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Abstract 

In this paper the dynamic response of two and three pounding oscillators subjected to 

pulse type excitations is revisited with dimensional analysis. Using Buckingham’s Π-

theorem the number of variables that govern the response of the system is reduced by 

three. When the response is presented in the dimensionless Π-terms remarkable order 

emerges. It is shown that regardless of the acceleration level and duration of the pulse 

all response spectra become self-similar and follow a single master curve. This is true 

despite the realization of finite duration contacts with increasing durations as the 

excitation level increases. All physically realizable contacts (impacts, continuous 

contacts, and detachments) are captured via a linear complementarity approach. The 

study confirms the existence of three spectral regions. The response of the most 

flexible among the two oscillators amplifies in the low range of the frequency 

spectrum (flexible structures); whereas, the response of the most stiff among the two 

oscillators amplifies at the upper range of the frequency spectrum (stiff structures). 

Most importantly, the study shows that pounding structures such as colliding 

buildings or interacting bridge segments, may be most vulnerable for excitations with 

frequencies very different from their natural eigenfrequencies. Finally, by applying 

the concept of intermediate asymptotics, the study unveils that the dimensionless 

response of two pounding oscillators follows a scaling law with respect to the mass 

ratio, or in mathematical terms, that the response exhibits an incomplete self-

similarity or self-similarity of the second kind with respect to the mass ratio. 
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INTRODUCTION 

This paper belongs to a wider study on the problem of pounding between adjacent 

structures due to earthquake shaking, which is revisited herein with the help of formal 

dimensional analysis [1-3]. The motivation for this study originates partly from the 

large number of parameters that govern the response of pounding oscillators and 

partly from several conflicting conclusions published in the literature.  

 Analytical studies on the response of a linear single-degree of freedom oscillator 

with one-sided contact have been presented, among others, by Davis [4]. The work of 

Davis [4] for harmonic excitation was extended by Chau & Wei [5], who studied the 

response of two colliding SDOF oscillators with elastic and inelastic impact. They 

observed that the ‘impact-velocity’ spectrum is not sensitive to the size of the gap 

between the two oscillators and they concluded that impact amplified the response of 

the stiffer oscillator while suppressing the response of the more flexible oscillator and 

that the gap needed to avoid impact is the maximum when the excitation frequency 

approaches the natural frequency of the flexible oscillator.  
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 The impact between adjacent buildings due to earthquake shaking has often been 

recorded as one of the causes of structural damage (Anagnostopoulos [6], [7], 

Anagnostopoulos & Spiliopoulos [8], Penelis & Kappos [9] and references reported 

therein). The studies of Anagnostopoulos and his coworkers concluded that pounding 

can amplify or reduce the earthquake response of a building depending upon its 

period and mass in relation to the period and mass of the buildings next to it, and that 

when the masses of the two interacting buildings are similar the response of the stiffer 

building will amplify, a result that is in agreement with the conclusions of Chau & 

Wei [5].  

 Maragakis [10] studied the rigid body motions of bridge decks, triggered by the 

impact between the deck and the abutments. Using a simplified stick model, he 

focused on the impact-based planar rigid body rotations of skew bridges. Liolios [11] 

addressed the problem of building pounding by adopting the formulation of unilateral 

contacts initially developed by Panagiotopoulos [12] – a formulation which, in 

essence, is also adopted in this paper for modeling impact and contact.  

 The impact of many SDOF oscillators in a row has been studied by 

Anagnostopoulos [6] and Athanassiadou et al. [13] with emphasis on buildings, and 

by Jankowski et al. [14] with emphasis on multi-span bridges. Further studies on the 

impact of bridge segments have been presented by DesRoches & Muthukumar [15] 

who examined the impact response of elastic and inelastic oscillators including the 

event of adjacent structures restrained with cables. That study concludes that among 

the dominant parameters which govern the pounding response are the stiffness ratio of 

the neighboring oscillators together with the ratio of the natural period of one of the 

oscillators and the dominant period of the excitation. A further conclusion of the 

DesRoches & Muthukumar [15] work is that when the natural frequency and the 

excitation frequency are separated the one-sided impact is accentuated, whereas, 

impact suppresses the response of the oscillators at resonance. At about the same time 

an analogous study was conducted in Japan by Ruangrassame & Kawashima [16] who 

proposed the so-called ‘relative displacement response spectrum with pounding 

effect’. Contrary to the work of DesRoches & Muthukumar the work of 

Ruangrassame & Kawashima concluded that in addition to the stiffness ratio and the 

period ratio, the mass ratio of the two oscillators governs appreciably the response. 

 Part of the motivation of the work reported herein is the need to resolve the 

aforementioned conflicting conclusions together with the need to uncover the 

fundamental physical similarities that describe the pounding oscillators. This is 

achieved by implementing the theory of dimensional analysis which offers a lucid 

interpretation of the response. This paper concentrates on bringing forward and 

explaining the physical similarities of the earthquake induced pounding between 

adjacent structures. In particular, the present analysis concerns structures which can 

be adequately modeled as single degree-of-freedom (SDOF) elastic oscillators. For 

instance, adjacent segments of segmented bridges, which due to their strong columns 

(the modern practice in the design of segmented bridges) are often expected to remain 

elastic even for motions which are much more intense that the design earthquake. 

While the elastic SDOF model is an elementary model, the pounding response of 

adjacent SDOF oscillators is, as this paper shows, already complicated. Moreover, 

with the selection of the same models that were used in references [4, 5, and 6] the 

study illustrates directly the merits of adopting formal dimensional analysis and helps 

in resolving the aforementioned conflicting conclusions. The dimensionless 

parameters that govern the response of the elastoplastic pounding oscillator, which is 
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a more representative model for seismically isolated structures, are also presented 

herein. 

The application of the proposed method hinges upon the existence of a distinct 

time scale and a length scale that characterize the most energetic component of 

ground shaking. Such time and length scales emerge naturally from the 

distinguishable pulses which dominate a wide class of strong earthquake records; they 

are directly related with the rise time and slip velocity of faulting and can be formally 

extracted with validated mathematical models published in the literature. 

The minimum number of input parameters of such models is two and they have an 

unambiguous physical meaning. These are either their acceleration amplitude, αp, and 

duration, Tp or the velocity amplitude, vp, and duration, Tp. Figure 1 shows the time 

histories of the Rinaldi station record, from the 1994 Northridge earthquake, the OTE 

record from the 1995 Aegion earthquake, and the Bucharest record of the 1977 

Vrancea earthquake, are also shown. In all three records the pulse duration, Tp, and 

the pulse acceleration, αp, are shown. The current established methodologies for 

estimating the pulse characteristics of a wide class of records are of unique value, 

since the product αp Tp
2
  Le is a characteristic length scale of the ground excitation 

and is a measure of the persistence of the most energetic pulse to impose deformation 

demands, see for instance Dimitrakopoulos et al. [17] for the pounding oscillator and 

Makris & Black [18-20], Makris & Psychogios [21] for yielding oscillators. 
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Figure 1 Earthquake records with distinguishable acceleration pulse.  
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MATHEMATICAL FORMULATIONS ON IMPACT AND CONTACT 

All physically feasible unilateral contact configurations (impacts, continuous 

contacts, and detachments) are mathematically treated as inequality problems; namely 

Linear Complementarity Problems (LCP) following the non-smooth approach 

proposed by Pfeiffer & Glocker [22]. In the classical form, a LCP is a system of linear 

equations:  y Ax b , with matrices A and b known, and y and x the unknown 

vectors under determination, for which the following additional complementarity 

conditions hold: 0, 0, 0T  y x y x  [22, 23].  

According to Leine et al. [23], two similar LCPs are formulated at the velocity 

level in order to capture the velocity jumps associated with the two impact phases 

(compression and expansion) and one additional LCP is formulated at the acceleration 

level for the treatment of continuous contacts and detachment. In the following, the 

aforementioned LCPs are presented in a simplified version, since in the present study, 

contact is assumed to be frictionless and centric. 

Continuous Contact and Detachment: Assuming the impenetrability constraint of the 

contact surface holds, then the relative distance in the normal (to the contact surface) 

direction of a contact, 
Ng , must always satisfy the inequality constraint: 0Ng . Every 

time, the normal distance vanishes, ( ) 0t Ng , contact takes place. With respect to the 

normal direction of a contact, there are two types of contacts: the instantaneous 

(impacts) and the continuous (finite duration) contacts which appear when 

additionally the relative velocity of the contacting bodies, ( ) 0t Ng , vanishes. This 

can be either due to totally plastic impact, or successive inelastic impacts. A 

continuous contact results in a contact force, λ, which can be calculated as a Lagrange 

multiplier that must satisfy the constraint: 0   due to the unilateral character of a 

contact, the pertinent LCP is formulated on the acceleration level as in [23]: 

, 0, 0, 0T -1 T -1     N N Ng W M h W M W λ g λ g λ    (1) 

where: M is the mass matrix, W is the direction vector of the constraint contact force, 

λ, which can be considered as a Lagrange multiplier and h is the vector of the non-

impulsive forces. 

Impact: Compression - Expansion Phases: At the end of the compression phase of 

impact, the relative velocity, NCg , and the impulse, NCΛ , in the normal direction of 

the contact, form a LCP which can be written as: 
1 , 0, 0, 0T

NC NC NA NC NC NC NC

     g W M W Λ g g Λ g Λ  (2) 

where sub-index N stands for the normal direction of contact, sub-indices C, E and Α 

stand for compression, expansion (see Eq. 3) phase and the time instant contact 

begins, respectively, Λ, stands for impulse of contact.  

Similarly, the relative velocity at the end of the expansion phase, NEg , forms a LCP 

with the impulse, NP NE N NC Λ Λ ε Λ , which can be written as: 

 1 1 , 0, 0, 0T T

NE NP N NC NC NE NE NE NE

       g W M W Λ W M Wε Λ g g Λ g Λ  (3) 

The contact law utilized in the present study is that of Poisson’s, according to 

which the coefficient of restitution, εΝ, is the impulse ratio of the approach and 

expansion phases. It is reminded that Newton’s coefficient of restitution is taken as 

the ratio of the (relative) contact velocities after, NEg , and before, NAg , impact: 

NE N NA g ε g . However, as shown in [22], Poisson’s model yields more realistic 

results than Newton’s, for the more complex case of multi-contact configurations.  
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ELASTIC OSCILLATORS WITH UNILATERAL CONTACT SUBJECTED 

TO BASE EXCITATION 

Two configurations, of two and three elastic SDOF pounding oscillators in a row 

(Figure 2), are considered in the present study. The equation of motion, taking into 

account contact phenomena, of the mechanical systems of Figure 2 can be written as: 

( )gu t   Mu Cu +Ku- W λ Md        (4) 

where u is the relative, to the ground, response displacement vector, ug is the ground 

displacement, M, C and K, are the mass, damping, and stiffness matrices, 

respectively, W is the direction vector of the constraint contact force λ and d is the 

unit vector. For the most general case of the three oscillators (Figure 2) these matrices 

specify to: 

 1 0 2u u uT
u ,  1 0 2, ,diag m m mM ,  1 0 2, ,diag c c cC ,  1 0 2, ,diag k k kK , and 

 1 1 1T
d . For clarity and convenience, the oscillator whose response is discussed 

in detail in each configuration, is in all cases denoted with subscript ‘0’.  

 There are two potential contact points among three adjacent oscillators in a row: 

contact ‘1’ between the first and the second oscillator in the row and contact ‘2’ 

between the second and the third (Figure 2 bottom). The normal distances of the two 

contacts, are respectively: 1 1 0( ) ( ) ( )Ng t u t u t   , 2 0 2( ) ( ) ( )Ng t u t u t    and thus 

the pertinent direction vectors become:  1 1 1 0T  W  and  2 0 1 1T  W . 
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Figure 2 Configurations of pounding structures subjected to pulse-type ground motions (top). 

Simple (bottom left) and double (bottom right) unilateral contact configuration of three 

oscillators.  
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 Referring to unilateral contact, which herein is assumed as centric and frictionless, 

a fundamental difference among the two and the three pounding oscillators’ 

configuration should be noted. In the three pounding oscillators system, there is the 

likelihood of a multiple (double) contact, which occurs when both normal distances of 

the contacts vanish ( 1 2 0N Ng g  , Figure 2 bottom). Furthermore, these two 

simultaneous contacts may be of a different type (impact / continuous contact).  

 A refined approach to account for these complexities is that of Pfeiffer & Glocker 

[22], in the form presented more recently by Leine et al. [23], see also 

Dimitrakopoulos et al. [17]. 

 

IMPLEMENTATION OF DIMENSIONAL ANALYSIS 

The parameters governing the response of three pounding oscillators subjected to 

ground excitation (Figure 2) are: a response quantity of interest e.g. the maximum 

response displacement of the centric oscillator umax, the angular frequency, mass, and 

damping ratio of the associated oscillators: ω0, m0, ξ0, ω1, m1, ξ1, and ω2, m2, ξ2, 

respectively, the acceleration amplitude and the angular frequency of the pulse, αp and 

ωp= 2π/Τp (Figure 1), the initial distance between the oscillators “gap”, δ, and the 

coefficient of restitution, εΝ . Thus the response function can be written as: 

max 0 1 2 0 1 2 0, 1, 2( , , , , , , , , , , )p p Nu f m m m a              (5) 

This results in a group of 14 characteristic variables. In order to reduce the number 

of parameters under investigation, it is assumed that viscous damping in all oscillators 

is the same (ξ = 5%). This leaves 11 variables which involve 3 reference dimensions, 

those of length [L], time [T] and mass [M]. According to Buckingham’s “Π” theorem 

the number of independent dimensionless Π-products is now: (11 variables) – (3 

reference dimensions) = 8 Π-terms.  

 Herein, the characteristics of the pulse excitation, αp and ωp = 2π/Τp, and the 

properties of the reference-oscillator, ω0, m0 and ξ0  are selected as repeating 

variables, since we desire to normalize the non-linear response including contact, to 

the energetic length scale of the excitation, Le = αp/ωp
2

. Accordingly, Eq.(5) reduces 

to: 
2 2

max 0 0 0 0 0

1 1 2 2

, , , , , ,
p p

N

p p p

u m m

a a m m

   
 

  

 
   

 

      (6) 

or 

1 2 3 4 5 6 7 8( , , , , , , )                (7) 

with: 
2 2

max 0 0 0 0 0
1 2 3 4 5 6 7 8

1 1 2 2

, , , , , , ,
p p

N

p p p

u m m

a a m m

   


  
                (8) 

Note that, from these 8 Π-products of Eq.7, only the six first, Π1 to Π6 (Eq. 8), are 

needed in order to describe the response of the two pounding oscillators shown in 

Figure 2, as well as, the response of a symmetric configuration of three pounding 

oscillators wherein the outer oscillators are identical, ω1= ω2, m1= m2, which will be 

of interest in a later section. Also, observe that, in contrast to the single pounding 

oscillator case [17], masses cannot be eliminated from equation (6) unless m0 = m1 = 

m2=m, which is a very special case. 

The dimensionless product, Π1 = umaxωp
2
/ap which is the dependent variable, is the 

maximum response displacement normalized to the persistency of the pulse Le = 



 7 

ap/ωp
2
. Π2 = ω0/ ωp, is the natural frequency of the examined oscillator divided by the 

frequency of the pulse and the dimensionless 4 N   term is the coefficient of 

restitution, which expresses the inelasticity of impact; with εΝ = 1 corresponding to a 

perfectly elastic, and εΝ = 0 to a perfectly plastic, impact. 

The additional dimensionless products which appear when examining a system of 

more than one SDOF pounding oscillator, are the frequency ratios and the mass ratios 

of the involved oscillators, e.g. Π5 = ω0/ω1 = Τ1/Τ0 and Π6 = m0/m1. In later sections of 

the present paper, the role of these terms is investigated in depth. 

The product Π3= δωp
2
/ap is a novel proposition which suggests that the size of the 

gap “δ” can be scaled to the length scale of the excitation (αp/ωp
2
 [m]) which is a 

measure of the persistence of the energetic pulse (Makris & Black, [18-20]). The most 

decisive feature of the Π3-term approach is that it brings forward the property of self-

similarity for configurations with multiple SDOF oscillators. For instance, Figure 3 

shows the response of the central oscillator in an asymmetric configuration of three 

pounding oscillators, subjected to one-cycle displacement pulses of different intensity. 

Figure 3 illustrates the self-similar response spectra for a constant dimensionless gap, 

Π3, and different excitation intensities (Figure 3 left column), which collapse to a 

single-master curve, when expressed in the dimensionless Π- terms (right column). 

Response curves for the no-contact case are also included in Figure 3 for better 

interpretation of self-similarity, since it is a well known property of linear elastic 

response. 

Note that, had the gap size, δ, been scaled to the relative displacement of the hinge 

when contact of the adjacent structures does not occur, i.e. the more common way of χ 

= δ/uNoPounding ratio, the two contacts would yield different dimensionless gap values, 

χ1 and χ2 respectively. On the contrary, using the dimensionless Π3 product, a single 

value is needed to describe all contact points with the same gap size, δ; hence a 

superior presentation of the response is achieved. 

 
 

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Π
2
= ω

0
/ω

p

Π
1
=

 u
m

a
x
ω

p2
/α

p

α
p
 = 0.2g/0.5g/0.8g 

(Contact)

α
p
 = 0.2g/0.5g/0.8g 

(No Contact)

2

0 0
3 5 7

1 2

0 0
4 6 8

1 2

0.1 0.7 0.9

0.6 1.2 0.8

p

p

N

a

m m

m m

  

 



        

        

 
δ 

εΝ 
 ω0 

 ξ0 
ω1 

 ξ1 

m0 m2 m1 

δ 
u 

ω2 

ξ2 

  

gu
 

0 1 2 3 4
0

5

10

15

20

25

30

ω
0
/ω

p
(=Π

2
)

u
m

ax
 (

c
m

)

α
p
 = 0.8g (No Contact)

α
p
 = 0.5g (No Contact)

α
p
 = 0.2g (No Contact)

α
p
 = 0.8g

α
p
 = 0.5g

α
p
 = 0.2g

 

Tp 

αp 
 

 
Figure 3 The self-similar response spectra for different excitation intensities and a given 

dimensionless gap value, Π3, (left) collapse to a single curve when expressed in the proposed 

dimensionless Π – terms (right). (heavy lines= contact, light lines = No contact). 
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Following the same reasoning, the concept of dimensional analysis can be applied 

to more general yielding systems. For instance, if uy is the yield displacement and 

Q/m the characteristic strength of an elastoplastic oscillator pounding against a rigid 

barrier (Figure 2 top left), then its response function can be written as:  
2 2 2

max

max ( , / , , , , ) , , ,
p p y p

y N p p N

p p p p

u uQ
u f u Q m a

a ma a a

  
    

 
     

 

  (9) 

 

The dimensional response analysis of the elastoplastic and bilinear pounding 

oscillators will be the subject of a future study. 

 

 

THE INFLUENCE OF THE OSCILLATORS’ STIFFNESS RATIO ON THE 

RESPONSE 

The influence of the frequency ratio, Π5 = ω0/ω1= T1 /T0, of the two pounding 

oscillators is first examined, considering the special case of equal masses, Π6 = m0/m1 

=1, (Figure 4 and Figure 5). Since the mass is considered the same for the two 

structures, it follows that the difference in frequencies is caused by different stiffness, 

thus: 

0 0 01
6 5

1 1 0 1

1
m k

if
m k






       


       (10) 

 

Figure 4 and Figure 5 show the response spectra of the oscillator with subscript ‘0’ 

for the case of equal masses, Π6 = m0/m1 =1, and a wide rage of frequency ratios of 

the two oscillators, Π5 = ω0/ω1, from 0.1 to 10. In all cases shown, the gap size is 

scaled to the energetic length of the pulse and is identical, namely: Π3 = δωp
2
/ap = 0.5. 

As the frequency ratio, dimensionless Π5 product, increases from 0.1 to 10, the 

oscillator under consideration varies from the most flexible (left column) to the most 

stiff (right column) of the system, thus revealing the influence of the stiffness ratio in 

all cases.  

The two SDOF pounding oscillators configuration is not symmetric, hence there is 

a distinction whether the pulse is of normal or reverse directivity (Figure 4 and Figure 

5), with respect to the oscillator under examination, denoted with subscript zero. In 

both Figures (4 and 5) the left column refers to the results of the most flexible 

oscillator, Π5 = ω0/ω1<1, and the right column to the results of the most stiff, Π5 = 

ω0/ω1>1, while the first row corresponds to a forward displacement (one sine 

acceleration) excitation pulse and the second to a forward and back displacement (one 

cosine acceleration) pulse. Again, response without contact, denoted with a light line, 

is included for comparison.  

It is recalled that for Π5 =ω0/ω1 the two structures are oscillating in phase, hence 

maintaining their relative distance, and since no phase difference or spatial variation 

is considered for the ground excitation, no contact takes place. So, as the frequency 

ratio of the two oscillators approaches unity (Π5 →1), the behavior of the oscillator 

under consideration, converges to the response without contact.  
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Figure 4. Self-similar response spectra (master curves) for the mechanical system of two SDOF 

oscillators subjected to a one sine (top) and one cosine (bottom) acceleration pulse of normal 

directivity. Left column corresponds to most flexible - right column to most stiff among the two 

oscillators, and results are shown for several stiffness ratios. 

 

Furthermore, Figure 4 and Figure 5 disclose that due to unilateral contact, the 

response of the most flexible, as well as of the most stiff, among the two oscillators is 

both amplified and deamplified, depending on the corresponding range of the 

frequency spectrum (Π2 =ω0/ωp values). Observe in Figure 4 and Figure 5 that the 

maxima of the flexible oscillator occur at the resonant frequency of the other, more 

stiff, oscillator. For instance, if the frequency ratio of the two oscillators is Π5 = ω0 

/ω1 = 0.5, the flexible oscillator presents a maximum displacement (see Figure 4 and 

Figure 5) for Π2 = ω0 /ωp = 0.5 which corresponds to the resonant frequency of the 

stiffer oscillator (ωp = ω1 = 1.0, Π2 =Π5). A similar trend can be identified for the 

stiffer oscillator, since its response displacement (in dimensionless terms) is also 

amplified at the resonant frequency of the more flexible oscillator, even though it 

preserves its global maximum near its original resonant frequency. Figure 6 presents 
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two time history shows where the response of both the flexible and the stiff oscillator 

are accentuated for different excitation frequencies due to contact. 
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Figure 5. Self-similar response spectra (master curves) for the mechanical system of two SDOF 

oscillators subjected to a one sine (top) and one cosine (bottom) acceleration pulse of reverse 

directivity. Left column corresponds to most flexible - right column to most stiff among the two 

oscillators, and results are shown for several stiffness ratios 

 

 

 

Tp 

αp 

Tp 

αp 

Tp 

αp 

 



 11 

 
δ 

εΝ 

ω0 

ξ0 

m0 m1 

u 

ω1 

ξ1 

 

gu

t 

Tp=2π/ωp 

αp 
 

gu

 
 

Π3 = δ ωp
2/αp = 0.1 

Π4 = εΝ = 0.7 

Π6 = m0/m1 =1 

 

0 1 2 3 4 5 6 7
-4

-2

0

2

4

uω
p2
/α

p

t /T
p

Contact '0' Contact '1' No Contact '0' No Contact '1'

Π
2
=ω

0
/ω

p
=0.29    Π

5
=ω

0
/ω

1
=0.25

 

0 0.5 1 1.5 2 2.5

-0.5

0

0.5
uω

p2
/α

p

t /T
p

Π
2
=ω

0
/ω

p
=3.0  Π

5
=ω

0
/ω

1
= 4.0

 

 

Figure 6 Amplification of the response due to contact both for the flexible (top) and the stiff 

(bottom) oscillator of the system   

 

These counter-to-wide-perception conclusions, supplement what is often stated in 

literature, that impact amplifies the response of the stiffer oscillator and suppresses 

that of the more flexible (e.g. Chau & Wei [5] among others). However, when two 

oscillators of similar mass collide, it is their velocities that determine whether their 

response will amplify or deamplify, since contact is governed by impulse. Stiffness 

interferes only indirectly by determining frequency and thus affecting the velocity of 

oscillation. Accordingly, the response of a single pounding oscillator is drastically 

amplified in the flexible structures region, when colliding with a rigid stationary wall 

[17], which represents the limit case of the phenomenon, where a flexible oscillator 

collides with a much stiffer one.  

Some of these trends are not easily observable for forward displacement (sine 

acceleration) pulses, but note that due to the impulsive nature of these excitations, 

conclusions regarding resonance are not easy to draw, even in the case of an 

unconstrained elastic oscillator. It is recalled that the maximum response 

displacement, in the dimensionless Π-products, of an unconstrained elastic oscillator 

excited by a sine acceleration pulse does not occur near the resonant frequency [19].  

The aforementioned observations confirm that there are three distinct spectral 

regions, with respect to the effect of contact on the response of two SDOF pounding 

oscillators (Figure 7). Depending on the system’s characteristics, the thresholds of 

each region vary, but as a general trend, there is a spectral region wherein contact 

amplifies the response, an intermediate region near the (original) resonance 

frequency, Π2  1, wherein contact deamplifies the response of both stiff and flexible 

oscillators, and a third region wherein contact does not virtually affect the maximum 

response displacement. Similar observations about three spectral regions, referring to 

the same mechanical configuration, were also made by DesRoches & Muthukumar 

[15].  
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Figure 7 Self-similar response spectra (master curves) for the mechanical system of three SDOF 

oscillators subjected to, a one sine (top) and one cosine (bottom), acceleration pulse. Left column 

corresponds to most flexible - right column to most stiff among the two oscillators, and results 

are showted for several stiffness ratios. 

 

Comparing with the single pounding oscillator, the difference is that the regions 

where contact accentuates and suppresses the response, depend on whether the 

oscillator is the most stiff or the most flexible of the two. In particular, the response of 

the most flexible oscillator is amplified in the low range of the frequency spectrum 

(flexible structures, small Π2=ω0/ωp = Τp/Τ0  values), whereas the response of the 

most stiff among the two oscillators is amplified in the upper range of the frequency 

spectrum (stiff structures, large Π2=ω0/ωp = Τp/Τ0  values), and vice-versa, for the 

spectral region wherein contact does not alter the response of stiff or flexible 

oscillators. Closing this section it is emphasized, that the same spectral regions are 

also observable for the configuration of three pounding oscillators (two-sided 

pounding) as Figure 7 illustrates.  
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COMPARISON OF ONE-SIDED AND TWO-SIDED POUNDING 

In order to investigate two-sided pounding (which is a common case in bridges, as 

well as in buildings in series) with the simplest configuration possible, a special 

symmetric configuration of three SDOF oscillators in a row, where the two outer 

oscillators are identical and interact with the centric one which has different 

characteristics is considered. Comparing the response of the reference oscillator, 

denoted with subscript zero, of the symmetric three oscillators’ pounding 

configuration with the asymmetric two oscillators’ pounding configuration (Figure 4, 

Figure 5 and Figure 7), reveals the difference between single and two sided pounding. 

The most notable difference in the case of two-sided pounding is the substantially 

smaller amplification of the maximum response displacement, particularly for flexible 

oscillators. This is due to the bilateral hindering of the response in case of two-sided 

pounding, which is more pronounced for more flexible structures. For the same reason 

two-sided pounding suppresses more drastically the response of stiff structures near 

their resonant frequency. 

Another interesting trend due to pounding, is the period shift effect, towards lower 

frequencies, which is as pronounced for two-sided pounding as for one-sided. 

Consequently, the response of flexible structures may be more vulnerable for 

excitations with very different predominant frequencies from their unconstrained 

natural frequency. Or, in other words, that a short period excitation may be more 

crucial for a structure if pounding with an adjacent stiffer structure occurs. 

 

THE ROLE OF m0/m1 RATIO 

As emphasized in the Introduction, conflicting conclusions can be found with respect 

to the mass ratio (e.g. [15], [8], [16]) The purpose of the following discussion is to 

reassess the significance of mass ratio (Π6) on the response of oscillators with 

unilateral contact.  

Figure 8 and Figure 9 show the response spectra for constant frequency ratios, Π5 = 

ω0/ ω1, and dimensionless gaps, Π3= δωp
2
/αp, but different mass ratios, Π6= m0/ m1, of 

the two oscillators. The main trend may be that, the smaller the mass ratio of the 

oscillators is, the higher the deamplification of the lighter oscillator’s response (the 

one with the smaller mass), in agreement with Anagnostopoulos & Spiliopoulos [8]. 

However, very interesting counter-intuitive exceptions are also observed where the 

response of the lighter oscillator is deamplified. The explanation for this ‘counter 

intuitive’ behaviour, is that the velocity of the lighter oscillator is more drastically 

reversed by impact. As a further consequence, if this is combined with a change in 

sign of the ground excitation, the lighter oscillator is subsequently decelerated and 

hence it exhibits smaller response displacements. Similar counter intuitive responses 

which are also due to the accelerating and decelerating sequents of the pulses have 

been identified by Makris & Roussos [24] when studying the rocking response of 

rigid structures. 

In summary, it is concluded that the mass ratio is of major importance in the 

response of the pounding oscillators, even when their frequencies are comparable, e.g. 

Π5 =ω0/ω1 =0.75 or 1.33 (Figure 8 and Figure 9), in agreement with the nature of 

contact phenomena and in particular impact, which depends on the colliding bodies’ 

impulses. In the following section, the mechanism through which the mass ratio 

affects the response of pounding oscillators is further elaborated. 
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Figure 8 Self-similar response spectra (master curves) ratios of a stiff oscillator for different mass 

ratios. Rows correspond to different pulses and columns to different directivity. 
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m0/m1, examined ranged from 0.1 to 10, without proper justification. From a practical 

point of view, it is probably clear that this is the range, i.e. two orders of magnitude, 

of values with practical significance. However, the underlying concept with great 

physical significance is that of ‘intermediate asymptotics’ (Barenblatt, [3], [25]). In 

order to illustrate the mathematical representation of the notion of ‘intermediate 

asymptotics’, let there be a phenomenon of interest with two limit values of a 

governing parameter x, say x1 and x2, which differ substantially. Symbolically: 

1 2x x            (11) 
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then the asymptotic representation of specific properties of the phenomenon in the 

range:  

1 2x x x            (12) 

which corresponds to values large enough in comparison with the lower limit x1, such 

that (x/ x1 →∞), but at the same time small enough compared to the upper limit x2, 

such that (x/ x2 →0) is called ‘intermediate asymptotics’ [3], [25].  
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Figure 9 Self-similar response spectra (master curves) ratios of a flexible oscillator for different 

mass. Rows correspond to different pulses and columns to different directivity. 

 

It is in these intermediate asymptotic states that self-similar solutions are usually 

encountered. Indeed, this seems the case for the problem of two SDOF pounding 

oscillators as well. It is in this intermediate range, from 0.1 to 10, of frequency (Π5) 

and mass (Π6) ratio, that self-similarity governs the response (Figure 10). In the limit, 

i.e. when Π5 and Π6 tend either to zero (0) or infinity (∞) the mechanical system of 

the two oscillators lacks physical interpretation and one must resort to other 
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configurations, as the SDOF pounding oscillator [17] in order to study the 

phenomenon.  

This leads to the noteworthy remark that, the mechanical configuration of the two 

SDOF pounding oscillators with unilateral contact can be considered as the natural 

generalization of the one SDOF oscillator (Figure 2), or vice versa, that the behavior 

of the SDOF pounding oscillator is yielded from the limit case configuration of the 

two SDOF oscillators when Π5 = Π6 = 0. As a closing remark, note that the exact 

same reasoning holds true for the dimensionless spectral frequency, Π2 = ω0/ωp, as 

well. Substantially high Π2 values, lead to a static progress of the phenomenon, 

whereas for very low Π2 values small perturbations yield unpredictable results. 

 

INCOMPLETE SIMILARITY  

Consider a physical phenomenon described by a general relationship of the form of 

Eq. 7. The special case of a complete similarity or similarity of the first kind [3], [25], 

is when the function (), tends to a non-zero finite limit when an independent variable 

Πi becomes small (or large). This means that the function () is no longer sensitive to 

the specific variable (Πi) and thus, this parameter, can be dropped from further 

consideration. However, such a limit does not always exist and hence no matter how 

small (or large) some variables become, they still affect the function and the 

associated physical phenomenon. Incomplete similarity, or similarity of the second 

kind, corresponds to the case where such a limit, with respect to the parameters under 

consideration, does not exist, yet, a scaling law does exist [3], [25], i.e. a law of the 

general form: 

1

B

iA               (13) 

In mathematical terms this reads: the phenomenon presents the property of incomplete 

similarity or similarity of the second kind with respect to the dimensionless parameter 

Πi under consideration.  

Finding a scaling law is of major importance when considering a physical 

phenomenon since, in most cases scaling laws do not appear by chance, even more 

they offer a lucid perception of the underlying physical mechanisms. In principle, the 

existence of such a scaling law, of the general form of Eq. 13, can be verified in two 

ways [3], [25], [26]. The first is analytically, using the associated equations that 

describe the physical phenomenon. The second is based on the appropriate processing 

of the experimental or numerical results. In this particular case, following the second 

path, the processing of the numerical results, already presented (see Figure 8 and 

Figure 9), unveils the existence of a scaling law between the dependent variable Π1 

and independent variable (Π6= m0/m1), or: 
2

max 0

1

B

p

p

u m
A

a m

  
  

 
          (14) 

The proper processing of the results, is based on the property of scaling laws to 

form straight lines when showted on the logarithmic plane ( 1 6ln ln   ).  

1 6ln ln lnA B            (15) 

thus, the power ‘B’ becomes the slope of the straight line on the logarithmic plane and 

the logarithm of coefficient A, the point where the straight line intersects with the 

logarithmic scale y-y. Also note that, if the slope of the straight line is zero, then there 

is no dependence between the parameter under consideration (e.g. Π1) and the 

governing parameter of the phenomenon (e.g. Π6). 
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Figure 10 Top: Self-similar response spectra for different mass ratio shown in Figure 8 and 

Figure 9. Middle: Incomplete similarity of the response with respect to mass ratio revealed in the 

lnΠ1 - lnΠ6 plane. Bottom: the scaling laws are shown in detail. 

 

Careful observation of Figure 8 and Figure 9 discloses the existence of three, 

almost straight branches on the lnΠ1 – lnΠ6 plane (Figure 10). From Figure 10 where 
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different lines correspond to distinct frequency ratios (Π2) it is evident that, one of 

those three branches, is horizontal (zero slope) while the other two are of negative and 

positive slope, respectively. The zero slope of the first branch, according to the 

proceeding discussion, indicates that the maximum response displacement Π1 is 

indifferent to the mass ratio Π6, which is totally reasonable since for these spectral 

frequencies (Π2 values) contact does not take place. 

The other two branches, however, are practically linear and hence unveil a scaling 

law (Eq. 13) that correlates the maximum response displacement Π1 with the mass 

ratio Π6. The branch with negative slope corresponds to the main trend, which is that 

the heavier oscillator exhibits smaller response, whereas the positive inclined slope 

corresponds to the counter-intuitive behavior, both described in a previous section. In 

mathematical terms this reads: the response presents the property of incomplete 

similarity with respect to mass ratio (dimensionless Π6 –product). The applicability of 

this scaling law should be further investigated in order to derive, if feasible, a closed-

form expression for equation (14).  

 

 

CONCLUSIONS 

The aim of the present paper is to elucidate the earthquake response of pounding 

oscillators, a subject characterized by large number of parameters for which 

conflicting conclusions have been presented in the past. The present study revisits the 

problem by using formal dimensional analysis in an effort to identify distinct physical 

similarities. 

The application of the proposed method hinges upon the existence of a distinct 

time and length scale that characterizes the most energetic component of ground 

shaking. It condenses the parametric analysis, since the number of dimensionless Π-

products that govern the response are three (3) less than the number of independent 

variables. Furthermore, it unveils the remarkable symmetry of self-similarity and the 

existence of a scaling law, hidden into the response. In particular, when the response 

is presented in terms of the dimensionless Π-products, response curves for any 

excitation level collapse to a single master curve, whereas response curves for 

different mass ratios and distinct frequency ratios follow, within an intermediate 

asymptotic state, a scaling law; the latter in mathematical terms is known as 

incomplete similarity. 

The present analysis also concludes that due to pounding, the response of the most 

flexible, among a pair of two oscillators, is amplified in the low range of the 

frequency spectrum; while the response of the most stiff oscillator is amplified in the 

upper range of the frequency spectrum. The existence of three distinct spectral regions 

with respect to the effect of pounding on elastic oscillators is confirmed both for the 

two and three pounding oscillators’ configuration. The practical significance of these 

observations is that real-life structures, such as colliding buildings or interacting 

bridge segments, may be most vulnerable for excitations with frequencies very 

different from their natural eigenfrequencies.  

Finally, the comparison of one-sided and two-sided pounding revealed that the 

amplification of the response in the case of two-sided pounding is substantially 

limited, yet, the period shift effect of pounding is as prominent as in the one-sided 

pounding, thus drastically altering the dynamic behavior of the mechanical 

configuration. 
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