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    Abstract- An application of an adaptive neuro-fuzzy inference 

system (ANFIS) has been investigated for partial discharge (PD) 

pattern recognition. The proposed classifier was used to 

discriminate between PD patterns occurring in internal voids. 

Three different void shapes were considered in this work, namely 

flat, square and narrow. Initially, the input feature vector used 

for classification was based on 15 statistical parameters. The 

discrimination capabilities of each feature were assessed by 

applying discriminant analysis. This analysis suggested that some 

of the features possess much higher discriminatory power than 

the others. As a result, a simplified classifier with reduced feature 

vector has been obtained. The results demonstrate the 

importance in identifying and removing redundancy in the input 

feature vector for reliable PD identification. 

 

I.    INTRODUCTION 

 

   Partial discharges (PD), which can lead to both chemical and 

physical deterioration of the insulation systems, may occur in 

voids or gaps at interfaces within insulation subjected to high 

voltage stresses [1-3]. When discharges are detected and their 

magnitude measured, it is of considerable practical interest for 

reliable identification of insulation defects to be able to 

identify the source of the discharge, its shape, and location and 

also to be able to discriminate its pulse pattern from that of 

any external noise or other interference pulses. Therefore, 

discharge detection is important for the reliable evaluation of 

insulation systems and in recognizing defects in these 

components. Therefore, the trend towards automating 

detection and recognition in tests of cables, transformers and 

other insulating devices is evident: one of the undoubted 

advantages of a computer-aided measuring system is the 

ability to process a large amount of information and transform 

this information into an understandable output [4]. 

  Three different types of PD data patterns can be acquired 

from digital PD measurement systems during tests. They are: 

phase-resolved data, time-resolved data and data without 

phase or time information [15, 16]. The phase resolved data 

consists of a 3D discharge pattern: discharge magnitude ~ 

phase angle~ discharge rate ( nq ~~ ) at a specified test 

voltage. The time-resolved data constitutes the individual 

discharge pulse magnitudes over some interval of time, i.e. q ~ 

t data pattern. The last type of data consists of variations in 

discharge pulse magnitudes versus the amplitude of the test 

voltage V, i.e. q ~ V data pattern. 

   Generally, there are two essential components of all 

algorithms for pattern classification [5]. The first one is 

formation of so called Feature Vector or Fingerprint and the 

second one is pattern recognition phase (classification 

algorithm) itself. Over the last 15-20 years, several PD 

classification algorithms have been proposed and tested, 

including statistical tools, signal processing tools, image 

processing techniques, time-series analysis, fuzzy logic, 

artificial neural networks (ANN) and hybrid approaches, for 

both extraction of feature vector and classification [6-10].  

    In this paper, a novel method for recognition of the 

discharge source by means of an adaptive neuro-fuzzy 

inference system (ANFIS) is presented. The ANFIS uses a 

discharge fingerprint comprising 15 statistical parameters to 

discriminate between internal PD pulses. It is able to classify 

the PD pulses with respect to geometric parameters of the 

discharge source. 

Furthermore, the contribution of each feature to the 

classification is analyzed by discriminant analysis [11]. It 

shows that not all of the features have one and the same 

discriminatory power. In other words, some of the features can 

be neglected without a loss of accuracy and thus an ANFIS 

classifier with a simplified structure can be obtained. In this 

way, the total number of input features after the discriminant 

analysis was reduced to 6. Finally, the performance of the two 

classifiers is assessed. 
   

II.   DEFECT GEOMETRY AND TEST CONDITIONS 

   Three defects are studied, namely square, flat and narrow 

voids. These defects are gaseous inclusions in the electrical 

insulation. The differences between them are their geometric 

shape and size (see Table 1). 
 

TABLE I 

VOID GEOMETRIES AND THEIR TEST CONDITIONS 

Void type Diameter 
[mm] 

Height 
[mm] 

Square 1 1 

Flat 5 1 

Narrow 1 5 

   The electrode configuration is shown in Fig. 1 for samples 

with voids.  
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Fig. 1 Test set-up for samples with voids 

III.   STATISTICAL PARAMETERS DESCRIBING PARTIAL 

DISCHARGE DISTRIBUTIONS 
 

  Ninety samples were investigated and PD pulses were 

measured and recorded for all of them (30 samples for each 

type of the defects). The measurement data are phase-

resolved, which means that discharge magnitudes and 

discharge rates are recorded as a function of the phase angle of 

the test voltage. Two distributions are used to describe the PD 

pulses namely, mean pulse height distribution Hqn(φ) and 

pulse count distribution Hn(φ).  On their basis, 15 statistical 

parameters are calculated for each sample under investigation 

in accordance with [12]. These parameters are: 

 Sk (Hqn
+), Sk (Hqn

-) is the skewness of the mean pulse 

height distribution Hqn(φ) for the positive and  negative 

halves of the voltage cycle, respectively 

 Sk (Hn
+), Sk (Hn

-) - skewness of the pulse count 

distribution Hn(φ) for the positive and  negative halves of 

the voltage cycle, respectively 

 Ku (Hqn
+), Ku (Hqn

-) - kurtosis of the mean pulse height 

distribution Hqn(φ) for the positive and  negative halves of 

the voltage cycle, respectively 

 Ku (Hn
+), Ku (Hn

-) - kurtosis of the pulse count 

distribution Hn(φ) for the positive and  negative halves of 

the voltage cycle, respectively 

 Q – discharge asymmetry, 
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where 

sQ  is the sum of the discharge magnitudes in the 

positive or negative half of the voltage cycle, and 

qN  is the 

number of discharges in the positive or in the negative half of 

the voltage cycle 

 cc – cross correlation factor,   
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where ix  is the mean discharge magnitude in a phase window 

in the positive half of the voltage cycle; iy  is the mean 

discharge magnitude in the corresponding phase window in 

the negative half of the voltage cycle and n is the number of 

phase positions per half cycle 

 mcc – modified cross-correlation factor, ccQmcc .  

 Pe (Hqn
+), Pe (Hqn

-) – number of peaks of the mean pulse 

height distribution Hqn(φ) for the positive and  negative 

halves of the voltage cycle, respectively 

Pe (Hn
+), Pe (Hn

-) - number of peaks of the pulse count 

distribution Hn(φ) for the positive and  negative halves of the 

voltage cycle, respectively. 

 

IV.   ANFIS CLASSIFIER 

A.    Initial Feature Vector 

  The initial input feature vector contains those statistical 

parameters described above. In order to create a classifier and 

to test the results obtained by it, the measurement data are split 

into two parts. The first one containing 22 samples per defect 

was used for generation of the ANFIS. The rest of the data (8 

samples per defect) were used to verify the performance of the 

corresponding ANFIS classifier. All calculations were 

performed using MATLAB. 

   A first order Sugeno-type system is implemented in the 

proposed model. The fuzzy inference system for the classifier 

is automatically generated using the subtractive clustering 

method [13, 14]. Clustering algorithm parameters are: range of 

influence, quash factor, accept ratio and reject ratio. The first 

parameter specifies the cluster center’s range of influence in 

each of the data dimensions, assuming that data belongs to a 

unit hyper-box. The second parameter is used to multiply the 

range of influence values that determine the neighborhood of a 

cluster center, so as to quash the potential for outlying points 

to be considered as part of that cluster. The next parameter 

determines the potential, as a fraction of the potential of the 

first cluster center, above which another data point will be 

accepted as a cluster center. The last parameter sets the 

potential, as a fraction of the potential of the first cluster, 

below which a data point will be rejected as a cluster center. 

The corresponding values of the above mentioned parameters 

are: 0.95, 1.25, 0.5 and 0.15, respectively.  

  The structure of ANFIS classifier is shown in Figure 2. There 

are 15 input neurons, corresponding to the 15 statistical 

parameters comprising the feature vector. The result of the 

classification process is presented by a single neuron in the 

output layer. In order to be obtained a crisp output, a weighted 

average method is used for defuzzification.  

  The assessment of the classifier is made on the basis of 

measurement data that has not been used for ANFIS training. 

24 samples (8 from each type of defect) were used to test the 

classifier. Only two samples (sample No. 20 and 24) were 

misclassified (See Table 2). In Table 2, the void types are 

coded as follows: 1 – square cavity, 2 – flat cavity, 3 – narrow 

cavity. The results show 91.7% classification accuracy. The 

conclusion that ANFIS classifier possesses very good 

classification capabilities can be drawn. Nevertheless, the 

structure of the classifier is quite complex and means for its 

simplification should be sought. 
 

TABLE II 

ANFIS CLASSIFIER RESULTS 

 

Sample No. 
Defect 

type 
ANFIS 

results Sample No. 
Defect 

type 
ANFIS 

results 

1 1 1 13 2 2 

2 1 1 14 2 2 

3 1 1 15 2 2 

4 1 1 16 2 2 

5 1 1 17 3 3 

6 1 1 18 3 3 

7 1 1 19 3 3 

8 1 1 20 3 2 

9 2 2 21 3 3 

10 2 2 22 3 3 

11 2 2 23 3 3 

12 2 2 24 3 2 



 

 
Fig. 2  Structure of the initial ANFIS classifier - 15 features  input vector 

 

B.   Application of Discriminant Analysis 

   The most common application of discriminant function 

analysis is to include many measures in the study, in order to 

determine the ones that discriminate between the groups. In 

the present study, it is applied to assess the discriminatory 

power of each feature. Computationally, discriminant function 

analysis is very similar to analysis of variance. The basic idea 

underlying discriminant function analysis is to determine 

whether groups differ with regard to the mean of a variable, 

and then to use that variable to predict group membership 

(e.g., of new cases). 

   In Table 3 is shown which variables were left in the model 

as a result of the discriminant function analysis. Wilks’ 

Lambda criterion is used to assess which features possess 

highest discriminatory power. The values of Wilks’ Lambda 

of the variables included in the new simplified model are 

given in Table 3 and the corresponding values of the variables 

not included in the model are given in Table 4. The value of 

Wilks’ Lambda is for the overall model that will result after 

removing the respective variable. It can assume values in the 

range of 0 (perfect discrimination) to 1 (no discrimination). 

The value of Partial Lambda is associated with the unique 

contribution of the respective variable to the discriminatory 

power of the model. F-to enter/remove values are associated 

with the respective partial Wilks’ Lambda. 
TABLE III 

VARIABLES INCLUDED IN THE MODEL 

 
Wilks' 

Lambda 

Partial 

Lambda 
F-remove 

SkHqn+ 0.046655 0.793016 10.70133 

SkHqn- 0.056922 0.649985 22.07842 

SkHn+ 0.052897 0.699441 17.61822 

SkHn- 0.049993 0.740067 14.40036 

KuHn+ 0.049603 0.745892 13.96773 

Pe Hqn - 0.058129 0.636491 23.41572 

 

   The results of the discriminant function analysis suggest that 

there are some correlations between the features of the initial 

features vector. One obvious correlation is between modified 

cross-correlation factor (mcc) and discharge asymmetry (Q) 

and the cross-correlation factor (cc), because mcc is product of 

the other two. The presence of correlated input variables 

introduces redundancy of information and therefore increases 

the noise into the data. Primary task then is to eliminate all 

features which are not independent. The optimal classifier 

should possess only independent features into its input vector.  
 

TABLE IV 

VARIABLES NOT INCLUDED IN THE MODEL 

 
Wilks' 

Lambda 

Partial 

Lambda 
F-enter 

PeHqn + 0.035942 0.971460 1.189810 

PeHn + 0.035675 0.964230 1.502445 

mcc 0.033573 0.907427 4.131689 

Q 0.035950 0.971662 1.181149 

KuHqn+ 0.033880 0.915725 3.727255 

KuHqn- 0.033631 0.908991 4.054883 

cc 0.031610 0.854368 6.903462 

PeHn - 0.032032 0.865776 6.278834 

KuHn- 0.030180 0.815706 9.150215 

   

   On the basis of the above discussion a new ANFIS classifier 

was created, containing only the features, which were left after 

the discriminant analysis (see Table III). The same clustering 

algorithm was used to produce the ANFIS structure with the 

same values of the clustering algorithm parameters. The 

structure of this improved classifier is shown in Figure 3. It 

has 6 input neurons corresponding to the remaining 6 

statistical parameters in the discriminant function model 

(SkHqn+, SkHqn-, SkHn+, SkHn-, KuHn+, PeHqn -). In the 

second layer, there are 18 neurons, which correspond to 18 

Gaussian membership functions. The next layer contains only 

3 neurons equivalent to 3 fuzzy “if-then” rules. These rules 

represent 3 linear membership functions. The result of the 

classification process is presented by a single neuron in the 

output layer. In order to be obtained a crisp output, weighted 

average method is used for defuzzification. 

 

 

 

  
 

Fig. 3. Structure of the improved ANFIS classifier - 6 features  input vector 
   

  The assessment of the classifier is performed in a similar way 

as the previous one. The same 24 samples were used to test the 

classifier. This time only one sample (sample No. 16) was 

misclassified (See Table 5). In Table 5 the void types are 

coded as follows: 1 – square cavity, 2 – flat cavity, 3 – narrow 

cavity. The results show 95.8% classification accuracy, which 

is better than the previous case of a classifier having 15 input 

Rule Inputmf Input Outputmf Output 

Void type 

Rule Inputmf Input Outputmf Output 

Void type 

Sk Hqn + 

Sk Hqn - 

Sk Hn + 

Sk Hn - 

Ku Hn + 

Pe Hqn - 



features. The new classifier has not only a simplified structure 

but also possess better classification capabilities. The 

improved classification capability is due to the fact that the 

redundant information was removed. 

 
TABLE V 

RESULTS  FOR THE  IMPROVED ANFIS CLASSIFIER  

Sample No. 

Defect 

type 

ANFIS 

results Sample No. 

Defect 

type 

ANFIS 

results 

1 1 1 13 2 2 

2 1 1 14 2 2 

3 1 1 15 2 2 

4 1 1 16 2 1 

5 1 1 17 3 3 

6 1 1 18 3 3 

7 1 1 19 3 3 

8 1 1 20 3 3 

9 2 2 21 3 3 

10 2 2 22 3 3 

11 2 2 23 3 3 

12 2 2 24 3 3 

 

 

IV.   CONCLUSIONS 

 

The following conclusions can be drawn: 

•   The adaptive neuro-fuzzy inference system (ANFIS) can be 

used successfully to discriminate between PD pulses in voids 

with different geometries. 

•   Statistical parameters related to the PD patterns can be used 

as input features in such a classifier. However, care must be 

taken to ensure statistical independence of the features being 

used and any identified correlations between the different 

features, and hence the redundancy should be removed. 

Further research will be done to study the exact relations that 

may exist between these statistical parameters. 

•   Classifier performance can be improved and its structure 

can be simplified by discarding the redundant data. 

   The results demonstrate the importance in identifying and 

removing redundancy in the input feature vector for reliable 

PD identification. 
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