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Abstract 

In this paper artificial neural networks (ANN) are addressed in order the Greek long-term energy consumption to 

be predicted. The multilayer perceptron model (MLP) has been used for this purpose by testing several possible 

architectures in order to be selected the one with the best generalizing ability. Actual recorded input and output 

data that influence long-term energy consumption were used in the training, validation and testing process. The 

developed ANN model is used for the prediction of 2005-2008, 2010, 2012 and 2015 Greek energy consumption. 

The produced ANN results for years 2005-2008 were compared with the results produced by a linear regression 

method, a support vector machine method and with real energy consumption records showing a great accuracy. 

The proposed approach can be useful in the effective implementation of energy policies, since accurate predictions 

of energy consumption affect the capital investment, the environmental quality, the revenue analysis, the market 

research management, while conserve at the same time the supply security. Furthermore it constitutes an accurate 

tool for the Greek long-term energy consumption prediction problem, which up today has not been faced 

effectively. 

 

Keywords: Artificial neural networks; energy consumption; gross domestic product; installed capacity; multilayer 

perceptron; prediction. 

 

1.  Introduction 

Energy consumption has increased remarkably over the past decades all over world due to the increasing 

population and the economic development. Energy is considered as an important factor in the economic and social 

development of a country and consequently in the people’s wealth. Long-term energy consumption predictions are 

essential and are required in the studies of capacity expansion, energy supply strategy, capital investment, revenue 
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analysis and market research management. However, the large number of uncertainties that characterize long-term 

predictions, which sometimes cover up to thirty years ahead, have as a result the unimpaired interest of scientists 

in this particular field and the continuous development of new approaches for more accurate and reliable 

predictions. 

 

Artificial intelligence, including both genetic algorithms and artificial neural networks (ANN), was used in order 

to predict the electrical energy consumption in [1]. ANN models were also developed for the Turkey’s net energy 

consumption prediction in [2]. A hybrid fuzzy neural technique, which combines neural network and fuzzy logic 

modeling, was used for long-term prediction in [3] producing accurate results. Multiple linear regression analysis 

models for long-term prediction have reported in [4], while such models have extensively used in several 

prediction problems, since they have presented very good results [5-8]. Long-term prediction approaches have 

been also developed based on the complete decomposition method [9] and univariate models such as: the 

autoregressive, the autoregressive integrated moving average and a novel configuration combining an 

autoregressive with a high pass filter were proposed in [10]. Significant was also the work presented in [11] where 

three different modeling techniques for the prediction of electricity energy consumption, i.e., regression analysis, 

decision tree and neural networks, were considered and comparative advantages of the different data analysis 

approaches were presented. Finally electricity load forecasting has been proposed using support vector regression 

models [12] and support vector machines with simulated annealing algorithms [13]. 

 

In the current work the Greek long-term energy consumption for the years ahead is predicted, exploiting ANN 

computational speed, ability to handle complex non-linear functions, robustness and great efficiency even in cases 

where full information for the studied problem is absent. The multilayer perceptron model (MLP) has been used 

for this purpose. Several possible architectures are tested and the one with the best generalizing ability is selected. 

Actual recorded input and output data that influence long-term energy consumption were used in the training, 

validation and testing process. The developed ANN model is used for the prediction of 2005-2008, 2010, 2012 

and 2015 energy consumption producing very accurate results comparing them with the results of a linear 

regression method, a support vector machine method and the actual available recorded data for years 2005-2008.  
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The proposed approach can be very useful in the effective implementation of energy policies since accurate 

predictions of energy consumption affect the capital investment, the environmental quality, the revenue analysis, 

the market research management, while conserve at the same time the supply security. Furthermore the proposed 

approach could be an accurate tool for the Greek long-term energy consumption prediction problem, which up 

today has not been faced effectively. 

 

2.  Artificial neural networks (ANN) 

An artificial neural network consists of a number of very simple and highly interconnected processors, called 

neurons, which are analogous to the biological neurons in the brain. The neurons are connected by weighted links 

that pass signals from one neuron to another. Each link has a numerical weight associated with it. Weights are the 

basic means of long-term memory in ANN. They express the strength, or importance, of each neuron input. A 

neural network “learns” through repeated adjustments of these weights. The characteristic feature of these 

networks are that they consider the accumulated knowledge acquired during training and respond to new events in 

the most appropriate manner, giving the experience gained during the training process. In this work a typical 

neural network model known as multilayer perceptron model (MLP) has been used. The MLP is a feed forward 

neural network with an input layer of source neurons, at least one middle or hidden layer of computational 

neurons, and an output layer of computational neurons (Fig. 1). The input layer accepts input signals from the 

outside world and redistributes these signals to all neurons in the hidden layer. The hidden layer detects the 

feature. The weights of the neurons in the hidden layers represent the features in the input patterns. The output 

layer establishes the output pattern of the entire network [14]. 

 

In order to train the network, a suitable number of representative examples of the relevant phenomenon must be 

selected so that the network can learn the fundamental characteristics of the problem. More than a hundred 

different learning algorithms are available, but the most popular one is the backpropagation. In a backpropagation 

neural network the learning algorithm has two phases. First a training input data set is presented to the network 

input layer. The network then propagates the input data set from layer to layer until the output data set is generated 

by the output layer. If this data set is different from the desired output, an error is calculated and then propagated 

backwards through the network from the output layer to the input layer. The weights are modified as the error is 

propagated [14, 15]. 
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ANN models are determined according to their architecture, i.e., the network’s structure, transfer function and 

learning algorithm. In the backpropagation networks the MLP architecture is generally decided by trying a) varied 

combinations of number of hidden layers and number of nodes in a hidden layer, b) different transfer functions and 

c) learning algorithms in order to be selected the most suitable ANN model architecture, which has the best 

generalizing ability amongst the all tried combinations [15, 16], i.e., minimization of the sum-squared error.  Once 

the training process is completed and the weights and bias of each neuron in the neural network is set, the next step 

is to check the results of training by seeing how the network performs in situations encountered in training and in 

others not previously encountered. 

 

Although there are several different types of artificial neural networks in this study the backpropagation MLP 

model has been used. The main reasons were: a) small solution network and quick computational speed that 

permits training over large input data sets, b) automatic generalization of knowledge enabling the recognition of 

data sets, c) robustness to recognize data obscured by noise, d) minimization of the mean squared aggregate error 

across all training data sets and e) supervised training. The main disadvantage of the backpropagation MLP is the 

many variables which must be considered when constructing a MLP. This includes the number of hidden layers, 

the type of transfer function(s), the initial conditions, and the types of backpropagation MLPs available. One must 

also consider the training time which is a direct function of training set size and MLP chosen for the task. 

 

3.  Energy consumption 

Energy forms a key part of humans’ everyday lives. Energy is needed in almost every activity. As economy grows, 

demand for energy dramatically increases. According to the American Energy Information Administration (AEIA) 

and to the International Energy Agency (IEA), the world-wide energy consumption will on average continue to 

increase by 2.5 % per year and this forms a modest prediction. 

 

In Greece the final energy consumption which includes all energy delivered to the final consumer’s door (industry, 

transport, households and other sectors) for all energy uses, has increased the last 16 years more than 60 %, from 

14,079,000 Tones of Oil Equivalent (TOE) in 1992 to 22,552,000 TOE in 2007 following an average annual 

increase of approximately 4.1 % [17]. Fig. 2 presents the Greek final energy consumption in comparison to the 

Greek gross domestic product (GDP) from 1992 to 2007, showing clearly the relation of economy and energy 

consumption [17]. 
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Fig. 3 indicates similar findings. As it can be seen the Greek installed power capacity in MW and the Greek yearly 

per resident electricity consumption in kWh have increased significantly the last 16 years [18, 19]. Their 

continuous increase which is not expected to be stabilized or to be decreased would certainly have a great 

influence on the Greek long-term energy consumption. At this point it must be mentioned that the Greek installed 

capacity continues increases due to the rapid installation of renewable energy technologies which hold today 

(2008) only a 9 % of the total installed capacity with a goal of 20 % power installed capacity in year 2020.  

 

A very crucial factor that also affects energy consumption is climate. The yearly ambient temperature increase has 

a considerable effect in the energy consumption for very obvious reasons, i.e., increase in temperature leads to a 

higher use of air conditioners and other cooling devices. Recent studies have concluded that the sensitivity of 

energy consumption to temperature has increased in the recent period [20, 21]. Given the concern about global 

warming, these findings support the renewed interest in energy related questions by the policymakers. 

 

4.  Design of the proposed MLP ANN model 

The goal of this study is to develop an artificial neural network architecture capable to predict the Greek long-term 

energy consumption. The four parameters analyzed in the previous section, that play important role to the long-

term energy consumption were selected as the inputs to the neural network, while as output the final energy 

consumption was considered. These parameters, summarized in table 1, constitute actual recorded data. More 

specifically, the yearly ambient temperature T has been supplied from the Greek National Meteorological Service 

[22], the installed power capacity C and the yearly per resident electricity consumption R have been supplied from 

Public Power Corporation S.A. [18, 19], while the gross domestic product G has been supplied from EUROSTAT 

[17]. Finally the output variable, i.e., the final energy consumption F has been also provided from EUROSTAT 

[17]. 

 

It must be mentioned that the author has selected only those four input parameters for the designed ANN model, 

although there are also others (e.g. amount of CO2 pollution, number of air-conditioners, installation of renewable 

energy technologies, electricity price, etc.), that affect the energy consumption. The reason of this selection was 

that there were not available real records of data for any other parameters. 
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As it has stated earlier each ANN model is determined according to its structure, the transfer function and the 

learning algorithm, which are used in an effort to learn the network the fundamental characteristics of the 

examined problem. In this work, thousands MLP ANN models were designed and tested. These were 

combinations of five backpropagation learning algorithms, five transfer functions and structures consisted of 1 to 5 

hidden layers with 2 to 100 neurons in each hidden layer (table 2). 

 

The MATLAB® neural network toolbox [23, 24] was used to train the developed neural network models. Input 

and output data of the last 13 years (1992-2004), were used to train and validate the neural network models. In 

each training iteration 20 % of random samples were removed from the training set and validation error was 

calculated for these data. The training process was repeated until a root mean square error between the actual 

output and the desired output reached the goal of 1 % or a maximum number of epochs (the presentation of the set 

of training data to the network and the calculation of new weights and biases) it was set to 15,000, was 

accomplished. Finally, the predicted energy consumption value was checked with values obtained from situations 

encountered in the training and others which have not been encountered. 

 

It must be mentioned that prior the ANN training, data normalization was performed. This was necessary not only 

because all entries need to be guaranteed to have the same weight, but also because the range of values must be 

limited for neurons’ transfer function in order the network to converge in training and produce meaningful results 

[25]. Although several normalization methods exist, common feature of all these is that an offset is deducted from 

the data items, after which they are transformed over the desired range by means of a scaling factor. The most 

commonly employed method for normalization involves mapping the data linearly over a specified range, whereby 

each value of a variable x is transformed as follows: 
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where 
maxx and 

minx are the expected maximum and minimum values of the concerned variable. 
maxx and 

minx specify the desired values of the range for the transformed variable [26]. 

 

After extensive simulations with all possible combinations of the 5 backpropagation learning algorithms, the 5 

transfer functions, the 1 to 5 hidden layers and the 2 to 100 neurons in each hidden layer, it was selected and used 

further to predict the Greek energy consumption the model that presented the best generalizing ability, had a 

compact structure, a fast training process and consumed lower memory. This MLP ANN model had the following 

characteristics: 2 hidden layers, with 20 and 17 neurons in each one of them, Levenberg-Marquardt 

backpropagation learning algorithm and logarithmic sigmoid transfer function. The mean square error was 

minimized to the final value of 0.010 within 13,318 epochs. Table 3 presents the training data of the best 10 

designed ANN models which have presented the best generalizing ability among all the others designed. 

 

5.  Test results – Error Analysis 

The selected ANN model has been used in order to predict the Greek long-term energy consumption. Predictions 

have been made for years 2005-2008, 2010, 2012 and 2015. Table 4 presents the results produced by the 

developed ANN model and the real recorded energy consumption data/records for years 2005-2008. In the same 

table are also shown and the results produced using two other known methods obtained from technical literature in 

order to compare the accuracy of the developed method. 

 

The first method uses the linear regression model of equation (2), which is presented in detail in both [4] and [11]. 

 

   exaxaxaxaay  443322110
                       (2) 

 

where y is the final energy consumption, αι the regression coefficients (i=0,1,2,3,4) estimated using a least square 

method, x1 is the yearly ambient temperature, x2 is the installed power capacity, x3 is the yearly per resident 

electricity consumption, x4 is the the gross domestic product and e is the random error term. 

 

The second method is based on the support vector machine model introduced by Vapnik [27]. Based on this 

model, data is mapped into a higher dimensional feature space via
 
nonlinear mapping and then regression in this 
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space is performed.
 
The function of (3) is estimated based on the given data set G =  N

i
)]d ,(x ii

 where xi is the 

inputs, di is the desired values and N is total number of data sets. 
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the 

regularized risk function (4) as presented in detail in [12, 13, 28, 29]: 
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and ε is a prescribed parameter. 

 

It must be mentioned that for the support vector machine model the C++ library libsvm (version 2.86) produced by 

Chang and Lin [30] has been used. C-classi1cation and ε-support vector regression has been applied for the 

estimation of the hyper-parameters based on the work presented in [30]. 

 

It is obvious that the results obtained according to the proposed ANN method for the four known years (2005-

2008) are close to the actual ones and comparable to these produced by the regression and support vector machine 

models. Fig. 4 presents the comparison of the obtained results with the actual recorded energy consumption data. 

The percentage error between recorded final energy consumption and ANN computed final energy consumption 

given by (6) is approximately 2 % something which also clearly implies that the proposed ANN model is well 

working and has an acceptable accuracy. 

 

100(%) 



rec

comprec

FEC

FECFEC
PE  %                       (6) 

 

where: PE is the percentage error, FEC,rec is the recorded final energy consumption and FEC,comp is the computed 
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final energy consumption. 

 

6.  Conclusions 

The paper describes an artificial neural network method for the long-term prediction of Greek energy 

consumption. Actual recorded input and output data which undoubtedly affect significantly the energy 

consumption were used in the training, validation and testing process. Predictions have been performed for years 

2005-2008, 2010, 2012 and 2015 with the produced results to be close to the real ones, much more accurate than 

these obtained by a linear regression model and similar to these obtained by a support vector machine model. The 

proposed approach can be useful in the effective implementation of energy policies since accurate predictions of 

energy consumption affect the capital investment, the environmental quality, the revenue analysis, the market 

research management, while conserve at the same time the supply security. The evolvement of the produced ANN 

model in a user friendly software tool with the addition of a graphical user interface could constitute it an 

important tool in the studies of electric utilities and regulation authorities in Greece offering an accurate prediction 

for the Greek long-term energy consumption.  
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Fig.1 MLP feed forward artificial neural network. 

 

Fig. 2 The Greek final energy consumption and gross domestic product from 1992 to 2008. 

 

Fig. 3 The Greek installed power capacity and yearly per resident electricity consumption from 1992 to 2008. 

 

Fig. 4 Comparison of the predicted with the use of the ANN and regression model Greek energy consumption with 

the actual one. 
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Table 1 

MLP ANN input and output variables 

 

Input Variables Output Variables 

- yearly ambient temperature T 

- installed power capacity C 

- yearly per resident electricity consumption R 

- gross domestic product G 

- final energy consumption F 
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Table 2 

Designed MLP ANN model architectures 

 

Structure Backpropagation learning rule Transfer function 

- 1 to 5 hidden layers 

 

- 2 to 100 neurons in   

  each hidden layer 

- Gradient Descent 

 

- Conjugate Gradient 

 

- Quasi-Newton 

 

- Levenberg-Marquardt 

 

- Random Order Incremental 

- Hyperbolic Tangent Sigmoid 

 

- Logarithmic Sigmoid 

 

- Hard-Limit 

 

- Competitive 

 

- Linear 
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Table 3 

Training data of designed ANN models 

 

 

No. Structure 
Backpropagation 

learning algorithm 

Transfer 

Function 
Epochs 

Train 

Error 

Validation 

Error 

1 4/20/17/1 Leven.-Marq. Log. sigm. 13,318 0.010 3.52 % 

2 4/21/15/1 Grad. descent Log. sigm. 14,683 0.010 4.70 % 

3 4/15/15/1 Grad. descent Log. sigm. 15,000 0.024 4.89 % 

4 4/19/22/1 Leven.-Marq. Hyp. tang. sigm. 13,164 0.010 5.16 % 

5 4/14/13/1 Grad. descent Log. sigm. 14,281 0.010 5.08 % 

6 4/13/17/1 Conj. Grad. Hyp. tang. sigm. 15,000 0.036 6.99 % 

7 4/23/1 Leven.-Marq. Hard limit 13,803 0.010 8.32 % 

8 4/12/14/1 Leven.-Marq. Hyp. tang. sigm. 15,000 0.026 9.79 % 

9 4/16/17/1 Leven.-Marq. Log. sigm. 15,000 0.033 11.24 % 

10 4/23/25/1 Grad. descent Hyp. tang. sigm. 14,362 0.010 12.62 % 
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Table 4 

Results of the proposed MLP ANN model 

 

Year 

Final Energy Consumption (1000 TOE) 

ANN results 
Regression model 

results 

Support vector 

model results  
Real records 

2005 

2006 

2007 

2008 

2010 

2012 

2015 

21,032 

21,964 

22,755 

23,239 

26,043 

28,410 

31,963 

21,589 

23,116 

23,294 

23,341 

26,223 

28,713 

32,468 

20,514 

21,748 

22,804 

23,107 

25,939 

28,372 

32,894 

20,800 

21,454 

22,552 

22,986 

- 

- 

- 
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Fig.1 MLP feed forward artificial neural network. 
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Fig. 2 The Greek final energy consumption and gross domestic product from 1992 to 2008. 
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Fig. 3 The Greek installed power capacity and yearly per resident electricity consumption from 1992 to 2008. 
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Fig. 4 Comparison of the predicted with the use of the ANN model, the and regression model and the support 

vector machine model Greek energy consumption with the actual one. 

 

     2005          2006          2007           2008        2010          2012          2015 


