IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Farion, K., Michalowski, W., Wilk, S., O'Sullivan, D., Rubin, S. & Weiss, D.
(2009). Clinical decision support system for point of care use--ontology-driven design and
software implementation. Methods of Information in Medicine, 48(04), pp. 381-390. doi:
10.3414/me0574

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13212/

Link to published version: https://doi.org/10.3414/me0574

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Clinical Decision Support System for Point of Care Use:
Ontology Driven Design and Software Implementation

K. Farion
Departments of Pediatrics and Emergency Medicimeyeysity of Ottawa
Children’s Hospital Of Eastern Ontario
Ottawa, Canada

W. Michalowski, Sz. Wilk, D. O’Sullivan
MET Research Group, Telfer School of Managemeniyéfaity of Ottawa
Ottawa, Canada

S. Rubin
Department of Surgery, University of Ottawa
Children’s Hospital Of Eastern Ontario
Ottawa, Canada

D. Weiss
Institute of Computing Science, Poznan Universfty @chnology
Poznan, Poland

" Corresponding author:
Szymon Wilk

Telfer School of Management
University of Ottawa

55 Laurier Ave East

Ottawa, ON K1N 6N5

tel.: +1 613-562-5800 x. 4196
fax: +1 613-562-5164

e-mail: wilk@telfer.uottawa.ca

Summary

Objectives

The objective of this research was to design aicdindecision support system (CDSS) that
supports heterogeneous clinical decision problends rans on multiple computing platforms.

Meeting this objective required a novel design teate an extendable and easy to maintain
clinical CDSS for point of care support. The pragbssolution was evaluated in a proof of
concept implementation.

Methods

Based on our earlier research with the design mibhile CDSS for emergency triage we used
ontology driven design to represent essential corapts of a CDSS. Models of clinical decision
problems were derived from the ontology and theyew®mocessed into executable applications
during run time. This allowed scaling applicatiofigctionality to the capabilities of computing
platforms. A prototype of the system was impleménigsing the extended client-sever
architecture and Web services to distribute thetfans of the system and to make it operational
in limited connectivity conditions.

Results

The proposed design provided a common frameworkféwlitated development of diversified
clinical applications running seamlessly on a ugrif computing platforms. It was prototyped
for two clinical decision problems and settingsa@e of acute pain in the emergency department
and postoperative management of radical prostatgctin the hospital ward) and implemented
on two computing platforms — desktop and handheidputers.

Conclusions

The requirement of the CDSS heterogeneity was figatiswith ontology driven design.
Processing of application models described withhiglp of ontological models allowed having a
complex system running on multiple computing platfe with different capabilities. Finally,
separation of model and runtime components cortgto improved maintainability — changes
in runtime components did not require changingagglication models.

Keywords
decision support systems, clinical; point of cargtems; software design; ontology driven design

1. Introduction

Research described in this paper is concernedsuiporting decision making by physicians at
the point of care in an acute and emergency cdtege It started several years ago with
development of a clinical decision support systedD$S) to support emergency triage of
patients presenting to the emergency departmenj (& acute pain conditions. This system
called MET1 (Mobile Emergency Triage) [1] was desid to help with management of pediatric
patients using information about their history, gilbgl examination and a limited number of
laboratory tests. MET1 included two clinical applions (supporting triage of pediatric

abdominal pain [2] and pediatric scrotal pain [@pd it ran exclusively on handheld computers.
The MET1 abdominal pain application (MET-AP) wasgpectively evaluated in the ED at the
Children’s Hospital of Eastern Ontario in 2003-2004rder to compare its triage accuracy with
the accuracy of emergency physicians. The detedgdlts of this evaluation are reported in [4].

MET1 was designed to support a set of homogeneecisidn problems in a single setting (ED)
and to operate on a single computing platform (@hald computer). This limited design was
typical of early generation mobile CDSSs [5], ahdvas sufficient for supporting the basic
functionality. However, to allow wider implementati and adoption, CDSSs need to support
physicians evaluating heterogeneous decision problén different settings, and to run
seamlessly on various platforms automatically sgato their capabilities [6]. In response to
these demands for versatile and flexible CDSSs mwpgse a new CDSS design (referred to as
MET?2) that represents the next generation of CDSSs.

The requirements for CDSS expanded functionalitme&drom research (see selected papers in
[7]) and were also expressed by physicians whoiggaated in the MET1-AP trial. While
decision support at the point of care using hardllveimputers was a helpful and important
aspect of the functionality, ED physicians favoeedystem running on a wider range of devices,
thereby enabling a wider range of functionalityr B&le, while categorical data was easily
entered through drop-down menus on the portableegethe ability to enter comments was very
limited and would be facilitated by a device wittkkeyboard and a larger display. Ammenwerth
et al. [8] describe the contradictions between estgifor small and transportable devices versus
those with larger displays. Furthermore, the tdskag performed as well as personal preference
significantly influence adoption of different deg& In response, they propose a “multi-device
architecture” for electronic information processiemgd communication in the clinical setting. A
similar claim is put forward by activity-based comipg — a new paradigm for pervasive clinical
computing that considers user activities (taskdjrasclass objects in a computing environment
[9]. According to this paradigm users should beeatd resume their activities on arbitrary
computing devices (available at the point of carsuited for the task).

This paper is organized as follows. In the nextisacwe discuss related research on using
ontology in CDSS design. In Section 3 we brieflgd@e the design of the MET1 system and in
Section 4 we outline how we responded to a challefgreating the new generation of CDSSs
with the design for MET2. In Section 5 we elabormatethe technical aspects of the MET2 design
and describe its implementation. This descriptioesdnot cover the issues of integration with
existing hospital systems, as they were reportetieeq1]. Finally, we conclude with a
discussion in Section 6.

2. Literature Review

Ontology represents both the explicit and impli@thaepts used within a particular discipline,
and the relationships between these concepts [[L0CIitological engineering, dealing with
developing and using ontology [12], has become raportant research focus in information
science.

In the field of medicine ontology has been exteslsivexploited in the form of controlled
terminologies and classifications for knowledgerespntation, understanding and exchange.
This line of research is exemplified by attemptsdiefine standardized classifications and
nomenclatures such as SNOMED-CT® [13] or OpenGAILEH.

In recent years, use of ontology as a mechanismefesenting knowledge in CDSSs has gained
momentum [15] and has become more common in supgoand solving decision problems
[16,17]. This has coincided with the evolution d&S architectures [18]. The first CDSSs were
standalone systems that were running separatety éther hospital systems (e.g., AAPHelp for
diagnosing abdominal pain [19]). They evolved imtegrated system where decision support
was embedded into hospital information systems.,(6lgLP offering support in such clinical
areas as laboratory, nurse charting, radiologyharmpacy [20]). Then, the integrated systems
evolved into separated systems with shareablenrdbon and decision support content (e.g.,
SEBASTIAN [21] with multiple XML-based modules caming clinical knowledge in machine-
executable format).

Ontology can be used to construct knowledge bastsimstances of defined concepts (these
instances represent facts about specific probleths)s, it has been employed to represent
information and knowledge in the systems with shble information. Subsequently to this line
of research, medical informatics has also explanmelogy driven design, where ontology and
derived knowledge bases are separated from domdependent processing algorithms (often
referred to as solving algorithms or solvers) [32,2he idea of separating ontology and derived
knowledge bases from solvers enables reusabililyaéso improves the robustness of the system
design. One solver may be used with different agpland knowledge bases, and vice versa.
Moreover, new solvers may be added without havangjter the ontology or the knowledge base,
and changes in the ontology and the knowledge das®t require modifying solvers.

The idea of separated ontology and solvers was inséed EON system. EON provided a set of
middleware components to automate various aspdcfgabocol directed therapy (checking

whether a patient was eligible for a particularréipy and planning the therapy) [24]. It was
developed for clinical trial protocols for the treent of cancer and HIV infections, and later it
was extended to cover the management of chroneaskes and other types of guidelines. Now
EON is used in the ATHENA CDSS for hypertension agement [25]. EON included the

generic guideline ontology that defined conceptated to clinical protocols and the medical
specialty ontology that defined concepts correspmndo findings and interventions for a

particular area of medicine. Adding support for ngrseblems required extending the medical
specialty ontology and linking it to the guidelimatology. Moreover, EON contained two

generic solvers — for checking protocol eligibilagd for planning therapy.

A similar ontology driven design was applied in BIlORM — a system for syndromic
surveillance (monitoring of prediagnositc datadarly detection of disease outbreaks) [26]. The
system uses the data-source ontology and the pnedddving ontology. The data-source
ontology defines characteristics, types and ratatigps of monitored data coming from various

sources (e.g., 911 emergency data). The problemmgobntology organizes and characterizes
solvers available in the system in terms of datd lamowledge a given solving method uses.
BioSTORM also includes the controller component tdantifies and deploys solvers to analyze
incoming data streams.

The ontology driven design has not been used onlgDSSs but also it has been applied in
bioinformatics to design grid systems [27]. For rapée, PROTEUS is a grid-based problem
solving environment for composing and running alons aimed at analyzing sequences of
proteins [28]. It allows for multiple applicationepresented as distributed workflows of software
components. The system includes the domain ontadogythe application ontology. The domain
ontology classifies and describes concepts in thmaih of bioinformatics as well as available
resources (e.g., solvers and external databades)adplication ontology classifies and describes
available application workflows (composed from ogpts from the domain ontology).
Workflows from the application ontology are execlby the execution manager.

3. Design of the MET1 System

MET1 followed the requirements to support a sehofmogeneous decision problems and to
operate on a single computing platform. Its logidaisign involved ontology and derived

knowledge bases that were separated from a solver. MET1 ontology included the data

ontology and the support ontology, with the datelmyy specifying concepts related to structure
of information to be processed, while the suppotblmgy defined concepts related to decision
models (all models used by MET1 were rule-based).

Both ontologies were used to derive data models saqgport models respectively. The data
model encompassed a knowledge base with instarfcesnoepts from the data ontology that
described the structure of clinical information simered for a specific problem (i.e., a specific
acute pain condition). Following the idea of auttimageneration of user interfaces for
knowledge acquisition tools [29], the data ontolagyl derived data models were annotated with
additional information allowing the construction @fstomized user interfaces for collecting and
presenting clinical data [1]. The support modelanpassed a knowledge base composed of the
decision rules representing knowledge on how teesalspecific decision problem (e.g., to make
triage disposition for a patient with an acute trpain).

The data and support models had to be created/éoy eecision problem handled by the system
and each pair formed an application model for Hpscific problem. Application models were

then transformed on request into executable agmita The general design of the MET1 system
is presented in Figure 1. The two major architedtwomponents of this design were the
application repository and the executor. The apfibn repository managed and stored the
available application models. The executor creatgplications according to their application

models and executed them. METL1 included also arfade repository with components for

building a user interface and one solver that veeslwith all decision models.

Typically, upon the ED physician’s request, the eier retrieved an appropriate application
model from the application repository and creatkd tiser interface according to the data
ontology using components from the interface rapogi Then, it presented the interface to the
ED physician for recording and viewing clinical datnd for calling the triage support function.
When this function was invoked, the executor linkieel solver with the support model, solved it
for collected data, and presented the results.r Affte physician had finished working with the

application, the executor purged the applicatiordehcand was ready to respond to the next
request.

4. Design of the MET2 System

Successful adoption of CDSSs in clinical practiogpehds on their broadly understood
versatility. Specifically, a new generation CDSSouwd be able to support heterogeneous
decision problems (in particular those that reqbegerogeneous decision models and solvers) at
different settings and to execute seamlessly oriphelicomputing platforms [6]. The design of
earlier CDSSs was too limiting to satisfy theseuresments — Table 1 lists the major
shortcomings. These shortcomings prompted us tposethe novel design of MET2. Despite
expanding the system functionality beyond emergetnage we decided to stay with MET
acronym as a label identifying our research.

The first step in addressing the design shortcomoigarlier CDSSs was to revisit the ontology.
Figure 2 presents the ontology used in the MET2gded 0 improve readability only the most
important classes and “is-a” and “association” trefeships are presented (e.g., it shows that a
rule solveris a solver or that data entry forms associated with user interface). It expands the
MET1 support ontology and introduces two new congmi® — the interface ontology and the
configuration ontology. These two new ontologies ased to derive interface and configuration
models that enhance the application model, so iMTME encompasses data, support, interface
and configuration models. Moreover, we allow apgimn models to include several support and
interface models that are suited to capabilitieg. (@enemory, computational power, display size,
interaction modalities) of specific platforms, thdealing with possible platform variability.

The support ontology has been extended to handiside problems requiring different types of
decision models and different solvers. We haveoduced concepts representing different types
of decision models, different types of solvers, #melassociations between them. When deriving
specific support models from the support ontoldipgse associations allow coupling decision
models with solvers, so the executor knows whidhesdo invoke when running an application.

An application model may include several platforpedfic support models, thus, a MET2

application running on a powerful platform can aseomplex support model (where a complex
decision model is coupled with a complex solverhilevthe same application executed on a
computationally weak platform may switch to a sirinpdl support model. A drawback associated
with such scaling is that these two models may igpotentially contradicting outcomes for the

same patient. This issue may be addressed by tsimmgified support models so their solution

strategy is more conservative than that of compiexels, following the percept that if in doubt,

the system should suggest a more conservativeeofiestion.

The interface ontology introduced in MET2 defines@epts representing various components of
the user interface (e.g., forms and attribute eslitdt is used to derive interface models included
in specific application models. Explicit represeinta of user interface components allows us to
define sophisticated user interfaces and addressobrthe shortcomings associated with the
earlier CDSS design where the user interface wasritbed by simply annotating data models.
With several platform-specific interface modelslired in an application model, the application
executed on a handheld computer may split colleatetidisplayed information across multiple
screens and use handwriting recognition for dateyewhile the same application running on a

desktop computer displays all information on a kirgcreen and allows entering data with a
keyboard and mouse.

The configuration ontology is introduced in MET2handle increased complexity of application
models that may include multiple platform-specBigoport and interface models. This ontology
is used to derive configuration models that linkpsart and interface models with target
computing platforms — such links are called “presil (one configuration model may specify
multiple profiles for different platforms).

The MET1 data ontology allowed defining data modeisdifferent decision problems and it
could be reused in MET2 design without extensivanges (it only required stripping
annotations on the user interface as they were mediendant by introducing the interface
ontology). However, in the MET2 design, we introddcthe Entity-Attribute-Value (EAV)
approach to structure clinical information as ibats for more flexible and effective handling of
heterogeneous data [30]. In this approach the ginmepresenting a patient-physician encounter
becomes a central entity that is characterized bgtaf clinical attributes, and its instances are
described by values of the attributes. The attebugpecify the historical information, physical
examination findings and test results that shoel@dilected during an encounter and considered
when making a decision about a patient. A data indeleved from the data ontology contains
definitions of these attributes for a specific dem problem (e.qg., triage of a scrotal pain).

The data ontology is relatively simple and représéata collected during an encounter, because
such information (the most recent medical histong @ current patient state) is required to
provide early decision support at the point of cdiiee data ontology is also used to facilitate
integration with other hospital information systebecause data interoperability can be ensured
at this level. If past patient data recorded in #hectronic patient record (EHR) is required,
definitions of clinical attributes can be expanaeéth information about how their values should
be retrieved from the EHR. With this informationpégitly available, MET2 will not only be
able to analyze values of attributes entered bylhysician, but also to use data already stored in
the EHR.

The general system design of MET2 is presentedignré 3. In order to address the CDSS
design shortcomings associated with the “singlevesolsingle platform” approach, we have
introduced two new architectural components: thepter and the solver repository that replaces
a single solver. The adapter is responsible foptagg a multi-platform application model to a
specific platform and the solver repository staksequired solvers. The MET2 design assumes
that the interface and the solver repositoriesessoivers and interface components for multiple
computing platforms. In order to simplify the deption we will refer to solvers and interface
components as runtime components, and to the acterbind solver repositories as runtime
repositories.

Upon the ED physician’s request, the executor mesdige creation of a specific application in
MET2. The executor is aware of the computing platf@n which it runs, and this information is
appended to the request sent to the applicatiomsitepy. The retrieved multi-platform
application model is passed to the adapter, whilepts it to the requested platform by selecting
the interface and the support model referencedhé dorresponding platform profile. The
platform-specific model is transferred back to #iescutor that creates the application using
platform-specific runtime components retrieved frdme runtime repositories and executes it.
When the physician finishes using the applicattbe,executor purges the application model and

the retrieved runtime components to release comgugsources. Such a request-execute-purge
cycle allows running multiple complex applicatias computationally weak platforms.

Separation of runtime components from applicatiadets and the request-execute-purge cycle
significantly improves extensibility of the MET2 fgm and the reusability of its components.
New application models are added to the systentdyng them in the application repository. If
the required runtime components are not alreadyladla in the runtime repositories, such
components have to be added, however no other ebangsystem components are necessary.
Also, changes in specific application models regeither no changes to the system, or they are
limited to the runtime repositories. Finally, mplg application models may easily share runtime
components and thus any update of shared componenimmediately registered by all
applications.

5. Implementation of the MET2 System

5.1 High-level Implementation

In implementing the MET2 design we followed theenliserver paradigm. The simplest
approach would be to install the executor on theTRIElient and the remaining architectural
components on the MET2 server. This would requiperenanent connection between the client
and the server. However, interruptions to wirelessnectivity are typical in most hospital
settings for various reasons. Moreover, maintairpegnanent connection on a mobile device
may be power consuming, thus severely limiting tisefulness of the system by forcing the
physician to charge the device frequently. Thus,asgumed that the system should be able to
function off-line with occasional connections beénedhe client and the server and implemented
it using the extended client-server architectudd.[8Vhen duplicating the server functionality on
the client side, we assumed that the client hastdce a subset of available application models
and runtime components so it is able to resporghisicians’ requests for applications without
connecting to the server. This required hostingesofrthe architectural components on the client
and on the server. Specifically we duplicated tippliaation repository and the runtime
repositories (the interface repository and theesotepository).

The high-level implementation of MET2 design is qmeted in Figure 4. For clarity the
duplicated components located on the server sigléabeled asentral and those located on the
client side are labeled akcal. This implementation introduces two new architesitu
components that were not present in the generagrddsee Fig. 3) — the retriever and the
packager. The retriever, upon request from thegrecretrieves the required application model
from the central repository and passes it to thegptet. The retriever is necessary on the server
side to allow the executor to reach the remoterakrgpository. On the client side, the executor
retrieves application models directly from the locapository. The packager facilitates the
process of transferring required runtime compon&ots the server to the client. It captures a
platform-specific application model processed b dldapter and examines the interface and the
support models to identify which runtime componearts required for executing the application.
Then, it retrieves the components from the cemtratime repositories, packages them with the
application model and passes the whole “packagethéoexecutor. The executor stores the
application model in the local application reposit@and the runtime components in the local
runtime repositories (as all application modelsredolocally on the client side are single-
platform, there is no need for the local adaptéfjer storing the contents of a package, the

executor creates and runs the application accorttings model. When the application is no
longer necessary, the executor may purge the mdeapplication model and the runtime
components or cache them for future use.

Following our earlier experience [1], we decidedintvoduce the patient repository that stores
information about currently processed patientstres instances of classes defined in the data
ontology) and acts as a buffer between the METRgysand hospital systems [1]. We use the
central patient repository located on the MET2 sewith all currently processed patients, and
the local patient repository with patients procddseally on the MET2 client. When connection
between the client and the server is available ctrdral and the local patient repositories are
synchronized.

5.2. Low-level Implementation

The low-level implementation of the MET2 systemidess presented in Figure 5. The figure
also identifies specific technologies and toolsdusedevelop a working prototype of the system.
We used Java as an implementation language bedaissavailable for mobile and desktop

computing platforms. Moreover, a system writtedawa allows transferring runtime components
over a network — this was critical for sending mm components from the MET2 server to the
MET2 clients. In the implemented version of the METechnology constraints forced us to look
for some non-standard solutions described belowsiiplify the implementation we used the

same solutions on both mobile and desktop platforms

The MET2 server was implemented on a Java apmitaserver to provide Web service

communication between the server and clients. Einéral application repository was realized as
a repository managed by Protégé [32]. Protégé bkandiultiple ontological languages (e.g.,

frames or OWL Web Ontology Language [33]) and afféedicated editor for easy creation and
modification of ontology and derived models. It alprovides an advanced programming
interface in Java, so repositories can be prograioally accessed and modified. We decided to
use the simpler frame-based representation, bedhesextensive capabilities of OWL (e.g.,

reasoning about ontology) were not required fas thiplementation.

The Protégé repository is also used to store gatiata — this simplifies implementation as we
use a single storage mechanism. Although this isoludffers limited efficiency (e.g., Protégé
repository lacks indexing of its content), it isffezient for the central patient repository if the
number of currently managed patients is limited.

Protégé does not offer any mechanism to synchrah&eontent of its repositories, therefore we
had to develop a synchronizer to keep patient dantaistent and to solve potential conflicts with
update timestamps. The synchronizer is implemeatethe patient manager Web service. The
same solution is used for the adapter and the gackdhey are combined into the application
manager Web service. Both Web services are accegsae8OAP (a standard protocol for
invoking Web services) [34].

Central and local runtime repositories are realagdollections of Java archives (JAR files) with
compiled Java code. The local patient and apptinatepositories are implemented as XML

repositories. To manage these repositories we de&dl our own programming interface that
mimics and abstracts the one offered by Protégi. was not the most efficient solution because
better capabilities are provided by XML-based dasats. Unfortunately, at the time of MET2

development, XML-based databases were not avaifabl@obile platforms.

10

5.3. Executor

The executor, implemented as a Java program, alidwsician to work with a specific clinical
application. It is the only component of the MER&tem that has to be pre-installed on the client
side — the other ones are downloaded by the exefoto the server. To limit communication
between the client and the server, the executst €inecks if the application model is stored
locally and requests it from the server using thpliaation manager Web service if it is not
available. In response it receives a package withpplication model and the necessary runtime
components, and then stores the package in therkmasitories. During execution the executor
checks what Java classes are referenced in thiéaicgeand support models, retrieves them from
the local runtime repositories and uses them aaoglsd

The executor has indirect and direct modes of 8atgclinical applications. In the indirect mode
the executor presents the physician with a lispatfents stored in the local patient repository.
When the physician selects a patient, the exeddentifies the presenting complaint for this
patient and requests a corresponding applicatiodeindn the direct mode the physician first
selects applications from the list of all applioas available on the server. This allows the
physician to preload the client with a set of apgtions (for example the most frequently
required) and to limit subsequent communicationveen the client and the server to patient data
synchronization using the patient manager Web servi

5.4. Application Models

Currently, the MET2 system contains models forehtknical applications — triage of pediatric

abdominal pain (MET2-AP) [2], triage of pediatriratal pain (MET2-SP) [3] and postoperative

management of radical prostatectomy (MET2-RP) [3%]e first two models are revised and

extended versions of the respective MET1 applioatighey involve the expanded ontology and
include multiple interface models). Inclusion oktlast application model was made possible
because of the new MET2 design.

Construction of the application models started wibhresponding data models. With the help of
clinical experts and medical literature we defingohical attributes that should have been
considered in each decision problem. Then we us&dspective chart data to build decision
models considering those that are frequently useatdinical decision making [36]. These models
were coupled with corresponding solvers to formpsupmodels. The choice of decision models
and solvers was verified in a series of computali@xperiments [37,38]. We also checked the
performance of the selected support models on bothputing platforms and concluded that
scaling was not required, thus the same models wge on desktop and mobile computers.

Finally, we created interface models following usentered and task-centered design principles
[39,40]. For each application model we prepared imterface models — one for a handheld
computer and one for a desktop computer. We alsated platform-specific interface
components that were required to construct thessrfaces. Sample user interface screens
created from the interface models for the MET2-RBliaation are presented in Fig. 6 — when
executed on a desktop computer, interface dispddlydata fields on a single screen for easy
viewing and navigation (Fig. 6a), while on a harldreomputer these fields are split into several
tabs to fit a small screen (Fig. 6b).

11

6. Discussion

According to [41] it is important that the CDSS igesshifts from a narrowly focused “single
solver, single platform” paradigm to a much broadiee. Many CDSSs (e.g., [19,42-44]) were
designed as stand-alone applications suitable fgivan clinical condition only. Such design
does not meet requirements of system’s versaglitg capability to be executed on multiple
computing platforms. With the MET2 design we méetse requirements by providing a unifying
environment that can handle multiple clinical apaiions executed on multiple computing
platform.

The new design of MET2 uses the ontology and deénmaedels to represent key components of a
CDSS. However, unlike the majority of other desfgameworks, it extends the ontology to

allow construction of multiple models of specifiinecal applications not only in terms of data

and support functionality, but also in terms ofithaser interface and computing platform

configuration. The MET2 design separates applioatitodels from runtime components and

introduces the request-execute-purge cycle of aplicapion. Such a solution ensures

extensibility of the MET2 system and reusability rahtime components. The system may be
expanded by adding new application models andiegishodels may be updated without the

need to change runtime components. Similarly, nsatcomponents may be updated without
changing application models. Finally, runtime comgats may be shared by multiple application
models.

We tested the MET2 system design by implementireg $stem according to the extended
client—server paradigm and by creating models @etapplications supporting different clinical
decision problems. The application models scaleth® capabilities of specific computing
platforms (we needed to scale the user interfacdetanly). As a part of future research we plan
to work on intelligent scaling of application mosleéb the capabilities of specific platforms.
Rather than providing several platform-specific msdan application model would include a
single generic (platform-independent) support arterface model that would be processed by an
intelligent adapter and transformed accordinglyisTéppproach has been already applied with
limited success in creating model-based user exted [45]. We will also work on extending the
capabilities of a patient data repository by moviageffective database solutions (e.g., XML-
based database) and leaving ontology editors @rgtege) for ontological engineering only.

Following results of the clinical trial of the METdystem that revealed the differences between
decision making process of physicians and medestlents [46], we plan to make the MET2 a
user-aware system. This new feature should all@vsystem to act differently in relation to
user’s skills level (physician, resident, medicaldent). We discovered that expert physicians
tend to use more information than residents [48jictv suggests the support model (the decision
model in particular) for an expert may require mieuts than the support model for a novice.
Moreover, novice physicians have problems with esteucollection of some clinical findings
(especially those related to physical examinatiotihe patient). If these findings are to be used as
input information, the user interface should prevatditional support through explanations or
feedback to facilitate the data gathering task.

Acknowledgments

This research was supported by grants from NSER4RCCollaborative Health Research
Program.

12

The authors would like to thank anonymous revied@rfielpful comments and suggestions.

References

1. Michalowski W, Slowinski R, Wilk S, Farion K, I& J, Rubin S. Design and development of
a mobile system for supporting emergency triagehblés Inf Med 2005; 44 (1): 14-24.

2. Michalowski W, Slowinski R, Wilk S. MET system:new approach to m-health in
emergency triage. J Inf Technol Healthc 2004; 2238Y-249.

3. Michalowski W, Wilk S, Farion K, Pike J, Rubin Slowinski R. Development of a decision
algorithm to support emergency triage of scrotah gad its implementation in the MET
system. INFOR 2005; 43 (4): 287-301.

4. Farion K, Michalowski W, Rubin S, Wilk S, Corie] Gaboury I. Prospective evaluation of
the MET-AP system providing triage plans for aquediatric abdominal pain. Int J Med Inf
2008; 77 (3): 208-218.

5. Fischer S, Stewart TE, Mehta S, Wax R, LapirfSEy Handheld computing in medicine. J
Am Med Inform Assoc 2003; 10 (2): 139-149.

6. Ball MJ, Silva JS, Bierstock S, Douglas JV, NomF, Chakraborty J, et al. Failure to
provide clinicians useful IT systems: opportunitieseapfrog current technologies. Methods
Inf Med 2008; 47: 4-7.

7. Berner ES, editor. Clinical Decision Supportt8gss. Theory and Practice. 2nd ed. New
York: Springer Science+Business Media; 2007.

8. Ammenwerth E, Buchauer A, Bludau B, Haux R. Nimimformation and communication
tools in the hospital. Int J Med Inf 2000; 57 (2)-40.

9. Bardram JE, Christensen HB. Pervasive compustipgort for hospitals: an overview of the
activity-based computing project. IEEE Pervas Con2007; 6 (1): 44-51.

10. Rogers JE. Quality assurance of medical oniedod/lethods Inf Med 2006; 45 (3): 267-274.

11. Gruber TR. A translation approach to portabi®logy specifications. Knowl Acquis 1993; 5
(2): 199-220.

12. Kishore R, Zhang H, Ramesh R. A helix-spindasi for ontological engineering. Commun
ACM 2004; 47 (2): 69-75.

13. SNOMED Clinical Terms® User Guide. July 200&mational Release: The International
Health Terminology Standards Development Orgammaa2008.

14. Rogers JE, Roberts A, Solomon WD, van der kdaeinWroe CJ, Zanstra PE, et al. GALEN
ten years on: tasks and supporting tools. In: RgtBogers R, Haux R, editors. Medinfo
2001: Proceedings of the 10th World Congress oniddéthformatics. Amsterdam: 10S
Press; 2001. p. 256-260.

15. Noy NF, Rubin DL, Musen MA. Making biomedicaltologies and ontology repositories
work. IEEE Intell Syst 2004; 19 (6): 78-81.

16. Tu S, Eriksson H, Gennari JH, Shahar Y, Musén ®Intology-based configuration of
problem-solving methods and generation of knowlegigguisition tools: application of
PROTEGE-II to protocol-based decision support.fAntiell Med 1995; 7 (3): 257-289.

17. Curbézy M, Musen MA. Ontologies in support aflgem solving. In: Staab S, Studer R,
editors. Handbook on Ontologies. Berlin, Heidelb&gringer-Verlag; 2004. p. 321-342.

18. Wright A, Sittig DF. A four-phase model of teeolution of clinical decision support
architectures. Int J Med Inf 2008; 77: 641-649.

19. de Dombal FT, Leaper DJ, Staniland JR, McCaRnHorrocks JC. Computer-aided
diagnosis of acute abdominal pain. Br Med J 197&8P4): 9-13.

13

20. Gardner RM, Pryor TA, Warner HR. The HELP htapnformation system: update 1998.
Int J Med Inf 1999; 54 (3): 169-182.

21. Kawamoto K, Lobach DF. Design, implementatigsge and preliminary evaluation of
SEBASTIAN, a standards-based Web service for dindecision support. In: Proceedings of
the AMIA 2005 Annual Symposium; 2005. p. 380-384.

22. Musen MA, Schreiber AT. Architectures for itiggint systems based on reusable
components. Artif Intell Med 1995; 7 (3): 189-199.

23. Musen MA. Scalable software architectures &ision support. Methods Inf Med 1999; 38
(4-5): 229-238.

24. Musen MA. Domain ontologies in software engiirege Use of Protégé with the EON
architecture. Methods Inf Med 1998; 37 (4-5): 58D5

25. Martins SB, Lai S, Tu S, Shankar R, Hastings 3dffman BB, et al. Offline Testing of the
ATHENA Hypertension Decision Support System KnowgedBase to Improve the Accuracy
of Recommendations. In: Proceedings of the AMIA@@dinual Symposium; 2006. p. 539-
543.

26. Curbézy M, O'Connor M, Buckeridge DL, Pincusviisen MA. Ontology-centered
syndromic surveillance for bioterrorism. IEEE Iht8yst 2005; 20 (5): 26-35.

27. Joutchkov A, Tverdokhlebov N, Yanovsky A, Galilit S, Arnautov S, Strizh I. Libraries of
strategies and ontology-driven subject area maelsorner stones” in Grid development.
Methods Inf Med 2005; 44 (s): 249-252.

28. Cannataro M, Cuda G, Veltri P. Modeling andgl@ag a proteomics application on
PROTEUS. Methods Inf Med 2005; 44 (2): 221-226.

29. Eriksson H, Puerta AR, Musen MA. Generatiokradwledge-acquisition tools from domain
ontologies. Int J Hum Comput Stud 1994; 41 (3):-438.

30. Nadkarni PM, Marenco L, Chen R, Skoufos E, 8bep G, Miller PL. Organization of
heterogeneous scientific data using the EAV/CResgntation. J Am Med Inform Assoc
1999; 6 (6): 478-493.

31.Jing J, Helal AS, Elmagarmid A. Client-servemputing in mobile environments. ACM
Comput Surv 1999; 31 (2): 117-157.

32. Gennari JH, Musen MA, Fergerson RW, Grosso @lEpbézy M, Eriksson H, et al. The
evolution of Protégé: an environment for knowledhgeed systems development. Int J Hum
Comput Stud 2003; 58 (1): 89-123.

33. OWL Web Ontology Language Guide. W3C; cited #st¢?9, 2008. Available from:
http://mwww.w3.org/TR/owl-guide/.

34. Simple Object Access Protocol. W3C; cited Aud® 2008. Available from:
http://www.w3.0rg/TR/soap!/.

35. Michalowski W, Wilk S, Thijssen A, Li M. Using Bayesian belief network model to
categorize length of stay for radical prostatectqratfents. Health Care Manag Sci 2006; 9
(4): 341-348.

36. Hanson CW, 3rd, Marshall BE. Artificial intgJlénce applications in the intensive care unit.
Crit Care Med 2001; 29 (2): 427-435.

37. Blaszczynski J, Farion K, Michalowski W, Wilk Bubin S, Weiss D. Mining clinical data:
selecting decision support algorithm for the MET-&Btem. In: Miksch S, Hunter J,
Keravnou ET, editors. Artificial Intelligence in Meine. 10th Conference on Artificial
Intelligence in Medicine, AIME 2005, Aberdeen, UXily 23-27, 2005, Proceedings. Berlin,
Heidelberg: Springer-Verlag; 2005. p. 429-433.

14

38. Wilk S, Slowinski R, Michalowski W, Greco S.@#horting triage of children with abdominal
pain in the emergency room. Eur J Oper Res 20051{3)5 696-709.

39. Wilk S, Michalowski W, Farion K, Kersten M. graction design for mobile clinical decision
support systems: the MET system solutions. FoundZo Decis Sci 2007; 32 (1): 47-61.

40. Michalowski W, Kersten M, Wilk S, Slowinski Resigning man-machine interactions for
mobile clinical systems: MET triage support usirggn? handhelds. Eur J Oper Res 2007; 177
(3): 1409-1417.

41. Carter JH. Design and implementation issueBBémner ES, editor. Clinical Decision
Support Systems. Theory and Practice. 2nd ed. Nenk: Springer Science+Business
Media; 2007. p. 64-98.

42. Sadeghi S, Barzi A, Sadeghi N, King B. A Bagaginodel for triage decision support. Int J
Med Inf 2006; 75 (5): 403-411.

43. Samore MH, Bateman K, Alder SC, Hannah E, Dy Stoddard GJ, et al. Clinical
decision support and appropriateness of antimiafqivescribing: a randomized trial. JAMA
2005; 294 (18): 2305-2314.

44. Berner ES, Houston TK, Ray MN, Allison JJ, Helelt GR, Chatham WW, et al. Improving
ambulatory prescribing safety with a handheld degisupport system: a randomized
controlled trial. J Am Med Inform Assoc 2006; 13:(271-179.

45. Eisenstein J, Vanderdonckt J, Puerta AR. Applynodel-based techniques to the
development of Uls for mobile computers. In: IUIKA0 Proceedings of the 6th International
Conference on Intelligent User Interfaces, Santd\Nlé&v Mexico, USA, January 14-17, 2001.
New York: ACM; 2001. p. 69-76.

46. Hine MJ, Farion K, W. Michalowski, Wilk S. De@mn making by emergency room
physicians and residents: implications for the giesif clinical decision support systems. Int
J Healthc Inf Syst Inform 2008 (forthcoming).

15

Fig. 1. General design of the MET1 system

Request

application mode! A

[Y

| Application model B |

| Application model A I

Interface repository

Application repository

Hﬁ_'qugst
v ¥ P spplication A
[*__(D=) ¢| | Application model A I—pl Executor N
Support Support 4 Fr.'D'.r'n'\?!E
ontology [*Y_ model application A
A pplication model & Physician
Solver

16

Fig. 2. MET2 ontology

P bt 0 = Iy [3 W

Forms

Configuration

Prsssi_'ltah‘m

eemsmmaa -

l____________T____________
Fresentation

santation----sccaee

|
|
Pra.

jmmesmmamaa.

-SupportFunction
Intarface
Support ontology

Y - S

== nm=nne= B5SOCiELON relation

44— is-a relation

Fig. 3. General design of the MET2 system

Multi-platform
application model B

Multi-platform
application model A

»

Request for

Application repository

Multi-platform application modal A

ppiication model A
and platform P

Interface repository

Interface compenents
specific for platform P

Interface components
specific for platform R

Application model A
for plarform P

h

17

Request
application A

Executor

P (running on platform P)

|

R

A

Application model A for platform P

Solver repository

Provide
application A
Physician

18

Fig. 4. High-level implementation of MET2 systensigm

Central
solver repository

Central
interface repository

o Local application
Feguest for application model 4 i e
and platfarm P ; L

! o .
i | Application model A | : - I :
: for platform P i :

3 .; . : Local interface

i Interface components | = ________“
| specific for platform P | % :
i Agplication "package” } : METZ client

Fig. 5. Low-level implementation of MET2 system idgs

Patlant manager

Protegé repository [Web sarvice)

solver repository

Central P - i . : Local solver Local interface | :
interface repository | © Packager repository repository T

MET2 client ;

Compiled Java code Application manager
(JAR Flas) (Wab servica)

Compiled Java code
e {JAR filas)

a) for a desktop computer

Fig. 6. MET2-RP user interface

IS[=I
Application
Wilk, Szymon RadicalProstatastomy
> pay1 > pay2 > pay3

Activity with the RPC: (7] Ambulate [_] No
[Absert /] Present
| Blood-tinged v No

[ves

Bowel sounds:

Evidence of hematutia

JPoutput: | Discontinued || Large

W Medium [] Small

utrition outcome: v Nausea || Normal
[vomit
v Medium [] Mild

[None

Fainatrest

Painwith mobility:

| Mediurn] Mild

[None

Psychalogical condition: || Abhormal bl Narmal

Respiratory function: 7] Mild [Normal

Urine output [] Adequate 7] Inadeguate
vital signs: || Abnormal 7] Normal

Activity with the RPC:
Bowrel sounds:

Evidence of hematuria

JP output,

Mutritien outcorme:

MNutrition with the RPC

Pain atrest

Pain with motility:

Temperature:
Urine output
Vital signs
Wound autcome

["]Ambulate 7] No

/] Absent || Present

|| Bload-tinged /] Ko
[[]ves

|| Digcontinued || Large
/] Medium [l 8mall

|| Nausea v Normal
[] vomit

] Fiia || Regular
[] Mediurn [] Mild
W] Nane
[Wedium [Mild
v Nane

[Abnormal [Normal
V7] Adequate [Inadequate
[Abnormal /] Normal
|| Medium

W mile

[] Narmal

Activity with the RPC:

Evidence of hematuria

JF autput

Mutrition outcome:

Mutrition with the RPC:

Pain atrest:

Pain with mability:

Temperature:
Urine output:
Yital signs:

Woune outcome:

o] Ambulate: [Mo
|| Bload-tingad 1] No
D ves

[Discontinued [| Large
|| Medium 7] Small
[

| Nausea /| Normal

[] Fluid [Regular

Medium [bl
/] Nane
|| Medium [Mil
v/ None

[l Abnarmal || Marmal
/] Adequate [Inadequate
[~ Atinormal] Mormal

[medium

171 mild

£ synehienize

| pationts st

b) for a handheld
computer

[[Metz A=l
Application
Wil Szymon RadicalP ostatectomy

Dayi| Day2 [Dayal

Hutrition outcarme:

Na_usear‘

Pain at rest: ‘ g

JP autant L epaanl —
Select an option

Evidence of hem ¥ Adequate

Urine | Inadequate "
Bowel s¢| | 9K

Pain with mobility: ‘ Mane ‘

Wwound autcome: | Nommal |

Temperature: ‘

20

| (! patiants tist H Esynchionize

21

Table 1. Main shortcomings in earlier generatio€bBISSs as exemplified by MET1 system

Capability Level CDSS shortcoming

MET1 shortcoming

Support for Design .

Available with similar models

One model type

heterogeneous Architecture =
decision

Limited set of similar solvers

Single solver

problems

Execution on Design = No ability to create sophisticated = Interface embedded in a
multiple customized interfaces data model

computing = No ability to customize supportto = “Hard-wired” interface and
platforms different computing platforms support specifications

No ability to re-use interface
components

Architecture

No ability to run multiple support
and platform configurations

Single platform

