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Abstract. The monitoring of properties of complex softwangstems can
provide the core functionality for detecting viatats of such properties.
However, the violations detection cannot be alwaysficient for the
preservation of the properties. Except for the d&ir, the explanations of the
occurrence of a violation could play significanterfor the preservation task. In
particular, diagnosis can indicate the cause(s} wiolation. Thus, diagnostic
information is necessary for preserving the praesrtiue to the support that
can provide for deciding on the appropriate counéarsure against a violation.
In this paper, we describe a process for diagnosurgime violations of
properties that we have developed as part of amentonitoring framework.
The process is based on a combination of abdudtiveporal and evidential
reasoning over violations of process propertiesesged in Event Calculus.

Keywords: Abductive reasoning, temporal constraints problddempster-
Shafer theory of evidence, Event Calculus.

1 Introduction

Monitoring properties of software systems at ruetins widely accepted as a
technique for increasing the resilience to depefitlafailures and security attacks
and several approaches have been developed to rsupsee [7] for a survey).
Although basic monitoring provides mechanisms fetedting violations of such
properties, it cannot always provide the informatibat is necessary in order to
understand the reasons that underpin the violatioa property and decide what
would be an appropriate reaction to it.

To appreciate the problem, consider the case @éfiafnraffic Management System
(ATMS), which consists of components (radars) thmahitor the traffic in different
air spaces. By monitoring the operations of an ATMSuntime, the availability and
integrity of its components (e.g. radars), and itifermation generated by and/or
exchanged between them might be ensured. For oestan property that can be
monitored in an ATMS is a property requiring thattases where there are more than
one radars covering a particular airspace and dnthese radars sends a signal
indicating that an airplane is in the relevantacse, every other radar that covers the
same space should also send a signal indicatingréisence of the plane in it and this
should happen within a certain time period afterrdceipt of the initial signal.
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In cases where this property is violated, knowimguwt the occurrence of the
violation itself is not sufficient for establishirige reasons why some radar has sent a
signal but the other has not. Clearly getting damgic information about these
reasons would be necessary for taking approprictieraas the violation may have
been due to different reasons, including the foithmw

» The radar that did not send the expected signaimediinctioning.

« The communication link between the radar that ditlsend the expected signal
and the monitor was malfunctioning or an intrudeptared the signal and
prevented it from reaching the monitor.

« The radar that sent the expected signal was maifuniicg or its identity was
faked by an intruder which sent a fake signal &rtionitor.

Thus, identifying the reason for the violationngportant for taking actions that could
restore the integrity of the operation of the ATMS.

In this paper, we present a diagnosis tool thathexe developed as part of the
monitoring framework described in [16]. This fram@Ww has been developed within
the European integrated research project SERENG gupport the monitoring of
security and dependability properties in distributand dynamically evolving
systems. The implemented monitoring framework sugpthe specification and
monitoring of properties expressed in Event CalskC) [15] as rules.

In particular, we present a newly developed extensof this framework
supporting the diagnosis of rule violations. Thevision of diagnostic information is
based on is the generation of all the possibleratae explanationsof the events
which are involved in the violations of rules, ahé assessment of the plausibility of
these explanations based on whether their effesteespond to events recorded
during the operation of the monitored system. Tég éharacteristic of our approach
is the use of abductive reasoning [2][9][10] foe theneration of explanations and
belief based reasoning [14] for the assessmentmépation plausibility.

The rest of this paper is structured as followsSkttion 2, we provide a brief
overview of the monitoring toolkit. In Section 3gvdescribe the different stages of
the diagnostic process. In Section 4, we overviglated work and, finally, in Section
5, we present conclusions and directions for futumek.

2 Monitoring framework

The core of our monitoring framework is a genengiae for checking violations
of properties expressed as EC rules of the foody— head The meaning of a rule
is that if its body evaluates to true, its head tnaliso evaluate to true. EC is a first-
order metric temporal logic language which can lsedufor representing and
reasoning abouéeventsand their effects on the state of a system ovee.ti@ur
monitoring framework rules are defined in termshaf standard EC predicates. These

include the predicates (Happens(e,® (Ib,ub)) which denotes that an instantaneous

evente occurs at some timewithin the time rangéR (Ib,ub), (ii) HoldsAt(f,t)which
denotes that a state (aka fluefntiplds at the start of the execution of a systemadnd



time t, respectively, (iii) Initiates(e,f,t) and
initiation or termination of a fluent by an e

Terminates(e,f,t)which denote the
vene at timet respectively, and (iv)

Initially(f) which denotes that a fluent holds at the starhefdperation of a system.

An example of a rule is:

Rule 1: Happens(signal(_r1, _a, _s),t1,R(t1,tI)HoldsAt(covers(_r1,_s),t1) (O r2)
HoldsAt(covers(_r2,_s), t13» Happens(signal(_r2,_a,_s), t2 ,R(t1, t1+5))

This rule expresses the condition about
the introduction and will be violated if there

the radlSTMS that we discussed in
islp a signalevent form one of the two

radars of ATMS that covers a specific airspacenotifrom the other radar.

3 Diagnostic process

As shown in Figure 1, the overall process of diajmgp the causes of rule violations

includes four stages, namely:

1. explanation generatiom which all thepossible explanationfer the individual
events that were reported to the monitor and hausexd the violation (referred
to as “violation observations” henceforth) are gated.

. explanation effect identificatiom which

the possible consequences (effects) of

the explanations of the violation observationsdegved by deduction

. plausibility assessmeim which the effe

cts of explanations are checkeaireg

the event log of the monitor to see if there arengéy that match them and could

provide supportive evidence for the ex
diagnosis generatiom which an overall
from the individual explanations

4.

planations
diagnosis for the violatiorgisnerated

The generation of explanations and their effecttages (i) and (ii) above is based on

a incomplete model of the behaviour of the

mondosgstem that is expressed in the

form of EC formulas calleédissumptionsin the following, we discuss the stages of

the diagnostic process in detail.
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Fig. 1. Diagnostic process

3.1 Explanation generation

The generation of explanations for violation obaéipns is based on abductive
reasoning. More specifically, given a sef events and fluents that are involved in
the violation of a monitoring rule, this stage bétdiagnostic process tries to find a
set ofexplanation formula® which, in conjunction the set of tlessumptiongbout
the system that is being monitored and the evéatsare known to the monitor at the
time when the explanation is required (collectiyekferred to agH theoryin the
following), entail Q. Formally, this is a search for a set of atomimfolas® that
satisfy the conditions:

(Cnd 1): THO @ |- Q, and

(Cnd 2):0f in @: predicate (f) APreds
where predicate (f)is the predicate of formulfand APredsis a set of abducible
predicates whose truth value can be establishgdbgrndbductive reasoning.

The search for explanations is based on a newlgldpged algorithm (see [17])
which starts from a violation observatiBrthat needs to be explained and tries to find
all assumptions of the forax B1 /... //Bn = H in TH whose headH can be unified
with P. When such an assumption is found, the algorithetks: (i) if the unification
of P with H provides concrete values for all the not time Jag&a of the predicates
B1, ..., Bnin its body, and (ii) if it is possible to derivercrete time ranges for the
time ranges of all these predicates by using GeDagezig's classiSimplexmethod,
which is revisited in [4]. If these conditions aatisfied, the algorithm instantiates the
predicatesB1, ..., Bnand identifies which of these predicates are oladde
predicates @-pred3, deducible predicatesD{pred9 or abducible predicatesA{
predg, assuming that these are disjoint categorieseadipates.

Then, the algorithm checks if each of tBePredsand D-predsin the body ofa
can be matched with some recorded event or defieed the events in the monitor’s
log and the known system assumptions, respectivelhere areO-predsand D-
predsthat cannot be verified via this check, the aldpnittries to find an abduced
explanation for them recursively. If such explaoas are for all the non verifie@-
predsandD-preds these explanations along with theredsthat were determined in
the current step of the explanation process arerteg as the possible explanation of
the initial violation observatioR. In cases, however, where there @®redsor D-
predsin the body ofa that can neither be verified nor explained by akidac the
explanation generation path usiagvill fail.

As an example of explanation generation, considaireRule 1 This rule would
be violated by the event (E7) in the event log ofigure 2
(Happens(signal(R1,A1,S1),7,R(7,7)) and the predicates
-Happens(signal(R2,A1,S1),t,R(7,12)) HoldsAt(covers(R1,51),7) and
HoldsAt(covers(R2,S1),Which can be derived from this log. More specifigathe
predicate -Happens(signal(R2,A1,S1),t,R(7,12Which denotes the absence of a
signal from radaR2in the time range from T=7 to T=12, is deduced sy principle
of negation as failurdNF) from the events (E4) and (E8) that were resgtifrom



radarR2 at T=1 and T=13 as soon as the monitor receive} (H8s is because no
other event has been received fr&r2 between these two time points. Also the
predicatesHoldsAt(covers(R1,S1), AndHoldsAt(covers(R2,S1), tan be deduced
from events (E1) and (E2) in Figure 2, which dertbtd radars R1 and R2 cover the
airspace Sl initially, and the absence of any esigmifying the repositioning of any
of the two radars until the time point T=7 when thenitor receives the signal for the
presence of aircraft Al in S1 from R1 (this dedurttis based on the axioms of EC
[12]). To explain the violation, the predicateppens(signal(R1,A1,S1),7,R(7,7))
and-Happens(signal(R2,A1,S1),t,R(7,18¥8ed to be explained individually.

(E1) Initially(covers{R1,51).0) [captor-0]

(E2) Initially(covers{R2,51).0) [captor-0]

(E3) HappensichangeOfLandingapproach(AR-a,52),0,R(0,0))
[captor-AR-a)

(E4) Happensisignal(R2,42,52),1, Ri{1,1)}), [captor-R2]

{ES) HappensichangeOfLandingApproachiaAR-a,51),2,Ri2,2))
[caplor-AR-a])

({EG) Happens{permissionRequesi{41,51),3,R(3,3)) [captor-0]

(ET) Happens(signal(R1,A1,51),7,R(7.7}) [captor-R1]

(E2) Happens(signal(R2,A5,51),13,R{12,12)) [captor-R2]

Fig. 2. ATMS event log

Assuming that the following assumptions are knoboud the ATMS:

(A0) Initiates(_el,_f),t1,R(t1,t1))1 -0 e2,t2:Terminates(_e2,_f),t2,R(t1,t12) HoldsAt(_f,t2)

(A1) Happens(inspace(_a,_s),t1,R(t1,t1))HoldsAt(covers(_r,_s),t1}> Happens(signal(_r,_a,_s),t2,
R(t1,t1+5))

(A2) Happens(inspace(_a,_s),t1, R(t1,t1)}} Happens(permissionRequest(_a,_s), t2, R(t1-20,t1-1))

the search for an explanation ldéppens(signal(R1,A1,S1),7,R(7,WiJl detect that
this predicate can be unified with the predicaieppens(signal(_r,_a,_s), t2,
R(t1,t1+5))in the head of assumption (Al). The unificationtleése two predicates
will be { r/R1, _a/Al, s/S1and the linear constraint system generated fotithe
variable t1 in (A1) will include the constraintst 7 and 7< t1 + 5. Thus, since the
non time variables in the body of (Al) are covetwd the unification and the
constraintsit< 7 and 7< t1 + 5 determine a feasible time range for t1 (i.2,..[7]),
the conditions of the explanation generation preca® satisfied and the predicate
Happens(inspace(A1,S1),t1,R(2, Wil be generated as a possible explanation of
Happens(signal(R1,A1,51),7,R(7,7))  Subsequently, assuming that
Happens(inspace(_a,_s),t1,R(t1,tbglongs to the set of the abducible predicates
Apreds there will be no need for further elaboratioritof

Note, however, that ddappens(inspace(Al1,S1),t1,R(2,A¥s been generated from
assumption (Al), it can be returned as an explanatnly if the other instantiated
predicate of the body of (Al), nameloldsAt(covers(R1,S1),7)s True when t1
takes values in the range R(2,The latter predicate, however, can be deduced from
the log of Figure 2 and assumption (AO). Thhsppens(inspace(Al1,S1),t1,R(2,7))
becomes a possible explanatiorHappens(signal(R1,A1,S1),7,R(7,7))



3.2 Explanation effect identification

Following the generation of explanations, the r&gp in the diagnosis process is
the identification of the expected effects of thegplanations. These consequences
are needed to assess the plausibility of explamatibhe assessment of explanation
plausibility is based on the hypothesis that if €xpected effects of an explanation
match with events which have occurred and recomi@ihg the operation of the
system that is being monitored, then there is stjwgoevidence for the explanation.
This is because the events that match its expedtedts might also have been caused
by it.

The identification of the expected effects of aplaration is based on deductive
reasoning. Generally, for an explanatiéxp=P1 //..//Pnformed as a conjunction of
abduced atomic predicates, the diagnosis procesatas over the predicatBsthat
constitute it and, for each of these predicatesisfithe system assumptidds/’... /7
Bn = H which have a predicatg in their body that can be unified withand the rest
of the predicates in its body are alBwe For such assumptions, if the predicata
the head of the assumption is fully instantiated &s time range is determined,is
derived as a possible consequenckiof

Then, ifH is an observable predicate, i.e., a predicate ¢hatbe matched with
recorded eventd;l is added to the possible effectsfp. If H, however, is not an
observable predicate, the effect identification cess tries to generate the
consequences of recursively and, if it finds any such consequeribes correspond
to observable events, it adds them to the setefettpected effects dxp In this
way, the diagnosis process computes the transitbgire of the effects @&xp.

As an example of identifying the consequences glagations, consider again the
ATMS system and suppose that, in addition to assiomp (A1) and (A2), three more
assumptions are known for this system, namely:

(A3) Happens(inspace(_a,_s),t1,R(t1,t1}} Initiates(iinspace(_a,_s), inairspace(_a,_s),t1)

(A4) Initiates(iinspace(_a,_s), inairspace(_a,_s)/[flHoldsAt(landing_airspace_for(_s,_arpX),tty
Happens(landingRequest(_a, _arpX), t2, R(t1-10,t1))
(A5)Happens(changeOfLandingApproach(_arpX,_s),t1,R(t112))

I nitiates(changeOfLandingApproach(_arpX,_s), landing_airepéar(_s,_arpX),t1)

The formula (A3) above states that when an eveitdignifies the entrance of an
aircraft_ain an airspace sbecomes known a fluent calléthirspace(_a,_s¥hould
be initiated to signify the presence o& in _s unless this fluent already holds.
Formula (A4) states that when an aircradtenters an airspacesthat is used as the
final landing route for approaching an airpogrpX then the aircraft a must have
made a landing request for the particular airpathiw the last 10 time units before
entering_s

Using (A3) and (A4), it is possible to determinee thxpected effects of the
predicate Happens(inspace(A1,5S1),t1,R(2,7X)at was generated as a possible
explanation ofHappens(signal(R1,A1,S1),7,R(7,7ppecifically, assuming that the
airspaceS1lis the landing airspace of an airp8iiR-athen the entrance of the aircraft
Alinto S1should be preceded some request fAghto land inAR-aor, equivalently,
that a runtime evenHappens(landingRequest(A1,AR-a), t2, R(0&)puld have



occurred. Thus, the latter runtime event would ke expected effect of the
explanatiorHappens(inspace(A1,S1),t1,R(2,7))

Formally, from Happens(inspace(A1,S1),t1,R(2,7)3nd (A3) the predicate
Initiates(inspace(Al1,S1), inairspace(Al,S1),ddh be deduced fdt in [2,...,7]. As
the latter predicate, however, is not an observatadicate, the diagnosis process will
try to identify whether it has any observable causmces of its own. Whilst
searching for such conseugnedegtjates(inspace(Al,S1), inairspace(Al,S1),dan
be unified with the first predicate in the body @4). Furthermore, the other
predicate in the body of this assumption, namelye thpredicate
HoldsAt(landing_airspace_for(S2,AR-a),ddn also be deduced to Beue for the
time range [2,...,7] (i.e., for t in [2,...,7]) from e¢hevent (E5) in Figure 2 and
assumptions (A5) and (A0). Thus, both predicatethénbody of (A4) ar@rue and,
therefore, the predicatéappens(landingRequest(Al,AR-a), t2, R(Or6J)s head can
be derived from it. Assuming thitndingRequest(_a, _arpX9 an observable event,
Happens(landingRequest(A1,AR-a), t2, R(08i)) be established as an expected
effect of the explanatioHappens(inspace(A1,51),t1,R(2,7)))

3.3 Assessment of explanation plausibility

After deriving the expected effect®c={C1,...,G} of an explanation®, the
diagnosis process searches the event log of thétaniag framework to find events
that can match these effects. In this search, ahmattween an evestin the log,
which has been produced by an event capaptor(e)and has a timestamg &nd an
effect & (k=1,...,L) is detected only if: (i has been produced by the same event
captor as the captor th@tis expected to be produced from, &igan be unified with
Cxk, and (iii) the timestamp affalls within the time range df«.

It should be appreciated, however, that althoughpitesence of a matching event
for an expected effect of an explanation confirhet the effect has indeed occurred,
the absence of a matching event for an effect attithe of the search does not
necessarily mean that such an event has not odcamd, therefore, cannot cast
negative evidence in the validity of the conseqeefdis is because there might be
cases where, although an event that satisfiesahdittons (i)—(iii) above may have
occurred, this event might not have arrived yethat event log of the monitoring
framework due to communication delays in the “clhbetween the event captor
that captured the event and the monitoring fram&wbo cope with this problem, the
search for events that match an explanation e€@eetstablishes that no such events
have occurred if at the time of the search ther@igvente satisfying the conditions
(i)-(iii) above, and the last known value of thedl of Captor(G) (i.e., the timestamp
of the last event in the log that has arrived atrtionitor from this captor) is greater
than the upper boundary of the time variabl€of

Furthermore, there is a possibility of having ef$eC« for which, although no
matching event satisfying (i)-(iii) can be found the time of the search, the last
received event from the relevant captor has a temgs that is less than or equal to
the upper time boundary okCSuch effects cannot be confirmed or disconfirmed,
therefore, cast positive or negative evidencedfoifo cope with this uncertainty, we
use theDempster Shafer (DS) theory of eviderjtd] for the assessment of the



plausibility of an explanation, and define the ftime that gives the basic probability
assignment to the validity of an explanation as:

Definition 1: The basic probability of the validity of an expé#dion is computed by
the function:

me(Valid(®)) = |@ |/ |0 €|

me(-Valid(®)) = |©<| / |®°|

me(Valid(®@)-Valid(@))=| @€ - (O O )| / |@ €|
where

 ®%is the set of confirmed effects @, defined asb ¢* = {Ck/C« 00 ®c and
(k. (e 0 Log and Captor(e) = Captor(& and ts<te and te< tkus and
unifier(e,&) # 0)}

 ®Cisthe set of a set of disconfirmed effectsbptdefined asb ¢ = { Ck/C«k [
®° and -[k. (ed Log and Captor(e)=Captor(@) and tke<te and te< tkus
and unifier(e,&)# 0) and lastTime(Captor(&)> tkus}

e tws, kkusare the lower and upper boundaries of the timeeai@x, teis the
timestamp of the evert, and lastTime(Captor(@) is the timestamp of the
last event arrived fror@aptor(G) to the monitor.

According to this definition, the probability ofdhvalidity of an explanatio® is
measured as the proportion of the effect®dhat have been confirmed by events in
the event log at timé Also the probability of an explanatiah not being valid is
measured as the proportion of the effectddhat have been disconfirmed by events
in the event log. Note that, as in genebal* 0 ® [0 @ ¢, we will also have that
me(Valid(®)) + me(=Valid(®))< 1 and,meis not a classic probability function. As we
prove in [14], howevenm e satisfies the axioms dfasic probability assignmenis the
DS theory of evidence and, can therefore, be intéed as a function of this type.
Using me, the basic probability of the explanatiblappens(inspace(A1,S1),t1,R(2,7))
of the violation observatiotdappens(signal(R1,A1,S1),7,R(7,0f) Rule-1 can be
computed as follows. As discussed in Section 312, eapected effect of this
explanation iHappens(landingRequest(Al1,AR-a),t2,R(0,8))other expected effect
of the same explanation is the predic&tappens(permissionRequest(Al,S1), t2,
R(0,7)) The latter effect can be derived from assumpfAi?), according to which an
aircraft which enters a particular airspace at stime pointtl, must have requested
permission to enter the airspace before its enéramdd no more than 20 time units
prior to it.

Assuming then that the request for diagnosing ib&ation of Rule-1is made at
T=15, a search in the event log of Figure 2 will idBntithat the event
Happens(permissionRequest(A1,S1),3,R(3@)vides confirmatory evidence for
Happens(permissionRequest(A1,S1),t2,R(0br)) there is no matching event for
Happens(landingRequest(Al1,AR-a),t2,R(0,6))

Furthermore, ifHappens(landingRequest(A1,AR-a), t2, R(O/@fers to events
which are captured and transmitted by the eventoca@paptor-AR-athen at the time
of the searchT(=15), it will not be impossible to establish whetharevent matching
Happens(landingRequest(A1,AR-a),t2,R(0h@) occurred. This is because, as shown
in Figure 2, the last event received fromaptor-AR-a until T=15 is
Happens(changeOfLandingApproach(AR-a,S1),2,R(2a2)), therefore, the latest
known time for this captoidstTime(captor-AR-a))is 2. Thus, the basic probabilities



in the validity of the explanatiomb=Happens(inspace(Al1,S1),t1,R(2,Ajll be:
me(Valid(®)) = 1/2 = 0.5 me(=Valid(®)) = 0/2 = 0 andme(Valid(®) O -Valid(®)) =
1/2=0.5

3.4 Diagnosisgeneration

Having obtained the basic probability measurehéwalidity or not of individual
explanations, the next step in the diagnosis psoégsto construct an aggregate
explanation of the S&D rule violation. The constion of such aggregate
explanations is based on assessing the overadifiBlthegenuinenessf the events
that are involved in the violation. This assessnigfitased on the hypothesis that an
eventE, which is involved in a violation of an S&D rulis, genuine if and only if at
least one of the explanations that have been geaefar it is valid. Based on this
hypothesis, as we show in [17], the belief in trengneness ot (Gen(E)) is
measured as:

Bel(Gen(E)) = Bel{-=1,...nValid(®i))
= Xi0{,...,njand #2(— 1)+ {IT ior me(Valid (@i))} (F2)

Bel(-Gen(E)) = Bel{=1....n~Valid((®i))
31 i=1,...nme(=Valid(®i)) (F3)
wherebydi (i=1,...,n) are the alternative explanationgof

The beliefs in the genuinenessBfand its negation which are computed by the
above formulas are used to decide whether or nailation observation is confirmed
by its available explanations. In particular, themputation ofBel(Gen(E))and
Bel=Gen(E))generates a belief range for the genuineneds which, according to
the DS theory [14], is:

[Bel(Gen(E)),.., Pls(Gen(E))

whereby:Pls(Gen(E)) =1 - Bel(-Gen(E))(F4)

The lower bound of this range is the belief in ¢fauineness dt and the upper
bound of it is the maximum possible value thatlibéef in the genuineness Bfcan
take given the belief in the non genuinenesg&.ofhe upper bound for the belief in
the genuineness & is called in the DS theory, the “plausibility” dfi$ proposition
[14].

Gener at e_Vi ol ati on_Expl anat i on( R: Instance of Violated Rule )
For each predicate P in R Do
I f Pisnegated Then
Explanations = explain( -P)
El se
Explanations = explain(P)
End | f
Consequences = GenerateConsequences(Explanations)
[Bel(P),...,Pls(P)]J=ComputeBeliefRange(Consequences)
I f 1-PIs(P) < Bel(P) Then
I f Pis negated Then
UnconfirmedPredicates = UnconfirmedPredicates 0 {P}
El se
ConfirmedPredicates = ConfirmedPredicates 0 {P}
End if



End if
End For
[Bel ,(Body(R)),....Pls (Body(R))]=
=ComputeBeliefRangeofPredicateConjunction(Body(R) )
I f 1-PIs ,(Body(R) < Bel A(Body(R) Then
I f Head(R) in UnconfirmedPredicates Then
report the head predicate of the rule as the caus e of violation
End if
El se
I f Head(R) in ConfirmedPredicates Then
q r?port the body predicates of the rule as the cause of violation
End i
End if
For all P in ConfirmedPredicates Do report P as a confirmed predicate
and provide alternative explanations of P End for
For all P in UnconfirmedPredicares Do report P as unconfirmed predicate
and provide alternative explanations of P End for
END Gener at e_Vi ol ati on_Expl anati on

According to the Generate_Violation_Explanationoainm, E is confirmed only
if Bel(Gen(E)) > BeKGen(E))and the final diagnosis of the violation consistshe
confirmed and unconfirmed events of it and theplarations. It should also be noted
that if no explanation can be generated for a timlaobservation, the diagnosis
process attempts to find an explanation of its tiegaand, if this is possible, the
beliefs in the genuineness of the event are cakuilby using the (F4) formula and
the following one:

Bel(-Gen(E)) = Bel(GentE))) (F5)

Due to (F2)-(F5), the beliefs in the genuinenesshefpredicates involved in the
violation of Rule-1 are calculated from the altgivea explanations of the relevant
violation observations. Specifically, for the preate
P1=Happens(signal(R1,A1,S1),7,R(7,7)))there is a single explanation
®,,=Happens(inspace(A1,S1),t1,R(2,Wih basic probabilitiesn:(Valid(®,))}=0.5
and mg (=Valid(®1,))}=0, as we discussed earlier. ThuBel(Gen(P1))=r
(Valid(®4,))}=0.5 and Bel-Gen(P1))=m(=Valid(®,,))}=0. The predicates
P2=HoldsAt(covers(R1,S1),dnd P3=HoldsAt(covers(R2,S1),&re also confirmed
without using belief measures, as they are botlvel@ifrom the runtime events (E1)
and (E2) in Figure 2. FinallyP4= -Happens(signal(R2,A1,S1),t,R(7,12)s a
negated predicate and, since no explanation ofait be generated from the
assumptions of ATMS, the diagnosis process geremtplanations of its positive
form, i.e., Happens(signal(R2,A1,S1),t,R(7,12)following the same reasoning
process as in the case Rf, ®,,=Happens(inspace(A2,S1,t,R(7,1Wil be derived
as an explanation of P4 with basic probabilitiesmE(Valid(,,))} = 0.5 and me
(=Valid(®4,))} = 0. Thus,Bel(GentP4))=0.5andBel(=-GentP4))= 0 and, from (F4)
and (F5), Bel=Gen(P4))=0.5and Bel(Gen(P4))= 0 Thus, P4 is reported as an
unconfirmed predicate and, finally, as the causth@fule violation.

4 Related work

In the context of model-based diagnosis, diagnsisises on the detection of
system failures and typically involves the idewtfion of traces of system events that
have led to a failure (problematic event) usingoesta that recognise faulty



behaviour [1][5][8][12][18]. In [5], diagnosis isatried through the synchronization

of automata modelling the expected behaviour ofoaitared system and the events
captured from it. [8] has a similar but decentedispproach where synchronisation is
performed for individual system components and thggregated for the global

system. In [1][18], the problem of fault diagnosisnhcerning time, has been studied
by using timed automata to model systems.

Our approach is different from the above, as oaugois not the detection of the
cause of faulty behaviours (this is the subjeaarfier work described in [16]) but the
explanation of such causes in the presence of iptsiem and/or not trusted event
traces. Another difference between the work in rhdoesed diagnosis and our
abduction based explanation process is that owegrois based on Event Calculus for
modelling not the whole system but only the pragsrtwhich should be monitored,
and assumptions that could provide informationtegldo the monitored properties.

The generation of abductive explanations considet@mporal information is the
main focus of interest of the research work descriln [2] and [13]. In [2], a
temporal abduction algorithm is described which esakse of temporal constraints
associated with the observations and the formulaifadhe underlying domain theory.
In [13], the time ranges of the generated explanatiare calculated by the use of a
computation method based on linear constraintfaatisn, while uncertainty of the
explanations is treated by the use of probabilistssessment scheme based on
Bayesian inference [6].

Our approach as well draws upon work on temporafuetive reasoning
[2][3][10][15] and its applications to diagnosis][®, but is based on a newly
developed algorithm for abductive search with E@t thenerates all the possible
alternative explanations of a formula (unlike [H]), treats the time constraint
satisfaction problem as a linear programming pmoblend computes beliefs in
explanations using the DS theory. These beliefs @se used in order to rank
explanations and select some of them as the massiple. The choice of the DS
theory of evidence as the framework for calculatthg likelihoods of abduced
explanations has been dictated by the need togeptr¢he uncertainty regarding the
confirmation of the consequences of these explansitis we discussed in Section 3.3
and reason in the presence of this uncertaintyo,Alg using the DS theory, we avoid
the need to elicit the a-priori and conditional lpability measures which are required
by Bayesian inference [6].

5 Conclusions

In this paper, we have presented the extension fsthrmework supporting the
runtime monitoring of software systems which caovpde diagnostic information for
violations of monitored properties. The provisiohdéagnostic information is based
on alternativeexplanationsof events involved in violations of properties whiare
generated by abductive reasoning using a model hef monitored properties
expressed in Event Calculus. Our approach suppltststhe computation of beliefs in
the plausibility of explanations based on evidealbeut their expected effects that is
gathered from the event log of the monitored syst&more detailed account of our



approach and its implementation is given in [1Qurrently, we are conducting an
experimental evaluation of it in the context of usttial case studies of the
SERENITY project.
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