
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so that: 
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where 
PopNGDP,  is the correlation coefficient between the population size and the 

GDP. The values of the GDP and NPop are also given in the Blue Book. For 2009, the 

GDP was £1.39 trillion and NPop was 61.8 million. 

 

The uncertainty on the GDP measurement is estimated from [144], which gives data 

on the subsequent revisions in the estimates of the GDP in a previous publication of 

the Blue Book. It is assumed that the most up to date value of the GDP will be 

subject to similar revisions, and that this is the major source of uncertainty on the 

GDP estimate. The total revisions after the initial Blue Book publication give the 

relative standard deviation, or coefficient of variation, on the GDP as 0.1%. 

 

The uncertainty on the population can also be estimated from data published by the 

ONS. An analysis performed by the ONS of 2001 Census data showed that the 95% 

confidence interval for the 2001 population estimate for England and Wales was 

±0.2% of the mean estimate [143]. The relative standard deviation is then 0.2%/1.96 

= 0.1%. Had data for the whole of the UK been pooled, rather than just for England 

and Wales, the error would have been smaller. Although this estimate was for the 

2001 population, it will be assumed that the uncertainty is also applicable to the 

present day population estimate.  

 

The final estimate required to calculate equation (8.6) is the correlation coefficient 

between the GDP and the population. This can be estimated from ONS time series 

data [153], which provides the historical values of the GDP and the national 

population from 1948 to 2008. It is then possible determine how the two vary 

together, and hence obtain ρ. Performing this calculation gives ρ = 0.94: The time 

series data is shown in Figure 10. 

 

Using the above values in equation (8.6) gives the relative standard error on the GDP 

per person, ζG/G as 0.03%. The estimates of the GDP and the population are made 

by summing a large number of independent records, and so, by the central limit 

theorem, the uncertainty on each of the estimates will be normally distributed. Thus, 

G is the ratio of two normally distributed and correlated random variables with 

different means and standard deviations. The uncertainty on G then follows the ratio 
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distribution, see [94]. This distribution, which cannot be expressed simply, is shown 

in Figure 9. The distribution is not normal – it is much more sharply peaked. The 

associated distribution if the uncertainties were normally distributed is also shown in 

this figure for reference. It is not known what the 95% tolerance limits are for such a 

distribution, but they will be closer to the mean than for the normal distribution 

(where the 95% limits are at around ±2σ), which also means that the tolerance 

interval will be smaller. 

 

8.3 Net Discount Rate, r , Discount Rate, rd and Growth Rate, rg  

In order to discount the life expectancy and the change in life expectancy, it is 

necessary to evaluate the net discount rate, r. The net discount rate is a linear 

combination of the discount rate (or real rate of time preference), rd, and the annual 

growth rate, rg, as given in equation (3.46). The growth rate can be evaluated from 

the Treasury Green Book [95], who use rg = 2% per annum. The discount rate can 

then be chosen to set the net discount rate to be either 0% or 2.5%, which are the two 

discount rates usually used in J-value analysis, although higher discount rates may 

also be used. In order to get r = 0%, then it is necessary to set rd = (1- ε) × rg = 0.3% 

per annum. To get r = 2.5% it is necessary to put rd = 2.8% per annum. Different 

values of the discount rate can also be used to assess the sensitivity of the life 

expectancy and the J-value to discounting. As the net discount rate is not a directly 

measured quantity, it will be assumed that there is no uncertainty on this parameter.  

 

8.4 Discounted Average Life Expectancy, Xd, and Other Related 

Actuarial Parameters  

The method for calculating the life expectancy and the other related variables is 

presented in  chapter 4. The fundamental variable in these calculations is the age-

dependent hazard rate, h(a). All other actuarial parameters can be calculated once 

these are known. As was discussed in section 4.4, the way the hazard rate is 

determined is dependent upon whether deaths are assumed to be uniformly or 

exponentially distributed over the interval (a, a+1). Section 4.5 discussed the current 

assumption used in J-value calculations, which is to assume that deaths are 
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exponentially distributed, so that the central rate of mortality is used for the hazard 

rate. The sensitivity of the results to this assumption is assessed in chapter 9. 

 

The central rates of mortality for the UK population are available in the Office for 

National Statistics’ Interim Life Tables [145]. These are presented in terms of male 

and female mortality rates, which can then be combined using equation (4.50). 

Section 4.5 also describes the end correction used to account for the mortality of the 

final age group of the population. 

 

Section 4.6 details the method used to calculate the population distribution, p(a), 

under the assumption the population is in a steady state. Again, all that is required to 

calculate this distribution are the hazard rates. This steady state population 

distribution is shown in Figure 4, along with actually observed UK population 

distribution. The effect of using the simplified distribution on the results is assessed 

in Chapter 9. The probability distribution is also used in calculating other 

parameters, such as the moments of the distribution. The first moment – the mean 

age, was shown in section 4.7 to be equal to the average (undiscounted) life 

expectancy. The value of this parameter is discussed in the next paragraph. In 

sections 4.8 and 5.8, it was shown how the second moment can be used in 

approximating the effect of the discount rate on the average life expectancy, and also 

the value of the change in life expectancy for prolonged exposures and short 

responses and vice versa. The third moment was also found to be useful for 

calculating the change in life expectancy for prolonged exposures and prolonged 

responses. As the population is assumed to be in a steady state, these moments are 

constant over time for the population. The second moment of the distribution, which 

is the mean-square age, is equal to 2,304 years
2
. The third moment, the mean-cube 

age, is equal to 147,311 years
3
. One other parameter which can be calculated from 

the distribution is the population entropy, H, derived in equation (5.29) as a key 

parameter in the change in life expectancy resulting from a short relative risk 

exposure. For most populations, the population entropy lies between zero and unity. 

Populations that have constant mortality rates over all ages, so that the distribution 

declines exponentially, will have a population entropy of unity, whilst populations in 

which the majority of deaths occur within a narrow age range will have a low 

entropy near zero, for example, see the discussion by Goldman and Lord (1986) [89]. 
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The trend is thus for populations to reduce their entropy as they become more 

developed over time. For the UK for 2007-2009, the population entropy was 0.13. 

 

The discounted life expectancy, Xd(a), and discounted average life expectancy, Xd, 

are shown in Figure 11 for discount rates of 0% and 2.5%. Life expectancy at birth, 

Xd(0), is 79.6 and 34.0 years respectively. The average life expectancy is 41.2 and 

22.9 years respectively. These numbers are for the general population, and assume 

that there is a 50% male/female split at all ages. For a working population distributed 

uniformly between ages 20 and 60, and which is composed entirely of males, 

average life expectancies are 39.5 and 23.9 years for discount rates of 0% and 2.5% 

respectively. 

 

As the discounted average life expectancy is an important parameter in the J-value 

equation, as given by (3.61), the tolerance limits will be analysed for this parameter. 

This is done using the following method: 

 

Suppose and individual is selected at random from the population as a whole. The 

individual will be of random age, A
*
. If we know the value of this random age, such 

that A
*
 = a (which is taken to mean that the age is between a and a+1), then we may 

categorise the individual into an age category.  The selected individual will have a 

random life to come, χ(a), but that life to come, even though random, will be 

conditioned by the fact the individual has age, a. The relationship is defined formally 

by:  

 

    1*  aAaa   (8.7)   

 

where χ is the unconditioned random life to come. The expected value, X(a), of the 

life to come of an individual of age, a, is the average value of the expected life to 

come for all n(a) individuals of age a in the population:  

 

     
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  
(8.8)   
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However, if we do not know the age of the randomly selected individual, our best 

estimate of his life to come will be the weighted, average value, X, over all ages: 
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 (8.9)   

 

The arguments advanced for treating random life to come, χ, transfer one-to-one to 

the case of the random square of life to come, 
2 . Hence the random square of life 

to come, given that the individual’s age is a, is: 

 

    1*22  aAaa   (8.10)   

 

while the expected value of the square of life to come of an individual of age, a, is 

given formally by 
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(8.11)   

 

Then, if we do not know the age of the randomly selected individual, our best 

estimate of the square of his life to come will be the weighted, average value over all 

ages: 
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
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 (8.12)   

 

The variance of random life to come for individuals selected at random in the 

population will be  var , given by: 
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       22var  EE   (8.13)   

 

which may be expanded using equations (8.9) and (8.12): 

 

       22var XaEE
a

   (8.14)   

 

But formally, the variance of random life to come, given that the person is aged, a, is 

given by: 
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aEaEa

22

22var








 (8.15)   

 

Moreover, it is known, by equation (D.18) of Thomas, Jones and Kearns (2010) 

[189], that the variance of random life to come for an individual of age, a, is: 

 

        aXataXa avea

2

.2var    (8.16)   

 

where, from equation (D.15) of op. cit., aveat . , is the average age of those above age, 

a: 

 

 
   

 

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a
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t
1
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Comparing equations (8.15) and (8.16) shows that: 

 

      ataXaE avea  .

2 2  (8.18)   

 

Substituting from equation (8.18) into equation (8.14) gives: 
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This may be developed further, by noting that: 
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where equations (8.17), (4.26) and (4.60) have been used in the development. The 

order of integration can be reversed to give: 
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 (8.21)   

 

where t
2

av is the mean-square age of the population, as discussed above. This means 

that: 

 

         2

.

2 2 avavea
aa

tataXEaEE    (8.22)   

 

The square of the random life to come averaged over all ages of death and over the 

population is therefore equal to the mean-square age of the population. It has also 



 -139-  

been established, via equation (4.66), that the average life expectancy, which is the 

random life to come averaged over all ages of death and over the population (see 

equation (4.20)), is equal to the mean age in the population. Thus, both the first and 

second moments of the distribution of the life to come averaged over all ages of 

death and all ages are equal to the first and second moments of the age distribution. 

In fact, this may be shown to be true for all moments, a proof of which is given in 

Appendix B. Thus the general result is that, under steady state conditions, the 

moments of life to come are equal to the moments of life lived. 

 

Substituting into equation (8.19): 
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 (8.23)   

 

where equation (4.66) has been used, and where the expectation operator E[.] has 

been introduced to avoid confusion. Thus the variance of the life to come averaged 

over all ages is therefore equal to the variance of the age distribution.  

 

Using latest UK data, the standard deviation for an individual picked at random, 

without knowledge of the individual’s age, is about 24 years.  

 

In order to derive the variance of the average life expectancy for a whole population 

of size NPop, it is assumed that the age distribution of the population is unknown. 

Each individual can then be treated as having a random life to come of value χ which 

has mean value X and variance,
2 , as given by equation (8.23). By the Central 

Limit Theorem, for large NPop, the average of the NPop random variables will be 

approximately normally distributed with mean X and variance   PopNvar . Hence 

the variance of average life expectancy for a whole population is: 
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For the UK, var[χ] = 609 years
2
. Dividing by the population size of 61.8 million, the 

variance of the average life expectancy is approximately 1x10
-5

 years
2
, and the 

standard deviation is 0.003 years. For the normal distribution, the 95% tolerance 

limits lie at ±1.96σ from the mean. The 95% tolerance interval for the average life 

expectancy is therefore 41.166 – 41.177 years. 

 

8.5 Share of Wages in the GDP, θ 

The wage share of the GDP, θ, which was introduced in section 3.2, needs to be 

estimated in order to estimate the risk aversion coefficient, ε, as given by equation 

(3.41). The wage share may be determined from national statistics. In the UK, the 

ONS publish this datum in many publications. Here, data from the monthly 

“Economic & Labour Market Review” [150] will be used. When estimating θ, there 

exists a problem of defining exactly what constitutes wages. Most national accounts 

use the term “compensation of employees” to refer to wages paid by employers to 

employees. The ONS define “compensation of employees” as the “Total 

remuneration payable to employees in cash or in kind. Includes the value of social 

contributions payable by the employer” [149]. The main drawback of this definition 

is that it neglects the income of the self employed, which in some countries can 

represent a large fraction of the GDP. 

 

It will be recalled that the wage share was defined in section 3.2, equation (3.10) in a 

“production function”, a function that relates two inputs, or “factors of production” 

to the output produced. In this case, the factors of production were labour and 

capital, and the output was the Gross Domestic Product. The production function 

defined in equation (3.10) was of a special type, known as a “Cobb-Douglas” 

production function, in which the two factors of production are exponentially 

weighted and formed into a product. A consequence of the Cobb-Douglas production 

for GDP is that the share of wages should remain constant over time and across 

countries. This is because if wage rates were to rise relative to capital income, then 

industries would employ fewer people in order to minimise the loss of profit. If 

wages were to fall relative to capital, industries could employ more people for the 

same profit. Thus the wage rate and the employment rate are always engaged in a 

trade-off, and this trade-off renders θ approximately constant. For further details of 
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this process, see Wolfson (1978) [205]. Using the definition of wages as being equal 

to only the compensation of employees, θ does not appear to be constant, either over 

long periods of time or across countries, as shown by Gollin (2002) [88]. Gollin 

attributes these discrepancies to the practice of neglecting the income of the self 

employed in the definition of wages. Changing the definition of wages to include the 

self employed as well as compensation of employees gives new estimates of the 

wage share that are remarkably consistent with the predictions of the Cobb-Douglas 

theory. It is for this reason that the income of the self employed is included with the 

compensation of employees in calculating θ for use in J-value analysis. 

 

The income of the self-employed can be very difficult to measure in some countries. 

In the UK, the ONS provide estimates of self employed income under the term 

“mixed income”. The ONS define this as: “The balancing item on the generation of 

income account for unincorporated businesses owned by households. The owner or 

members of the same household often provide unpaid labour inputs to the business. 

The surplus is therefore a mixture of remuneration for such labour and return to the 

owner as entrepreneur” [149]. The last sentence of this quote highlights the 

difficulty with using mixed income for the self-employed contribution to the GDP. 

This is that the UK national accounts do not determine how much of the self-

employed income is taken as a wage, and how much is fed back into the 

unincorporated business, which would count as capital formation. This problem has 

been noted by the ONS, see [193], who solve the problem by assuming the share of 

mixed income taken as profit is equal to the share of the GDP paid as compensation 

of employees. For example, if compensation of employees is 60% of the total GDP, 

then one should assume that 60% of the mixed income is taken by the self-employed 

as wages, with the rest going as capital formation. Hence, θ is estimated from the 

national accounts as: 

 

 
GDP

MI

GDP

COE

GDP

COE
  (8.25)   

 

where COE stands for “compensation of employees” and MI stands for “mixed 

income”, both of which are published in the Economic & Labour Market Review 

[150]. This publication also gives historical data. 
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Figure 12 shows θ for the UK from 1955. The average value over this time period is 

0.603, and the standard deviation is 0.032. However, as can be clearly seen, there is a 

large peak at 1975, which began in the early 70’s and returned to normal levels 

during the 80’s. This period corresponds to a period of great industrial unrest in the 

UK. The period from 1984 to present is more stable, and is judged to be a better 

indicator of the future than the period 1955 to present. Consequently it will be this 

time series that will be used to calculate θ. The average value for this period is 0.573 

and the standard deviation is 0.012, as shown in Figure 13. The coefficient of 

variation, or relative standard deviation, for θ is thus 2%.  

 

8.6 Work-Life Parameters and Risk Aversion, ε 

Chapter 6 discussed the methods for determining the average work-life expectancy, 

yw, and the work time fraction, w0. The only required parameters for estimating yw 

were the total hours worked per week in the population, and the size of the 

population. The total time worked per week can be estimated from the ONS 

publication “Labour Market Statistics”, [146], which is published regularly. Data for 

2009 indicate that there were 913 million hours worked per week, on average. The 

size of the population has already been discussed as being 61.8 million. Using 

equation (6.19), the average work-life expectancy is 3.5 years. The work time 

fraction is then this number divided by the average life expectancy. However, rather 

than using a present value, the work-time fraction is time averaged over the same 

period as for θ. This is because this parameter has remained remarkably constant 

over recent decades. Historical data from Labour Market Statistics and the Interim 

Life Tables can be used to estimate the past values. Life expectancy has increased 

linearly over this period, whilst the average work-life expectancy has fluctuated 

between 3.4 to 3.8 years. The average value for the work-time fraction for the period 

from 1984 to present is 0.091, and the standard deviation is 0.002, so that the 

coefficient of variation is about 2%. The time series is shown in Figure 13. 

 

The risk aversion coefficient, ε, can then be calculated from equation (3.41). As time 

series data for both w0 and θ have been determined, the corresponding risk aversion 

figures can also be determined over this period. These values are shown in Figure 13. 
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The risk aversion appears to be quite stable, with a mean value of 0.825, and a 

standard deviation of 0.005. The coefficient of variation is therefore 0.6%. As the 

risk aversion is used in the J-value equation, the tolerance limits will be analysed for 

this parameter. As the standard deviation is known, all that is required in order to 

place these limits is the distribution. A null hypothesis is formed that the data is 

distributed normally. This hypothesis is then tested using a normal-quantile plot. 

 

A normal quantile plot compares the observed dataset against the data that would be 

seen if it were normally distributed. The observed data is first sorted by rank order, 

and the cumulative proportion is then calculated. The cumulative proportion is 

denoted p. This is then plotted against the quantile function, zp, defined as: 

 

  pz p

1  (8.26)   

 

Where Φ
-1

(p) is the inverse cumulative distribution function of the normal 

distribution, and is the value that would be observed at the pth quantile for a 

normally distributed random variable with mean of zero and standard deviation of 

unity. Φ(p) is hence defined as: 
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To test whether the null hypothesis can be rejected, a relevant test statistic is 

computed, which can then be compared to a critical value at a given level of 

significance. If the test statistic is less than the critical value, the null hypothesis may 

be confidently rejected. The relevant test statistic in this case is the correlation 

coefficient, which measures how closely the data and the zp value change together. If 

the correlation coefficient were unity, the distribution would be perfectly normal. 

Table 4 shows the results obtained with the observed dataset for the risk aversion 

from 1984 to present. The correlation coefficient is 0.976. The significance level for 

this test is 5%, and the critical value at this level is 0.957, meaning that correlation 

coefficients below this value would be sufficient to reject the null hypothesis of 

normally distributed data. Hence, as the correlation coefficient was found to be 
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greater than the critical value, so the null hypothesis may not be rejected. Therefore, 

it may be inferred that the risk aversion is distributed normally, with a probability of 

less than 5% that the distribution occurred by chance. Table 5 presents these results. 

The normal-quantile plot is shown in Figure 14. 

 

For the normal distribution, the 95% tolerance limits lie at ±1.96σ from the mean. 

The 95% tolerance interval for the risk aversion is then 0.814-0.835. 

 

8.7 Change in Discounted Life Expectancy, δXd 

As discussed in section 8.1, the J-value parameters can be classed as either “context-

dependent” or “context-independent”, with the former referring to parameters that 

cannot be determined without prior knowledge of the specifics of the safety system, 

and the latter referring to those that can. Up until now, this section has been 

concerned with the estimates of the context-independent parameters. The change in 

discounted life expectancy, however, is an example of a context-dependent 

parameter. Chapter 5 details the methods that can be used in order to estimate this 

parameter. The unknown variables for these calculations are the exposure rate at 

time x, b(x), the length of time which the exposure lasts for, TR, and the probability 

density of the response of the exposure y years after the exposure, fT(y). Also 

required is knowledge of whether the risk causes an absolute or relative increase in 

the initial hazard rate. In section 5.8, some “limiting distributions” were introduced 

in order to provide some simplified calculations. The limiting distributions used 

were when the exposure and response functions were short, and when they were long 

and uniform. The shortest change in life expectancy, which follows from a short 

exposure with a short response, was found to be: 

 

 
risks relativefor            

risks absolutefor      

bH

bXX




 (8.28)   

 

These may also be discounted following the procedure laid out in section 5.11. For 

similar values of b, the relative risk equation will be smaller than for absolute risks, 

as H < X (see section 8.4). However, smaller change in life expectancies may also be 

achieved when the response is delayed, for example with radiation risks, where the 
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response does not become active until ten years after the initial exposure. Upper 

limits of the change in life expectancy would correspond to long exposures and long 

responses. It was shown in section 5.8 that, for such situations, the change in life 

expectancy is proportional to the second and third moment of the population 

distribution. However, an upper limit for the change in life expectancy may more 

easily be defined as the initial life expectancy itself, i.e.: 

 

      XX   (8.29)   

 

This is because, in the worst case situation, when instant death occurs, the group of 

individuals will lose all their life expectancy they had remaining. In such situations, 

it may be inappropriate to use the equations of section 5.8, because it was assumed 

that the exposure rate, b(x), was small enough so that the additional survival 

probability could be approximated with a linear expansion. In situations where there 

is large loss of life, this assumption will no longer be appropriate, and so the original 

equations must be used. The loss of accuracy in the life expectancy calculations from 

using in the linear expansion, for different exposure rates, is investigated in chapter 

9.  

 

Thus, although it is not possible to give exact calculations of the change in life 

expectancy following a hazard exposure without the specific details of the risk, it is 

possible to give indicative ranges of what the change in life expectancy may be. A 

lower bound of δX for situations in which there is an immediate one-off exposure 

with an immediate short response (which may correspond to being in the vicinity of 

some large explosion, for example), is given by equation (8.28). However, if the risk 

will result in a response with some delay, such as is the case with radiation 

exposures, then the change in life expectancy may be lower than this bound. If the 

delay is sufficiently long enough, there will be no change in life expectancy at all, so 

that the lower bound for delayed risks is zero. The upper bound for the change in life 

expectancy is simply the initial life expectancy, X. Introducing discounting can be 

done as described in section 5.11, but does not pose any additional complications. 

For example, the upper bound is reduced from X to Xd. 
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It is also not possible to determine the tolerance limits exactly for the change in life 

expectancy, unless information of the specific risk is available. Nevertheless, it is 

also possible to determine a “limiting uncertainty” for this parameter, by making a 

few assumptions. The assumptions are conservative, so that the uncertainty will tend 

to be overestimated, rather than underestimated. The method for determining this 

“limiting uncertainty” will now be described. 

 

Let the frequency of the accident be   per year. The Poisson distribution gives the 

probability,  yp
, of y such accidents occurring in the time-interval of length, T, as: 
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where Y is the random number of accidents, and k is the expected number of 

accidents in the interval: 

 

   TYEk   (8.31)   

 

From (8.30) and (8.31), the probability of no accidents in the interval (so that Y = y = 

0) is: 

 

     TepY 


 00Pr  (8.32)   

 

Hence the probability of one or more accidents in the interval is given by Pr(Y ≥ 1), 

where: 

 

       TeppY 


  111Pr 01  (8.33)   

 

Let us assume that the probability of experiencing an early death as a result of the 

accident among the exposed group is dp . Very often 1dp , especially when the 

group is large.  For an individual in the exposed group, therefore, the probability of 

early death as a result of the accident is  
dpp 1

  because the probabilities are 
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independent.  This combined probability may be called the probability of being 

affected,
affp : 

 

 
 

daff ppp  1

  (8.34)   

 

For simplicity, consider a protection system that eliminates completely the chance of 

the accident. Let the improvement in lifetime for an individual of age a, brought 

about by the protection system be  a . Clearly,  a  will depend on many random 

hazards the individual faces apart from the specific accident being prevented, and so 

will be a random number.  It may not be a small quantity: its value could be 80 years 

or more when an infant is being protected. 

 

Let us consider an accident where death, if it is to occur, is immediate, coincident 

with the accident. This could apply to an explosion on a petrochemical plant, for 

example. This risk would be described by a point response function with an instant 

response, as was discussed in section 5.8 and previously in this section. In such a 

case, the installation of the protection system will have the effect of restoring the life 

to come amongst those who would otherwise experience immediate death to its value 

in the absence of the accident. In this first group of potentially affected people, an 

individual of age a, will experience a change in life to come: 

 

      aaAaa   1*

1
 (8.35)   

 

where the notation follows that used in section 8.4, i.e. where  a ,  a and A
*
 are 

random numbers. 

 

The second group of unaffected people will contain some members who have the 

same age, a, and who would have survived the accident unscathed.  For them, there 

is no change in life to come, and so: 

 

   0
2
a  (8.36)   
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The expected value of the first group’s change in life to come is: 

 

        aEaAaEaE   1*

1
 (8.37)   

 

while the expected value of the second group’s change in life to come is: 

 

      00
2

 EaE   (8.38)   

 

Any given individual in the potentially exposed cohort of people (for example those 

living near a factory producing toxic chemicals) will have a probability,
affp , of 

being in the first group and a probability, 
affp1 , of being in the second group. This 

probability is also equal to the ratio of number of eventual deaths from the accident, 

Λ, to the total number of people exposed to the accident, N, i.e.: Λ/N. This quantity 

may also be seen to be the integrated exposure rate, btot, of equation (5.3), which is 

the probability of death following an exposure. In this situation, where the exposure 

occurs at a single point, the integrated exposure rate is equal to the single exposure 

rate, b. Therefore the expected value,  aX , of the life to come of an individual of 

age a, is given by: 

 

 

    

       
    
  

 

 abX

aXp

aEp

paEp

aEpaEp

aEaX

aff

aff

affaff

affaff





















01

1
21

 (8.39)   

 

which is the same as the change in life expectancy found in the limiting case of a 

point exposure and short response found in section 5.8, equation (5.23). However, if 

we do not know the age of the randomly selected individual, our best estimate of his 

change in life to come,  , will be the weighted, average value, X , over all ages: 

 



 -149-  

 

      

   

bX

daabXap

abXEXEEX
a

a
a










0



 (8.40)   

 

which confirms equation (5.25). 

 

The same arguments apply to the square of change in life to come. Individuals in the 

first group of potentially people who have age a, will experience a squared change in 

life to come: 

 

      aaAaa 2*2

1

2 1    (8.41)   

 

Individuals of the same age in the second group of unaffected people, who would 

have survived the accident unscathed, experience no change in life to come. Hence, 

for those of age a, the change in life to come and its square will both be zero: 

 

   0
2

2 a  (8.42)   

 

The expected value of the first group’s squared change in life to come is: 

 
       aEaAaEaE 22

1

2 1  
 (8.43)   

 

while the expected value of the second group's squared change in life to come is, of 

course zero: 

 
     00

2

2  EaE 
 (8.44)   

 

The expected value of the square of life to come of an individual of age a, is given 

by: 
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          
    
  

  abE

aEp

paEp

aEpaEpaE

aff

affaff

affaff

2

2

2

2

2

1

22

01

1

















 (8.45)   

 

If we do not know the age of the randomly selected individual, our best estimate of 

the square of his change life to come,  2E , will be the weighted, average value 

over all ages: 

 

        

    

    

 2

0

2

0

2

222









bE

daaEapb

daabEap

abEEaEE
aa
















 
(8.46)   

 

where equation (8.12) has been used. The variance of random change in life to come 

for individuals selected at random in the population will be  var , given by: 

 

 
      

   22

22var

XE

EE








 (8.47)   

 

Using equations (8.40) and (8.46), we may write: 

 

 
   

  22

222var

bXEb

XbbE








 (8.48)   

 

By equation (8.13): 

 

     22 var XE    (8.49)   
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Hence: 

 

       bXb  1varvar 2  (8.50)   

 

In many cases, 1b , and so: 

 

 
    

2

2

            

varvar

avbt

Xb



 
 (8.51)   

 

where equation (8.23) has been used. The fact that b will be non-negative means that 

for all possible values of 10:  bb ,  var  will be bounded above by: 

 

   2var avt  (8.52)   

 

In the case where the protection system acts to avert a reduction in life to come 

rather than averting immediate death, once again there will be an affected group, 

Group 1, whose life to come would have been reduced in the absence of the 

protection system, and an unaffected group, Group 2, whose life to come would not 

have been affected whether or not the protection system was in place.  The 

probability of being in Group 1 is paff 
 and the probability of being in Group 2 is       

1 – paff. If the risk being averted is still a point exposure, then the exposure rate, b is 

still equal to paff, but the exposure now refers to  some delayed risk, for example, 

radiation, in which case, b = cTdr, where cT is the risk coefficient, and dr is the dose 

received, see equation (5.45). 

 

Consider those of age, a, in Group 1. The installation of the protection system will 

avert their loss of part of their life to come, so that: 

 

     1*

1
 aAaRa r  (8.53)   

 

where Rr may be termed the restoration requirement, and will be a random number 

bounded in (0,1): 
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 10  rR  (8.54)   

 

The life to come will be conditioned by the age a, and so, in the most general case, 

will the restoration requirement.  For example the same dose of toxin might reduce 

the life to come of people of different ages by the same absolute amount, leading to a 

different fractional reduction in life to come.  The restoration requirement has the 

same numerical value as that fractional reduction, and so would be different for 

people of different ages in this case.  However, once age a, is specified the two 

parameters may reasonably be regarded as independent of each other. In the case 

considered, it is asserted that sensitivity to the same toxin amongst individuals of the 

same age would not be related generally to how long those individuals will live, 

which will be conditioned by a very large range of independent factors: occupation, 

marital status, hobbies, consumption of alcohol etc. Hence: 

 

 
      

   aaR

aAaaAaRaAaR

r

rr









                                   

111 ***

 (8.55)   

 

where     10:  aRaR rr  is the restoration requirement appropriate for age a. 

Hence: 

 

      aaRa r  
1

 (8.56)   

 

The expected value of change in life to come for those of age a in the first group is: 

 

              aEaREaaREaE rr  
1

 (8.57)   

 

while the expected value of the second group's change in life to come is: 

 

      00
2

 EaE   (8.58)   
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The expected value,  aX , of the life to come of an individual of age, a, is given 

by: 

 

 

    

       
       
     

     aEaRbE

aEaREp

paEaREp

aEpaEp

aEaX

r

raff

affraff

affaff





















01

1
21

 (8.59)   

 

However, if we do not know the age of the randomly selected individual, our best 

estimate of his change life to come,  , will be the weighted, average value, X , 

over all ages: 

 

           

      

      daaXaREapb

daaXaRbEap

aEaRbEEaXEEX

r

r

r
aa














0

0



 (8.60)   

 

For the square of the change in life to come, individuals in the first group of people 

who have age a, will experience a squared change in life to come given by: 

 

         aaRaAaRa rr

22*2

1

2 1    (8.61)   

 

since the squares of independent random variables will also be independent. 

 

Meanwhile, those of the same age in the second group of unaffected people will 

experience no change in life to come. Hence, the square of change in life to come for 

them is zero, whatever their age: 

 

   0
2

2 a  (8.62)   
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The expected value of the first group's squared change in life to come may be 

written: 

 
             aEaREaaREaE rr

2222

1

2  
 (8.63)   

 

while the expected value of the second group's squared change in life to come is, of 

course zero: 

 
     00

2

2  EaE 
 (8.64)   

 

As the probability of being in the affected group is
affp , the expected value of the 

square of life to come of an individual of age a, is given by: 

 

 

          
       
     

     aEaRbE

aEaREp

paEaREp

aEpaEpaE

r

raff

affraff

affaff

22

22

22

2

2

1

22

01

1

















 (8.65)   

 

If we do not know the age of the randomly selected individual, our best estimate of 

the square of his change life to come,  2E , will be the weighted, average value 

over all ages: 

 

 
           

       






0

22

2222

daaEaREapb

aEaRbEEaEE
aa



  
(8.66)   

 

The variance of random change in life to come,  , for individuals selected at 

random in the population will be  var , given by equation (8.47). 

  

Using equations (8.60) and (8.66), we may write: 
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         

      
2

0

2

0

22

                  

var


























daaXaREapb

daaEaREapb

r

r 

 (8.67)   

 

Now the variance,   aRrvar , is given by: 

 

          22var aREaREaR rrr   (8.68)   

 

so that: 

 

          22 var aREaRaRE rrr   (8.69)   

 

An analogous route leads to: 

 

          22 var aEaaE    (8.70)   

 

Substituting from equations (8.67) and (8.69) into equation (8.70) gives: 

 

 

                   

      
2

0

2

0

22

                 

varvarvar


























daaREaXapb

daaEaaREaRapb

r

rr 

 (8.71)   

 

For the case where the protection system averts immediate death for those in the 

affected, first group, the restoration requirement is equal to unity, since all life to 

come is restored: 

 

   1aRr  for all a (8.72)   

 

This is deterministic, with: 
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  

  
   0var

1

1

2







aR

aRE

aRE

r

r

r

 (8.73)   

 

In this case, equation (8.67) defaults to equation (8.50), as we would expect. Since 

the last term in equation (8.71) must be positive, we may conclude that: 

 

                    daaEaaREaRapb rr



0

22
varvarvar   (8.74)   

 

Because  aRr is bounded on (0,1), it follows that the absolute maximum value of 

  aRrvar  is 41 , see Jacobsen (1969) [116]. This is based on the distribution being 

bimodal, and concentrated at the extreme values. The same paper demonstrates that 

the maximum variance of a unimodal distribution on (0,1) is 91 . Meanwhile, it is 

immediately clear that the maximum value of   aRE r  and hence    2
aRE r

 is 1.0. 

 

Using these figures makes it clear that  Xvar  is bounded above for all possible 

probability distributions for restoration requirement,  aRr , for all values of age, a, 

by: 
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(8.75)   
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where equation (8.23) has been used in the last step. If the probability distribution for 

the restoration requirement is unimodal, then the upper bound condition is replaced 

by a slightly smaller value: 

 

   2

9

10
var avbt  (8.76)   

 

The conditions (8.75) and (8.76) bear a strong similarity to condition (8.52) on the 

upper bound for  Xvar  when the protection system is preventing an accident that 

would cause only immediate deaths if it occurred. 

 

Because of the small increase that condition (8.75) brings over either of the other 

possible conditions, (8.76), it will be sufficient for most purposes to use the most 

conservative estimate of the limiting upper bound implied by condition (8.75), for 

which we shall use the terminology, “  varlim ”: 

 

   2

4

5
varlim avbt  (8.77)   

 

Thus using values calculated in section 8.4, i.e., t
2
av = 2,304 years

2
, the limiting 

variance on the change in random life to come is 2,880b years
2
. This may be 

compared with 2,560b years
2
 if a unimodal distribution is used. Moreover, if 

immediate-death equation (8.51) is used then the variance on the change in random 

life to come is 2,304b years
2
.  Clearly the three figures are similar. Health and safety 

regulations state that, in the workplace, the probability of being killed in an accident 

must be no larger than 10
-3

 per year, but the figures are usually of the range 10
-6

 to 

10
-4

 per year. Using these figures, the limiting variance on the change in life to come 

ranges from 0.003 to 3 years
2
. The variance on the change in average life expectancy 

is then this variance divided by the number of people affected by the hazard. A 

typical workforce will number between 100 and 1,000. The variance in the change in 

life expectancy, var[δX], then ranges from 3x10
-6

 to 0.003 years
2
. The standard 

deviation then ranges from 0.002 to 0.2 years. Compared to the initial change in life 

expectancy calculated from such hazard rates, these numbers are large. The 
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coefficient of variation is around 400 to 4,000%. The distribution will also be 

normal, as the figures are determined from summing together the change in life to 

come of a number of people. However, because the numbers presented here are only 

illustrative, no tolerance limits will be placed on the change in average life 

expectancy parameter. It is sufficient to note that, unless there are a very large 

number of people affected by the hazard (in excess of 100,000), the tolerance 

interval will be relatively wide, when compared to the central change in life 

expectancy. However, in absolute terms, the interval will usually be fairly small. 

 

8.8 Other Context-Dependent Parameters 

In addition to the change in average life expectancy, there are two other parameters 

which are dependent upon the specific nature of the safety system. These are the 

number of people benefitting from the system, N, and the cost of the protection 

system, NV̂ . 

 

In J-value analysis it is often the case that the number of people affected by the 

safety system does not need estimation. This is because the change in life expectancy 

is proportional to the hazard rate, which itself is inversely proportional to the number 

of people affected, as shown, for example, in equations (5.1) and (5.25). Thus the 

product of the number of people affected and the change in life expectancy is 

approximately independent of N. This parameter therefore will usually not contribute 

any significant uncertainty to the J-value. 

 

The cost of the safety system is assumed to be provided in the details of the safety 

system itself. An alternative formulation, however, may be to investigate the range 

of acceptable costs that would still give J-values less than or equal to unity. Little can 

be said about the uncertainty of the cost of the safety system, except that it is 

unbounded, being potentially very large. It is therefore important when conducting J-

value analyses that some kind of indication of how variation in the cost would affect 

the results is given. Alternatively, an indication can be given for the permitted 

variation in the cost estimate that would still maintain a reasonable J-value. 
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8.9 The J-Value 

The J-value is given by equation (3.61), repeated below: 
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This can be simplified by noting that, for small rd: 
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putting: 
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allows the J-value to be re-written as: 
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 (8.80)   

 

Which is valid for all rd, and Df  is termed the “linearised discount factor”. The 

methods and results of measuring each of the parameters in the above equation have 

been laid out in the preceding sections. The uncertainties, which result from either 

the measurement process itself, or from the natural variation of the parameters, have 

also been quantified as far as is possible. These individual uncertainties will then 

propagate through the J-value calculation to give an uncertainty on the J-value itself. 

As has been discussed, it is not possible to determine the uncertainty from the 

context-dependent parameters – the change in life expectancy, the number of people 

affected, and the cost of the safety system – although an indication of the magnitude 
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of the uncertainty on the change in life expectancy was given in section 8.7. A full 

analysis of the uncertainty of the J-value therefore cannot be given without details of 

the protection system. However, it is possible to provide an analysis of the “intrinsic 

uncertainty” of the J-value. This is the uncertainty resulting from the context-

independent parameters. This is then a minimum level of uncertainty that will always 

be present in any J-value estimate, which will increase once knowledge of the 

uncertainties of the context-dependent parameters is achieved. Intrinsic uncertainty 

on the J-value will result from uncertainty on the estimate of the GDP per person, G, 

the risk aversion, ε, and the discount factor, Df, which itself results from uncertainty 

on the discounted average life expectancy, Xd. The standard deviation on the J-value 

is then given by the weighted sum-of-squares method: 
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which can be written as: 
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note the presence of the 1 – ε  term in the denominator of the first term on the right 

hand side of the equation. This equation therefore gives the coefficient of variation, 

or the relative standard deviation of the J-value. In order to place tolerance limits, it 

is necessary to determine the distribution of the J-value. However, this has not been 

possible, as the uncertainty results from the product of three variables, two of which 

are taken as having a normal distribution, and the third of which is taken as having 

the ratio distribution. The variables all have different means and standard deviations. 

The distribution of such a random product does not appear to have been studied 

before. It would be possible to infer a distribution via simulation, but this has not 

been attempted, and remains for further work. Instead, it will be assumed that 95% 

coverage of the distribution can be achieved with ±2 standard deviations about the 

mean, i.e. assuming that the distribution approximates the normal distribution. 
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The uncertainty on the discount factor can be expressed as: 
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It was shown in section 8.4 that the standard deviation on the life expectancy was 

0.003 years. The discount rate is not assumed to contribute any uncertainty, and so 

this value will also be true of the discounted life expectancy. For a value of rd of 5%, 

which represents a maximum discount rate that would be used, the standard 

deviation on Df is then 8x10
-5

. The associated coefficient of variation is 0.004%, 

which is clearly small. The minimum value is when rd is zero, in which case the 

discount factor is also zero, and there is no uncertainty. 

 

The above results can then be used to determine the uncertainty on the J-value. 

Because of the fact that uncertainties are combined in a sum-of-squares manner, the 

sum is dominated by the largest value, which in this case is the risk aversion term. 

The GDP per person and the discount factor both produce uncertainties that are 

negligible, and so can be disregarded from the calculation. The uncertainty on the J-

value is then: 
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The “internal accuracy” of the J-value has thus been found to be 2.86%. The 95% 

tolerance interval, which is taken as two standard deviations, is ±5.7%. However, the 

other case dependent input parameters may also contribute to this uncertainty. If it is 

possible to assess the uncertainty of the change in life expectancy, then the 

correlation between this parameter and the initial life expectancy (which will be 

present in the J-value equation for non-zero discount rates), also needs to be 

accounted for. The method for accounting for correlations has already been 
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discussed in section 8.1. As the change in life expectancy is approximately linearly 

dependent upon the initial life expectancy (c.f. equation (5.25)), the correlation 

coefficient between these two parameters is unity. 

 

8.10 The VTPF, VODLY and VODLYA 

Chapter 7 showed how the J-value framework could be used to derive valuations of 

human lifespan. This was done by first deriving the value of delaying a fatality by 

some arbitrary number of years. The value of temporarily preventing a fatality 

(VTPF) is then a specific instance of this, when the delay is set equal to the life 

expectancy of the individual concerned. This then corresponds to a situation in 

which a hazard that will cause immediate death to an individual is permanently 

eliminated, so that the individual regains his or her initial life expectancy. The 

VTPF, which is therefore age-dependent, is denoted as VP(a), and is given by 

equation (7.12). It will be assumed in this section that J = 1 is used in the valuations. 

It was also shown that two average values of the VTPF may be derived, one 

evaluated at Xd(a) = Xd, which may be the case when age is not known, and another 

one in which the VP(a) values are averaged over the population, as given by 

equations (7.13) and (7.14). These two averages were shown to be equal at a 0% 

discount rate. Using the numbers presented throughout this section, the average 

VTPF at a 0% discount rate is calculated as about £5.30M. At a 2.5% discount rate, 

the average VTPF when age is not known is £2.54M, and the population-averaged 

VTPF is £2.49M. These two average measures are therefore close. Figure 15 shows 

the average values of the VTPF, and the age dependencies at these two discount 

rates. 

 

Also derived was the value of a discounted life-year (VODLY), and a related 

measure, the VODLYA, which is the average value of a discounted life-year over an 

individual’s remaining life. For zero discount rate, both the VODLY and VODLYA 

are equal and constant, valued simply as G/(1 – ε), which is about £129,000. For 

non-zero discount rates, the VODLY depends on which year of an individual’s life is 

being saved. For example, if it is the next year of life that will be saved, then the 

value is simply equal to the undiscounted VODLY. However, if the year of life that 

will be saved is some time in the future, then the value will be discounted, and so 
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will be slightly less than the first-year value. The VODLYA is also age-dependent if 

the discount rate is non-zero. At age zero, the VODLYA has the smallest value, as 

there are the maximum possible number of years over which to discount. The 

VODLYA returns to the undiscounted value by the maximum age, when there are no 

more life-years to discount over. These values are shown in Figure 16. 

 

As the VTPF, VODLY and VODLYA are not inputs to the J-value, no analysis of 

the associated tolerance limits has been performed. However, the largest contribution 

to the uncertainty will come from the risk aversion coefficient, ε, as it did with the J-

value, with the other parameters contributing a negligible uncertainty. Hence, the 

coefficient of variation for each of the three valuations of life described above will 

be 2.87%. As with the J-value, the distribution is not known, and so the tolerance 

interval cannot be set.  

 

The values of all the parameters described above are summarised in Table 6. 
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Figure 9 Probability distribution of the GDP per person estimate. Also shown is what the distribution 

would look like if it were normal.  
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Figure 10 Historical data showing how the UK GDP and population size are correlated. Both are 

scaled to lie between 0 and 1. At zero, the GDP is about £0.3 billion and the population is about 50 

million. At unity, the GDP is about 1.3 billion, and the population is about 62 million. 
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Figure 11 Life expectancy, Xd(a), and average life expectancy, Xd, for discount rates of 0% and 2.5%. 

Assumed 50% male female split at all ages. Average life expectancies are 41.2 and 22.9 years at 0% 

and 2.5% discount rate respectively. 
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Figure 12 Historical data showing the variation in the wage share of the GDP, θ, for the UK from 

1955. Note the large peak at 1975, during a period of considerable industrial unrest. During this 

period the mean wage share was 0.603, or about 60%, and the standard deviation was 0.032, so that 

the coefficient of variation is about 5%. 
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Figure 13 Time series data from the work time fraction, w0, the wage share of the GDP, θ, and the 

risk aversion, ε, for available data from 1984 to 2008. 
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Figure 14 Normal-quantile plot for risk aversion normality test. 
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Figure 15 Values of the age dependent VTPF, and the age-averaged VTPF, for discount rates 0% and 

2.5%. The average values of the VTPF are £5.3 million and £2.5 million, respectively. These are 

evaluated at J = 1. 
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Figure 16 Values of the VODLY and VODLYA, for discount rates of 0% and 2.5%. At 0% discount 

rate, the VODLY and VODLYA are equal and constant, at about £129,000. The abscissa is for the 

VODLY is the delay before the life-year is saved, whilst for the VODLYA, the abscissa is the age of 

the individual. 
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Sorted 

Data 

Cumulative 

Proportion, 

p zp 

0.8127 0.0385 -1.7688 

0.8152 0.0769 -1.4261 

0.8176 0.1154 -1.1984 

0.8183 0.1538 -1.0201 

0.8199 0.1923 -0.8694 

0.8208 0.2308 -0.7363 

0.8217 0.2692 -0.6151 

0.8218 0.3077 -0.5024 

0.8240 0.3462 -0.3957 

0.8249 0.3846 -0.2934 

0.8252 0.4231 -0.1940 

0.8259 0.4615 -0.0966 

0.8260 0.5000 0.0000 

0.8262 0.5385 0.0966 

0.8266 0.5769 0.1940 

0.8267 0.6154 0.2934 

0.8276 0.6538 0.3957 

0.8277 0.6923 0.5024 

0.8279 0.7308 0.6151 

0.8279 0.7692 0.7363 

0.8280 0.8077 0.8694 

0.8287 0.8462 1.0201 

0.8301 0.8846 1.1984 

0.8335 0.9231 1.4261 

0.8346 0.9615 1.7688 
Table 4 Data for the normal-quantile plot to test the risk aversion for normality.  

 

Correlation Coefficient Critical Value, α = 0.05 

0.98 0.957 

The null hypothesis may not be rejected at this level of significance. 
Table 5 Results of the normal-quantile plot. 
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Parameter Value (95% Tolerance 

Limit) 

GDP per Person, G (£/y) 22,538 (22,531 – 22,545) 

Discount Rate, rd (/y) 0.3% / 2.8% 

Growth Rate, rg (/y) 2.0% 

Net Discount Rate, r (/y) 0% / 2.5% 

Life Expectancy, X (years) (general population 

distribution, 50% male/female ratio, 0% 

discount rate) 

41.17 (41.166 – 41.177) 

Mean square age , t
2

av, (years
2
) (general 

population distribution, 50% male/female 

ratio, 0% discount rate) 

2,304 

Mean cube age , t
3

av, (years
3
) (general 

population distribution, 50% male/female 

ratio, 0% discount rate) 

147,311 

Population entropy, H 0.13 

Theta, θ 0.573 

Work-Time Fraction, w0 0.091 

Risk Aversion, ε 0.825 (0.814 – 0.835) 

The J-value (J) N/A (±5.7%) 

VTPF, VP (£), (general population distribution, 

50% male/female ratio, 0% discount rate) 

5,300,000 

VODLY/VODLYA (£), (0% discount rate) 129,000 

Table 6 Values of parameters 
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Chapter 9 Sensitivity Analysis of the J-Value Framework 

9.1 The Purpose of Sensitivity Analysis 

The sensitivity of the J-value framework to the inherent variability of the input 

parameters and to the numerous explicit and implicit assumptions necessarily used in 

developing the model may now be analysed. Such analyses give indications of areas 

in which the assumptions may need to be used carefully. They may also indicate 

areas where perhaps less care may be required than had previously been suspected. A 

sensitivity analysis can also be used to add strength to conclusions, or highlight areas 

that require further development. 

 

A benefit of the J-value framework is that there is only one key output, the J-value 

itself. This is dependent upon a number of input parameters. Furthermore, these 

input parameters can be objectively determined. These factors mean that assessing 

the J-value framework for sensitivities can be done in a fairly straightforward 

manner, as will now be described. 

 

9.2 The Sensitivity Coefficients of the J-Value 

The initial step in assessing sensitivities is to calculate the sensitivity coefficients of 

the J-value. Although not yet apparent, this has already been partially done in section 

8.9. The sensitivity coefficients of an output with a number of inputs are simply the 

partial derivatives of the output with respect to each of the inputs. Equation (8.81) 

relates the uncertainty of the J-value to the uncertainty of the context-independent 

parameters. This can be expanded further by including all the J-value input 

parameters: 
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  (9.1)   

 

The sensitivity coefficients are then these partial derivatives. The derivatives can be 

evaluated readily. As the J-value is a product of factors, all the partial derivatives 



 -175-  

will be proportional to J, and this can be divided out of the equation to give the 

coefficient of variation on the J-value in terms of the new sensitivity coefficients, 

and the uncertainties of the input parameters: it will also be assumed, for simplicity, 

that there is no correlation between the change in life expectancy and the discount 

factor, Df. 
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These sensitivity coefficients then weight the variances of the input parameters. As 

each coefficient is the reciprocal of the input parameter, it follows that the smaller 

the input parameter, the greater the sensitivity coefficient. The uncertainty on the 

number of people affected by the risk reduction, N, does not contribute much 

uncertainty, as the J-value is approximately independent of this parameter. Therefore 

this term and its coefficient may be disregarded from the equation. The GDP per 

person has been shown to have a relatively small coefficient of variation. Its 

sensitivity coefficient will also be small, as the GDP per person is a large term in the 

J-value. This will also usually apply to the cost of the safety system, which usually is 

at least of the order of £10,000, and can be many orders of magnitude larger than 

this. Thus, although the uncertainty over this figure may be considerable, the 

sensitivity coefficient will usually mean that this uncertainty carries little weighting 

onto the uncertainty of the J-value. However, the possibility that the uncertainty on 

the cost of the safety system is sufficiently large to dominate the J-value can never 

be ruled out. 

 

The sensitivity coefficient for the discount factor is only defined for non-zero 

discount rates, as the uncertainty on Df is zero for a 0% discount factor. For a 

discount rate of 2.5%, the discount factor is about 1.5, so that the sensitivity 

coefficient is 0.67. While this is larger than the coefficients of the GDP per person 

and the cost of the safety system, it is still relatively small when compared to the 

remaining coefficients of the risk aversion and the change in life expectancy.  The 
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sensitivity coefficient of the risk aversion is different from the other parameters in 

that it is the reciprocal of the complement of the risk aversion, 1 – ε that appears in 

the equation. As ε = 0.825, the complement is equal to 0.175, and the reciprocal is 

5.7. The final factor is the change in life expectancy. Although this parameter is 

context-dependent, and as such cannot be determined a priori, an indication can be 

given of its magnitude. Although the maximum possible average loss of life 

expectancy is the initial life expectancy, X = 41.2 years, situations where the 

protection system offers this kind of benefit are rare. Typical values of the change in 

life expectancy are from 10
-5

 to 10
-2

 years. The sensitivity coefficient can then be 

large compared to the others. 

 

Thus, an analysis of the sensitivity coefficients of the J-value indicates that the J-

value is most sensitive to the uncertainties and assumptions regarding the risk 

aversion and the change in life expectancy. Therefore the assumptions made in 

calculating these parameters will be analysed and tested to see how the calculations 

compare when more realistic data is used. As the change in life expectancy is closely 

related to the initial life expectancy, (e.g. see equation (5.25)), the assumptions made 

in calculating this parameter will also be analysed. 

 

9.3 Sensitivity Analysis of the Life Expectancy Calculations 

Calculating the change in life expectancy requires determination of many of the 

same parameters as the calculation of the initial life expectancy. Indeed, the 

calculation is actually performed by first calculating the initial life expectancy, and 

then perturbing the hazard rates. Therefore, analysing the sensitivity of the change in 

life expectancy parameter will require an analysis of the sensitivity of the initial life 

expectancy. In this section, such a sensitivity analysis is presented. 

 

Chapter 4 has already presented the methods required to calculate the life 

expectancy. The method can be broken down into a series of steps: 

 

1. Calculate the hazard rates, h(a), 

2. Calculate the cumulative hazard rates, W(a), 

3. Calculate the survival probabilities, S(a), 
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4. Calculate the life expectancies, X(a), 

5. Calculate the probability densities, p(a), 

6. Calculate the average life expectancy, X. 

 

The effect of discounting does not need to be considered here, and so it will be 

assumed throughout that the discount rate is zero. In these steps, there are a number 

of assumptions that need to be made in order to perform the calculation. These 

assumptions can be varied, and consequently different life expectancies will be 

produced. The question therefore arises as to which life expectancy is the most 

accurate. This question can be answered by assuming that the “correct” life 

expectancies are the ones given by the ONS in their life tables. The method that best 

approximates the ONS life tables is therefore judged to be the most accurate life 

expectancies. The discrepancy between the model’s calculation and the ONS 

calculation can be tested statistically. The test can answer whether the difference is 

statistically significant or not. A null hypothesis is therefore formed that the ONS 

life table data are distributed according to the model’s method. The test performed is 

Pearson’s Chi-Square Test. The test statistic, 2

1k , is determined from the summed 

squared difference between the number of deaths associated in a cohort facing the 

calculated survival probabilities, denoted as 
aÊ , and the number of deaths from the 

life table function, da, from equation (4.32): 
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where: 

 

  1
ˆˆˆ

 aaa SSnE  (9.4)   

 

and where k - 1 is the number of degrees of freedom, see, for example, London 

(1997) [132]. As there are 101 ages in the life table (from age 0 to 100), then k = 101 

and the number of degrees of freedom is 100. The parameter n is the sample size, 

which is the assumed initial size of the cohort that is subject to the hazard rates. This 

is also equal to the radix, l0, of the standard life table, and is taken as 100,000. The 
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aŜ
 
are the survival probabilities estimated from the model. If the 2

1k  test statistic is 

greater than some critical value, then the null hypothesis may be rejected. An upper 

one-sided test is performed at the 5% significance level. The critical value of the 

upper tail 2

1k  statistic at this level is the value at which the complement of the 

cumulative distribution function of the chi-square distribution with 100 degrees of 

freedom is equal to 5%. This can be computed from tables, and is approximately 

equal to 124. If the value of the test statistic is greater than this value, then the null 

hypothesis is rejected in favour of the alternative hypothesis, namely, that the ONS 

data is not distributed according to the model under test. The lower the value of the 

test statistic, the closer the ONS data is to the model. The model that produces the 

lowest value will be accepted as representing the most accurate life expectancy 

calculations. 

 

There are a number of assumptions which can be tested. The first is the assumption 

about the correct value to use for the hazard rate, h(a). In chapter 4 it was argued that 

either of two functions could be used to approximate the hazard rate. These were the 

central rate of mortality, ma, which was shown to be correct if deaths are distributed 

exponentially throughout the interval (a, a + 1), and the probability of death, qa, 

which was shown to be correct if deaths are distributed uniformly over the interval 

(a, a + 1). These two approximations can then be tested. In addition to these, two 

other approximations to the hazard rate are also tested. These are: 

 

    aqah  1ln  (9.5)   

 

which also assumes that deaths are distributed exponentially throughout the interval, 

and should therefore give similar results to the approximation when h(a) is 

approximated by ma. Another approximation is given by a quintic polynomial 

representation of the hazard rate, see Haberman (1994) [90] and McCutcheon (1983) 

[135]. In this approximation, the hazard rate is given by: 

 



 -179-  

 

 

    

   

    

     

    
 2  afor     

11318

1811

12

1
       

2  afor     

11113

11116

113614825

12

1

211

1

1

1

1

1

2

321

21

1
































































aaa

aaa

aaaa

aaa

aaa

qqq

qqq

qqqq

qqq

qqq

ah

 

(9.6)  

 

with: 

 

 
   

  
31571211

5.01

2121

2
11














mmmm

m
mq  (9.7)   

 

and: 
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and q0 is as given in the life table. Although the quintic polynomial approximation to 

the hazard rate is complex and cumbersome, it will also be tested against the life-

table data. 

 

Another assumption that can be tested is the integration method for the cumulative 

hazard rate function, W(a). As was discussed in section 4.5, when the central rates of 

mortality are used as the hazard rate, the cumulative hazard rate can be can be 

calculated by summing up the hazard rates. However, in more general circumstances 

this assumption may not be applicable. Therefore, different methods of integration 

are also tested against the empirical data. These other methods are the trapezium 

method of integration, with the step length taken as one year. This is equal to the 

sum, but with the endpoints only contributing half the weight of the other points, i.e.: 
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The cumulative hazard rate can be estimated in an iterative manner through: 
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and where W(0) = 0. Another method of integration is Simpson’s method, which 

approximates the integral as a quadratic polynomial: 
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The cumulative hazard rate is then estimated by: 
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Clearly, Simpson’s method requires that the hazard rate is evaluated at age a + ½. 

Elandt-Johnson (1980) [70] gives a general approximation as: 
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which can then be used to evaluate the integral. 

 

One final assumption that is tested against empirical data is the use of the final age 

band, as an “end correction” to account for the mortality experience of those older 

than 101. This correction was discussed further in section 4.5. Here the effect of 

including such a correction will be tested. 
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The tests then include four hazard rate approximations, three numerical integral 

approximations, and two approximations that do and do not include the end 

correction. There are therefore 24 separate tests. For each of these, the 2

1k  statistic 

can be calculated and tested against the critical value. These 24 tests are shown in 

Figure 17. The most immediate result is the importance of the use of the end 

correction. All the tests performed without the end correction had 2

1k  values in 

excess of the critical value, and therefore had their null hypothesis rejected in favour 

of the alternative hypothesis – that the life table data did not match up with the 

model. Another result is that the trapezium rule is generally a poor fit for the data, 

with three of the four hazard rate tests with the end correction being rejected. This 

compares with two tests for the summation method, and no tests for Simpson’s 

method. Although all of the hazard rates tested with Simpson’s method were less 

than the critical value, they were not the tests that were closest to the empirical data. 

The most accurate tests were those that used the summation method and the hazard 

rates equal to ma and -ln(1-qa). The use of qa for the hazard rate was not found to be 

accurate. Surprisingly, the quintic polynomial approximation also performed poorly, 

except in the case when the Trapezium method was used. The overall conclusion of 

these tests is that the end correction should be used, and that the hazard rate of  -ln(1-

qa) and the trapezium method of numerical integration for the cumulative hazard rate 

should be used for most accuracy. However, using the central rate of mortality, ma 

for the hazard rate does not degrade this accuracy very much, and is easier to 

calculate, as it is given directly in the life tables. Therefore this variable is 

recommended for use as the hazard rate. These tests thus validate the assumptions 

used in section 4.5, where the procedures used in calculating the J-value were 

explained. 

 

Another feature of the change in life expectancy calculations that can be tested is the 

validity of the linear approximation used in approximating the effect of a hazard rate 

perturbation on the life expectancy, as used between equations (5.14) and (5.15). The 

linear approximation is unbounded in the additional hazard rate, whilst the true value 

is bounded, so that the change in life expectancy is never greater than the initial life 

expectancy. Figure 18 shows the difference between the two methods. They are very 

close for low additional hazard rates, but begin to diverge at an additional hazard rate 
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of 0.1 year
-1

. At this hazard rate the percentage difference is 5% and the change in 

life expectancy is about 4 years. This is judged to be the upper limit of practicability 

for the linear approximation. The calculations rapidly diverge after this. At an 

additional hazard rate of 0.5 year
-1

, the difference is about 30%. These calculations 

apply to the situation where there is a single exposure resulting in a risk of 

immediate death. Prolonged risks will result in higher changes in life expectancy, 

and hence greater divergences between the linear and true calculations at lower 

additional hazard rates. Therefore, any calculations of an individual change in life 

expectancy of about 4 years or greater based on the linear model should instead be 

done using the true calculations.  

 

9.4 Sensitivity Analysis of the Risk Aversion Calculations 

Section 9.2 discussed that the two variables with the highest sensitivity coefficients 

were the change in life expectancy and the risk aversion coefficient. The previous 

section has investigated a number of the assumptions which were made in the 

calculations of the life expectancy and the subsequent change in life expectancy 

following a perturbation of the hazard rate. Here the assumptions underlying the risk 

aversion calculations will be investigated. 

 

The risk aversion is dependent upon the share of wages in the GDP, θ, and the 

optimal work time fraction, w0, see equation (3.41). The value of θ was taken 

directly from observed data, and so there were few assumptions made in the 

calculation. The calculation of  w0, however, requires that a number of simplifying 

assumptions be made, as was described in chapter 6. It was shown that the work time 

fraction is equal to the ratio of the work-life expectancy to the life expectancy, as 

given by equation (6.4). In calculating these two parameters, it was assumed that a), 

the population is in a steady state, and b) that time spent working is distributed 

uniformly between recruitment and retirement ages. These two assumptions may 

now be examined in further depth. 

 

Throughout most of the development so far, it has been assumed that the population 

is in a steady state, so that the number of people born each year is equal to the 

number of people dying each year. This assumption produces a certain population 
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distribution that can be readily calculated from the survival probabilities. This 

distribution is described in more detail in section 4.6. However, actual populations 

are rarely in a steady state, as they are affected by varying fertility rates, 

immigration, emigration and health care improvements which reduce mortality. It 

therefore is pertinent to compare the results of the calculations of population-

averaged values that are based on the steady state assumption with the values 

obtained when actual population figures are used. Data for the actual population size 

at each age is available for the UK from the ONS [148], from which the probability 

distribution can be readily estimated. 

 

The other assumption was made in deriving the work-life expectancy, where it was 

assumed that the time spent working was uniformly distributed over working 

lifetime, which was taken to start at age 20 and end at age 60. This can be compared 

against empirical data on time spent working at each age and employment rates, 

which again is available from the ONS, see  [146] and [147]. These then allow the 

parameters gw(t) (the fraction of time a worker spends in work at current age t) and 

pw(t) (the probability of being employed at age t) to be determined, which can then 

be used to calculate yw(a) and yw, from equations (6.7) and (6.12). The distribution of 

gw(t), pw(t) and their product, gw(t)pw(t), are shown in Figure 19 and Figure 20 for the 

uniform assumption and the actual data. As can be seen, the actual data appears more 

bell-shaped, with people beginning work before age 20, and retiring after age 60. 

This data allows a comparison of the calculations of yw obtained under each 

circumstance. Because yw is also a population averaged parameter, it will also 

depend on the assumption used for the population distribution. There are then four 

values of yw that will result from the different assumptions. 

 

The parameters tested for sensitivity to these assumptions are the average life 

expectancy, X, the work-life expectancy, yw, the work-time fraction, w0, and the risk 

aversion, ε. Four values are determined for the two population distributions and two 

working time distributions (although the life expectancy is not affected by the 

working time distribution). The results are shown from Table 7 to Table 10. Note 

that the data used was from 2008, so that the steady state and uniform working time 

assumption will not be the same as those presented earlier in chapter 8, as more 

recent data was used in estimating those figures. 
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The tables show that the effect of using the actual population distribution increases 

the life expectancy by about 2%. For the other parameters, the largest difference 

from the simple steady state population and uniform working distribution 

assumptions is when both actual distributions are used. The actual distributions 

increase the work-life expectancy by about 5%, while the work-time fraction 

increases by about 3%. The effect on the risk aversion is that it is reduced by less 

than 1%. Thus, the use of actual observed distributions does not affect the risk 

aversion by much. Furthermore, the simpler distributions lead to a greater risk 

aversion estimate. In the context of the J-value, this will mean that slightly higher 

spending on safety will be allowed. The simple distributions are therefore more 

conservative than the actual distributions. 

 

The risk aversion is thus insensitive to changes in the underlying assumptions about 

the population and working time. Using the simpler distributions is computationally 

easier and more efficient, and produces slightly more conservative results. The 

sensitivity analysis therefore validates the use of the simplifying distributions. 

 

The conclusion of the sensitivity analyses is that the uncertainty on the J-value is 

most sensitive to the uncertainty on the life expectancy and the risk aversion, as 

these parameters were found to have the greatest sensitivity coefficients. The change 

in life expectancy was assessed for sensitivity by testing the underlying life 

expectancy calculations against ONS life table data. This allowed the assumptions to 

be picked in order to minimise the difference in the calculations between the model 

output and the ONS data, thus optimising the accuracy of the life expectancy 

calculations in the model. The linear approximation used in perturbing the hazard 

rate for the calculation of the change in life expectancy was also assessed. It was 

found that for changes life expectancies less than around 4 years, the difference 

between the linear approximation and the true value was less than 5%, which was 

judged to be acceptable. However, if the linear model produced a change in life 

expectancy greater than this, then it would be necessary to recalculate without the 

linear approximation in order to retain accuracy. Testing the underlying assumptions 

of the risk aversion showed that use of the simplified population and working time 

distributions was justified, as they did not affect the risk aversion by much, and also 
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produced more conservative results, in addition to being simpler to calculate. Thus, it 

is concluded that the J-value is reasonably robust to the use of such simplifying 

assumptions. 
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Figure 17 Result of Pearson’s chi-square test for 24 tests of:  1. three methods of integrating the 

cumulative hazard rate (sum, trapezium and Simpson). 2. four different approximations to the hazard 

rate (q, m, -ln(1-q) and a quintic polynomial), and 3. the effect of using the end correction for the final 

age band. The lower the chi-square value, the closer the empirical data is to the model. The tests that 

are greater than the critical value (red line) can be rejected. 
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Figure 18 Difference between the linear approximation and the exact calculation of the change in life 

expectancy, as a function of the hazard rate. The difference between the two is around 5% at a hazard 

rate of  0.1 year
-1

, and is nearly 30% at a hazard rate of 0.5 year
-1
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Figure 19 Rectangular distributions for gw(t), pw(t) and pw(t)gw(t) 
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Figure 20 Actual distributions calculated from UK data for 2009 for gw(t), pw(t) and pw(t)gw(t) 
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Life Expectancy, X 

(years) 

Steady State 

Population 

Actual Population 

 41.04 41.82 
Table 7 Life expectancy under different population distributions. 

 

 

Work-Life Expectancy, 

yw (years) 

Steady State 

Population 

Actual Population 

Uniform Working Time 3.43 3.53 

Actual Working Time 3.48 3.59 
Table 8 Work-life expectancy under different population and working time distributions. 

 

 

Work-Time Fraction, 

w0 

Steady State 

Population 

Actual Population 

Uniform Working Time 0.083 0.084 

Actual Working Time 0.085 0.086 
Table 9 Work-time fraction under different population and working time distributions. 

 

 

Risk Aversion, ε Steady State 

Population 

Actual Population 

Uniform Working Time 0.838 0.836 

Actual Working Time 0.835 0.833 
Table 10 Risk aversion under different population and working time distributions. The wage share 

θ is taken as 0.563, which was calculated for 2008 data. 
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Chapter 10 Extending the J-Value Framework to Include 

Mitigation of Financial Risks  

 

10.1 The J2 and JT-Values 

So far, the focus of this thesis has been on introducing and developing the concepts 

underpinning the valuation of health and safety using the J-value framework. The 

risks concerned have been physical risks – those that affect human life. Recently, 

however, the J-value framework has been extended by Thomas et al (2010) [190], 

[191], [192], to include valuation of financial risks. These are risks to either an 

individual or an organisation’s assets that can be somehow mitigated. A method has 

been developed that enables the maximum amount that should be spent on mitigating 

a given risk to be determined. If the amount that the individual or organisation has 

actually allocated to spend on mitigation is known, then the ratio of the actual spend 

to the maximum theoretical spend can be calculated. This ratio of financial risks is 

then the J2-value. It is then straightforward to generalise to the case where both 

physical and financial risks are mitigated. If a scheme is being considered that will 

reduce both risks to assets and risks to life, then the maximum amount that should be 

spent on the scheme is equal to the sum of the maximum amount that should be 

spent on reducing physical risk and the maximum amount that should be spent on 

reducing risks to assets. The ratio of the actual amount spent on the scheme to this 

theoretical amount is the JT-value, or “total judgement value”. In this section the 

methods for determining the maximum spend shall be briefly laid out. Full details of 

the methods are described in the above references. 

 

10.2 The Baseline, Risk Neutral Spend on Risk Reduction 

In order to introduce some of the concepts, a simple case will be presented where the 

organisation is assumed to be risk neutral. If the probability and cost of the accident 

are known, then the amount that should be spent on reducing the risk can be 

determined easily. This risk neutral cost is then the baseline cost. In the following 

sections, it will be shown how the effect of risk-averse decision making increases the 

cost above this baseline value. Risk aversion is represented in the form of a utility 

function. In chapter 3, the utility of income, U(G), was introduced. It was also 
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discussed that there are various types of utility functions that can be used, but that 

two particularly important ones are the power utility function and the Atkinson 

utility function, which allows ε ≥ 1 to be used. These are given by equations (3.35) 

and (3.39) respectively. In chapter 3, the simpler power utility function was 

favoured. However, in this section, the Atkinson utility will be used instead. Another 

change is that the utility of assets, A will used, rather than utility of income. The 

utility of assets is then given by: 

 

 
 

1                 ln         

1 ,0           
1

11


















A

A
AU  (10.1)   

 

Risk neutrality corresponds to ε = 0, in which case the utility is: 

 

             1 AAU  (10.2)   

 

which is thus the difference between current assets and one unit of the asset. In most 

cases, A >> 1, and U(A) ≈ A, so that the utility of assets is just the assets itself. In this 

situation, the amount to spend on reducing a risk to the assets can be easily 

determined. If there is a probability, π1, that the original assets, A, will be reduced by 

an amount, C, so that the final assets are A – C, then the expected value of the assets 

will be: 

 

     CAACA 111 1    (10.3)   

  

and the expected loss is π1C. If there is a scheme that can completely eliminate the 

risk, but will cost an amount, B, to implement, so that total assets would be A – B, 

then it would only be reasonable to implement the scheme if doing so increased or at 

least maintained the expected value of the assets in absence of the scheme. Thus, it 

must satisfy: 

 

 CABA 1  (10.4)   

 

Therefore, the maximum amount that should be spent on the scheme, B0, is: 
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 CB 10   (10.5)   

 

The maximum value to spend on mitigation is therefore equal to the expected loss 

resulting from the risk. If the scheme does not completely eliminate the risk 

altogether, but instead reduces the probability from π1 to π2, then the maximum 

amount to spend is instead: 

 

  CB 210    (10.6)   

 

which again is the expected value of the loss. Thus, in the risk neutral case, the 

decisions are made based on expected monetary losses. However, if preferences for 

risk are considered, then spends must be based on expected loss of utility, rather than 

loss of assets. This (usually) entails an additional premium, which can be expressed 

in terms of a “maximum risk multiplier” of the baseline, expected monetary loss,    

mr.max. If the maximum reasonable spend on mitigating risks is denoted δZR, then it is 

given by: 

 

 0max BmZ rR   (10.7)   

 

The method for calculating the maximum risk multiplier will be shown in the 

following section. 

 

10.3 Accounting for Risk Aversion Using the ABCD Model
7
 

The ABCD model draws together four important aspects of decision making when 

regarding risk, three of which were introduced in the previous section. The 

organisation (or individual) is assumed to have assets, A (for the UK measured in £), 

and faces accident costs, C (£) with probability, π1 = 1 – p1 (where p1 is the 

probability of no accident occurring). The affected party is considering spending an 

amount B (£) on an environmental protection system that will reduce the probability 

of incurring those accident costs from π1 to π2 = 1 – p2, for the common case where 

                                                 

7
 This section largely follows [199]. 



 -194-  

π1 is already small (the choice of the letter “B” to denote the cost of the protection 

system may be regarded as a “balancing” expenditure in certain circumstances). The 

expected utilities before, E(u1), and after, E(u2), the risk-mitigating system is 

introduced are calculated using the Atkinson utility function (3.39). The final 

element is the difference in expected utility, D: 

 

      2121 |, uEuEuuD   (10.8)   

 

where dependence on the risk-aversion has been made explicit, and where: 

 

        CAUpAUpuE  111 1  (10.9)   

 

and: 

 

        CBAUpBAUpuE  222 1  (10.10)   

 

The protection system should be installed only if D is negative or, in the limiting 

case, D = 0. 

 

It is convenient to define another variable, the “reluctance to invest” in the safety 

system, R120A, as the change in the organisation’s utility, D, normalised to the utility 

of the starting assets, u0(ε) = U(A): 
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(10.11)   

 

where q = 1 – ε, and the lower-case letters ba and ca indicate normalised costs:         

ba = B/A is the cost of the safety system normalised to the assets, ca = C/A is the 

accident cost normalised to the assets. 
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A value of R120A = 1 corresponds to a 100% reluctance to invest – the case where the 

cost of the safety system reduces to zero the expected utility of the organisation. A 

positive reluctance to invest (0 < R120A < 1) indicates that the system is poor value for 

money, whereas a negative reluctance (R120A < 0) corresponds to a desire to invest in 

the system. It has been shown [190] that as risk-aversion increases, the absolute 

value of the reluctance decreases towards zero. A scheme that is good value at ε = 0 

and a second scheme that would be rejected outright at ε = 0, because of its poor 

value, both converge towards R120A = 0 at large values of risk-aversion. Hence the 

risk-averse decision maker is unable to discriminate between the merits or demerits 

of the two schemes at large ε. This is the “point of indiscriminate decision” and 

occurs where |R120A| = δdis, with δdis ~ 10
-6

 being the discrimination limit. This gives 

an upper limit to the value of the risk-aversion, which is denoted as εmax. 

 

As was shown in the previous section, when the risk aversion is zero, then decisions 

are made in purely financial terms, and the maximum that should be spent on the 

protection system is equal to the reduction in the expected cost of an accident: 
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or equivalently: 

 

   acb 210    (10.13)   

 

The risk multiplier, mr, is defined as the ratio of the actual (normalised) cost of the 

protection scheme, ba, to the expected monetary savings it will produce:                  

mr = ba/b0 ≥ 0. 

 

Thomas et al (2010b)[191] have also shown that for a given protection scheme, the 

reluctance to invest exhibits a minimum value, and this minimum occurs at a risk-

aversion of ε = εpp, called the “permission point”. This corresponds to the point of 

maximum desire to invest in the protection scheme. To calculate the permission 

point a lower bound is set at εpp = 0, since only risk-averse decisions are considered 
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and not risk-seeking behaviour. There is an upper bound at εpp = εmax where εmax is 

the risk-aversion at the point of indiscriminate decision. Within these bounds, the 

minimum of R120A follows three distinct patterns, illustrated in Figure 21. Pattern (1): 

there is a positive reluctance to invest at zero risk-aversion which decreases 

monotonically with increasing risk-aversion until the permission point meets the 

point of indiscriminate decision at εpp = εmax. Pattern (2): the reluctance to invest is a 

(negative) minimum at εpp = 0, corresponding to the case when the safety system is 

justified on purely financial grounds, and R120A increases monotonically with risk-

aversion until the point of indiscriminate decision. Pattern (3): if the reluctance to 

invest is close to (positive or negative) zero at zero risk-aversion, then there is a 

minimum in the R120A function at 0 < εpp < εmax. These three different patterns are 

important to keep in mind when evaluating the optimum risk-aversion below. 

 

Calculating the optimum risk-aversion requires the numerical computation of the 

risk-aversion and the normalised safety spend at the permission point (εpp and bpp 

respectively), together with their maximum values which occur at the point of 

indiscriminate decision (εmax and bmax). The latter can also be expressed in terms of 

the “maximum risk multiplier”, mrmax, given by mrmax = bmax/b0, with b0 defined 

above. 

 

The risk-aversion at the permission point, εpp, is defined at the minimum of R120A. 

Differentiating R120A with respect to q yields the objective function g(ba, ε). 

Recalling that q = 1 – ε, the objective function is given as: 
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where R120P is the reluctance to invest in the safety scheme assuming a power utility 

function: 
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and its derivative is: 
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The roots of equation (10.14) yield the desired risk-aversion, εpp. 

 

Graphical analysis of the variation of g(ba, ε) with ba for fixed ε, shows that the 

function has two different regimes when ε < 1 and when ε > 1. For ε < 1, the 

objective function has two roots on the positive and negative going slopes of the 

function as shown in Figure 22 and Figure 23. As discussed in more detail later, the 

first of these roots are sought out. For ε > 1, there is only one root, near to ba = 1 

(Figure 24 and Figure 25). Finding the roots is made difficult at high values of c by 

the rapid change in slope as shown in Figure 23 and Figure 25. 

 

Equation (10.14), cannot be solved analytically, and so must be solved numerically. 

Two distinct approaches to these computations have been taken which were 

developed independently so that results from the two methods could be compared 

and used to increase confidence in their accuracy. The first approach was to use the 

secant method. This naturally follows on from the referred derivative method used in 

[191], but it uses a finite difference approximation for the derivative of R120A rather 

than an analytical expression. The permission point, εpp is incremented as the 

independent variable towards εpp = εmax, yielding values of bpp and bmax. The second 

approach was a technique which was named the “Golden Bisection Method”. The 

minimum in the R120A function is found using a Golden Section Search, without 

recourse to an analytical derivative. The independent variable is taken as ba rather 

than ε, incrementing towards bpp = bmax. The point of indiscriminate decision is 

evaluated using the Bisection Method, yielding values for εmax and bmax. The very 

different nature of this algorithm promotes useful diversity in the calculations. 

 

Equation (10.14) can be solved for the objective function using the method of 

referred derivatives (see Thomas (1997) [181] and (1999) [1]), which was used in 

Thomas et al (2010b) [191], and which lends itself to computation in a spreadsheet 

format. The computation can also be extended to more accurate and robust software 

based algorithms. The initial approach to solving equation (10.14) for the objective 
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function that will be presented here consisted of applying the secant method – a 

modification of the Newton–Raphson iterative method that uses a finite difference 

approximation (see e.g. Press (1992) [165]). In the iteration the roots of the objective 

function are solved holding q constant, and solving for the value of ba = bpp at the 

permission point for a given value of ε. The iterative procedure for this is given by: 
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with the iteration continuing until g(ε,bi+1) < 10
-6

 and where δb = 10
-5

 is a small 

increment in bi. Each solution of equation (10.17), for increasing values of ε, will 

give the permission pair, (bpp, εpp). 

 

The procedure progresses by first finding a value for bpp(ε = 0). Here we use b0 as a 

seed value in the iteration. The corresponding value of the risk multiplier, mr, is 

denoted by mrlow = bpp(0)/b0. This then proceeds to higher values of ba = bpp(ε + δε) 

by adding fixed increments, δε, up to ε = εmax, where, at some point the desire to 

invest, -R120A, will become smaller than δdis, and the procedure will stop with             

ε = εpp = εmax, ba = bpp = bmax and mr = mrmax.  

 

The above analysis caters for normalised costs for the protection system in the range 

bpp(0) ≤ ba ≤ bpp(εmax), with the corresponding risk multipliers in the range mrlow ≤ mr 

≤ mrmax. It is assumed that a normalised cost less than bpp(0), is not possible for risk-

averse decision makers, although modifying this assumption to include risk seeking 

decision makers would be a topic for further research.  

 

The Golden Section Search method (see Press (1992) [165]) for determining the 

permission point pairs (εpp ,bpp) finds the minimum in the R120A function without 

requiring derivatives of the function. The algorithm first looks for an approximate 

value of εpp by evaluating R120A at discrete values of ε with a step size of δε = 0.1, 

over the range of ε up to the point where the absolute value of R120A is less than the 

value, δdis, at the point of indiscriminate decision. If a local minimum is identified 

then a more accurate estimate of εpp is obtained by applying a golden section search 

in the region of the minimum, which ensures that the minimum is found. If there is 
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not a local minimum in the approximate solution – for example, if the minimum is 

too close to ε = 0 (i.e. ε  < 2δε) – then an iterative approach is taken by decreasing 

the step size and recalculating εpp in the region of the minimum, repeating the 

procedure until the required accuracy is achieved. 

 

An approximate value of the risk-aversion at the point of indiscriminate decision, 

εmax, was found as above, by evaluating R120A at discrete intervals of ε. This value 

was refined by applying the Bisection method [165] to evaluate the roots of |R120A| – 

δdis = 0 about the approximate solution. 

 

Thus, a brief overview of the methods for calculating the maximum risk multiplier 

mr.max, have been laid out. This parameter then allows the maximum reasonable 

spend on mitigating financial to be determined, as will be described below. No 

analytical solution for the maximum risk multiplier can be determined. Indeed, the 

value is dependent upon the probability of occurrence and the consequence of the 

risk faced, as well as the initial assets of the organisation (or individual). For further 

details of the computational methods used in calculating the limits to risk aversion, 

see Waddington et al (forthcoming) [199]. 

 

10.4 The Maximum Reasonable Spend and the New J-Values 

Once the maximum risk multiplier has been determined through numerical methods, 

the maximum reasonable spend can be computed, from equation (10.7), repeated 

below: 

 

 0max BmZ rR   (10.7)   

 

The value B0 is the expected monetary loss resulting from the risk. However, the 

expected monetary loss may be complicated by factors such as the possibility of the 

accident occurring multiple times, and the growth of the organisation. These issues 

are more fully addressed in Thomas and Jones (2010) [192]. Nevertheless, treating 

B0 as being equal to the expected monetary loss will be a good approximation in the 

case of low accident probability and low growth rates. 
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The J2-value (or second judgement value) is then the ratio of the actual amount spent 

on mitigating the risk, denoted as Ẑ , to the maximum reasonable spend: 
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If a system protects against both risks to human life as well as to assets, and will cost 

Ŵ  to implement, then it is also possible to calculate a “total judgement value”, JT: 
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where δVN is the maximum reasonable spend on protecting human life, as given by 

equation (3.60). The JT-value may be interpreted in a similar manner to the J-value, 

in that JT-values in the range from zero to unity will be deemed as cost-beneficial, 

while JT-values in excess of unity indicate that the scheme offers poor value for 

money, and should not be implemented. Thus the JT-value provides a new and full 

criterion for the adoption or otherwise of a protection scheme to guard against both 

financial and human costs.  

 

This concludes the exposition and development of the theory and methods required 

by the J-value framework for the valuation of health and safety, as well as the more 

recent addition of financial risks. This framework provides original and objective 

techniques for decision making that encompass a wide variety of types of risk yet 

still retains an output that is transparent and simple to interpret, and more 

importantly, provides consistency to a field in which decisions regarding sensible 

levels of expenditure on a given benefit can vary by eleven orders of magnitude (see 

Tengs et al (1995) [180]). 

 

The final chapter of part 1 will provide some example calculations in order to 

illustrate to broad applicability of the techniques. 
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Figure 21 Response of the reluctance to invest (R120A) with increasing risk aversion (ε), for different 

normalised costs of the safety system (-0.1 < b < 0.6). Assets (A) are £180,000, normalised accident 

cost (c) is 0.995, and the probabilities of no accident with and without the safety system are p2 = 1 and 

p1 = 0.9 respectively. 
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Figure 22 The derivative of the reluctance to invest when ε = 0.5 and c = 0.9, illustrating the two 

roots of the objective function g(ε, b) = 0. The assets are A = £180,000 and all accident probabilities 

are considered. 
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Figure 23 The derivative of the reluctance to invest when ε = 0.9 and c = 0.999, illustrating the two 

roots of the objective function g(ε, b) = 0. Other parameters are the same as Figure 22. Note the steep 

gradient in the region around the second root. 
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Figure 24 The derivative of the reluctance to invest when ε = 1.5 and c = 0.9, illustrating the single 

root of the objective function g(ε, b) = 0. Other parameters are the same as Figure 22 
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Figure 25 The derivative of the reluctance to invest when ε = 1.5 and c = 0.999, illustrating the single 

root of the objective function g(ε, b) = 0. Other parameters are the same as Figure 22. Note the steep 

gradient in the region around the root. 
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Chapter 11 Example Calculations  

 

11.1 Example Calculations for the J-Value 

In this section some example calculations will be shown in order to demonstrate the 

broad applicability of the J-value. The next three sections will provide calculations 

for the J-value by considering impact assessments for various health and safety 

schemes. Following this will be a calculation of the J2 and JT value of a protection 

scheme to mitigate the risk of a large nuclear accident. Finally, a J-value analysis of 

the ancient VTPF will be provided. 

 

11.2 HSE’s Impact Assessment of Various Policies to Limit 

Occupational Exposures to Respirable Crystalline Silica  

A review by the HSE of occupational exposure to respirable crystalline silica (RCS) 

found that workers were exposed to unacceptable risks. They produced a regulatory 

impact assessment of four proposed exposure limits, see HSE (2005) [101]. These 

limits were: i) 0.3 mg.m
-3

, which then was the current limit, but would have been 

more strictly enforced, as it was suspected that a substantial number of workers were 

exposed to concentrations in excess of these limits; ii) 0.1 mg.m
-3

; iii) 0.05 mg.m
-3

, 

and iv) 0.01 mg.m
-3

. 

 

The benefits of these limits were calculated in the document as reduced numbers of 

deaths from silicosis and lung cancer. Although there were also other benefits 

assessed in the document, such as prevented disabilities, medical costs and lost 

output, these are not included here, as only mortality effects are relevant to J-value 

analysis. It is estimated that policy i) would result in 36 less lung cancer deaths. 

Policy ii) would reduce lung cancer deaths by 185 while iii) reduced them by 300, 

and iv) reduced deaths by 455. The number of reduced deaths from silicosis was 

taken to be the same as for lung cancer. In order to convert these figures into a loss 

of life expectancy, it was necessary to use national mortality statistics [151] which 

give data on the age of death from those diseases, from which the average loss of life 

expectancy per death can be determined. The standard deviation of the loss of life 

expectancy can also be calculated from the data. These statistics show that lung 
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cancer deaths cause, on average, 13.8 years of lost life per death, whilst silicosis 

deaths results in 7.3 years of lost life. These numbers can then be multiplied by the 

number of avoided deaths to arrive at the total improvement in life-expectancy 

afforded by the regulation, which is equal to NδX. These are listed in Table 11. The 

HSE document also lists costs associated with each option. Maximum and minimum 

cost estimates are given, and these can be averaged to determine a mean cost. J-

values can then be determined with the values of the parameters as given in Table 6. 

The costs of the scheme and the J-values are shown in Table 12, along with the 95% 

confidence limits. In calculating the tolerance limits, it was assumed that the low and 

high estimates of the cost of the scheme represented 95% confidence limits, which 

then allows the standard deviation to be determined. No discounting will be 

presented here. 

 

As can be seen, the only scheme which has a J-value less than unity is option i), that 

is, the option to more strictly enforce current limits. However, it is worth noting that 

there will likely be additional uncertainties associated with the number of deaths 

avoided by the regulations, as cancer and silicosis involve latent effects, making it 

difficult to assess the effects of exposures with much accuracy. Given that there will 

likely be further uncertainties, it seems reasonable to view option ii), which has a J-

value slightly greater than the J = 1 threshold, as an acceptable figure. Also, when 

other factors, such as disability costs etc. are considered alongside the J-values, 

option ii) would be viewed with further favour. To summarise, option i) gives the 

best value for money, but option ii) may also be considered acceptable given the 

uncertainty.  

 

The conclusions of the HSE document agreed to some extent with the J-value 

analysis. It was found that only option i) offered value for money. However, the HSE 

considered the occupational risks with this option as unacceptable, and so rejected 

this option, instead favouring option ii). 

 



 -208-  

11.3 Department of Health’s Proposal to Reduce the Number of 

Unnecessary CT Scans 

The Department of Health (DH) has recently published a regulatory impact 

assessment that investigated the use of Computed Tomography (CT) scans in 

asymptomatic individuals, see Department of Health (2011) [63]. These scans can 

help in detecting conditions, but expose patients to ionising radiation, which carries 

health risks, and as such, needs to be justified. The Committee on Medical Aspects 

of Radiation in the Environment (COMARE) has provided some recommendations 

which would reduce the risks if implemented. DH’s impact assessment reviews the 

costs and benefits of enforcing COMARE’s recommendations. 

 

The report assumes that there are approximately 3,000 individuals who have scans 

every five years between the age of 40 and 70. Each scan is taken as delivering to the 

individual a dose of 10 mSv, so that a 40 year old will receive an additional dose of 

70 mSv from the extra scans over his or her lifetime. This information alone is 

sufficient to calculate the loss of life expectancy resulting from these scans. The 

exposure can be modelled as a series of short exposures, as is indicated in Figure 26. 

The effect of a single radiation exposure on the additional risk is discussed in section 

5.9, which assumes that no response will be observed for the first 10 years, due to 

the latency of cancer development. There will then be a step change which lasts for 

30 years, before the risk response returns to zero. When a series of these responses, 

which are delayed by five years each, are added together, the overall response is a 

pyramid shape, shown in Figure 27. The averaging is performed over the population 

that is at least age 40. The average life expectancy of this cohort is 22.3 years.  

 

The cost of implementing the recommendations is given in the assessment as 

£45,000 per annum. This is based on 3,000 scans each costing £300, total cost 

£0.9m, and assuming 5% of this is taken as surplus (presumably after deducting for 

the costs of operating the scanner and staff costs). The undiscounted present value 

over the remaining lifetime of the individuals is then £45,000×22.3 = £1,003,500. 

The J-value for this scheme is 0.31, meaning that implementing COMARE’s 

recommendations will give good value for money. This was also the conclusion of 

DH’s impact assessment. The data is shown in Table 13. No uncertainty estimates 
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are available for the cost of the scheme or the number of people. The tolerance limit 

is therefore only calculated from the parameters in which the uncertainty is already 

known. The tolerance limits are therefore small in this case. Again, discounting is 

not considered. 

 

11.4 Department of Health’s Proposal to Reduce the Number of MRSA 

Infections 

Another regulatory impact assessment by the DH, which was published in 2009, 

reviewed proposals to reduce the number of MRSA infections and deaths in NHS 

hospitals, see Deparment of Health (2009) [62]. Although the number of MRSA 

infections had decreased by 74% since 2003, it was felt that there was still 

substantial variation across hospitals, and the DH believed that there was scope for 

further reductions. In the impact assessment, two options for reduction were 

considered. Option i) involved setting targets based around the median. Hospitals 

with infection rates above the median were required to reduce either to the median or 

by 20%, whichever was greater. Hospitals below the median were required to reduce 

by either 20% or to the lower quartile, whichever was least. Option ii) was for all 

hospitals with rates above the lower quartile to reduce to the lower quartile. 

 

The report assumes that i) would lead to a reduction in MRSA deaths of 86.3 per 

year, whilst option ii) would reduce MRSA deaths by 109.3 per year. The ONS 

report that death rates for MRSA are highest amongst the over 85’s [152], although 

MRSA can affect people of all ages. It will be assumed that the average age of death 

for MRSA is then 85 years. The life expectancy of an 85 year old is about 5.6 years. 

Thus is will be assumed that each MRSA death causes a loss of life expectancy of 

5.6 years. 

 

The assessment assumes that option i) would result in extra staff costs of £7.5 

million whilst option ii) would result in extra staff costs of £19.08 million. It was 

also noted that these costs should be multiplied by 2.4 to account for lost opportunity 

costs associated with not being able to spend this money in other areas. There would 

also be some reduction in costs associated with avoided treatments of those who 

would otherwise have been infected. For option i) these benefits were £1.95 million 
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per annum, whilst for option ii) these benefits were £2.47 million per annum. The 

total cost of i) was then £16.05 million, whilst for ii) the total cost was £43.32 

million per annum. These details are then sufficient to calculate the J-value of the 

two options. The data is presented in Table 14. In assessing the tolerances, no 

attempt has been made to account for uncertainty on the cost of the scheme, as the 

data was not available. Equation (8.77) was used to estimate the standard deviation 

on the change in life expectancy. This calculation requires knowledge of the 

probability of being affected by MRSA, b. This is given in [62] as 6.3×10
-5

, resulting 

from 3,211 MRSA cases in 2008. The standard deviation on the total change in life 

expectancy, NδX, can then be calculated as 0.65 years for option i), and 0.82 years 

for option ii). 

 

As can be seen from Table 14, both options have J-values less than unity, and so 

offer good value for money. However, option i) has the lower J-value and so would 

be the preferred option. This was the same conclusion as in the impact assessment.  

 

11.5 Example Calculations for the J2 and JT-Value: Mitigating Large 

Nuclear Accidents 

This example uses notional, but realistic figures for a protection system that 

mitigates the risk of a large nuclear accident. The example is taken from [192]. 

Suppose an organisation with assets of £10 billion owns a nuclear power plant that 

has a lifetime of 50 years. It is considering installing a protection system that will 

reduce the frequency of large accidents from 2×10
-5

 per year to 5×10
-8

 per year. The 

new protection system would last the life of the plant and would cost M5.4£ˆ W , 

a sum that would include all finance and maintenance costs. A risk analysis has 

shown that if an accident were to occur, then 5 workers would be killed immediately, 

while 40 would be exposed to a one-off dose of 300 mSv. Moreover, 500 members 

of the general public living in a small town close to the plant would receive a one-off 

dose of 200 mSv, while the remaining 5000 inhabitants of the same town would 

receive a single dose of 150 mSv. In addition, there would be environmental costs of 

£5 bn, covering evacuation, relocation, business disruption, decontamination and 

clean up, amongst others. Should the protection system be installed? 
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First, it is necessary to determine the average loss of life expectancy resulting from 

the accident. The dose to the members of each group, and their respective loss of life 

expectancy, is given in Table 15, where it is shown that the average loss of life 

expectancy for all those exposed is 0.4 years. These calculations assume a 0% 

discount rate. The collective loss of life expectancy is then 2,218 years. It was shown 

in Jones and Thomas (2009) [119] that the average change in life expectancy 

following a reduction in accident frequency over the lifetime at risk is approximately 

equal to the product of the average loss of life expectancy following a single 

accident, the lifetime and the change in frequency. Performing this calculation, the 

average change in life expectancy over the life of the plant with the given accident 

reduction is then 3.99×10
-4

 years, and the collective change in life expectancy is 2.2 

years. The maximum reasonable spend on protection is then δVN = £284,939. 

 

The justifiable spend at risk neutrality can be determined from equation (10.6), as:            

B0 = £3,165,746. It was shown in Thomas et al (2010a) [191] and Thomas and Jones 

(2010) [192] that the maximum risk multiplier in this situation is mr max = 1.34. 

Hence from equation (10.7), δZR = £4,242,100. 

 

If it is assumed that the cost of the protection system can be partitioned into human 

costs and environmental costs, then it is possible to calculate the J2-value. Suppose 

that, of the total amount Ŵ , an amount 3×δVN has been apportioned to human 

protection, where the factor of three may arise because of considerations of societal 

risk or gross disproportion. The J2-value is then: 
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and thus, based on financial considerations alone, the scheme would represent good 

value for money. However, for a JT-value analysis, it is necessary to consider all 

costs. The JT-value is then: 
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Thus, JT < 1 and installation of the protection system would be justified. 

 

11.6 J-Value Analysis of the Ancient VTPF 

In chapter 2, it was noted that civilisations have been valuing life for millennia. The 

earliest known valuations of life date back to ca. 1700 BCE, with the Babylonian 

Code of Hammurabi, and 1400 BCE, with the Book of Leviticus. It was found, using 

extremely crude calculations, that these Ancient VTPF’s were around £100-£400, in 

current prices. It is possible to perform a rudimentary J-value analysis of these 

valuations to determine the cost-effectiveness of the health and safety policies of 

ancient civilisation. Of course, the analysis will not have a high degree of accuracy, 

but it may nevertheless prove to be informative. 

 

The J-value of the VTPF is given by a rearranged version of either equation (7.13) or 

(7.14). Discounting will not be included, and so these equations will be identical. 

Therefore: 
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where VP will be taken to lie in the range £100-£400. Estimates of the world GDP 

per person have been made for times stretching back to 1 Million BCE [47]. For 

1600 BCE (the closest date to the VTPF estimates), the global GDP per person is 

given as $121, the units of currency are 1990 international dollars. International 

dollars are dollars that have been adjusted for purchasing power parity (PPP). This 

can be converted into 1990 UK pounds by multiplying by the ratio of current UK 

GDP to UK GDP measured in international dollars, which is given by the IMF 

(2011) [114]. This ratio is about 0.645. The figure can then be adjusted for inflation 

using ONS time series data on the GDP [153], which amounts to multiplying by 

2.26, to give the world GDP per person in 1600 BCE in 2010 UK pounds. This value 

is £177. It will be assumed that the world GDP per person in 1600 BCE is a 

sufficiently good estimator of the GDP per person in the Mesopotamian and Eastern 

Mediterranean region around this time. 
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In order to estimate the average life expectancy, life table data from ancient Rome 

was obtained [194]. It is assumed the mortality experience in ancient Rome was 

similar to that of the civilisations being assessed. The data gives both life expectancy 

and the population distribution, from which the average life expectancy can be 

calculated. This was found to be 29 years, although the figure is strongly affected by 

infant mortality. 

 

The final parameter that needs estimating is the ancient risk aversion, ε. To estimate 

this, it is necessary to first estimate the ancient work-time fraction, w, and the ancient 

wage share of the GDP, θ. In section 8.5, it was noted that the wage share is 

predicted to be constant over time and across countries. It was also noted that this 

has been experimentally verified. It will be assumed, then, that this constant wage 

share can be extrapolated back to ancient civilisations. As the UK wage share was 

found to be about 58%, it will be assumed that the ancient wage share is similar to 

this. A rounded figure of 60% will therefore be used. The work time fraction is 

estimated by assuming that individuals would spend the majority of their life 

working, and so would have little free time. If it is assumed that an individual will 

commence work at age 8, and will work for the rest of his life, until age 50, and that 

he will work for one hundred hours a week, then his work-time fraction will be 0.5. 

Similar figures would also apply to most individuals in the society, so that this figure 

would be appropriate as an average work time fraction. This then enables the risk 

aversion to be calculated. However, this raises an immediate problem.  

 

With the figures given above, the risk aversion is about -0.7, i.e. it is negative, 

indicating risk seeking behaviour. So far, it has been assumed that the fraction of 

time spent working will be low enough to give risk averse behaviour, which in turn 

is required if the law of diminishing marginal utility is to be satisfied. This law, that 

successive amounts of a commodity will be valued at a diminishing rate, is one of 

the most well established laws in utility theory. However, in the situation where 

considerable proportions of an individual’s life would be spent working, then risk 

aversion is negative, and the marginal utility increases with the amount of 

commodity. Thus, in order to proceed with this analysis this law must be given up 

here. However, the effect of long working hours being associated with risk seeking 
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behaviour and increasing marginal utility is an interesting result which may be 

considered further in the future. 

 

Thus, the J-value of the ancient VTPF may now be calculated: 

 

 
 

000,3£29177£

7.11 PPP VV

GX

V
J 










 (11.4)   

 

thus, for values of VP in the range £100 - £400, the J-value of the VTPF is in the 

range 0.03 – 0.13. If the work-time fraction is varied up to a high value of 0.8, then 

the J-value is still considerably less than unity, at 0.52. Thus, this fairly rudimentary 

analysis indicates that the ancient VTPF’s were cost-beneficial. 
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Figure 26 Dose received by individual of age a who is undergoing scans at future age t. 
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Figure 27 The response of the additional risk faced by an individual of current age a at future age t, 

following an exposure type given in Figure 26. 
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Regulatory 

Exposure 

Limit (mg. 

m
-3

) 

Lung 

Cancer 

Deaths 

Avoided 

Silicosis 

Deaths 

Avoided 

Lung 

Cancer 

Life-

Years 

Gained 

Silicosis 

Life-Years 

Gained 

Total Life 

Years 

Gained, 

NδX (±1 

S.D) 

i) 0.3 36 36 497 262 759 

(±29.2)  

ii) 0.1 185 185 2,553 1,348 3,900 

(±150) 

iii) 0.05 300 300 4,139 2,186 6,325 

(±243) 

iv) 0.01 455 455 6,278 3,315 9,593 

(±369) 
Table 11 Deaths avoided and life-years gained for the four exposure limits from HSE’s assessment of 

methods to reduce occupational exposures to respirable crystalline silica. 

 

 

Regulatory Exposure 

Limit (mg.m
-3

) 

Average Cost of Scheme 

(£M) (±1 S.D) 

J-value (95% 

Tolerance Limit 

- ±2 σJ/J) 

i) 0.3 5.2 (±0.05) 0.050 (0.048-

0.058) 

ii) 0.1 644.0 (±3.06) 1.3 (1.2-1.4)  

iii) 0.05 3,528.0 (±38.3) 4.3 (3.9-4.8)  

iv) 0.01 13,343.5 (±673.2) 11 (9.3-12)  
Table 12 Cost of scheme and J-values using Table 11 data. 

 

 

Proposal to 

Implement 

COMARE’s 

Recommendations 

Individual 

change in 

Average Life 

Expectancy, 

δX (years) 

Initial Life 

Expectancy, 

X (years) 

Cost, = 

45,000*X 

(£) 

J-Value (N 

= 3,000) 

(95% 

Tolerance 

Limit - ±2 

σJ/J) 

 8.3×10
-3

 22.3 1,003,500 0.31 (0.30-

0.33) 
Table 13 Data for DH’s proposal to implement COMARE’s recommendations. 

 

 

Proposal to 

Reduce 

Number of 

MRSA Deaths 

Annual Cost (£) Annual Life 

Years Gained, 

NδX (years) 

J-Value (95% 

Tolerance 

Limit - ±2 σJ/J)  

i) 16,050,000 479.0 0.26 (0.25-0.28) 

ii) 43,320,000 606.6 0.55 (0.52-0.59) 
Table 14 Data for DH’s proposal to reduce the number of MRSA deaths.  
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Group Group Size Dose (Sv) Loss of Life 

Expectancy per 

Person (year) 

Public 5000 0.15 0.354 

Public 500 0.2 0.472 

Plant Operators 5 Killed 

immediately 

38.795 

Plant Operators 40 0.3 0.401 

Average loss of life expectancy per person, δX (years) 0.400 

Collective loss of life expectancy, NδX (years) 2,218 

Table 15 Loss of life expectancy to public and workers following a notional large nuclear accident. 
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