

City, University of London Institutional Repository

Citation: Krotsiani, M., Spanoudakis, G. & Kloukinas, C. (2015). Monitoring-Based

Certification of Cloud Service Security. Lecture Notes in Computer Science, 9415, pp. 644-
659. doi: 10.1007/978-3-319-26148-5_44

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13219/

Link to published version: https://doi.org/10.1007/978-3-319-26148-5_44

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Monitoring-Based Certification of Cloud Service Security

Maria Krotsiani1, George Spanoudakis1, Christos Kloukinas1
1 Department of Computer Science

City University London
London, United Kingdom

{Maria.Krotsiani.1, G.E.Spanoudakis, C.Kloukinas}@city.ac.uk

Abstract. In this paper, we present a novel approach to cloud service security
certification. This approach could be used to: (a) define and execute automati-
cally certification models, which can continuously and incrementally acquire
and analyse evidence regarding the provision of services on cloud infrastruc-
tures through continuous monitoring; (b) use this evidence to assess whether the
provision is compliant with required security properties; and (c) generate and
manage digital certificates confirming the compliance of services if the ac-
quired evidence supports this. We also present the results of an initial experi-
mental evaluation of our approach based on the MySQL server and RUBiS
benchmark.

1 Introduction

Cloud technology offers a powerful approach to the provision of infrastructure, plat-
form and software services without incurring a considerable cost of owning, operating
and maintaining the computational infrastructures required for this purpose. However,
despite being cost effective, this technology has raised concerns regarding the securi-
ty, privacy, governance and compliance of the data and software services offered
through it. This is due to the fact that the internals of service provision are not visible
to service consumers, and service providers are reluctant to take full responsibility for
the security of services that they offer through clouds, and accept liability for security
breaches [2]. In such circumstances, there is a trust deficit that needs to be addressed.

The potential of certification as a means of addressing the lack of trust regarding
the security of different types of software (and hardware) systems, including the
cloud, has been widely recognised [19]. However, the recognition of this potential has
not led to as a wide adoption as it was expected originally. The reason for this is that
certification has traditionally been carried out through standards and certification
schemes (e.g., ISO27001 [19], ISO27002 [19] and Common Criteria [7]), which in-
volve predominantly manual systems security auditing, testing and inspection pro-
cesses. Such processes tend to be lengthy and have a significant financial cost, which
often prevents new and smaller technology vendors from adopting it [11].

The certification of cloud services is not an exception to this overall trend. On the
contrary, most of the existing certification schemes (e.g., STAR [27] and OCF [8]) are

not fit-for-purpose for the certification of cloud services. This is due to several rea-
sons. Firstly, current schemes offer no automation and can only support certification
at distinct time points without considering the continuum of service provision be-
tween these points. Secondly, they produce certificates based on testing without in-
corporating real and continuous cloud service monitoring. Finally, they cannot sup-
port dynamic changes in the structure, deployment and configuration of the systems
and data that underpin the provision of cloud services as, for example, the dynamic
migration of data and software components across different computational nodes
within a cloud infrastructure or a cloud federation.

In this paper, we present a novel approach to cloud service certification. This ap-
proach can be used to: (a) define and execute automatically certification models,
which can continuously and incrementally acquire and analyse evidence regarding the
provision of services on cloud infrastructures through continuous monitoring; (b) use
this evidence to assess whether the provision is compliant with required security
properties; and (c) generate and manage digital certificates confirming the compliance
of services if the acquired evidence supports this. Our approach has been developed
as part of the EU R&D project CUMULUS and has been implemented as part of the
prototype certification infrastructure of it [10]. An early account of our approach was
introduced in [18] and examples of different types of certification models based on it
have been presented in [17] and [16]. In this paper, we present an advanced version of
our approach, incorporating an elaborated scheme for: (i) assessing the sufficiency of
evidence for producing certificates and (ii) executing certification processes according
to precisely defined models of them. We also present the results of an initial experi-
mental evaluation of our approach.

The rest of this paper is organized as follows. Section 2 gives an overview of the
CUMULUS approach to certification. Section 3, 4 and 5 describe three key ingredi-
ents of the certification models that drive the certification process in CUMULUS, i.e.,
the specification of security properties, the specification of the evidence assessment
scheme in such models and the specification of the certification process model, re-
spectively. Section 6 discusses the results of an initial experimental evaluation of our
approach. Finally, Section 7 reviews related work and Section 6 summarizes our ap-
proach and provides directions for future work.

2 Overview of CUMULUS

CUMULUS has developed an infrastructure supporting the collection and analysis of
different types of evidence, including for example test and monitoring data for cloud
service provision, as well as data gathered from trusted platform modules [10]. The
developed infrastructure can be used by certification authorities to generate and man-
age digital security certificates for cloud services. It can also be used by cloud service
providers operating at different levels of the cloud stack, i.e., cloud infrastructure,
platform and/or software service providers for self-certification.

The use of this CUMULUS infrastructure for different types of cloud services and
security properties and by different types of cloud service providers is enabled

through the specification of appropriate certification models. These models describe
the process of collecting and analysing evidence in order to assess security properties
and the process of creating and managing digital certificates asserting the outcomes of
this process. More specifically, a certification model specifies:

(i) the cloud service to be certified (i.e., the target of certification (TOC));
(ii) the security property to be certified for TOC;
(iii) the certification authority that will sign the certificates generated by the model;
(iv) an assessment scheme that defines general conditions regarding the evidence

that must be collected for being able to issue a certificate;
(v) additional validity tests regarding the configuration of the cloud provider that

must be satisfied prior to issuing certificates;
(vi) the configurations of the agents that will be used in order to collect the evi-

dence required for generating certificates;
(vii) the way in which the collected evidence will be aggregated in certificates (evi-

dence aggregation); and
(viii) a life cycle model that defines the overall process of issuing certificates.

Our monitoring-based approach for certification has been developed as part of the
CUMULUS infrastructure and is based on monitoring-based certification models
(MBCM) in order to specify and drive the execution of the certification process. Such
models incorporate the items (i)-(viii) listed above and are specified in an XML-based
language whose top-level structure is shown in Fig 1.

Fig. 1. – Monitoring-based Certification Model schema elements

In the following, we introduce the elements in MBCMs, which are essential for
understanding the realization of our approach, namely the specification of security
properties, evidence assessment schemes and the process of certification (also known
as life cycle model).

3 Specification and monitoring of security properties

In MBCMs, a TOC is specified as a concrete endpoint with a set of service inter-
faces that are offered by it to external parties (provided interfaces), and a set of inter-
faces required of external parties (required interfaces).

The security property to be certified for TOC is specified by one monitoring rule
and zero or more assumptions:

Security-­‐property:=	
 MonitoringRule	
 [“,”	
 MonitoringAssumption]*

In a security property specification, monitoring rules are assertions expressing
conditions that must be satisfied during the monitoring of TOC, whilst monitoring
assumptions are assertions, which are used to record and update state variables indi-
cating the state of TOC during monitoring. Both monitoring rules and assumptions are
expressed as assertions in EC-Assertion+. EC-Assertion+ is an extension of EC-
Assertion, i.e., the language for expressing monitoring conditions in the EVEREST
monitoring system [26], which is part of the CUMULUS framework. EC-Assertion+
is based on Event Calculus [25]. Within it, assertions are formulas of the form:

 Assertion	
 ::=	
 [precondition]*	
 “⇒”	
 postcondition	

The (optional) precondition element in an assertion determines the conditions un-
der which the assertion should be checked. The meaning of the postcondition element
depends on whether the assertion is a monitoring rule or an assumption. In assertions
expressing monitoring rules, postcondition determines the conditions that are guaran-
teed to hold (i.e., should be true if the preconditions are true). In assertions expressing
monitoring assumptions, postcondition determines the states of the system that can be
inferred to be true if the preconditions are true.

Both monitoring rules and assumptions are defined in terms of events and fluents.
An event is something that occurs at a specific instance of time and has instantaneous
duration. Fluents represent system states and are initiated and terminated by events.
The basic predicates used by EC-Assertion+ are:
• Happens(e,t,[L,U]) – This predicate denotes that an event e of instantaneous dura-

tion occurs at some time point t within the time range [L,U]. An event e is specified
as e(_id,_snd,_rcv,TP,_sig,_src) where _id is its unique id of it, _snd is its sender,
_rcv is its receiver, _sig is its signature, and _src is the source where e was captured
from. TP denotes the type of the event. EC-Assertion+ supports three event types:
(a) captured operation calls (REQ), (b) captured operation responses (RES) and (c)
forced operation execution events (EXC), i.e., operation executions triggered by the
monitor itself. EXC events constitute one of the extensions of EC-Assertion+ over
its predecessor EC-Assertion. When such events are encountered in a formula,
EVEREST attempts to execute the operation defined by _sig (by invoking an ex-
ternal service) and, if successful, it replaces any output parameters of the operation
with the values produced by it and considers the relevant Happens predicate to be
true. If the call to the external operation fails, the Happens predicate is considered
to be false. EXC events are used to execute external computations (e.g., online
tests) during monitoring.

• Initiates(e,f,t) – This predicate denotes that a fluent f is initiated by an event e at
time t. fluents are expressed as n-ary relations of the form relation(arg1, …, argn),
where argi can be constant values or variables of basic data types.

• Terminates(e,f,t) – This predicate denotes that a fluent f is terminated by an event e
at time t.

• HoldsAt(f,t) – This is a derived predicate denoting that a fluent f holds at time t.
HoldsAt(f,t) is true if f has been initiated by some event at some time point t’ before
t and has not been terminated by any event within [t’,t].

• <rel>(x,y) – These are relational predicates (<rel>::= = | < | > | ≤ | ≥ | ≠) enabling
comparisons between variables of basic data types, or between such variables and
constant values.

To demonstrate the use of EC-Assertion+ in specifying security properties, consider
an example showing how it may be used to specify a security property included in the
Protection Profile for Database Management Systems developed by Oracle [DBMS
PP, 2000] (i.e., a Common Criteria (CC) profile developed for the certification of
relational database management systems). This security property (also known as secu-
rity functional requirement or SFR in the context of CC [7]) is about the timing of
user identification and is expressed as follows within the protection profile:

FIA_UID.1.2:	
 The	
 TSF	
 shall	
 require	
 each	
 DATABASE	
 user	
 to	
 be	

successfully	
 identified	
 before	
 allowing	
 any	
 other	
 TSF-­‐mediated	

actions	
 on	
 behalf	
 of	
 that	
 DATABASE	
 user.	
 	

The certification model for monitoring and certifying FIA_UID.1.2 consists of
three assertions: two assumptions and one monitoring rule. The two assumptions in
the MBCM are used to initialise and terminate a fluent indicating whether a user is
connected to the DBMS following successful authentication. The fluent is expressed
by the relation Connected(_thread-id, _user). The meaning of the relation is that the
user indicated by the variable _user has been connected to the DBMS through the
thread indicated by the variable _threat-id. The fluent Connected(.) is initiated when
an event showing the successful connection of _user to the DBMS occurs. The as-
sumption that is used to initiate the fluent is expressed as1:

FIA_UID.1.2.A1	

Happens(e(_eId,_thread-­‐id,_host,REQ,o(_thread-­‐id,_query-­‐id,	

_queryType,_user),_SRC),_t1,R(_t1,_t1))	
 ∧	
 (_queryType	
 =	
 Connect)	
 ⇒	

Initiates(e(_eId,	
 _thread-­‐id,	
 _host,	
 REQ,	
 o(_thread-­‐id,_query-­‐id,	

_queryType,_user),_SRC),	
 Connected(_thread-­‐id,	
 _user),_t1)	

The above assertion monitors events of the form o(_thread-id, _query-id,
_queryType, _user). When an event of this form occurs during the operation of the
DBMS and the type of the query captured by the event (i.e., _queryType) is “Con-
nect”, the state Connected(.) is initiated. The events o(_thread-id, _query-id,
_queryType, _user) required in order to operate the certification model of this exam-
ple are captured during the operation of the DBMS to be certified and are passed to

1 For readability, we provide the specification of assertions in the high level syntax of EC-

Assertion+. EC-Assertion+ has also an XML schema used in actual monitoring.

the CUMULUS framework by an event translator that we have developed for this
purpose (see Sect 4). The state Connected(.) may also be terminated during the opera-
tion of a DBMS if a given user disconnects from the DBMS. The assumption that
captures such disconnection events and updates the fluent Connected(.) is expressed
as:

FIA_UID.1.2.A2	

Happens(e(_eId,_thread-­‐id,_host,REQ,o(_thread-­‐id,_query-­‐id,	

_queryType,_user),_SRC),	
 _t1,	
 R(_t1,	
 _t1))	
 ∧	
 (_queryType	
 =	
 Quit)	
 ∧	

HoldsAt(Connected(_thread-­‐id,	
 _user),	
 _t1)	
 ⇒	

Terminates(e(_eId,	
 _thread-­‐id,	
 _host,	
 REQ,	
 o(_thread-­‐id,	
 _query-­‐id,	

_queryType,	
 _user),	
 _SRC),	
 Connected("thread-­‐id",	
 "user"),	
 _t1)	

According to above assertion, the fluent Connected(.) is terminated, when a “Quit”
event occurs for a user, provided that at the time when the “Quit” event the particular
user is connected. This is checked in the formula by the HoldsAt(Connected(_thread-
id, _user), _t1) condition.

The monitoring rule assertion that is used to check if a DBMS satisfies
FIA_UID.1.2 is expressed as:

FIA_UID.1.2.MR1	

Happens(e(_eId,	
 _thread-­‐id,	
 _host,	
 REQ,	
 o(_thread-­‐id,	
 _query-­‐id,	

_queryType,	
 _user),	
 _SRC),	
 _t1,	
 R(_t1,	
 _t1))	
 ∧	

not	
 (_queryType	
 =	
 Connect)	
 ⇒	

HoldsAt(Connected(_thread-­‐id,	
 _user),	
 _t1)	

The above rule monitors if at each time (_t1) when a user executes queries at the
DB server, which are not of type “Connect”, he/she must have been successfully con-
nected to the server. Thus, the monitoring rule checks that when queries of a type
other than “Connect” occur, the fluent Connected(_thread-id, _user), which indicates
that the user has already established a connection to the server through the specific
thread, holds.

3.1 Specification and verification of assessment scheme

The assessment scheme in a MBCM defines conditions regarding the sufficiency
of evidence that must be collected in order to be able to issue a certificate. These con-
ditions are related to: (i) the sufficiency of the extent of the collected evidence, and
(ii) anomalies and conflicts that should be monitored during the certification process.
In this paper we do not discuss anomalies and conflicts but an account of them is
available in [17].

Evidence sufficiency conditions may be specified as: (a) the minimum period of
monitoring TOC, (b) the minimum number of monitoring events, and/or (c) the repre-
sentativeness of the monitoring events with respect to the expected behaviour of TOC
that should be seen by the monitor before a certificate can be issued. Whilst the speci-
fication of (a) and (b) is straightforward, to enable checks of the representativeness of
monitoring events, the certification model should include a specification of a model of

the expected behaviour of TOC (i.e., an ETOCB model). This model is specified as a
deterministic automaton with expected relative event frequencies of the form:

ETOCB	
 =	
 <States,	
 Events,	
 sinit,	
 PTrans,	
 FinalStates>	

In the ETOCB specification: States is the (finite) set of TOC states that are critical for
the monitoring process; Events is the set of all possible events the TOC may produce
that are of interest to certification; sinit is the initial TOC state; PTrans is a finite set of
labelled transitions between two states; and FinalStates is the set of states where the
certification automaton terminates. PTrans includes elements of the form (os, ds, e,
R(lpr, upr)) where os is the origin state of the transition, ds is the destination state of
the transition, e is the signature of the event triggering the transition, and R(lpr,upr) is
the range of the expected relative frequence of undertaking this transition whilst the
system is in os (R(lpr, upr) can be: (lpr, upr), [lpr, upr), (lpr, upr] or [lpr, upr]2) The
ETOCB model must satisfy some constraints. In particular: (i) e must be an element
of Events, i.e., an event denoting the invocation (or the response produced following
an invocation) of an operation in the provided interface of TOC; (ii) the boundaries
lpr, upr should satisfy the conditions: 0 ≤ lpr, upr ≤ 1, and lpr ≤ upr; and (iii) ETOCB
must be a deterministic model.

Fig. 2. Expected System Operation Model for Monitoring-Based Certification Model

ETOCB defines events that should be seen at different states during the
operation of TOC (i.e., executed operations of the ToC) for the monitoring evidence
to be sufficient. For certifying MySQL server, for example, this evidence should in-
clude executions of select, update, delete, and quit MySQL commands with specific
frequencies. ETOCB is not required to be a complete model of TOC’s behaviour; it
only needs to define the states and events of importance for the property to be certi-
fied.

Fig. 2 gives an example of the ETOCB model for a relational DB server. This
model expresses a view about the typical range of the server usage that should be
taken into account in the certification of the server. According to it:

2 “[“ and “]” denote a closed range at the lower and upper boundary respectively, and “(“ and

“)” denote an open range at the lower and upper boundary respectively.

• The first interaction with the TOC should be a connect call to it (see event of tran-
sition from InitialState to S1) since a connection to the server should be established
before any other query occurs. Also, according to the frequency range of this tran-
sition (i.e., [1,1]), connect calls should be the only initial event in any monitoring
event trace, for the trace to be considered valid for the purposes of certification.

• Once a connection to the server is established, interactions with it may be requests
for the execution of select(), update(), delete() or quit() operations (i.e., SQL que-
ries) with expected frequency ranges [0.5, 1.0), (0.0, 0.3), (0.0, 0.2), and (0.0, 0.5),
respectively, as indicated by the relevant transitions from S1 to S1 and S2. These
expected frequency ranges require that data retrieval events (select() queries) will
constitute at least half of the interactions with the server but data update() and de-
lete() queries should also be seen. The model also expresses that: (a) it will be suf-
ficient for certification purposes to see an event trace with update queries up to be-
low 30% and delete queries up to below 20% of all interactions, and (b) whilst at
S1, the user may decide to quit() (see transition from S1 to S2). Also, the lpr of the
latter transition (i.e., lpr > 0) reflects that an event trace must always end with a
quit() request for it to be a valid event trace for certification.

Table 1. Algorithm for checking compliance of event traces with ETOCB
CheckEvent(e,	
 state,	
 nstate,	
 CountES[e,state],	
 CountS[state],	
 valid)	
 {	

//	
 CountES[e,state]	
 is	
 the	
 total	
 number	
 of	
 occurrences	
 of	
 e	
 in	
 state	

//	
 CountS[state]	
 is	
 the	
 total	
 number	
 of	
 occurrences	
 of	
 any	
 event	
 in	
 state	

	
 if	
 there	
 is	
 t	
 in	
 state.transitions	
 such	
 that	
 t.event	
 =	
 e	
 then	
 {	

	
 	
 	
 CountES[e,state]	
 =	
 CountES[e,state]	
 +	
 1;	

	
 	
 	
 CountS[state]	
 =	
 CountS[state]	
 +	
 1;	
 nstate	
 =	
 t.ds;	
 valid	
 =	
 true	
 }	

	
 else	
 	

	
 	
 	
 {valid	
 =	
 false}	

}	

	
 	
 	
 Boolean	
 UpdateCounts(trace){	

	
 	
 	
 /*	
 ValidPR[e,s]	
 indicates	
 the	
 satisfaction	
 of	
 expected	
 frequency	
 range	
 of	
 	
 	
 	

	
 	
 	
 	
 	
 	
 all	
 events	
 of	
 all	
 state	
 transitions	
 */	

	
 	
 	
 Set	
 CountES[e,s]	
 to	
 0	
 for	
 all	
 states	
 s	
 and	
 events	
 e	
 of	
 its	
 transitions;	

	
 	
 	
 Set	
 CountS[s]	
 to	
 0	
 for	
 all	
 states	
 s;	

	
 	
 	
 Set	
 ValidPR[e,s]	
 to	
 false	
 for	
 all	
 states	
 s	
 and	
 events	
 e	
 of	
 its	
 transitions;	

	
 	
 	
 CST	
 =	
 ETOCB.s0;	
 //CST	
 is	
 the	
 current	
 state	

	
 	
 	
 NST	
 =	
 nil;	
 	

	
 	
 	
 validTrace	
 =	
 true;	

	
 	
 	
 While	
 not	
 end	
 of	
 event	
 trace	
 and	
 validTrace	
 do	
 {	

	
 	
 	
 	
 e	
 =	
 next	
 non	
 processed	
 event	
 in	
 trace;	

	
 	
 	
 	
 CheckEvent(e,	
 CST,	
 NST,	
 CountES[e,CST],	
 CountS[CST],	
 validTrace);	

	
 if	
 validTrace	
 {	

	
 	
 	
 for	
 each	
 t	
 in	
 CST.transitions	
 do	
 {	

	
 	
 	
 	
 if	
 (CountES[t.e,CST]/CountS[CST]	
 in	
 R(t.e.lpr,	
 t.e.upr))	
 {	

	
 	
 	
 	
 	
 	
 ValidPR[t.e,CST]	
 =	
 true}	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 CST	
 =	
 NST	

	
 	
 	
 }	

	
 	
 	
 return	
 (validTrace)	

	
 	
 }	

The existence of the ETOCB model enables the CUMULUS infrastructure to

check if a representative sample of the behaviour of TOC has been considered before

a certificate can be issued. The check of the coverage of ETOCB by the stream of
TOC events that has been processed by CUMULUS is carried according to the algo-
rithm of Table 1. The algorithm UpdateCounts() in the figure checks if each next
event in the event trace is consistent with the ordering of events in ETOCB. If it is
not, UpdateCounts() reports the trace as invalid (as relative frequencies would not
matter). If an encountered event is valid, UpdateCounts() updates the relative fre-
quency of it in the current state (see array CountES[e,state]). It also updates the array
ValidPR[e,s], which indicates if the expected frequency range of the current event e
in state s is preserved by the current relative frequencies of events. ValidPR[e,s] can
be checked once all other sufficiency conditions (e.g., period of monitoring) are estab-
lished to check if the coverage sufficiency conditions w.r.t. ETOCB are also satisfied.

3.2 Specification and execution of life cycle model

The life cycle model (LCM) in a certification model defines the process by which
certificates can be generated and managed (e.g., monitored, issued, suspended, re-
voked). LCM is a compulsory element of a certification model as it enables a certifi-
cation authority to specify with full precision the certification process, by defining the
different states of certificates that can be generated by the certification model and
which events should change it. During the operation of the CUMULUS framework,
the LCM is used to monitor on-going certification processes, determine the state at
which they are (e.g., collecting monitoring evidence, checking validity conditions
prior to issuing a certificate) and, depending on it, update the state of the certificate
that may be generated by the process.

A life cycle model (LCM) is defined as a state transition model of the form
LCM	
 =	
 <sinit,	
 States,	
 Trans>	

In an LCM, (i) States is the finite set of states of it (a state may be an atomic state
or a composite state specified by another embedded LCM); (ii) sinit is the initial state
of the process; and (iii) Trans is a finite set of transitions between two states. Trans
includes elements of the form (si, sj, e, g, a) where si is the origin state of the transi-
tion; sj is the destination state of the transition; e is the signature of the event trigger-
ing the transition; g is guard condition that must be satisfied for the transition to take
place; and a is a set of actions that should be executed if the transition takes place. In
an LCM, e must be an element of the provided interface of CUMULUS (e.g., the
operation enabling the notification of monitoring events, the operation to be executed
if the user of the framework wishes to suspend or revoke a certificate).

An example of an LCM is shown in Fig. 3. The LCM in the figure has an initial
state called Activated and the states InsufficientEvidence, Pre-Issued, Issued, and
Revoked. It also has two composite states: Continuous Monitoring and Issuing.

Fig. 3. UML diagram of Life-Cycle Model

According to the model, after a certificate is activated, it moves to the Insufficien-
tEvidence state, at which the monitoring evidence that is relevant to it starts getting
accumulated. When the accumulated evidence becomes sufficient according to the
EvidenceSufficiencyConditions specified in the MBCM, and there have been no viola-
tions of the monitoring rule that defines the security property (i.e., the security proper-
ty of the MBCM is satisfied), the certificate moves to the state Pre-Issued. At this
state, the certification infrastructure will check if the extra validity conditions for the
certificate type (if any) are satisfied and, if they are, the certificate will move to the
state Issued. In this state, any interested party with appropriate authority can retrieve
the issued certificate from the CUMULUS infrastructure. Whilst a certificate is at the
Issuing state, monitoring continues and if a violation of the monitoring rule of the
MBCM is detected, the certificate moves to the Revoked state at which it will no
longer be valid and available. It should be noted, that for readability purposes, in Fig.
3, we have used condition labels that indicate the meaning of the relevant conditions.
In the actual specification of LCM, however, conditions are declared by their unique
XML level IDs, which enable condition elements to be retrieved and checked against
the evidence database of the CUMULUS infrastructure.

The LCM of a certification model is used by the CUMULUS framework to moni-
tor the overall certification process and update the status of certificates that may be
generated according to it. More specifically, starting from the initial state of the LCM
the framework will process all events according to the model. This processing is
based on the algorithm of Table 2. The events received/generated by the framework
during the certification process are placed in a queue. An event can be a condition that
is met (e.g., EvidenceSufficiencyCondition, aggregation period, expiration condition
etc.). The algorithm checks if there is an event in the queue that matches an event of a
listed transition of the current state of the LCM and if the guard condition of it (if any)
is satisfied. When these conditions are satisfied for the specific transition, the algo-
rithm executes the actions for the transition, and sets the status of the certificate that is
being handled by the process, to the state that the transition leads to. To check the
conditions associated with the transitions of an LCM, the algorithm pulls regularly

data from the database storing the monitoring evidence gathered, and checks the con-
ditions against it (e.g., see condition assertion-satisfied in the LCM of Fig. 3).

Table 2. Algorithm of the Life Cycle Manager component

State	
 ChooseTransition(State	
 curstate,	
 EventQueue	
 queue){	
 	

	
 top	
 =	
 queue.head();	
 //returns	
 null	
 when	
 queue	
 is	
 empty	

	
 trev	
 =	
 {t	
 ∈	
 transitions(curstate):	
 top≠null	
 &&	
 t.event()=top};	

	
 //trans	
 matching	
 events	
 	

	
 trem	
 =	
 {t	
 ∈	
 transitions(curstate):	
 t.event()	
 =	
 ""};	
 //trans	
 with	
 no	
 events	

	
 enev	
 =	
 {t	
 ∈	
 trev:	
 satisfied(guard(t))};	
 //trans	
 with	
 True	
 guard	
 &	
 match	
 event	

	
 enem	
 =	
 {t	
 ∈	
 trem:	
 satisfied(guard(t))};	
 //trans	
 with	
 True	
 guard	
 but	
 no	
 event	

	
 t	
 =	
 null;	

	
 if	
 (enev	
 =	
 0	
 &&	
 enem	
 =	
 0){	
 	
 	
 	

	
 	
 	
 if	
 (top≠null)	
 throw	
 invalidEvent;	
 //non	
 matching	
 event	
 from	
 the	
 queue	

	
 	
 	
 else	
 return(curstate);	

	
 }	
 else	
 if	
 (enev	
 ≠	
 0)	
 {	
 //select	
 transition	
 with	
 event	

	
 	
 	
 	
 t	
 =	
 select	
 (enev);	
 	

	
 	
 queue.pop();	

}	
 else	
 {	
 //select	
 transition	
 with	
 True	
 guard	
 but	
 no	
 event	

	
 	
 	
 	
 t	
 =	
 select	
 (enem);	
 	

	
 }	
 	

for	
 (a	
 :	
 retrieveActions(t))	
 {	
 //retrieve	
 transition	
 actions	

	
 	
 	
 execute(a);	
 //execute	
 actions	

}	

return	
 t.nextState();	
 //return	
 the	
 new	
 state	

}

4 Evaluation

In order to evaluate the performance of our monitoring-based certification approach,
we have conducted an experiment based on a case study involving the certification of
a real system. The system that we selected was the open source MySQL server [21].
Our choice was influenced by: (a) the complexity of this system, (b) the existence of a
Protection Profile generated by Oracle that specifies security properties for such sys-
tems based on Common Criteria [9] (aka Security Functional Requirements (SFR)),
and (c) the existence of benchmarks for creating realistic workloads for the MySQL
server that would enable us evaluate our automated certification process in realistic
conditions. Moreover, since our approach does not support interventions with the
purpose of addressing or restoring security violations, we focus only on the evaluation
criteria of the MySQL server, based on the selected Protection Profile.

The experiment that we set up to evaluate our approach realised a certification
process for the security functional requirement FIA_UID.1.2 for the MySQL Server,
based on a certification model including the assertions as described in Sect. 3. We
also used the RUBiS benchmark [24] to produce realistic workloads of events for the
MySQL server and monitor the server for certification purposes during the execution
of these workloads. RUBiS is an auction site prototype, similar to eBay, which im-
plements the core functionality of an auction site, i.e., selling, browsing and bidding.
To capture events (i.e., logs of queries) from the operation of the server, we used the

MySQL AUDIT Plugin developed by McAfee [20]. This plugin captured the logs
created during the execution of the RUBiS workloads against the server. The events
logged by the plugin were initially exported as .json files and subsequently parsed and
converted into events, in the .xml format required by the CUMULUS infrastructure.
All the different systems used in our experiment, including RUBiS, MySQL,
EVEREST and CUMULUS were deployed on a cloud cluster involving a test-bed
Cloud cluster equipped with four 4-core server machines each running at 2.20GHz,
with 8GM of main memory, 450GB of disk space under Ubuntu 3.8.0.

The basic measure that we used in order to evaluate the performance of the certifi-
cation process was the average time for making a decision about the monitoring asser-
tion formulas in the model, called decision delay or d-delay. d-delay measures the
difference between the time point when the latest event that is needed in order to
make a decision about the satisfaction or otherwise of a monitoring formula occurs
(tc) and the time when following the capture and processing of the event, the monitor
makes a decision on whether the formula is satisfied (tp), i.e., d = t!– t!. Based on d-
delay measures for individual instances of monitoring formulas, we calculated the
average delay in the monitoring process using following formula ave(d) = ∑d/N
where: (i) d is the d-delay of each monitoring rule instance, and (ii) N is the total
number of monitoring rule instances for which a decision was made.

Fig. 4. – d-delay in execution of the database certification model

The graph in Fig. 4 shows the d values for the different events of the RUBiS
benchmark that caused monitoring rule checks in the certification model, and the
moving average of d-delay (Ave(d)) calculated over a window of 1000 events. The
average value of d-delay across the whole RUBiS benchmark was 384.33 millisec-
onds (standard deviation = 118.92 milliseconds). As shown in the figure, ave(d) re-
mained relatively stable throughout the execution of the benchmark, showing that
certification results can be produced quickly following the actual events.

Events Ave(d)

[1-5000] 326.02
[5001-
10000] 324.47

[10001-
15000] 357.59

[15001-
20000] 443.31

[20001-
25000] 413.87
[25001-
29746] 443.83

Fig. 5. – Average throughput (i) and query processing time (ii) in executing the RUBIS bench-
mark on MySQL server with and without the MySQL AUDIT plugin

Table 2. Average throughput and query execution time with and without the AUDIT plugin

Min Throughput

Average Query Processing Time
(msecs)

 No Plugin With plugin No plugin With plugin
1 3688.9 3245 16.27 18.49
2 819.9 824.7 73.18 72.75
3 1390.9 1386.1 43.14 43.29
4 1615 1651.1 37.15 36.34
5 1630.4 1629.7 36.8 36.82
6 1638.2 1636.5 36.63 36.66
7 1630.7 1645.9 36.79 36.45
8 1633.9 1643.9 36.72 36.5
9 1624.4 1648.5 36.94 36.4

10 1630.2 1619.9 36.81 37.04
11 1630.9 1611.8 36.79 37.23
12 1617 1646.9 37.11 36.43
13 1638.8 1648.5 36.61 36.4
14 1651.5 1627.3 36.33 36.87
15 1631.3 1628 36.78 36.86
16 1665.5 1635.4 36.03 36.69
17 1677.4 1649.8 35.77 36.37
18 788.2 779.6 76.12 76.96

In addition to the time needed to generate certification results, the execution of a

CUMULUS monitoring-based certification model may have an impact on the opera-
tion of TOC as it is necessary to instrument and/or configure the TOC in order to
produce the events needed for the monitoring process that underpins certification. To
evaluate this overhead in the case of the MySQL server, we executed the RUBiS
benchmark without using the MySQL audit plugin in the server (case (a)) and with
the use of the MySQL audit plugin in the server (case (b)). The overhead was esti-
mated by calculating the average throughout (i.e., the number of queries executed per

minute) of the server in 10 different executions of case (a) and 10 different executions
of case (b). Each of these 20 executions involved the execution of the same number of
RUBIS queries against the server (~30,000 queries) but the queries executed in each
execution were selected randomly by the RUBIS system. The completion of the exe-
cution of the different query sets took on average 18 minutes.
The average throughput for cases (a) and (b) was measured per minute and the result
is shown in the Throughput graph of Fig. 5. As shown in this graph the use of the
MySQL AUDIT plugin had almost a very minor effect on the performance of the
server. The same is evident from Average Execution Time graph in Fig. 5, which
shows the average execution time per RUBIS query (in milliseconds), for every mi-
nute during the execution period. The absence of any significant effect is also evident
from which shows the actual throughput and average query execution times for (a)
and (b). The main difference in query execution time was observed only in the initial
stage of the execution of each query set, when RUBiS sent queries to establish the
connection to MySQL for each transaction thread.

5 Related Work

Research related to our approach includes work for service certification, cloud securi-
ty and cloud monitoring. In this section we give an overview of this work.

Similar approaches in the field of security certification schemes focus mostly on
concrete software components and provide self-assessed, human-readable certificates.
As a result, these approaches cannot be integrated into dynamic service processes that
require machine-readable certificates. Significant work on the representation and use
of digital certificates in SOA systems was done in the FP7 Project ASSERT4SOA.
This project developed a test-based certification of software services and a framework
for representing and using machine-readable certificates, known as ASSERTS.

Research on the certification of cloud services is still in an early stage. The work of
Grobauer et al. [12], assess some vulnerabilities of cloud computing, and outlines the
main reason of the existence of such vulnerabilities as the lack of certification
schemes and security metrics. Heiser and Nicolett [13] have evaluated the cloud secu-
rity risks and proposed an IT risks sharing scheme. Furthermore, Anisetti et al [1]
presented a trusted model for certifying cloud services, by delegating different dy-
namic testing mechanisms.

A commonly used framework for cloud certification is CSA’s Cloud Controls Ma-
trix (CCM) [5]. CCM contains a comprehensive set of baseline controls to assess the
information security assurance level of cloud providers and maps these controls to
existing frameworks such as ISO/IEC 27001-2013, PCI DSS Cloud Guideline [23],
COBIT [6], NIST [15], or IT Baseline Protection Catalogues [16].

The Cloud Security Alliance has also developed and launched in 2011 the CSA
Security, Trust and Assurance Registry (STAR) Program [27], which is a third party
independent assessment of the security of a cloud service provider. STAR is based on
a multi-layered structure defined by Open Certification Framework (OCF) Working
Group [8] and on the requirements of the ISO/IEC 27001 management system stand-

ard together with the CSA CCM. STAR approach consists of three different levels of
certification. Our approach is similar to the third level of STAR, which is the CSA
STAR Continuous Monitoring, which is meant to enable automation of auditing, as-
sessment, monitoring and certification of security practices of cloud providers.

Cloud monitoring has been supported by several monitoring systems. Most of
them, however, focus on monitoring performance and SLAs monitoring rather than
security properties (e.g., [15][3]) and do not support security certification.

6 Conclusion

In this paper, we have presented an automated certification approach for cloud ser-
vices based on continuous monitoring. We have described the core mechanisms of our
approach that can be used to specify and realise a certification process for the security
of cloud services. We have also given an example showing how the approach can be
used to realise, in an automated manner, the certification of a security property de-
fined in a Common Criteria protection profile for database systems.

The certification model underpinning this example has been used to evaluate our
approach as part of an experiment in which we used the MySQL server. The results of
this evaluation showed that the certification process that we proposed can produce
results in an automated manner, fast and without interfering significantly with the
performance of the system that is certified. The average time complexity of the moni-
toring algorithm is N*M, where N is the average number of events and M is the aver-
age number of rule instances, at different time periods during the monitoring process.
M depends on the number of different events in assertions and the time constraints
between them. The average delay in checking assertions is experimentally shown not
to be significant. Basic security properties (integrity, availability, confidentiality) can
be expressed by assertions of such complexity as shown in the literature. Hence, our
approach is feasible for large numbers of events. A video of a demo of the implemen-
tation of our approach is available from: http://youtu.be/HWb_dA2UCxM.

Our on-going work focuses on a further evaluation of our approach for different
types security properties and cloud services. We are also investigating the use of
model checking techniques to verify statically properties of certification models.

Acknowledgment

The work presented in this paper has been partially funded by the EU FP7 project
CUMULUS (grant no 318580).

References

1. Anisetti, M., Ardagna, C. A. and Damiani, E., “A Certification-Based Trust Model for Au-
tonomic Cloud Computing Systems”, Int. Conf. on Cloud and Autonomic Computing (CAC
2014, London, UK, 2014

2. Ardagna C.A., Asal R., Damiani E. and Vu Q. V. “From Security to Assurance in the Cloud:
A Survey”, ACM Computing Surveys (CSUR), vol. 48, no. 1, Article 2 (July 2015).

3. Barham, Paul, et al. "Xen and the art of virtualization." ACM SIGOPS Operating Systems
Review. Vol. 37. No. 5. ACM, 2003.

4. Bezzi, M., Sabetta, A., & Spanoudakis, G. “An architecture for certification-aware service
discovery“. 1st Int. IEEE Workshop on Securing Services on the Cloud, pp. 14-21, 2011.

5. Cloud Security Alliance, Cloud Controls Matrix, Available from:
https://cloudsecurityalliance.org/research/ccm/

6. COBIT, IT Assurance Guide: Using COBIT, Control Objectives for Information and related
Technology, 2007, information Systems Audit and Control Association.

7. Common Criteria (CC) for Information Technology Security Evaluation, CCDB USB
Working Group, 2012, part 1-3. Available from: http://www.commoncriteriaportal.org.

8. CSA, “Open Certification Framework”. https://cloudsecurityalliance.org/research/ocf/
9. Database Management System Protection Profile, Issue 2.1, May 2000, Available from

http://www.commoncriteriaportal.org/files/ppfiles/T129%20-
%20PP%20v2.1%20%28dbms.pp%5B1%5D%29.pdf

10. Egea M., Mahbub K., Spanoudakis G., and Vieira M.R., A Certification Framework for
Cloud Security Properties: the Monitoring Path, Accountability and Security in the Cloud,
LNCS 8937, pp 63-77, DOI: 10.1007/978-3-319-17199-9_3, 2015

11. ENISA, Security Certification Practice in the EU: Information Security Management Sys-
tems – A Case Study, v1, October 2013, available from: https://www.enisa.europa.eu/

12. Grobauer, B., Walloschek, T. and Stocker, E., "Understanding Cloud Computing Vulnera-
bilities," Security & Privacy, IEEE, vol.9, no.2, pp.50-57, March-April 2011

13. Heiser J. and Nicolett, M., “Assessing the Security Risks of Cloud Computing”, Gartner TR,
2008

14. Heiser, J. and Nicolett, M., “Assessing the security risks of cloud computing”, p. 1-6, 2008
15. IT Baseline Protection Catalogs, Available from: http://www.bsi.de/gshb/index.htm
16. Katopodis S., Spanoudakis G., and Mahbub K. "Towards hybrid cloud service certification

models." In 2014 IEEE International Conference on Services Computing, pp. 394-399
17. Krotsiani, M. and Spanoudakis, G., “Continuous Certification of Non-Repudiation in Cloud

Storage Services”, 4th IEEE Int. Symp. on Trust and Security in Cloud Computing, 2014
18. Krotsiani, M., Spanoudakis, G. and Mahbub, K., “Incremental Certification of Cloud Ser-

vices”, 7th Int. Conf. on Emerging Security Information, Systems and Technologies, 2013
19. Lagazio M., Barnard-Wills D., Rodrigues R., Wright D., "Certification Schemes for Cloud

Computing", EU Commission Report, ISBN 978-92-79-39392-1, DOI:10.2759/64404
20. McAfee MySQL AUDIT Plugin, Available From: https://github.com/mcafee/mysql-audit
21. MySQL server, available from: http://www.mysql.com/
22. National Institute of Standards and Technology, "Information Security Handbook: A Guide

for Managers," NIST Special Publication 800-100, October 2006.
23. Payment Card Industry Data Security Standard (PCI DSS), Available from:

https://www.pcisecuritystandards.org/security_standards/documents.php?document=dss_clo
ud_computing_guidelines

24. RUBiS Benchmark, Available Form: http://rubis.ow2.org/
25. Shanahan, Murray. "The event calculus explained." In Artificial intelligence today, pp. 409-

430. Springer Berlin Heidelberg, 1999.
26. Spanoudakis, G., Kloukinas C., and Mahbub K., "The serenity runtime monitoring frame-

work." In Security and Dependability for Ambient Intelligence, pp. 213-237. Springer, 2009
27. STAR Certification, Cloud Security Alliance. Available from:

https://cloudsecurityalliance.org/star/
28. Vincent C. Emeakaroha, et al. “DeSVi: An Architecture for Detecting SLA Violations in

Cloud Computing Infrastructures”, 2nd Int. ICST Conference on Cloud Computing, 2010

