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Abstract
The majority of species are under predatory risk in their natural habitat and
targeted by predators as part of the food web. Through the process of evolution
by natural selection manifold mechanisms have emerged to avoid predation. As
Fisher argued, it is the ubiquitous presence of anti-predator adaptations which
shows that predation plays a significant role in the ecology and evolution of
ecosystems. These ecosystems are intrinsically complex which derives from the
high entanglement of organisms interacting in competitive relationships: the
prey is part of the predator’s environment and vice versa. As a result, the
evolution of predator and prey is best described as a co-evolutionary process of
predator-prey systems. It is common to classify anti-predator adaptations into
‘primary defences’ and ‘secondary defences’. Primary defences operate before
an attack by reducing the frequency of detection or encounter with predators.
Secondary defences, which are used after a predator has initiated prey-catching
behaviour, commonly involve the expression of toxins or deterrent substances
which are not observable by the predator. Hence, the possession of such sec-
ondary defence in many prey species comes with a specific signal of that defence.
This pairing of a toxic secondary defence and a conspicuous primary defence is
known as aposematism. Previous models mainly focused on questions of the ini-
tial evolution of aposematism in ancestrally cryptic populations. However, the
field has a renewed interest in questions beyond the initial evolution of apose-
matism such as: how conspicuous should a signal be, and how much should be
invested into secondary defence? Moreover, which factors influence evolutionary
stability of aposematic solutions. Within this context, the role of co-evolution
and the mechanisms of aversive learning are at the heart of the current research.
On the one hand, to explain stability and persistence of aposematic signals re-
quires a theory of co-evolution of defence and signals. On the other hand, the
role of the predator and details of the predator’s aversive learning process gained
renewed interest of the field. As the selective agent, aversive learning is an im-
portant aspect of predator avoidance and of the co-evolution of predator-prey
systems. In the first chapter, this thesis will review the literature on aposema-
tism and introduce the different selective pressures acting on aposematic prey.
The thesis will then identify open questions of interest around aposematism.
In the second chapter the thesis will focus on the perspective of the prey. The
introduction of a game theoretical model of co-evolution of defence and signal
will be followed by an adaptation of the model for finite populations. In finite
populations, investigating the co-evolution of defence and signalling requires an
understanding of natural selection as well as an assessment of the effects of drift
as an additional force acting on stability. In the third chapter the thesis will
adopt the perspective of the predator. It will introduce reinforcement learning
as an normative framework of rational decision making in a changing environ-
ment. An analysis of the consequences of aposematism in combination with
aversive learning on the predator’s diet and energy intake will be followed by a
lifetime model of optimal foraging behaviour in the presence of aposematic prey
in the fourth chapter. In the last chapter I will conclude that the predator’s
aversive learning process plays a crucial role in the form and stability of apose-
matism. The introduction of temporal difference learning allows for a better
understanding of the specific details of the predator’s role in aposematism and
presents a way to take the discipline forward.
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Chapter 1

Introduction.

This chapter will provide a general introduction to the biology of predator-
prey systems: I will start with the evolution of predator and prey and their
consequential co-evolution in predator-prey systems. The focus will then move
to mechanisms to avoid attack and how it results in a complex signalling system
called aposematism. I will present the scientific background to the emergence
of aposematism and lay out the open questions which motivate the following
chapters.

1.1 Predator-prey systems.

There are three fundamental principals which define any biological system.
These principals are: reproduction, selection, and mutation.

It has been long recognised that life comes in a profuse variety of shapes,
forms, and traits. But as vast as the differences are there are underlying similar-
ities which apparently connect all living things. These similarities are evidence
for their descent from common ancestors.

Modern evolutionary theory is the aggregate of many subsidiary ideas from
anticipation of nature to genuine interpretation of nature (Osborn, 1896). The
notion of joining diversity with similarity in an attempt to explain biological
systems goes all the way back to ancient Greek philosophy. In a time when
the world was considered to be static Anaximander suggested a dynamic and
changing world and is considered as evolution’s most ancient proponent. The
next great progress towards an inductive theory of evolution based on laws of
nature was by Lamarck’s transmutation theory of 1809. Lamarck proposed
that organisms adapt to their local environment through inherited changes over
generational time. But Lamarck did not provide a workable mechanism with
his theory and is better known today for his flawed principle of inheritance of
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CHAPTER 1. INTRODUCTION.

traits acquired by the parental generation from use or disuse. The heritability of
acquired characteristics was later called Lamarckism. Furthermore, Lamarck’s
transmutation theory was not able to change the prevailing concept of fixed
species as it was widely opposed for its lack of empirical evidence.

1.1.1 Darwinism and evolution by natural selection.

The situation changed dramatically with Charles Darwin. Charles Darwin was
a naturalist and sailed on board the ship Beagle around the world where he
collected and documented flora and fauna. It was his vast collection which made
him recognise the differences and similarities of species on an unprecedented
scale. He concluded his realisations with the writing of his book ‘On the origin
of species’. Darwin’s main achievement was to present a workable mechanism
based on empirical evidence: his theory has the same notion of natural evolution.
But in a crucially important difference, he proposed that the observed variation
in traits is innate and not acquired. Thus, the variation in traits results in an
unequal adaptation to the environment and, consequently, some organisms will
survive and reproduce more successfully. It has to be noted that Alfred Russell
Wallace formulated independently an almost identical theory.

In summary, the central points of modern evolutionary theory are: (i) or-
ganisms having innate variations in their traits and characteristics, (ii) well
adapted organisms are more likely to survive and reproduce, which (iii) leads
to better adapted organisms.

The focus of current research lays on the search for different factors of the
natural law called evolution. Interesting aspects of evolution are for example
the effects of sexual selection or the evolution in more complicated environments
where we observe the effects of interactions between species and organisms.

1.1.2 Co-evolution.

As a matter of fact natural environments are intrinsically complex. This com-
plexity derives on the one hand from the high entanglement of organisms inter-
acting in competitive relationships with each other. On the other hand, natural
environments are also defined by their dynamics of constant change. Thus,
evolution in natural environments is defined by the dynamic competitive rela-
tionships of organisms. Typically, evolution results in multiple species which
successively adapt in response to their adaptations. As an example, predators
and prey evolve together as the prey is part of the predator’s environment and
vice versa: the predators rely on their prey as a food source and evolve nec-
essary traits in order to feed on their prey efficiently. Common traits found
in predators are therefore speed, a good sense of sight, hearing, and smell, or

10



CHAPTER 1. INTRODUCTION.

specifically adapted mouthparts. Likewise, the prey evolves means to avoid pre-
dation such as speed, crypsis, deterrents, and good senses to detect predators.
This phenomena is called co-evolution (Janzen, 1980):

Co-evolution may be usefully defined as an evolutionary change in
a trait of the individuals in one population in response to a trait of
the individuals of a second population, followed by an evolutionary
response by the second population to the change in the first.

1.1.3 Evolutionary game theory.

A modern framework to describe and analyse evolutionary models is in the form
of a game. In a game the environment is modelled based on individuals, strate-
gies, and payoffs. The payoff an individual receives from taking part in the
game depends on the individual’s strategy but equally on the strategy of all
other individuals taking part in the game. The aim in such a game is to reason
about the optimal strategy under the assumption that all individuals taking
part in the game are rational and try to maximise their individual payoffs. As
the optimal strategy of a single individual in such a game depends reciprocally
on all the other individual strategies the task of defining optimality seems al-
most impossible at first. The modern field of game theory holds a wide body
of methodologies and frameworks which addresses optimality in games with the
Nash equilibrium probably being the most fundamental concept (Nash, 1951).
The Nash equilibrium defines a set of optimal strategies in a game of multiple
players which do not cooperate and individually maximise their payoffs. Within
such a set of strategies no individual can gain any improvement of their own pay-
off by independently changing their strategy. In the special case of a stable Nash
equilibrium changes to an individual’s strategy do not impact the optimality of
the other individuals strategies either.

The notion of evolutionary game theory applies the game theoretical frame-
work to biology where individuals might not reason about their optimal be-
haviour but show different forms of strategies or adaptations due to their genetic
variations. The payoff within evolutionary games is represented by fitness gains
or losses with natural selection being the driving force of optimising strategies or
adaptations in the evolutionary games. Additionally, the underlying population
dynamics of interacting individuals can be ignored as being a separated layer
to the evolutionary model. This allows a focus on static games which does not
alter the outcome of the analysis in most cases within the biological context:
finding the best strategy or adaptation for a specific environment represented
by the evolutionary game.

An optimal strategy within a biological context is termed an evolutionarily
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CHAPTER 1. INTRODUCTION.

stable strategy or ESS and is closely related to the stable Nash equilibrium. An
ESS is defined as the strategy (S) that no different/mutant strategy (T ) can
invade (assuming that a population is playing the ESS uniformly and within the
influence of natural selection) (Maynard Smith, 1974) which is the case if and
only if one of the following conditions hold:

E(S, S) > E(T, S), or

E(S, S) = E(T, S) ∧ E(S, T ) > E(T, T ) ∀ T 6= S.
(1.1)

This has been a simplistic and brief introduction to evolutionary game theory
only. The next chapter will discuss models of defended prey and signalling that
defence to their predators. Such models use continuous strategies and fall into
the category of non-linear games. I refer to the next chapter for a detailed
discussion of the ESS in non-linear games with continuous strategies and effects
of finite populations using a method called adaptive dynamics.

1.2 How to avoid attack.

Actually, the vast majority of species are under predatory risk in their natu-
ral habitat and targeted by predators as part of the food web. Through the
process of evolution by natural selection manifold mechanisms have emerged
to avoid predation. As Fisher (1930) argued, it is the ubiquitous presence of
anti-predator adaptations which shows that predation plays a significant role in
the ecology and evolution of ecosystems.

1.2.1 Primary and secondary defences.

It is common to classify anti-predator adaptations into ‘primary defences’ and
‘secondary defences’. By definition, primary defences operate before an attack
by reducing the frequency of detection with predators, as in disruptive coloura-
tion, countershading, and crypsis, or by reducing the risk of attack given detec-
tion, for example by warning colouration, morphological adaptations, chemical
defences, mimicry, and aggregation (Robinson, 1969; Edmunds, 1974; Ruxton
et al., 2004). Complementarily, secondary defences such as toxins or unpalat-
able substances reduce the risk of falling prey in an encounter with predators.
This general classification, however, is not without limitations as there are in-
teresting grey areas when it comes to warning signals or mimicry, for example.
Importantly, anti-predator adaptations are not discrete and independent traits
but continuous and interacting.

A common alternative is to categorise mechanisms of anti-predator adapta-
tions into functional groups of
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CHAPTER 1. INTRODUCTION.

• avoiding detection (which includes avoiding encounters),

• avoiding attack (or falling prey in an attack), and

• deceiving predators.

Given that predation plays a significant role in natural selection, avoiding
detection by predators seems like a strategy most obviously favoured by evolu-
tion through natural selection. In fact, crypsis is a widely found adaptation to
prevent detection by predators. But the broader question of ‘Why are species
selected for a specific form of defence over another?’ is an important starting
point for the discussion of conspicuous warning signals in the next chapter. It
will be crucial for our understanding of evolutionary dynamics to define defence
as involving some kind of ‘cost-benefit’ trade-off.

Tollrian and Harvell (1999) proposed a framework of five general categories
for analysing fitness cost in secondary defences which has been generally adopted
for anti-predator adaptations:

Allocation cost or internal cost which arises from allocating limited resources
to the erection, maintenance, and operation of a defence.

Environmental cost or external cost which arise from interactions with the
environment in relation to the defence.

Opportunity cost or indirect cost which arises from missed alternatives caused
by the defence. Adaptations such as crypsis or seasonal behaviour can
limit an individuals options in respect to foraging or mating.

Design cost or self-damage cost arises typically in the context of chemical
defences to prevent auto-toxicity. But the design is not limited to chemical
defences alone.

Plasticity cost relates to inducible defences which allow an individual to re-
spond to changing predatory risk in its environment. The cost arises from
the deployment of sensory systems for example.

Concluding, most defences, if not all, incur some kind of fitness cost or other
trade-offs. Thus defences require clear benefits which outweigh their costs where
the reduced predation is not necessarily the only advantage. I will discuss further
benefits in regard to overcoming crypsis in the initial evolution of aposematism.

1.2.2 Aposematism.

On the one hand, the benefits of primary defences to prevent detection are
evident, especially, when we assume the risk of predation to be high. On the
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CHAPTER 1. INTRODUCTION.

Figure 1.1: Yellow-banded poison dart frog, Dendrobates leucomelas, an ex-
ample of aposematic display. (picture in public domain taken from Wikimedia
commons)

other hand, prey may have secondary defences which commonly involve the
expression of toxins or deterrent substances. These secondary defences are not
directly observable by the predator and the benefits of such defences are not
self-explanatory. A predator might attack the defended prey nevertheless for a
lack of aversive information.

Hence, many defended prey species use conspicuous signals – either visual,
audible or behavioural – in combination with their otherwise non-observable
secondary defences to warn predators. This pairing of a toxic secondary defence
and a conspicuous warning signal is known as aposematism (Poulton, 1890). The
most commonly associated warning signal is ‘warning colouration’ but other
signals are known such as conspicuous sounds, behaviours, and odours. An
example is the family of poison dart frogs, Dendrobatidae, which are native to
Central and South America. The species have brightly coloured skin and are at
least to some degree toxic (Figure 1.1).

Aposematism is a primary defence and the benefit of avoiding well-defended
prey seems to be mutual and obvious. Additionally, signalling is omnipresent
and fundamental within biological systems which might make it appear as triv-
ial. But this is far from the truth and aposematism has been the focus of
much research by the scientific community in the light of evolutionary theory.

14



CHAPTER 1. INTRODUCTION.

In particular, the initial evolution of these warning signals in ancestrally cryp-
tic populations has been much debated because a novel conspicuous mutant
has to overcome the loss of protection of crypsis, which is maintained by its
conspecifics. Furthermore, anti-apostatic selection by inexperienced predators
results in rare mutants being predated relatively more often (Lindström et al.,
2001).

Previous models mainly focused on the questions of the initial evolution of
aposematism and there are two established arguments which aid the appearance
of conspicuous signals:

1. The Predator’s perception and cognitive processes possess specific prop-
erties which promote aposematism. For example the usage of aposematic
signals as warning flags improves discrimination in educated predators
and enhances the learning of unprofitability (Keehn, 1959). Other possi-
ble factors could be dietary conservatism (Lee et al., 2010; Thomas et al.,
2003) or a shifted peak of the aversive information so that more conspicu-
ous prey individuals are favoured (Leimar et al., 1986; Yachi and Higashi,
1998; Gamberale-Stille and Tullberg, 1996).

2. The opportunity cost of crypsis in combination with the reliability of hon-
est warning signals of well-defended prey drove the evolution of apose-
matism and consequently the evolution of predator psychology (Sherratt,
2002).

Other more general factors which can further aid the initial evolution of
aposematism are spatial aggregation and kin selection. Both factors are widely
applied to introduce a more significant number of mutants in theoretical models
to overcome the problems of the initial evolution of new traits. I will discuss
these factors in more detail in the next chapter where they find application in
a model of co-evolution.

A second major issue in the theoretical treatment of aposematism is the
problem of dishonesty: it may be beneficial for an undefended individual to
use a warning signal too to avoid being attacked (mimicry), which in turn
can undermine the effectiveness of the signal. When this kind of dishonesty
occurs across species, it is known as Batesian mimicry ; when it happens within
species, it is known as automimicry (Ruxton et al., 2004). A second form of
dishonesty arises when there is continuous variation in toxicity within or between
species. In some theoretical treatments, prey with weak secondary defences may
choose to signal brightly, in order to compensate for their lack of repellence to
predators. Hence key questions of current importance in aposematism theory
focus on the questions: how conspicuous should a signal be, and how much
should be invested into secondary defences (Speed and Ruxton, 2007; Speed
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CHAPTER 1. INTRODUCTION.

et al., 2010; Longson and Joss, 2006; Ruxton et al., 2009)? Moreover, which
factors influence evolutionary stability of honest signalling and what is the role
of mimics in maintaining or destabilising aposematic display (Gamberale-Stille
and Guilford, 2004)?

Leimar et al. (1986): Mechanisms of aversive learning in aposema-
tism.

Although many aspects of signalling systems are understood, a key element
missing from the current theory is the incorporation of learning such as the
role of aversive learning in particular. The importance of this was described in
an earlier work by Leimar et al. (1986) which is still one of the most relevant
frameworks for the evolution of aposematism.

The key contribution of Leimar et al. are elements of predator psychology
contributing to a process of aversive learning in aposematism which could ex-
plain the evolution of aposematism assuming that secondary defences involve
some cost.

The model defines an inhibitory gradient h which generalises the aversive
experience from encounters with n prey individuals of a specific morph (xi, yi)

to generalised attack probabilities g(x):

g(x) = e(x)
∏
i

[1− h(x, xi, yi)]
ni , (1.2)

with e(x) being the excitatory gradient of a naive predator, x being the coloura-
tion, and y being the degree of unprofitability of prey. The specific nature of
the generalisation gradient promotes conspicuous prey through the application
of a peak-shift (Figure 1.2 as defined in Leimar et al., 1986). The peak-shift is
a psychological phenomenon which results in a bias towards avoidance of more
conspicuous prey following an aversive encounter. There is a growing body of
empirical evidence which supports the assumption of biased generalisation, and
it might play an important role in the stability and initial evolution of apose-
matism (Yachi and Higashi, 1998).

Other main findings by Leimar et al. (1986) were that aposematism can
initially evolve in an otherwise cryptic prey population if there are some elements
of kin-selection or a change in environment making crypsis less effective.

I will build on this ideas in the following chapters of this thesis.

Sherratt (2002): The co-evolution of aposematism.

Even though the peak-shift phenomenon promotes the initial evolution of apose-
matism it requires a pre-existing and universal psychological response to con-
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(a) This chart shows the generalisation of aversive information from an encounter with
a specific morph (x1, y1) through the inhibitory gradient h(x, x1, y1).
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(b) This chart shows the attack probability g(x) after n encounters with prey of morph
x1 = 0.5 and y1 = 0.2. The graph for n = 0 shows the excitatory gradient e(x) of a
naive predator. The graph for n > 0 show the peak-shift resulting in a bias towards
the avoidance of more conspicuous prey.

Figure 1.2: Elements of predator psychology describing a process of aversive
learning as defined in Eq. 1.2 following the definition in Leimar et al. (1986)
with x being the colouration and y being the degree of unprofitability of prey.
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spicuousness. The question of ‘Which came first: conspicuous signals or specific
properties of predator psychology?’ has not been resolved. Furthermore, the
generalisation bias itself does not explain why predators show this particular
psychological property. Most importantly, aposematism occurs within many
different species, over a wide range of taxa, and conspicuous signals manifest
themselves over a diverse set of sensory systems. It is unlikely that all this
can be explained by a common pre-existing generalisation bias. It is perhaps
more feasible to assume that the generalisation bias has arisen from a common
selective pressure.

Sherratt (2002) addresses these questions by introducing a model of co-
evolution of multiple predators and prey. The difference to previous models
is that the foraging behaviour of predators is subject to selection itself. This
allows aposematism to evolve through a process of co-evolution of predator and
prey.

Sherratt concludes that a novel conspicuous prey item has most likely been
encountered by previous naive predators as it is easily detected. For this rea-
son, novel conspicuous prey is likely to be defended to have survived previous
encounters with predators.

Likewise, a naive predator which moves into an environment with experi-
enced predators should avoid conspicuous prey as it is easily detected by the
other predators and is likely to be defended to have risen to greater numbers.

As soon as the predators have adapted to the correlation of defences and
conspicuous signals aposematism arises rapidly, rather than gradually, through
runaway co-evolution.

I will build especially on the idea of co-evolution in the following chapter but
Sherratt identifies further factors in his model which aid the initial association
of defences with conspicuous signals such as the opportunity cost of crypsis and
the aggregation of prey.

Speed and Ruxton (2007): The vast variety of aposematic solutions.

We saw that the initial evolution of aposematism itself already presents the
scientific community with a wide range of challenges. That is why it might
be not surprising that most of the theoretical work is concerned about the
factors which drove the initial evolution of aposematism. Nevertheless, recent
efforts have tried to explain the evolutionary stability of aposematism in the
light of growing empirical studies. The interest in evolutionary stability itself
is not new, with Leimar et al. (1986) already discussing evolutionarily stable
strategies (ESS) within their framework. The reason for the later neglect of
questions regarding ESS in many models was mainly due to the complexity of
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the task at hand: empirical studies of aposematic species show a vast variety of
aposematic solutions. A broad study by Summers and Clough (2001) showed a
positive correlation between conspicuousness and toxicity in the poison dart frog
family, Dendrobatidae, which supports the ideas of aposematism being a costly
handicap signal indicating fitness advantages. But when Darst et al. (2006)
revisited three specific dart frog species they actually found the reverse case of
negatively correlated toxicity and a established theoretical framework to treat
these findings consistently did not exist. The next chapter will present recent
work which addresses evolutionary stability within a theoretical framework of
co-evolution to fill this gap (Broom et al., 2006; Broom et al., 2008; Teichmann
et al., 2014b).

In order to explain the variety of aposematic solutions Speed and Ruxton
(2007) introduce a model incorporating marginal costs of both display ψ and
secondary defences ζ. The model predicts optimal values of conspicuousness C
and defenceD of a focal prey population in an environment of multiple predators
and other cryptic and undefended non-focal prey populations.

The probability of attack given detection P (Att) is a combination of inherent
wariness regarding conspicuousness W (C) (see Section 1.2.2) with repellence R
from previous encounters with other defended prey individuals represented by
the average toxicity of the focal group D∗:

Pi(Att) = Attmin(1−Attmin)W (Ci)R(D∗). (1.3)

The probability of being killed in an attack P (Kill) is derived from the indi-
vidual’s level of defence D and the conspicuousness of its individual display A:

Pi(Kill) = Killmin(1−Killmin)K(AiDi). (1.4)

The specific functions used by Speed and Ruxton (2007) are Gompertz functions.
After the end of a season the fitness of surviving prey is calculated considering
the fecundity costs of secondary defences and display:

Fi = exp(−(ψAi + ζDi)). (1.5)

Figure 1.3 presents the main results of the model: the variety of aposematic
solutions can be explained with the variation of the marginal cost of displays for
different prey species (Figure 1.3a). Additionally, the model predicts positive as
well as negative correlation of aposematic display A and defenceD (Figure 1.3b).
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(a) This chart shows the variety of aposematic solutions as a result of the marginal
cost of display ψ. 1) ψ = 1, 2) ψ = 0.1, and 3) ψ = 0. All other parameters as in
Speed and Ruxton (2007).
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Figure 1.3: The variety of aposematic solutions as described by Speed and
Ruxton (2007).
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1.3 Problem formulation.

As it turns out, the aspects of aposematism are manifold and far from straight-
forward. The main interest in the past laid in the initial evolution of apose-
matism and there is a wide body of theories available today. Nevertheless,
the nature of aposematism beyond the initial evolution has still many open
questions and remains a challenging research area. I have presented seminal
models which have made significant progress on these exciting and open ques-
tions around aposematism and have influenced the field greatly by laying the
foundations of much research which followed. In particular, the importance of
the role of aversive learning was described in the earlier work by Leimar et al.
(1986), but was omitted from later modelling developments in order to sim-
plify analytical tractability. However, interesting questions arise as to how a
predator incorporates the information gained from an encounter with prey into
a generalised approach to predation and defence. In summary, the main aspects
of aposematism the field has a great interest in are:

• the properties of aposematic solutions and their stability,

• the role of co-evolution,

• the influence of predator psychology in particular aversive learning, and

• the consequences of aposematism for predator and prey populations in
regards to their fitness and foraging behaviour.

1.4 Thesis Aims.

The aim of this project is to develop models of the signalling of invisible defences
beyond the initial evolution of aposematism.

In chapter 2 I will focus on aposematism from the prey perspective based
upon the model by Broom et al. (2006), which presents the first explicit math-
ematical model of a relationship between the conspicuousness of aposematic
signals and the strength of the defence that they advertise. My analysis will
address current research questions of the field around co-evolution of aposema-
tism and stability in finite populations in the presence of drift. The chapter will
point out the importance of the predator’s role within aposematism.

In chapter 3 I will develop theories of aposematism from the predator per-
spective. The motivating questions revolve around how the predator incorpo-
rates aversive encounters with aposematic prey into generalised foraging be-
haviour. Recent studies by Alonso and colleagues (Alonso and Schmajuk, 2012;
Alonso and Mondragón, 2006; Alonso et al., 2001) have looked at the concept of
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learning in a more general setting, investigating learning algorithms that allow
for the transfer of acquired knowledge between stimuli that share certain features
(e.g., intensity or modality). The idea is to introduce stimulus-action-outcome
associations in the form of aversive learning so that predators are able to gener-
alise their experience from encounters with aposematic prey to the aversiveness
of aposematic prey populations. Building on the current theories of generalisa-
tion and discrimination in the form of aversive learning I will discuss the effects
of aposematic prey on the fitness and energy intake of a predator.

Chapter 4 will develop a predator lifetime model which incorporates life his-
tory traits which have been abstracted away in the previous chapter. I will
compare results of an individual based foraging simulator driven by reward
motivated objectives with a generalisation of behavioural repertoires driven by
fitness. The model will address questions concerning what optimal behaviour is
and why there might be a discrepancy between maximising rewards and max-
imising fitness.

I will summarise my findings in chapter 5 and draw conclusions of how the
necessity of learning to avoid certain defended prey affects the characteristics of
aposematic solutions.

1.5 Thesis layout.

This thesis is a multidisciplinary excursion into the methodologies of different
fields. Usually, theses have a clear cut-off point which distinguishes between
previous work by others and the new contributions. However, in this thesis I
decided to include previous work by others within the flow of the discussion as I
explore the different methodologies, such as evolutionary game theory, optimal
foraging theory, reinforcement learning, and the psychology of rewards amongst
others.

To allow a clear identification of my contributions to the current state of the
field of aposematism, I provide a list of the thesis layout, as follows:

• Chapter 1: A literature review and introduction to the field of aposema-
tism.

• Section 2.1: The review of a game theoretical model of coevolution by
Broom et al. (2006).

• Section 2.2: An extension of the previous model describing the evolu-
tionary dynamics of aposematism: a numerical analysis of co-evolution in
finite populations.
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• Section 3.1: An introduction to the field and methodology of Reinforce-
ment Learning.

• Section 3.2: A new model for the application of Q-learning in optimal
diet models with Section 3.2.1 giving a general introduction to the field of
optimal foraging theory.

• Section 3.3: When does learning matter? A new model investigating the
relationship between Evolution and Reinforcement Learning.

• Section 4.1: A general introduction and review of the psychological ele-
ments of learning and rewards.

• Section 4.2: The definition of a new predator lifetime model.

• Section 4.3: The introduction of a new learning based foraging simula-
tor which builds on methodologies which are introduced and reviewed in
Sections 4.3.1, 4.3.2, and 4.3.3.

• Section 4.3.4: The application of Reinforcement learning in the new preda-
tor lifetime model and the presentation of the results in Section 4.3.5.

• Section 4.4: The interpretation of the new lifetime model with regard to
Darwinian fitness and the discussion in Section 4.5.
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Chapter 2

Aposematism from the preys’
perspective.

In this chapter I will focus on questions around aposematism which relate to the
prey. As I laid out in the introduction the main focus of previous models has
been the emergence of aposematism. Mechanisms which were identified in aiding
the emergence of aposematism are the opportunity cost of crypsis, the improved
discrimination of prey in educated predators through warning flags, dietary
conservatism, and peak shifted aversiveness functions. The following model
will expand the theoretical frameworks incorporating co-evolution of defence
and signalling of that defence. Parts of this chapter have been published in
Teichmann et al. (2014b).

2.1 A game theoretical model of co-evolution by

Broom et al.

Broom et al. (2006) introduced a game theoretic model of prey-predator in-
teraction to describe the co-evolution of secondary defence and signalling. The
model investigates the general mechanisms of aposematism rather than spe-
cific species or environments, assuming general function shapes. Building on
that, the model was further developed in Broom et al. (2008) using exemplary
and plausible functions (Table 2.1) to demonstrate the solutions predicted from
Broom et al. (2006). (See the following Section 2.2 for a modified version of the
framework using specific functions.) The model from Broom et al. (2008) con-
siders a single population of prey individuals where individuals i are described
by two parameters (ri, ti).

The parameter t reflects the individual investment into secondary defence.
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Symbol Meaning
r the conspicuousness of an aposematic signal
t the level of toxicity of secondary defences

F (t) the fertility of an individual of toxicity t
K(t) the probability that an individual of toxicity t is killed in an attack
H(t) the aversiveness of an individual of toxicity t
S(x) the similarity function of individuals differing in appearance by x

with x = |r1 − r2|
I(r) the level of aversive information of an individual
D(r) the rate at which individuals of conspicuousness r are detected
Q(I) the probability that a predator will attack an individual associated

with a level of aversive information I
a the fraction of mutants in the population
tc the level of toxicity which becomes aversive, hence for which

H(tc) = 0

Table 2.1: Exemplary functions as introduced in (Broom et al., 2006; Broom et
al., 2008).

This secondary defence is not observable by the predator and could be unpalat-
able toxins, for example. The expression of secondary defence comes with a
cost of decreasing fecundity F (t). On the other hand, secondary defence is
advantageous in surviving an attack, reducing the chance of being killed K(t).

The parameter r describes the conspicuousness of an aposematic signal, with
r = 0 referring to maximal crypsis. The quality of signalling is associated with
an unfavourable higher rate at which individuals are detected by predatorsD(r).
In contrast, conspicuousness of an aposematic signal is beneficial in combination
with secondary defences by increasing the predator’s level of aversive informa-
tion regarding an individual I(r).

Unlike the model of (Leimar et al., 1986) where naïve predators without any
experience from encounters with prey individuals learn to avoid unpalatable
prey types, the model of (Broom et al., 2006) is assumed to be in equilibrium:
population sizes are constant and predators are experienced and have full knowl-
edge of the population’s aversiveness and signalling strategies. This knowledge
is expressed in a level of aversive information I about individuals which de-
pends upon the appearance of the individual in question, and the properties of
the population of prey individuals.

A prey individual contributes to the level of aversiveness about others through
a combination of three factors. Firstly the likelihood of it being encountered,
which is proportional to the detection probability D(r) described above. Sec-
ondly the aversive effect of its consumption, which depends upon its value of t
through the function H(t), which is increasing with t. There is a critical value
of defence tc for which H(tc) = 0; this corresponds to levels of defence above
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this being aversive, and levels below this being actually beneficial, encouraging
the consumption of more prey of this type.

Finally, this individual will affect the response of the predator to others only
if it is sufficiently similar to them, which is indicated by a general similarity
function S(x), where x = |r − rj | is the difference between the r value (rj) of
the above individual and that of any given targeted individual. If x is large, then
the two are very different and the similarity function takes a very small value.
For x = 0 they are identical, and the similarity function is set to equal 1. The
peaked form of the similarity function (where the function is differentiable w.r.t r
everywhere but at the peak, where the left-derivative and right-derivative are
different) is characteristic of this model and responsible for the resulting broad
range of alternate ESS.

The information from a single population individual from the population
with parameters (rj , tj) about our focal individual with parameters (ri, ti) is
thus proportional to D(rj)H(tj)S(|ri − rj |). The total aversive information
from the population is the sum of this over all individuals (in the original work
this was multiplied by the ratio of prey individuals N to predators n, but this
is simply a scaling factor), giving

Ii =

N∑
j=1,j 6=i

D(rj)H(tj)S(|ri − rj |). (2.1)

The predator then uses the information about individual i to decide whether
to attack it if it is encountered, choosing the attack probability Q(I), which is
decreasing in I, based on the amount of aversive information Ii.

The payoff to an individual, which is simply the ratio of its fecundity F (ti)

and its rate of being killed, is described as follows:

Zi =
F (ti)

D(ri)Q(Ii)K(ti) + λ
. (2.2)

The original model adds a constant λ to the denominator to represent death
due to events other than predation, but in some of the analysis in that model
(and in my model to follow) this term is set to zero.

The evolution of secondary defences is promoted by an increased inclusive
fitness through both the greater chances of escape of individuals, and the reduc-
tion of the likelihood that educated predators re-attack prey individuals or their
relatives in the future. Modelling the evolution of signalling and defence using
kin grouping was introduced in (Leimar et al., 1986), destabilising crypsis in
favour of aposematism. The parameter a in the model of (Broom et al., 2006)
describes the initial protection of mutants from predation: mutants occur in
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groups with local proportion a either as a consequence of first appearing in a
self-contained locality or through invasion.

The main findings of the underlying model of (Broom et al., 2006) were:

• Crypsis can be destabilised without the assumption of a naïve tendency
of avoiding suspicious prey individuals or the usage of a peak-shifted aver-
siveness towards more suspicious individuals by co-evolution.

• The strength of aposematic displays is a reliable indicator of the strength
of defence, that is, the correlation between the two is positive.

• If the conditions support the emergence of aposematism there are multiple
stable solutions laying on an increasing line topt(r). Hence, the diversity
of different solutions for secondary defence and warning displays is a con-
sequence of the underlying co-evolution.

• Aposematism is not a necessary condition for optimality of highly defended
prey populations and stable cryptic populations can possess aversive levels
of defence.

• There are conditions which interfere with anti-apostatic selection and al-
low diversity of appearance in poorly defended prey individuals.

2.1.1 Optimal toxicity.

As for the question of optimal investment into costly defence, the level of sec-
ondary defence is not observable by the predator and has no effect on the gen-
eralisation of aversiveness. The optimal toxicity of this model topt, where the
derivative of Z w.r.t t is 0 at t = topt in a population which plays topt, is given
by

g1 =
F ′

F
− K ′

K
− aI1

Q′

Q

H ′

H
= 0. (2.3)

I will refer to the resident population with subscript 1 and to the mutants
with subscript 2. Following the definition of function I in (Broom et al., 2008),
the level of aversive information for the resident population is given as follows:

I1 = ((1− a)D(r1)H(t1) + aD(r2)H(t2)S(x)), (2.4)

where F ′ represents the derivative of the fecundity function (and similarly for
other functions), and each function is evaluated at t = topt and a specifc value
of r (for a given r-value, topt will be different).

If the product I1Q′/Q is decreasing with r1, Equation (2.3) increases with r1.
This increase is compensated for by a variation of the optimal toxicity. If the
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absolute gradient |d/dt(K ′/K)| is greater than |d/dt(F ′/F )| the benefits of sec-
ondary defence outweigh the cost on the fitness and the optimal toxicity will be
an increasing function of r1.

2.1.2 Aposematic signals.

Regarding aposematic signals, the predator generalises aversive information be-
tween the resident population and the mutants based on their similarity in
appearance described by the similarity function S(x). Mutant groups can po-
tentially invade a resident population from two directions. Using the terminol-
ogy of Broom et al. (Broom et al., 2006), the conditions for resisting mutant
invasion are a composition of the effects of recollection on the amount of aversive
information

g2 = D′/D + aI1Q
′D′/QD, (2.5a)

and the effects of generalisation

g3 = (1− a)I1Q
′S′(0)/Q. (2.5b)

Due to the peaked shape of the similarity function S(x), these conditions are
different for mutants with higher and lower values of r2 than the population.
For r2 < r1 they depend on the left derivative of Z

∂Zl(r1, r2)

∂r
= −g2 + g3 for r2 < r1 (2.6a)

which must be positive for stability, and for r2 > r1 the right derivative of Z

∂Zr(r1, r2)

∂r
= −g2 − g3 for r2 > r1 (2.6b)

which must be negative for stability.
This makes it easier for mutants with weaker signals to invade a population.

Therefore, it is sufficient for stability of aposematic signals in infinite popula-
tions to show that (2.5a) is positive for mutants with weaker signals r2 < r1

with the value of r1 for which the condition holds being R. As a consequence,
all signals with conspicuousness r1 > R are also stable leading to an infinite
number of stable solutions. With regard to cryptic solutions (r1 = 0), a popu-
lation can only be invaded by more conspicuous mutants (r2 > r1). The cryptic
solution is stable if −g2 − g3 < 0. From this it follows:

(i) There is always a cryptic stable solution if there is no investment into
secondary defence which occurs if g1(r1 = 0, t1 = 0) < 0.

(ii) In the case of an investment into secondary defence a cryptic solution is
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only stable if this investment is aversive causing I1 > 0, a is sufficiently
small (below some critical value) and the predator is able to sufficiently
distinguish between the resident population and mutants.

2.2 The Evolutionary Dynamics of Aposematism:

a Numerical Analysis of Co-Evolution in Fi-

nite Populations.

For my analysis I build on the model of co-evolution of secondary defence and
signalling which provides a framework utilising aversive learning to predict neg-
ative as well as positive correlation. I use the model as introduced previously
in Section 2.1 (Broom et al., 2006; Broom et al., 2008). The underlying model
assumed a population equilibrium with constant population sizes and experi-
enced predators with full knowledge of the prey population’s aversiveness and
signalling strategies, and that signals and toxins could impose costs on prey.
Key predictions of this model were the destabilisation of crypsis and the diver-
sity of aposematic solutions as a consequence of the underlying co-evolution.
This analysis will extend the analytical considerations of this earlier work with
numerical analysis. A key point is the introduction of the effects of finite pop-
ulations on the evolution of aposematism. Through the introduction of drift I
gain new insights into the inter-population diversification of aposematic displays
in coherence with intra-population anti-apostatic selection. Especially in small
populations, introducing drift as an additional process cannot be ignored and,
as I show, it influences evolutionary stability. Drift is always a factor in real
population systems (Willi et al., 2012) but is usually neglected for two main
reasons: firstly it complicates analysis, and secondly it is generally assumed
that it will not make too much of a difference if population size is sufficiently
large. However, there is a growing body of evidence stressing the importance of
drift as a force which can challenge natural selection (Barton and Charlesworth,
1984; Gillespie, 2001; Ellegren, 2009).

Additionally, the exploration of numerical methods and finite populations
will substantially improve the accessibility of the previous models (Broom et
al., 2006; Broom et al., 2008; Leimar et al., 1986) with regard to testability
and validation of predictions. This will make these analytical models of the
co-evolution of signalling and defence more understandable.

The following results of this model are based on specific functions governed
by single parameters (Table 2.2) which are motivated by the discussion in
(Broom et al., 2006; Broom et al., 2008) and were reintroduced in detail in
Section 2.1: (i) the parameter f0 describes the extent of the adverse impact
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Symbol Definition
F (t) exp(−f0t)
K(t) 1/(1 + k0t)
H(t) t− tc
D(r) 1− exp(−d0(r + 0.1))
S(x) max (0, 1− v0x) with x = |ri − rj |
Ii

∑N
j D(rj)H(tj)S(ri, rj)/ε for i 6= j

Q(I) min (1, exp(−q0I) + qmin)
Zi F (ti)/(D(ri)Q(Ii)K(ti))
t the level of toxicity of secondary defences
r the conspicuousness of an aposematic signal
tc the level of toxicity which becomes aversive, hence

for which H(tc) = 0
ε general encounter rate with prey individuals

Table 2.2: The specific functions used by the model of co-evolution in finite
populations (Section 2.2) based on the exemplary functions as introduced in
(Broom et al., 2006; Broom et al., 2008) and summarised in Section 2.1.

of the investment t on the fecundity F (t). (ii) The parameter k0 describes the
significance of an investment t on decreasing the likelihood of being killed in an
attack K(t). (iii) The parameter d0 describes the predator’s ability to discover
prey individuals D(r). (iv) The parameter v0 describes the predator’s ability to
differentiate between prey individuals S(x) and (v) the parameter q0 describes
the predator’s sensitivity towards the aversive information I in relation to the
attack probability Q(I).

Next I introduce necessary modifications to the original model (Broom et al.,
2006; Broom et al., 2008): The previous model used a constant λ to represent
secondary causes of death. For aposematism to be effective, predation needs to
be a prominent selective pressure. To segregate the mechanisms of aposematism,
the main risk of death in the adopted model is assumed to be due to predation
only. I will introduce a minimal attack probability to the model instead which
can reflect other possibilities of death as I will discuss later. It seems a valid
assumption e.g. for short living arthropods that predation dominates other risks
of death. The fitness function is given as follows:

Zi =
F (ti)

D(ri)Q(Ii)K(ti)
. (2.7)

The proposed functions D(r), Q(I), and K(t) (Broom et al., 2008) came
with the disadvantage of potentially biological meaningless solutions when one
of the functions approaches zero for some values. In particular, the original
formulation of Q had to be adapted: as I assume λ = 0 in (2.2) from the
previous model (Broom et al., 2006) it requires the introduction of a minimal
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attack probability to avoid unrealistic immortality. When the rate of death is
close to zero in this way, this issue is also important in regard to precision of
floating point numbers in the numerical simulations: beyond the well-behaved
range of D(r), Q(I), and K(t) the functions introduced as part of the new
methodology result in numerical instability following round-off errors. Lastly, I
include a new parameter ε in the aversive information function I as a scaling
factor of the contribution of each individual to the aversive information I which
can be interpreted as a general encounter rate of a predator with the prey
population. The resulting model incorporates selection depending upon both
the strategy of the individual but also of the population, as a consequence of the
generalisation of aversive information, and is difficult to evaluate analytically.
The introduction of numerical analysis of finite populations will allow me to draw
conclusions using evolutionary dynamics by looking into aspects of selective
pressure and drift respectively as follows.

2.2.1 Visualisation of the Fitness Landscape: a Numerical
simulation.

The fitness of an individual is described by the payoff function Zi (Table 2.2,
(2.7)) and depends on its strategy (ri, ti) and on the composition of the pop-
ulation due to the generalisation of aversive information based on similarity. I
consider invasion of a mutant group into a monomorphic resident population,
i.e. all members of the resident population play an identical strategy. As previ-
ously indicated, I will refer to the resident population with subscript 1 and to
the mutants with subscript 2. Mutants can differ from residents in either of the
two strategy components, and I consider the selective pressure in two different
directions, one in each component. In each component I consider the payoff of
mutants of different types x2 against the resident population x1, indicated by
the payoff function Z(x2, x1). The selective pressure is defined by the derivative
of the payoff function Z with respect to x2 (strictly this derivative does not exist
in the direction of r but the expression below is still meaningful as I discuss in
section 2.2.3), which is visualised as a gradient ∇Z over a grid of points using
a numerical 5 point stencil approximation of each partial derivative separately
with h = 1× 10−5 as follows:

∂Z

∂x2
=
−Z(x1 + 2h, x1) + 8Z(x1 + h, x1)− 8Z(x1 − h, x1) + Z(x1 − 2h, x1)

12h
.

(2.8)
The population composition is defined by the values of the population size

(N) and the mutant group fraction (a). The final visualisation shows the gra-
dient of the payoff function ∇Z as a vector field (Fig. 2.1a) representing the
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selective pressure, the fitness value of an individual in a homogeneous popula-
tion in the background as a heat map (Fig. 2.1c), and the behaviour of D(r)Q(I)

as a contour plot (Fig. 2.1b). The productDQ can in principle increase, decrease
or remain constant according to the choice of functions. It has been discussed
that biological meaningful functions assuming aposematism to be a handicap
signal indicating fitness advantage should result in an increasing or only slowly
decreasing product DQ with increasing signal strength r in homogeneous res-
ident populations (Broom et al., 2006). Therefore, we require dDQ/dD > 0

with DQ = D(exp(−AD) + qmin) where A = Nq0H(t)/ε as the definition of I
in Q(I) simplifies to a product of D and the scaling factor A in the case of a
homogeneous prey population. Finally, from

d

dD
DQ = exp(−AD)−AD exp(−AD) + qmin (2.9)

we have A < (1 + qmin exp(AD))/D.
Corresponding to this derivation the contour plot in Figure 2.1b shows the

values of A − (1 + qmin exp(AD))/D with values ≤ 0 indicating the parameter
range where the product DQ is increasing with signal strength r.

2.2.2 The Moran process and drift.

In finite, and especially in small, populations, random sampling can result in a
change of allele frequency (Masel, 2011). Consequently, natural selection is not
the only force acting on populations and neutral mutations (or in rare cases even
unfavourable mutations) can take over entire populations. Therefore, the extent
of drift needs to be considered in the evaluation of stability. The probability x2
of a group of mutants (an = aN) invading a population is termed the fixation
probability. The evolution of the population is modelled by a version of the
Moran process (Moran, 1962), which is the classical way to model the evolution
of finite populations. The Moran process is a Markov process where the state
of the population (in this model denoted by the number of mutants) changes
according to a transition matrix, and each change represents the replacement of
an individual by one of another type.

The determinant transition probabilities pi→i+1 and pi→i−1 that form the
matrix are a combination of the chance of random selection and relative fit-
ness wF = F2/F1. As my model incorporates secondary defence, the transition
probabilities are extended by the corresponding mortality wK as defined as fol-
lows:

wK = D(r)Q(I)K(t). (2.10)

The final transition probabilities are a combination of random death and
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(a) An exemplary vector field ∇Z as de-
fined in Equation (2.8) representing the se-
lective pressure on an individual as part of
a finite population with the occurrence of
mutants respectively.
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(b) The qualitative behaviour of D(r)Q(I)
in homogeneous resident populations as
described in the derivation from (3.2).
The contour lines represent ∂DQ

∂D
with neg-

ative values indicating an increasing prod-
uct with signal strength r.

(c) The individual fitness Zi (Equation (2.7)) in a
homogeneous population without the occurrence of
mutants.

Figure 2.1: The different elements of evolutionary dynamics in the co-evolution
of aposematism in finite populations. All parameters as in Figure 2.4a.
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fitness related birth:

pi→i−1 =
N − i

iwF +N − i
i

N
wK2

,

pi→i+1 =
iwF

iwF +N − i︸ ︷︷ ︸
birth

N − i
N

wK1︸ ︷︷ ︸
death

. (2.11)

Thus for the mutant to increase in number (pi→i+1) a resident individual has
to encounter a predator with probability ((N − i)/N) and has to be killed
with probability (wK1

) first. Secondly, it has to be replaced by a mutant
according to the mutants relative fitness in the population with probability
((wF i)/(wF i+N − i)).

For a group of mutants the fixation probability is given by the closed form
of the transition matrix (2.12) (Weibull, 1997; Nowak, 2006):

x2 =
1 +

∑an−1
j=1

∏j
k=1 γk

1 +
∑N−1
j=1

∏j
k=1 γk

with γi =
pi→i−1
pi→i+1

. (2.12)

To reflect the non-constant selection of my model, the relative fitness wF
and the mortalities wK are recalculated on each step based on the changed pop-
ulation composition. The strategy of the mutants is chosen along the derivative
of the payoff function (2.13), that is, in the direction of strongest selection, to
represent the toughest opponent possible with the highest fixation probability
as follows: (

r2
t2

)
=

(
r1
t1

)
+ h

∇Z
‖∇Z‖ , (2.13)

with h = 1× 10−5. The final visualisations in Figure 2.4 show the diversion
from neutral drift as a log score log10(Nx2/an)/h, with a score of zero occurring
when x2 = an/N , indicating equal fitness between mutants and residents and so
full dominance of neutral drift over selective pressure. The fixation probability
x2 is only approximately linear in h for a small range of values because of the
trade-off between detection probability and predator generalisation. Note that
this means that the drift score too is only independent of h over small ranges.

For infinite populations a resident strategy which is fitter than any mutant
strategy within a population composed of a mixture of the resident and mutant
strategies, where the frequency of the mutants in the population is sufficiently
small, can resist invasion from all such mutants, and is termed an evolutionarily
stable strategy (ESS). The spatial structure of the population can be considered
by allowing the fraction of mutants in the local area to be a significant proportion
of the population, even when their overal proportion is small, and this approach
was taken in the previous models (Broom et al., 2006; Broom et al., 2008) as well
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as in my model. However, as the effect of mutants is expressed through a level
of aversive information I which persists with the fully experienced predators the
details of a spatial structure can be ignored in this framework. The definition
of an ESS in a finite population requires an extra condition: in addition to the
equivalent of the above condition (that the fitness of a single mutant within a
population of residents is strictly less than that of the residents), the fixation
probability of a single mutant needs to be less than 1/N (Taylor et al., 2004;
Nowak, 2006). For my model I consider an invading group of size an = aN ,
and I thus adapt this definition accordingly: in order to consider the fitness of
mutant and resident individuals within such a population mixture, I compare
the fixation probability of the mutant group with the corresponding neutral
probability of x2 = an/N = a.

I note that in my model the two conditions above actually reduce to one
(as is often the case), since the aversive information function increases with
the increasing number of mutants, so if a mutant is fitter than the resident
population when introduced as a small proportion of the population it will still
be fitter when in a larger proportion, so the fixation probability condition is
always satisfied when the fitness condition is.

2.2.3 Results.

As natural selection acts on the individual level, in infinite populations an evo-
lutionarily stable solution (ESS) cannot be beaten by invaders (Section 2.1)
(Christiansen, 1991). However, reducing population size quickly increases the
effect of drift (Whitlock, 2000) which can destabilise populations. Using the
functions presented in Table 2.2, the strategy dynamics were analysed regard-
ing the co-evolution of r and t and the stability of strategies. Recall from
Section 2.2.2 the conditions for a strategy to be an ESS in a finite population,
and in particular that for my model I only need to consider a comparison of the
fitnesses of resident and mutant strategies. Figure 2.4 shows two representative
simulations. In general, the proportion of mutants needs to be relatively high
for aposematism to evolve in small populations and the results will be discussed
for each parameter respectively as follows.

Optimal Toxicity.

The original model (Broom et al., 2006; Broom et al., 2008) predicted that the
optimal toxicity topt will be an increasing function of r (Section 2.1.1) and an
exemplary simulation is presented in Figure 2.4a.

Additionally, Figure 2.4b shows the possibility of negative correlation be-
tween signal strength and level of defence. Firstly, I note that increasing t in
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Equation (2.3) in Section 2.1.1 also increases the product I1Q′/Q so that sce-
narios with strong aversiveness H(t) are possible where the optimal toxicity is
a decreasing function of r instead. That the aversiveness and its influence on
the extent of learning can reverse the correlation between signal strength and
level of defence represents a new insight for this model. Secondly, if the sizes of
the gradients discussed in Section 2.1.1 are reversed, the optimal toxicity will
be a decreasing function of r as the cost on fitness restricts investments into
secondary defence.

This reflects two concepts: on the one hand, the signal correlates with the
amount of secondary defence as the disadvantage of more conspicuous signals
needs to be compensated for by better secondary defence. On the other hand,
a clearer signal leads to more efficient aversive learning so that the investment
into secondary defence can be lowered. The original claim (Broom et al., 2006)
that the ESS value of t1, topt, is increasing with that of r1, ropt, if I1 > 0,
V (I1) = −I1Q′/Q is increasing with positive I1 (2.4) at ropt, and thatD(r)Q(I1)

is an increasing function of r1, can be violated by having a steep aversiveness
function H(t). This allows a new type of solution for steep aversive information
functions I1 which depends on the scaling factor ε and the aversiveness H(t).
Additionally, increasing the predator’s sensitivity towards aversive information
via the parameter q0 will have the same effect.

Figure 2.4 also shows that if I1 (2.4) is not increasing sufficiently with large
values of r1, limr1→∞I1Q

′/Q = C, the optimal toxicity levels out and is the
solution to Equation (2.14):

−f0 +
k0

1 + k0t1
− aC

t1 − tc
= 0, (2.14)

all constant terms are positive, except C which is negative. For t1 > tc the
expression on the right decreases with t1. For t1 just bigger than tc it is clearly
positive, after which it is decreasing, and in the limit as t1 tends to infinity it is
negative. There is thus exactly one root in (tc,∞) which is topt.

Aposematic signals.

As discussed previously in Section 2.1.2 (Broom et al., 2006) it is easier for
mutants with weaker signals to invade a population and in infinite populations
it is therefore sufficient to show that the left sided derivative of Z (2.7) is positive
for mutants with weaker signals r2 < r1. Through the introduction of drift, this
argumentation is no longer valid, as I discuss below. A sufficient condition for
the existence of aposematic signals in finite populations remains that the left
sided derivative of Z (2.7) is positive for mutants with weaker signals. The

36



CHAPTER 2. THE PREYS’ PERSPECTIVE.

group size of mutants a describes the tradeoff between the influence of D′/D
and S′(0). In the case of predators which are highly able to distinguish between
individuals (S′(0)� −1), the evolution of aposematism from crypsis requires a
to be large, as mutants do not benefit from a predator’s generalisation between
residents and mutants (2.5b).

With the focus on stability in finite populations, I must consider invasion by
mutants with both higher and lower values of r2. As I discussed in Section 2.2.2,
in my model the mutant that is the fittest when introduced at small frequency
also has the highest fixation probability. Thus the key question is whether mu-
tants with higher or lower values of r2 are the fitter, and thus even when the
left and right derivatives are different, the expression in Equation (2.8) shows
the pressure in the population due to drift. We would obtain a simple point
solution where Equation (2.8) is equal to zero, provided that there is a compat-
ible topt. The condition that the right sided derivative of Z (2.6b) is negative
for mutants with stronger signals is generally difficult to satisfy: as a group of
mutants usually benefits in an aposematic population from the generalisation
of aversive information, most solutions will be unstable in r. Therefore, there
is theoretically no stable level of signalling. However, the dominance of drift
can create a pseudo-stability which has similar characteristics to the infinite
amount of stable solutions with r1 > R as predicted for infinite populations
in Section 2.1.2. Here there is a range of different values of r1 and t1 which
gives an area of stability rather than just a line: the extremely flat fitness land-
scape leads to a region where drift is approximately neutral to 3 decimal places
(Figure 2.4).

With regard to the cryptic solution, it is always stable if the predator is not
deterred by weak warning flags. This is the case in the model presented as a
consequence of the functional form of Q in Table 2.2. The aversive information
I has to reach a threshold of I > ln(−1/(qmin − 1))/q0 to have any deterrent
effect on the predator’s attack probability Q resulting in Q = 1 and Q′ = 0 if
the threshold is not reached in the case of too weak warning flags.

Minimal attack probability.

As discussed earlier, the introduction of a minimal attack probability qmin in
Equation Q in Table 2.2 avoids the problem of immortality in the model. There
exist two options to introduce a minimal attack probability:

(i) On the one hand, the attack probability function Q can be shifted by qmin

resulting in Q(I) = min(1, exp(−q0I) + qmin).

(ii) A second possibility would be for the minimal attack probability to be
realised using a simple cut-off value: Q(I) = mid(1, qmin, exp(−q0I)). The
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cut-off would result inQ′ = 0 for sufficiently low values ofQ, which requires
stronger optimal secondary defence considering Equation (2.14).

Option (i), using a shifted function Q, is the choice of my model as I think
results are more realistic (the results of option (ii) are not presented) and allows
the interpretation as a source of secondary cause of death as I discuss as follows:
for high values of (r1, t1) the fitness function is extremely flat and changes in the
parameters (r, t) have barely any effect on the payoff which is clearly dominated
by almost neutral drift. This results in Q being effectively independent of (r, t)

and qmin being the dominant influence. This means that the minimal attack
probability behaves similar to the introduction of a secondary cause of death λ.
Even though this model is simplified assuming λ = 0 (2.2) it is able to reproduce
the effects of secondary causes of death.

2.2.4 Discussion.

This model introduces a more flexible methodology for assessing evolutionary
stability in previous game theoretical models of the co-evolution of aposematic
signalling and secondary defence (Broom et al., 2006; Broom et al., 2008). My
main conclusions are:

(i) the number of mutants needs to be relatively high (e.g. within a locality
of the population) for aposematism to evolve in small populations,

(ii) drift is an important force acting on real population systems and increases
inter-population diversification of aposematic solutions,

(iii) in terms of evolutionary stability drift results in a region comparable to an
evolutionarily stable set (ESSet), where strategies can change within the
region due to approximately neutral drift, but resist invasion from outside,

(iv) anti-apostatic selection (selection against rare prey types) prevents intra-
population dishonesty of the aposematic display (automimicry as well as
continuous variation in toxicity), and

(v) enhanced predator aversion learning reduces the level of aversive defence
investment through the compensation of more conspicuous displays.

In previous models of the co-evolution of aposematic signalling and defence
(Broom et al., 2006; Broom et al., 2008) the conditions for the evolutionary
stability of a signal and associated level of defence were found for a model
assuming a large (effectively infinite) population. A feature of the model was
that there was an infinite set of evolutionarily stable strategies (ESS) in many
cases, where for a given level of signal there was a unique level of defence,
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but as long as the whole population displayed the same signal it was stable
against invasion by any other strategy. In particular this infinite set consisted
of a continuum (a line) of ESSs, so for any ESS a small mutation could be
to another ESS as a potential invader. Thus it was of particular interest to
consider finite populations, and consequently the effect of drift, and whether
the strategies which were ESSs in the original model could still be considered
stable.

Hence, I shall elaborate on how the introduction of drift as an additional
evolutionary force in finite populations acts on the resident population. Drift
cannot be neglected when the population size is relatively small and the payoff
function is relatively flat, as in the original models. As a side effect of the flat
gradient of the payoff function almost neutral drift dominates for values of high
secondary defence and strong signal strength. Even though a distinct apose-
matic solution may exist, populations hardly converge towards them as drift
dominates selective pressure. Notably in the case of small population size, the
diversity of aposematic solutions extends from the previously predicted line to
a wider plane-like parameter range (Figure 2.4). With regard to stability this
result can be interpreted as a finite population version of the idea of an evolu-
tionarily stable set, where strategies can change within the region due to drift,
but resist invasion from outside. The widespread variation of secondary defence
and aposematic displays has been discussed in Speed et al. (2010) as a conse-
quence of frequency-dependent intra-population cheating in an ecological model
in which prey acquires its anti-predatory defences from the environment, e.g.
from a food source. In my co-evolutionary model the inter-population diversifi-
cation is a consequence of drift which is an interesting result: intra-population
cheating (or automimicry) is problematic in the context of evolutionary stability
as it undermines the effectiveness of the signal since cheating appears to be at a
selective advantage (Jones et al., 2013). Drift instead allows a wide diversity of
inter-population aposematic solutions without the introduction of destabilising
cheating or automimicry on the intra-population level.

On the other hand, the stability of aposematism is tightly bound to anti-
apostatic selection: even though the diversity of stable inter-population apose-
matic solutions is high, a stable aposematic population needs to look alike or the
level of aversive information suffers and aposematism loses its advantage (2.5b).
The required degree of uniformity depends upon the predator’s ability to distin-
guish different prey individuals (v0). The condition of close resemblance holds if
mutations are mostly silent without effects on the phenotype and the mutation
rate is reasonably low.

In addition to the solutions predicted from the earlier models of Broom et
al. (2006) and Broom et al. (2008), I observed a new set of possible solutions
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with negative correlation between secondary defence and signal strength (Fig-
ure 2.4b). For this solution to appear, the aversiveness of secondary defence
needs to be rapidly increasing (H(t)) or the predator needs to be very sensitive
towards aversive information (via the parameter q0). In this thesis I focused on
examples for the later case of increased sensitivity towards aversive information
via the learning related parameter q0. Under these circumstances, increasing
conspicuousness improves prey distinction and stimulates aversive learning to
such a degree that necessary investments into secondary defence can be lowered.
This result is contrary to the decreasing aposematic display with increasing tox-
icity as consequence of aposematic display and investment into toxicity compet-
ing for a common resource as in Blount et al. (2009) and Lee et al. (2011). In
my model the accelerated learning process of strong aversion is the reason of
the negative correlation and allows lower levels of toxicity with increasing con-
spicuousness. See Section 1.2.2 which discussed Speed and Ruxton (2007) for
another example of this phenomenon as a result of specific marginal costs using
Gompertz functions rather than aversive learning.

Generally, the frequency of mutants has to be relatively high for aposematism
to evolve in small populations. This may be seen as requiring a component of
kin selection or the invasion of a rival population into a locality.

Furthermore, the predatory risk of death needs to dominate other risks of
death for aposematic solutions to emerge. As an unbounded payoff function has
the side effect of unrealistic immortality the attack probability needs to have a
minimal value of qmin. This makes additional risks of death redundant as they
can be considered as part of qmin as discussed earlier.

Finally, the cryptic solution is always stable if the predator is not deterred by
small diversions from full crypsis. This seems like a reasonable conclusion and for
questions related to the possibility of overcoming the stability of crypsis I refer
to models of the initial emergence of aposematism describing mechanisms such
as dietary conservatism, a shifted peak of the aversive information function, the
opportunity cost of crypsis, and specific properties of the predator’s perception
or cognitive processes (Mappes et al., 2005; Speed and Ruxton, 2005; Marples
et al., 2005; Lee et al., 2011).

It is evident from the limitations of my model that future work requires a
more sophisticated description of aversive learning moving from the equilibrium
of educated predators to the original considerations of uneducated predators.
Reinforcement learning will be used in the following chapter to look into con-
ditions of special cases such as mimicry, which cannot be explained by bare
co-evolution of warning displays and secondary defences.
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Def gradient_Z(r, t):
h = 1e-5
population(x, y) = (1-a) * N * [r, t] + a * N * [x, y]
partial_t = (-Z(r, t+2h, population(r,t+2h) )+ 8Z(r,t+h,

population(r,t+h) -8Z(r,t-h, population(r,t-h)) + Z(r,t-2h,
population(r,t-2h))) / 12h

partial_r = (-Z(r+2h, t, population(r+2h, t)) + 8Z(r+h,t,
population(r+h, t)) -8Z(r-h, t, population(r-h, t)) +
Z(r-2h, t, population(r-2h, t))) / 12h

Def Z(r, t, population):
z = Fitness(t) / (Discover(r) * Attack(r, population) *

Killed(t))

Figure 2.2: Pseudo-code of the 5 point stencil approximation of selective pres-
sure defining the fitness landscape.

for r in range(R):
for t in range(T):

fit_vector = gradient_Z(r,t)
mutants = (h * fit_vector / length(fit_vector)) +

array([r, t])
residents = array([r,t])
for i in range(N):

population = residents + i * mutants
fit_residents = F(t)
fit_mutants = F(mutants[1])
w_F = fit_mutants / fit_residents
w_K_1 = Discovered(r)*Attacked(residents)*Killed(t)
w_K_2 = Discovered(mutants[0])*Attacked(mutants)*

Killed(mutants[1])
p_minus = ((N - i)/(w_F*i + N-i)) * (i/N)*w_K_2
p_plus = ((w_F * i)/(w_F*i + N-i)) * ((N-i) / N)*w_K_1
gamma[i] = p_minus / p_plus

x_a = (1.0 + np.sum( map(np.prod, [[gamma[i] for i in
range(j)] for j in range(a-1)]) )) /
(1.0 + sum( map(prod,
[[gamma[i] for i in range(j)] for j in range(N-1)]) ))

x_a = log10( N*x_a/a ) / h

Figure 2.3: Pseudo-code of drift estimation.
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(a.1) Visualisation of the fitness land-
scape indicating the selective pressure
on the population as described in Sec-
tion 2.2.1 and detailed in Figure 2.1.
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(a.2) Visualisation of drift as introduced
in Section 2.2.2. The plot utilizes 3 sig-
nificant figures leading to a wide area of
neutral drift within the 0.000 boundaries.

(a) Exemplary populations dynamics of positive correlation for a simulation with the
parameters: n = 500, ε = 500, an = 200, v0 = 1, d0 = 1, tc = 0, q0 = 1, qmin =
1× 10−3 , k0 = 5, f0 = 0.5.
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(b.1) Visualisation of the fitness land-
scape indicating the selective pressure
on the population as described in Sec-
tion 2.2.1 and detailed in Figure 2.1.
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(b.2) Visualisation of drift as introduced
in Section 2.2.2. The plot utilizes 3 sig-
nificant figures leading to a wide area of
neutral drift within the 0.000 boundaries.

(b) Exemplary populations dynamics of negative correlation for a simulation with
the parameters: n = 500, ε = 500, an = 250, v0 = 10, d0 = 1, tc = 0, q0 = 2,
qmin = 1× 10−3, k0 = 5, f0 = 1. The decisive parameter for negative correlation to
occur is q0 which affects the predator’s sensitivity towards aversive information. The
other parameters were changed for scaling purposes.

Figure 2.4: Results of the co-evolution of aposematism in finite populations
including the influence of drift. The decisive parameter for the qualitative be-
haviour of the correlation of r and t is the learning related q0. The other
parameters are modified for scaling purposes.
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Chapter 3

Aposematism from the
predators’ perspective.

In the previous chapters I presented a wide body of theory which addresses the
emergence and evolution of aposematism and the effects of aposematism on the
evolution of prey. In this chapter I will move the focus onto the predator. As
the selective agent, the field has a renewed interest in the role of the predator’s
aversive learning process. Within the context of aposematism an interesting
but also fundamental question remains: how does a predator incorporate the
information gained from an encounter with prey into a generalised approach to
predation and defence? I will discuss what motivates behaviour in predators
and especially, which currency might drive foraging behaviour in aposematic
predator-prey systems. In particular, this chapter will investigate the effects of
aposematic prey on the fitness and energy intake of predators to better under-
stand the selective pressure arising from aversive learning.

Parts of Section 3.2 have been published in Teichmann et al. (2014a) and
parts of Section 3.3 have been submitted for publication.

3.1 Reinforcement learning.

Learning is a widely present and successful strategy of adaptation. The impor-
tance of studying animal behaviour with the purpose of researching learning
arose from empirical and evolutionary paradigms within psychology. The grow-
ing importance of empirical methodologies and the emergence of evolutionary
theories pointing out the relation of man and animals have paved the way for
the study of animal behaviour (Shettleworth, 1999).

Ensuing studies into the aspects of predictive learning have been mostly con-
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Figure 3.1: The different procedures in operant conditioning (or associative
learning of actions and consequences) (Bouton, 2007).

ducted based on the principles of conditioning. In conditioning two events or so
called stimuli are repeatedly paired which results in the formation of a link be-
tween them. This link will allow an individual to predict the occurrence of one
event upon the presentation of the other event (Mackintosh, 1994; Pearce and
Bouton, 2001; Hall, 2002; Alonso and Schmajuk, 2012). In classical condition-
ing such associations are formed between stimuli themselves where a neutral
stimulus becomes conditioned when repeatedly paired with an unconditioned
stimulus or reinforcer. Examples of classical conditioning are forms of fear re-
sponse or taste aversion. In the case of operant or instrumental conditioning the
associations are formed between stimuli and voluntary responses. Examples are
associations between behaviour and reward or punishment as a consequence for
that behaviour. Operant conditioning is defined by two dimensions (Figure 3.1):
on the one hand, it is characterised by the frequency change of some behaviour.
We speak of rewards, or reinforcement, if an increase in the frequency of some
behaviour can be observed. On the contrary, punishment is defined as to reduce
the frequency of some behaviour. On the other hand, operant conditioning is
classified by the nature of the response to some behaviour: we speak of positive
reinforcement or punishment if the response to some behaviour is in the appli-
cation of an output and of negative if the response to some behaviour is in the
removal of an output. For the remainder of this thesis we will focus on the case
of positive reinforcement and positive punishment.

Either way, with each pairing, the prediction error – the discrepancy between
the predicted outcome and the actual outcome – is reduced through learning.
With increasing associative strength between the events one stimulus may fully
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rk+1

sk
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Figure 3.2: The reinforcement learning model with the two entities agent and
environment. The agent’s actions at iteration k have subsequent effects on the
environment’s state and rewards at iteration k + 1. The dashed line indicates
that the agent experiences the consequences of its actions with a delay.

predict the other, at which point no further learning occurs. Thus, during
early phases of conditioning large prediction errors produce great increases in
associative strength. But as learning progresses these changes decrease in size.
Finally, with the growing ability of one stimulus to predict the other the asso-
ciative strength approaches an asymptotic level. This simple idea is pervasive in
psychology as it accounts for many learning phenomena which are at the basis
of complex cognitive processes, and in that its predictions have been observed
across species. Additionally, it is also the core of a great number of clinical
models (Haselgrove and Hogarth, 2013; Schachtman and Reilly, 2011).

A modern theory of operant conditioning in particular can be found within
the computational field of reinforcement learning (RL) which provides a norma-
tive framework for optimal behaviour in order to maximise rewards and avoid
punishment. The definition of reinforcement learning is vague as it is the de-
scription of a learning problem rather than the characteristics of a particular
methodology. The learning problem is to find a mapping of situations to ac-
tions which maximise a reward signal. This mapping has to be obtained through
exploration, trial and error, or goal-directed learning from interactions, which
distinguishes reinforcement learning from supervised learning from an external
supervisory signal, learning from examples. A second characteristic of reinforce-
ment learning is delayed rewards and actions having subsequent consequences
on future rewards. These two characteristics define the learning problem (Fig-
ure 3.2) and any method solving it is considered to be a computational rein-
forcement learning method.
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This definition of the learning problem might sound abstract but reinforce-
ment learning is actually very intuitive as it describes the learning problem of
most situations where individuals interact with their environment using trial
and error to solve a task. The reinforcement learning problem emphasis that in
more realistic environments it is usually impossible to define examples of desired
behaviour which are representative for all states of an individual’s environment.
But it is in these unknown situations when learning is most beneficial and an
individual has to rely on its own experience. This is where a classical trade-off
arises between exploration and exploitation: to maximise a reward an individual
should perform actions that it knows to be rewarding from previous experience.
But to find such actions in the first place an individual had to explore actions
with unknown outcome. The dilema between exploting existing experience to
obtain rewards and exploring new actions in order to improve decisions in the
future is characteristic of reinforcement learning.

3.1.1 The elements of reinforcement learning.

Besides the two distinct main components of the RL model (Figure 3.2) – agent
and environment – a RL method has three additional common elements: a
policy, a reward function, and a value function. A model of the environment
itself is optional and not necessary for solving the RL problem. A model might
be useful in planning an individual’s actions which can improve learning. In the
following models of this chapter I will focus on model-free RL methods. I refer
to Chapter 4 where I will describe two model-based RL methods.

The policy, denoted by π(x, u), describes the agent’s mapping of perceived
states (x) of the environment to actions (u). According to the previous intro-
duction of the conditioning paradigm, the policy describes the stimulus-response
association. Thus, the policy is the core of each RL method as it sufficiently
determines behaviour of the agent in its environment. There are many dif-
ferent implementations of policies which differ greatly in their complexity and
application. As pointed out previously a policy has to address the exploitation-
exploration trade-off. Within this context lays an import distinction between
on-policy and off -policy learning methods. In on-policy learning the individual
improves the policy which it uses to determine behaviour. Consequently, such
policies have to be stochastic, or soft, to be suitable for the RL problem which
results in π(x, u) > 0 for all states x in the state space and all actions u in the
action space. Examples of such a policy are ε-greedy policies or Gibb’s soft-max
policy. An example of a simple on-policy learning algorithm is SARSA which
is an acronym for ‘state-action-reward-state-action’ (Rummery and Niranjan,
1994). It describes the basic elements of the algorithms iterative update rule
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and is the on-policy version of the later introduced Q-learning algorithm in
Section 3.1.3.

In off-policy learning methods the individual uses two distinct policies: the
first policy determines behaviour, called the behaviour policy, and the second
policy is the one which is improved, called the estimation policy. This distinction
allows the agent to use a deterministic behaviour policy as long as the estimation
policy is stochastic without contradicting the RL requirement of exploration.
Consequently, the usage of an off-policy algorithm allows the separation of the
exploration trade-off from the optimal control problem, as I will elaborate on in
more detail in the introduction of Q-learning in Section 3.1.3. Thus, off-policy
algorithms are well suited for the application in mathematical models for their
analytical tractability as illustrated in Section 3.2.

The reward function in RL describes the immediate feedback from the envi-
ronment as a single numerical value. The rewards are strictly state dependent
and the RL objective is to maximise the reward an agent receives in the long
term. The agent has no influence on the reward function itself but it can al-
ter its policy to affect the state of the environment and the rewards received
accordingly.

The reward function itself is only an indicator of the immediate quality of
the environment. Complementarily, the value function (3.1),

V π(x) = Eπ {Rk|xk = x} , (3.1)

is the indicator of the long term desirability of a realised state xk at iteration k
of the environment.

In RL the policy is based on the predictions of the value function. The value
function acts as a predictor of future rewards: it describes the total reward R
an agent can expect of a state and future states of the environment following
the agent’s policy. In RL the aim of an agent is to select actions leading to
states with high values not necessarily states with high rewards. This allows an
agent utilising a RL method to optimise long term reward accumulation even
though an action might yield only suboptimal immediate rewards. Whereas the
rewards are a primary quantity of the environment the value of a state has to
be estimated by the agent. This estimation of the value function is at the core
of the RL problem describing the future rewards depending on the long term
effects of an agent’s actions influencing the future states of the environment.

Strictly speaking, the RL problem can also be solved without estimating
the value function. There are examples of search methods which solve the
RL problem successfully. Such methods search the policy space instead of the
value space and are usually applied if the individual cannot perceive the state
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of the environment or the learning problem cannot be described in terms of a
Markov decision process. There are two main categories for searching the policy
space: evolutionary methods, e.g. genetic algorithms and simulated annealing,
and direct policy search methods, e.g. policy gradient ascent, policy search by
dynamic programming (Bagnell et al., 2003; Peters and Schaal, 2008). I will
explore a policy gradient method in chapter 4. Within this chapter I will discuss
the relation of learning and evolution in more detail in Section 3.3.

In summary, solving the RL problem with its different elements is composed
of two sub-problems called (i) the prediction problem and (ii) the control prob-
lem. The prediction problem is closely related to the policy evaluation with
the objective to estimate the value function under the current policy V π. In
addition, the control problem is about finding the optimal policy π∗.

3.1.2 Temporal difference learning.

As previously discussed, in RL an individual learns from experience of interact-
ing with its environment. Each time it performs an action in some state the
individual receives a real-valued reward that indicates the immediate value of
this state-action transition. However, for a complete RL method it requires a
strategy of how to use the gathered experience. The two traditional methods of
learning the value function in RL are dynamic programming and Monte Carlo
methods. In Monte Carlo methods the individual learns the value function di-
rectly from the final return of a state and its actions without requiring a model
of the environment. In dynamic programming the individual uses a model of
the environment’s dynamics to learn from previous experience without having to
wait for a final outcome of its actions. Temporal difference learning is a method
which resides between dynamic programming and Monte Carlo methods (Barto
et al., 1989).

The last decade has seen a proliferation of research on the neural and psy-
chological mechanisms of reinforcement learning (Dayan and Daw, 2008; Doya,
2007; Maia, 2009; Niv, 2009; Rangel et al., 2008; Schultz, 2002; 2007). In turn,
reinforcement learning has been postulated as a general model of human eco-
nomic decision making and neuroeconomics (Glimcher et al., 2008; Platt and
Huettel, 2008; Rangel et al., 2008; Schultz, 2008). We know from studies of
neural correlates in behaving animals that reinforcement signals in the brain
represent the reward prediction error rather than a direct reward-reinforcement
relation (Berns et al., 2001; Niv, 2009; Schultz et al., 1997; Montague et al.,
1996). Temporal difference (TD) learning is a RL methodology which reflects
these insights by representing states and actions in terms of predictions about
future rewards. On the one hand, like dynamic programming, TD learning uses
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previous estimates of the value function to learn continuously without having
to wait for the final return of a state and an individual’s actions. On the other
hand, like Monte Carlo methods, TD learning is model-free. The environment is
represented by moving targets rather than by a model and the learning objective
is to iteratively update the targets towards its true values based on experience
from interactions with the environment. Furthermore, the computational theo-
ries are increasingly supported by experimental data describing the activity of
dopaminergic neurons, mediate reward processing and reward dependent learn-
ing (Schultz et al., 1997; Montague et al., 2004; Daw and Doya, 2006; Dayan
and Niv, 2008).

I will discuss the details of TD learning by considering Q-learning, an exem-
plary TD learning method as follows.

3.1.3 Q-learning.

In the models of aversive learning to come I will make use of Q-learning exten-
sively. As outlined previously, the learning individual will have no predefined
model of the environment. Rather the learning individual has to draw on ex-
perience from trial-and-error interactions with its environment to learn optimal
behaviour, in particular, it will use Q-learning.

Q-learning is a simple algorithmic implementation of reinforcement learning.
In particular, it is a model free method which allows learning about sequential
decision tasks in a Markovian environment from experienced rewards without
the necessity of building representations of the environment. Instead, the al-
gorithm uses moving target values as I will explain below. With regard to the
different elements of RL, Q-learning is an off-policy TD control method:

The learning process takes place in the value space and consists of a reward
prediction R termed the action-value function (3.2) of taking action u in state
x at iteration k:

Q(x, u) = E{Rk|xk = x, uk = u}. (3.2)

The condition for the application of the action-value function and Q-learning is
a Markovian decision process:

P{xk+1 = x′, rk+1 = r |xk, uk}. (3.3)

The individual learns from iterative interactions with its environment. At
each iteration k the learning individual finds itself in state xk of its environment.

The actual learning process targets the individual’s value prediction follow-
ing action uk in state xk as described by the action-value function (3.2). This
action-value function is an approximation of the actual function Q∗(x, u). Con-
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sequently, the aim of the learning process is to find Qπ(xk, uk) ≈ Q∗(x, u).
To obtain the current Q values it involves an iterative update process (Q-

learning) which is typically formulated in an algorithmic representation because
of its origin in computing, as follows:

Q′(xk, uk)← Q(xk, uk)+α

 target︷ ︸︸ ︷
rk+1 + γ max

uk+1

Q(xk+1, uk+1)−Q(xk, uk)


︸ ︷︷ ︸

prediction error

, (3.4)

with α being the learning rate. Figure 3.3 shows the Q-learning algorithm in
pseudo-code. Importantly, the individual not only takes immediate rewards into
account but also the sum of discounted future rewards with γ being the discount
factor. This combines an ubiquitous interest in rewards with the uncertainty of
future events namely:

Rk =

K∑
i=0

γirk+i+1

= rk+1 +

K∑
i=1

γirk+i+1

= rk+1 + γ

K∑
i=0

γirk+i+2

= rk+1 + γRk+1.

(3.5)

Finally, the learning individual bases its decision process on Q(xk, uk) fol-
lowing a Gibb’s soft-max policy:

π(x, u) = P (uk = u|xk = x,Q(xk, uk)) =
exp (Q(x, u))∑
u exp (Q(x, u))

. (3.6)

Effectively knowing all of the current Q values gives the probability that the
individual chooses a specific option for the next interaction with the environ-
ment. As Q-learning is an off-policy learning method, the individual derives an
optimal estimation policy π∗ from approximating Q∗ through a greedy (deter-
ministic) selection maxuk+1

Q(xk+1, uk+1). This makes Q-learning the preferred
method of this thesis as the deterministic behaviour policy in Q-learning al-
lows an analytical solution of the learning problem in Section 3.2. However, as
discussed previously in Section 3.1.1 Q-learning has to address the exploration-
exploitation trade-off which is the reason for choosing Gibb’s soft-max policy as
a stochastic estimation policy.

Now, the iterative Q-learning algorithm expands as follows: at iteration k,
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the learning individual interacts with the environment of state xk which is a
realisation from the state space X. Following the decision policy π, the learning
individual takes action uk out of the action space U . As a result of this interac-
tion at iteration k, the individual experiences an immediate reward rk+1. The
terminology refers to the experienced reward at the subsequent iteration k + 1

which emphasises that the reward is a consequence of the individual’s action.
Next, the learning individual forms a target value which is a composition of
the experienced reward rk+1 and discounted future rewards. Thereby, future
rewards are unobserved and a prevailing estimate Q(xk+1, uk+1). This allows
the agent to learn continuously by filling in future rewards with moving averages
which is known as bootstrapping. The difference between the target value and
the estimate at iteration k gives the prediction error. Finally, the Q-learning al-
gorithm updates the estimate Q(xk, uk) to Q′(xk, uk) towards the formed target
value, subsequently reducing the prediction error. As the Q-learning algorithm
uses bootstrapping, these targets are moving ones.

The recursive component of the Q-learning algorithm is a fundamental prop-
erty used across RL described by the Bellman equation. The Bellman equation
allows the optimisation problem to be broken up into simpler sub-problems by
describing the value of a decision in terms of the value of an initial choice and
the value of the remaining decision problem. The optimal value function (3.1)
has to be a result of choosing optimal actions in each state. Consequently, the
optimal value function can be written as a function of the action-value function
(3.2) as follows

V ∗(x) = max
u

Q∗(x, u). (3.7)

Using the Markov properties of the learning problem the Bellman optimality
equation (Sutton and Barto, 1998) allows a redefinition of Q∗ in terms of a
recursive optimisation of each decision based on state transition and reward
emission probabilities as follows:

Q∗(x, u) = E
{
rk+1 + γmax

uk+1

Q∗(xk+1, uk+1)|xk = x, uk = u
}

=
∑
xk+1

P (xk+1|xk = x, uk = u)
[
P (rk+1|xk = x, uk = u, xk+1)

+ γmax
uk+1

Q∗(xk+1, uk+1)
] (3.8)
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and from (3.7) we get

max
u

Q∗(x, u) = V ∗(x)

= max
u

∑
xk+1

P (xk+1|xk = x, uk = u)
[
P (rk+1|xk = x, uk = u, xk+1)

+ γV ∗(xk+1)
]
.

(3.9)

Equations (3.8) and (3.9) are Bellman optimality equations for Q∗ and V ∗ re-
spectively which have an unique solution in the case of finite Markov decision
problems independent of the specific policy (Sutton and Barto, 1998). Q∗ rep-
resents a one-step-ahead search and provides the optimal expected long-term
payoff. Therefore, any greedy policy on Q∗ is optimal. However, in the ap-
plication of Q-learning to biological problems of predator-prey interactions I
presume that a constantly changing environment requires on-going exploration
and learning as Q∗ changes with time, e.g. through changes in the availability
and yield of food sources. Therefore, exploration is a precondition and persis-
tent cost of learning in the following models with the choice of Gibb’s soft-max
policy as the estimation policy in the models of this chapter.

Q ← 0
s_k ← s_0
WHILE learning DO

a_k ← π(s_k,Q)
s_(k + 1) ← f(s_k, a_k)
Q(s_k, a_k) ← Q(s_k, a_k) + α (r_(k + 1) +

γ max _a Q(s_(k + 1), a) − Q(s_k, a_k) )
s_k ← s_(k + 1)

Figure 3.3: Q-learning algorithm in pseudo-code.
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3.2 An application of Q learning in optimal diet

models.

In this model I will apply Q-learning to investigate foraging behaviour in uncer-
tain environments. I will analyse a predator’s diet choice and energy intake in
the light of defended prey and the presence of Batesian mimics within a context
of aversive learning. In particular, I will introduce a pre-condition of exploration
for successful aversion formation and show how it predicts foraging behaviour in
the presence of conflicting rewards which is conditionally suboptimal in a fixed
environment but allows better adaptation in changing environments.

3.2.1 Introduction to optimal foraging theory.

Optimal foraging theory (OFT) is an ecological theory which makes predictions
about foraging behaviour. Foraging is a main component of animal behaviour
and observing animals in the wild usually shows them either searching for food
or feeding. The motivation of OFT lays in the fact that survival is dependent
on a sufficient energy intake. Episodes of starvation can negatively affect an
individual’s fitness and prolonged starvation can lead to death. Therefore, an
individual’s survival and consequent fitness is a function of its foraging success.
Assuming that there is individual variance in the foraging strategies which de-
termine foraging success, natural selection will act on these foraging strategies
and evolution will take its course. But not only the survival of an individual
is dependent on its foraging success. Even in an environment where food is
abundant an individual must have a sufficient energy intake for reproduction.
Thus, OFT predicts that natural selection will act on the efficiency of energy
acquisition and storage in relation to an individuals survival and reproduction
by maximising the energy gain per unit time:

E

h+ s
, (3.10)

where E is the average energy per prey item, h is the average handling time
of a prey item, and s is the average time taken to acquire the prey item. Prey
profitability as defined by (3.10) is the most commonly assumed currency in
OFT and allows for some interesting predictions:

• If the handling time is shorter than the time to acquire a prey item (h < s)
predators will be generalists, meaning they will forage on every prey item
they encounter as prey is sparse.

• In the opposite case of prey with longer handling times (h > s) predators
will be specialists and ignore mediocre prey items.
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transit time T foraging duration t0

E(t)

expected T : T̂
optimal t : t∗

Figure 3.4: Marginal Value Theorem. The optimal foraging time in a patch t∗
is given by the tangent of the cumulative energy gain from foraging in a patch
E(t).

These predictions are made under the assumption that prey items are dis-
tributed randomly in the environment. However, prey can be found in relatively
discrete patches. In an environment with prey distributed in patches the preda-
tor has to take the additional travelling time between patches into account. The
predator is now facing a choice of where, when, and for how long to forage on
a specific patch of prey items. The complex problem of foraging ecology in a
patchy environment has a simple theoretical solution called the marginal value
theorem (Charnov, 1976). The marginal value theorem defines the optimal time
a predator should spend foraging in a single patch. The main assumption is
that the resources of a patch are finite and deplete through the exploitation of
a patch. The curve describing the overall energy gain as a function of time is
therefore gradually levelling off. The optimisation needs to take the travel time
between patches into account and the net energy gain R(t) is therefore defined
as follows:

R(t) =
E(t)

t+ T
, (3.11)

where E is the energy gain from foraging in a patch, T is the travel time between
patches, and t is the time spent foraging in a patch. Thus the derivative is given
by

R′(t) =
(T + t)E′(t)− E(t)

(T + t)2
. (3.12)

The derivative is zero when

E′(t) =
E(t)

T + t
= R(t), (3.13)
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which is a maximum as the second derivative

R′′(t) =
E′′(t)

T + t
(3.14)

has the same sign as E′′(t) which is negative by definition of the patch model.
Figure 3.4 shows the graphical solution of the marginal value theorem. Let
the optimal foraging time be t∗ then the slope of the tangent is given by
E(t∗)/(T + t∗) which is equal to E′(t∗).

The marginal value theorem has found wide application in ecological models
of animal behaviour for its simplicity and flexibility. Its successful application
depends on the choice of currency and the definition of the net energy gain
from foraging in patches. Examples range from mating choice to territory sizes
(Parker, 1978; Krebs, 1980).

3.2.2 Optimal foraging theory and learning.

Both theories, OFT and MVT, proved successful in a wide range of applications
(Stephens, 1986) but a later review also showed that foragers stayed signifi-
cantly longer in patches than predicted (see Nonacs (2001) for a review of 26
quantitative studies testing quantitative predictions of the MVT).

Predators face the challenge of securing a sufficient energy intake in the face
of changing and uncertain environments. Through the evolution of predator-
prey interactions manifold mechanisms have emerged to avoid predation as dis-
cussed previously. Of particular interest to this thesis is aposematism as an
anti-predator adaptation where secondary defences, commonly involving the
possession of toxins or deterrent substances, are combined with conspicuous
signals as warning flags.

There is a wide body of theory which addresses the emergence and evolution
of aposematism (Ruxton et al., 2004; Yachi and Higashi, 1998; Broom et al.,
2006; Leimar et al., 1986; Lee et al., 2011; Marples et al., 2005). However,
the field of aposematism has a renewed interest in the role of the predator and
details of the predator’s aversive learning process. In particular, the role of
aposematism in memory formation has been widely studied (Speed, 2000; Svá-
dová et al., 2009; Skelhorn and Rowe, 2006; Johnston and Burne, 2008; Speed
and Ruxton, 2005). As the selective agent, aversive learning is an important as-
pect of predator avoidance. It has been shown that predation of defended prey
is rather a state dependent decision and predators can increase their attack rates
on defended prey e.g. when particularly hungry (Barnett et al., 2007; Sherratt,
2003). There have been suggestions of an interaction of appetitive learning
with aversive learning to explain predator behaviour of ingesting toxins in these
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situations (Hagen et al., 2009).
An interesting perspective is to look at the predator and the consequences of

aposematism in combination with aversive learning on the predator’s diet and
energy intake. In particular, the role of mimics in the evolution of aposematism
and their effect on foraging is not very well understood (Gamberale-Stille and
Tullberg, 2001; Lev-Yadun and Gould, 2007; Svádová et al., 2009; Holen, 2013).
A predator may utilise sampling to distinguish between the toxic model and the
mimic (Gamberale-Stille and Tullberg, 2001; Darst, 2006; Holen, 2013).

The traditional way of analysing and predicting foraging behaviour is the
application of optimal foraging theory (OFT) which maximises the predator’s
net fitness per unit time (MacArthur and Pianka, 1966; Stephens and Krebs,
1987; Sih and Christensen, 2001). However, OFT has well known limitations:
OFT usually fails to correctly predict foraging behaviour on mobile prey in com-
plex environments (Sih and Christensen, 2001; Pyke, 1984; Perry and Pianka,
1997). It can be argued that OFT was never intended for predictions in the case
of mobile prey and that the simple optimisation per unit time omits the uncer-
tainty of more complex environments. There are models which address optimal
foraging under the constraints of risk and uncertainty and previously extended
OFT with learning (McNamara and Houston, 1985). The two main approaches
to optimal behaviour in dynamic decision making are dynamic programming
(DP) and stochastic optimal control methods (e.g. Bayesian decision theory)
(Houston and McNamara, 1982; Stephens and Charnov, 1982; McNamara and
Houston, 1985; Mangel and Clark, 1986; McNamara et al., 2006). Dynamic
programming in particular has found broad application in behavioural ecology
and has been used in models of dynamic decision making to identify optimal
behaviour numerically (Clark and Mangel, 2000). A common factor of all these
models is that they are model based : they depend on a representation of the
environment in the form of a model developed from expert knowledge and the
learning objective is to find the parameters which optimise the representational
model.

Alternatively, reinforcement learning (RL) is a normative framework of ratio-
nal decision making in a changing and complex environment, as introduced ear-
lier in Section 3.1. RL combines the computational task of maximising rewards
and the algorithmic implementation of learning without an explicit supervisory
control signal (Mitchell, 1997; Sutton and Barto, 1998).

Neural correlates of behaving animals show that reinforcement signals in
the brain represent the reward prediction error rather than a direct reward-
reinforcement relation. Temporal difference (TD) learning reflects these insights
by representing states and actions in terms of predictions about future rewards
(Niv, 2009; Berns et al., 2001). Additionally, TD learning is model-free: the
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environment is represented by moving targets rather than by a model and the
learning objective is to iteratively update the targets towards its true values
based on experience from interactions with the environment. TD learning has
been widely used in artificial systems to choose appropriate actions in com-
plex non-stationary environments. Furthermore, the computational theories of
RL are increasingly supported by experimental data describing the activity of
dopaminergic neurons, mediate reward-processing and reward-dependent learn-
ing (Schultz et al., 1997; Montague et al., 2004; Daw and Doya, 2006; Dayan
and Niv, 2008).

The further discussion of my model is structured as follows: In the next two
sections I apply a TD learning algorithm in a model of predator interactions with
conspicuous prey to gain insights on how aversive learning influences foraging
in uncertain environments, and present the results. Next I discuss the main
findings and discuss similarities and differences to the optimisation approach of
traditional OFT. In particular, I will compare TD learning with McNamara et
al. (McNamara and Houston, 1985) and Sherratt (Sherratt, 2003).

3.2.3 Model definition.

In my model the predator interacts with its environment to find an optimal
foraging strategy to optimise its rewards. The predator’s environment offers a
stable background of alternative food sources. Additionally, the predator has
the choice to include a conspicuous looking type of prey into its diet. However,
the conspicuous prey population may consist of an aposematic model species
and a Batesian mimic species.

The predator is not able to distinguish models and mimics based on their
appearance and utilises experience to learn the optimal foraging behaviour. The
model is presented in Figure 3.5.

I term the action of falling back on the alternative background food sources
as u = 0 and the action of attacking conspicuous prey as u = 1.

I assume the population of conspicuous prey consists of a fraction p of
Bateysian mimics and a fraction 1 − p of defended models. The reward sig-
nal for the alternative stable background food source is rk+1 = {1 |u = 0}. The
reward signal for ingesting a mimic individual is rk+1 = {2 |u = 1, i = mimic}
and rk+1 = {1 − t2 |u = 1, i = model} for ingesting a model individual with
toxicity t. These reward signals do not have to necessarily represent fitness
related entities (Pyke, 1984). In this model I simply assume mimics to be re-
warding and that toxicity has a non-linear effect on the reward, which seems
like a reasonable assumption.

I consider two different cases (Figure 3.5):
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Figure 3.5: The predator’s interaction with its environment and possible re-
ward signals. The predator has the ability to recognise toxic models by taste-
sampling. t stands for the toxicity of defended models.
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1. The predator has the ability to use taste-sampling to distinguish models
from mimics assuming that the model’s toxicity t operates as a clue to the
predator. This foraging strategy is also called go-slow behaviour (Guilford,
1994). The probability of rejecting a model based on taste-sampling is
given as follows:

d(t) = 1− 1

1 + d0 ∗ t
. (3.15)

2. The predator has no ability to distinguish mimics and models and the
encounter is solely frequency dependent i.e. d0 = 0 in Equation (3.15).

Based on the growing understanding of learning at the computational and
neural level I use Temporal Difference (TD) learning to implement the predator’s
aversive learning: in particular, I use Q-learning as introduced in Section 3.1.3
(Watkins, 1989). The predator utilises experience to infer the optimal foraging
behaviour derived from the action-value function (3.2) of previous encounters
with the conspicuous prey. At each iteration k the learning individual finds itself
in state xk of its environment, accordingly, xk is the current composition of the
conspicuous prey population in this model. The actual learning process targets
the individual’s value prediction following action uk (respectively, choosing the
alternative food source or the conspicuous prey for foraging) in state xk as
described by the action-value function (3.2).

I assume the environment to be uncertain with non-stationary parameters
t and p over a predator’s lifespan and, therefore, it requires a precondition of
continuous exploration of the environment. Thus, this model uses Gibb’s soft-
max policy which is the stochastic policy of taking action u in state x as defined
previously in Equation (3.6).

3.2.4 Results.

In the case of the predator being unable to distinguish models from mimics
(d0 = 0) the average reward signal is soley frequency dependent and given as

R =

1 if u = 0

2p+ (1− t2)(1− p) if u = 1.
(3.16)

If the predator utilises taste-sampling it can distinguish models from mimics
based on the model’s toxicity and will not ingest the toxic model with probability
d(t) given in (3.15). After the predator rejects a conspicuous prey individual it
will stay in the locality and forage for another conspicuous prey individual. The
average reward signal incorporating taste sampling derives from the geometric
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(a) Predator attack probability (π) of
conspicuous prey without taste-sampling
(d0 = 0) following Gibb’s soft-max policy
(3.6). The shaded area indicates aversive
toxicity.
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(b) Predator attack probability (π) of
conspicuous prey utilising taste-sampling
(d0 = 3) (3.15) following Gibb’s soft-max
policy (3.6). The shaded area indicates
aversive toxicity.
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(c) The predator’s average reward (R)
from interacting with its environment
without taste-sampling (d0 = 0). The
shaded area indicates suboptimal rewards
due to foraging on aversive prey.
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(d) The predator’s average reward from
interacting with its environment utilising
taste-sampling (d0 = 3). The shaded area
indicates suboptimal rewards due to for-
aging on aversive prey.

Figure 3.6: The results of a predator foraging in an environment offering an
aposematic food source which uses Q-learning to derive the optimal foraging
strategy. All results use a discount rate γ = 0.5. t stands for the toxicity of
models and p for the fraction of mimics in the conspicuous population.
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series and is given as follows:

R =

1 if u = 0

2p 1
1−(1−p)d(t) + (1− t2)(1− p) (1−d(t))

1−(1−p)d(t) if u = 1.
(3.17)

To obtain the optimal diet we find the correct, discounted action-value func-
tion Q∗ by solving the TD learning problem:

0 = R+ γ max
uk+1

Q(xk+1, uk+1)−Q(xk, uk), (3.18)

which is in this model a system of two equations (u = {0, 1}) with two unknowns
(Q(x, u = 0), Q(x, u = 1)) for each possible state x of the environment. The
choice of Q-learning as an off-policy control method with a greedy behaviour
policy defines maxuk+1

Q(xk+1, uk+1) and allows an analytical solution.
Figures 3.6a and 3.6b show the probability of an experienced predator at-

tacking conspicuous prey based on the frequency of mimics (p) and the model’s
toxicity (t). We define aversiveness as π(u = 1) < 0.5 with the threshold
toxicity (t∗) given in (3.7) for which conspicuous prey becomes aversive and
R(u = 0, t∗) = R(u = 1, t∗) holds, as follows:

t∗ =


√

p
1−p if d0 = 0

√
p2d20−4p2+4p+pd0

2(1−p) otherwise.
(3.19)

We see that taste-sampling lowers the aversiveness of defended conspicuous prey
when mimics are present.

Figures 3.6c and 3.6d show the average reward (R) of an experienced preda-
tor. Mimics increase the average reward of the predator through increased for-
aging on non-aversive conspicuous prey. Conversely, increasing toxicity of the
models reduces the average reward for the predator until the increasing toxicity
intake from mistakenly ingested models becomes aversive.

3.2.5 Discussion

I apply Q-learning to the problem of optimal foraging behaviour of an experi-
enced predator in an uncertain environment. My motivation lays in the recog-
nised importance of aversive learning in aposematism and the difficulties of the
classical OFT approach to predict foraging behaviour on mobile prey (Sih and
Christensen, 2001). In the case of mobile prey additional factors of prey han-
dling and uncertainty need to be considered, making the OFT model increas-
ingly complex (Holen, 2013). Instead, reinforcement learning offers a normative
framework of rational decision making in a changing and complex environment
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with growing evidence of neural correlates.
The TD learning based approach puts the emphasis on experience including

discounted future rewards and requires exploration of the action space. This
is fundamentally different to the OFT models of net fitness maximisation per
unit time. It has been long argued that a learning animal cannot be foraging
optimally and vice versa due to the exploration exploitation trade-off (Ollason,
1980).

I hypothesise that a non-stationary environment introduces great uncer-
tainty on the prey-population’s parameters t and p which selects for learning in
evolving predators to adapt quicker to their changing environment. Evidence
for this claim has to come from an evolutionary model and is subject to future
work. To coincide widely with the original OFT methodology, I assume that
the learning process is sufficiently faster than the frequency of change of the
environment to concentrate solely on the experienced predator. At the core
of Q-learning is the approximation of the action-value function (3.2) using an
iterative update rule based on moving targets (3.4). However, this model allows
the analytical solution of the action-value function and excludes the iterative
learning phase of Q-learning. Furthermore, I assume that the conspicuous prey
inhabit a distinct locality. These assumptions allow me to solve the TD learn-
ing problem directly (3.18) and I present the policy a predator adopts through
Q-learning under a constraint of continuous exploration.

In the context of previous foraging models which incorporated learning, the
presented learning methodology is model-free. Relevant models, among others,
are from McNamara and Houston (1985) and Sherratt (2003). McNamara’s
learning rule describes a Monte Carlo method using past events to learn the
maximum possible long-term rate as defined by the marginal value theorem
(Charnov, 1976). It uses discounted experience from past interactions with the
environment to optimize a current parameter estimation. The corresponding
concept in TD learning is termed eligibility trace and is bridging TD learning
and Monte Carlo methods. Eligibility traces can make TD learning more ef-
ficient but as I exclude the iterative learning phase it has no application in
this model. Nevertheless, TD learning is conceptually different as its learning
objective is based on bootstrapping future rewards rather than optimising the
current estimate of a parameter from past events.

Sherratt’s model (Sherratt, 2003) uses Bayesian learning based on dynamic
programming. The learning objective is to infer the Bayesian posterior mean
estimate of the fraction of defended prey in an unknown population from past
experience. The model uses Beta distributions in the Bayesian inference to
represent an assumed underlying binomial distribution of defence in a group
of prey. The main assumption for the application of dynamic programming
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is the existence of a finite time horizon where the predator ceases attacking
completely. Sherratt’s model provides an optimal sampling strategy for novel
prey populations with constant values for cost and benefit of an attack. However,
the model cannot provide optimal foraging policies in changing populations or
when defence is not just binomially distributed.

I conclude that TD learning is a new approach to optimal foraging in dy-
namic environments where cost-benefit values of attacking prey do not necessar-
ily follow simple distributions. The model-free objective of TD learning makes
it an ideal method for learning in complex and dynamic environments where
parameters are subject to constant change.

My model confirms expected results such as that mimics in general lower the
aversiveness of the conspicuous prey population and undermine aposematism.
Nevertheless, highly toxic models can sustain aversion even for high frequen-
cies of mimics especially in predators not utilising taste sampling. Importantly,
mimicry requires mixing with model prey in the case of a learning predator as
an experienced predator could utilise spatial information about the prey popu-
lations to discriminate between models and mimics. However, it requires explo-
ration for a predator to gain insights about its environment and to form aversive
memory. Therefore, even an aversive prey population experiences some level of
predation. My model predicts that a taste-sampling predator increases its attack
rate on mixed conspicuous prey populations in the case of moderately defended
models and rewarding mimics. The taste-sampling predator gains increased re-
wards from moderately defended models as it allows for better discrimination
of models and mimics. (In more strongly defended prey the increasing cost of
mistakes will outweigh the benefits of improved discrimination of prey.) This
is a contrary finding to (Holen, 2013) in which mimics benefit from moderately
defended models. This difference is founded on the representation of toxins as
recovery time in the OFT maximisation approach and the lack of occasional
exploration and consequent exposure to models in order to maintain aversion
for highly toxic models.

An interesting paradox is the foraging behaviour on aversive prey which re-
duces the reward for the predator further before recovering through increasingly
falling back on alternative background food sources, (the adopted attack policy
for certain parameters results in an average reward R which lays in the shaded
area in Figures 3.6c and 3.6d, and is suboptimal). This is a result of the con-
flicting reward signals of mimics and models and the necessity of exploration
of the action space in the face of uncertainty for successful aversion formation.
Additionally, an increasing frequency of mimics slows the switching to alter-
native food sources through further extended uncertainty. Similar results have
been observed in counter conditioning and operant conflict situations (Williams
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and Barry, 1966; Blaisdell et al., 2000; Mazur and Ratti, 1991; Matsushima
et al., 2008). My model predicts a fixed amount of average long term toxicity
intake which a predator tolerates motivated either by the higher reward signal
of ingested mimics or as a consequence of uncertainty. (Although the toxicity of
immediate rewards which induce switching to alternative food sources depends
on the amount of mimics and the specific rewards, see Equation (3.19) and Fig-
ures 3.6a and 3.6b, the average reward function described in Equations (3.16)
and (3.17) has a fixed minimum as presented in Figures 3.6c and 3.6d). This
foraging behaviour on aversive prey for a specific parameter space is condition-
ally suboptimal in a stationary environment (even if only during an individual’s
lifetime) but I note that a) it reflects what real animals do, and b) it is a good
policy precisely because environments are inherently uncertain. Finally, the
switching behaviour between food sources shows so called contrast effects and
depends on the initial toxicity of the model population and not solely on the
absolute change of toxicity. With respect to the same absolute toxicity change,
the predator switches faster to the alternative food source if the environment
becomes aversive than it would incorporate the conspicuous food source if the
environment becomes rewarding. Summarising, the main conclusions are as
follows:

• TD learning is a suitable approach to optimal foraging in changing envi-
ronments.

• Even aversive prey experience some level of predation as part of the preda-
tor’s aversive memory formation.

• Taste-sampling lowers the effective aversiveness of conspicuous prey if
mimics are present.

• Intermediate toxicity of aposematic models increases the predator’s for-
aging on conspicuous prey through increased discrimination from taste-
sampling and higher average rewards when mimics are rewarding.

• The conflicting reward signals from mimics and models cause uncertainty
and conditionally suboptimal foraging behaviour on aversive prey.

• The uncertainty is linked to a fixed amount of average toxicity intake
which predators tolerate in order to forage on rewarding mimics before
switching to mediocre background food sources.

• Taste-sampling extends the range of parameters where suboptimal forag-
ing occurs.
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• Switching between food sources shows contrast effects and depends on the
initial toxicity of models and not solely on the absolute change of toxicity
in the environment.

3.3 When does learning matter?

Through evolution, animals are generally very well-adapted to the environment
in which they find themselves. Phenotypic plasticity, the ability to adapt the
phenotype in response to different conditions of the environment, allows for
suitable adaptations even in the face of changing environments (Pigliucci, 2001).
Thus both physical abilities and behaviours of animals are generally appropriate
to their environment. Nevertheless many animal behaviours are not solely ge-
netically determined, though some are, but the response of the animal’s learning
capabilities.

Hence a key question arises: under which conditions is the ability to learn
beneficial to animals? To answer this question I will focus next on a deceptively
simple model of learning by which individuals learn to associate events that oc-
cur together, for instance two stimuli, a stimulus and a response, or a response
and its outcome (Mackintosh, 1974; Pearce, 2013). As previously indicated,
associative learning is a fundamental cognitive process observed across species
(including mollusks, insects, birds and mammals) (Carew et al., 1983; Macphail,
1982) that affects a wide variety of behaviours ranging from colour recogni-
tion (Carew et al., 1983) and spatial representation (Albasser et al., 2013), to
causality judgements (Shanks, 1995) and goal-directed behaviour (Valentin et
al., 2007). Of course, in addition to associative learning animals use other types
of learning (e.g. social learning or perceptual learning) and ontogenetic mech-
anisms (e.g. habituation and phenotypic plasticity) to adapt their behaviour
to the environment. Nonetheless, the pervasiveness and relevance of associative
learning makes it the ideal candidate to investigate when learning is most ef-
fective. Within the wider consideration of learning as a form of adaptation to
changing environments, I am particularly interested in associative learning in
decision-making tasks.

From a biological perspective, learning is a mechanism for rapid adaptation
(modification) of behaviour during the individual’s lifetime and a distinct adap-
tation to changing environments in particular (Johnston, 1982). The main line
of argument is that learning incurs some cost from which it follows that a con-
stant environment should select for a genetically fixed pattern of behaviour over
learned behaviour. But the relationship of learning and evolution is complex
and an important aspect of learning is environmental predictability (commonly
also referred to as regularity) (Staddon and Simmelhag, 1971). Clearly, there
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is nothing to learn in an environment which is absolutely unpredictable. So far
both factors, environmental change and regularity, have been discussed in the
literature as the selective factors in the evolution of learning. A contradiction
at first sight, but in the light of extreme environments a solution to the para-
dox would be that learning is in fact an adaptation to intermediate levels of
environmental change (Johnston and Turvey, 1981).

As well as considering which aspects of the environment make a learning
strategy beneficial, questions regarding the relationship between evolution and
learning are of interest. To recap, I use reinforcement learning (RL) as a norma-
tive framework of associative learning and rational decision making in changing
environments. RL combines the computational task of maximising rewards and
the algorithmic implementation of learning without an explicit supervisory con-
trol signal (Sutton and Barto, 1998). In RL the environment is represented by
moving targets rather than by a model and the learning objective is to itera-
tively update the targets towards their true values based on experience from
interactions with the environment. Each time an individual performs an action
in some state it receives a real-valued reward that indicates the immediate value
of this state-action transition. Unlike in supervised learning, the learner must
discover which actions yield the most reward by exploiting and exploring their
relationship with the environment. These two characteristics, trial and error
search and delayed rewards, are the two most important features of reinforce-
ment learning which raises the problem of an optimal exploitation-exploration
trade-off.

The last decade has seen a proliferation of research on the neural and psy-
chological mechanisms of RL (Dayan and Daw, 2008; Doya, 2007; Maia, 2009;
Niv, 2009; Rangel et al., 2008; Schultz, 2002; 2007). In particular, RL predic-
tions are increasingly supported by experimental data describing the activity of
dopaminergic neurons, mediate reward processing and reward dependent learn-
ing (Schultz et al., 1997; Montague et al., 2004; Daw and Doya, 2006; Dayan
and Niv, 2008).

In this model I present fitness distributions of learning individuals in an
environment designed to answer questions surrounding the initial evolution of
RL mechanisms. I will compare the learning strategy with a mutating popula-
tion of individuals with fixed types to investigate the cost of learning and the
effects of environmental parameters on the benefits of learning. Similarly to
the motivation of evolutionary games (Section 1.1.3) I consider the evolutionary
dynamics as a separate layer to the model presented here. Therefore, I sepa-
rate the selection process as part of the evolutionary dynamics from the model
and analyse a mutation and learning process as a population’s means of cre-
ating phenotypic variance. This allows the focus on static fitness distributions
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which should not alter the outcome of the analysis in the biological context of
finding the best strategy for the environment presented in this model. I note
that this model is not a complete description of the dynamics of evolution but
an adequate simplification motivated by game theoretical models. The model
will allow the reasoning about the factors which might have driven the initial
evolution of RL. Additionally, it allows important insights into the differences
of phenotypic variance caused by mutation and learning independently of the
common arguments around the speed of adaptation.

3.3.1 Model definition.

The following results of this model are a continuation of the previous model
(Section 3.2.3) introducing reinforcement learning, i.e. Q-learning, to models
of predator-prey interactions (Teichmann et al., 2014a). The previous model
investigated the effects of aversive learning in a changing environment on an
experienced predator’s diet choice and energy intake. In this model I describe
fitness distributions of learning individuals in the context of changing environ-
ments more generally and compare them with a simplistic mutation process in
order to gain insights into the relationship between evolution and learning.

In this model the learning individual again uses Q-learning as an implementa-
tion of reinforcement learning (Watkins and Dayan, 1992). I choose Q-learning
for the simplicity of its implementation of real-time error-correction learning
and as it is increasingly supported by both behavioural and neural data. To
recap, in Q-learning an individual uses experience following its interactions with
the environment to infer optimal decisions. The learning individual utilises an
action-value function to build a representation of the environment which de-
scribes the expected future payoff following a specific action in a specific state
of the environment. The individual then minimises the error of the action-value
function’s future payoff prediction building on a growing amount of evidence
from past trial-and-error interactions with the environment. These future pay-
off predictions are discounted by a γ factor, indicating the uncertainty of forth-
coming events. Furthermore, the prediction error is modulated by a learning
rate α, that is, how quickly (not necessarily how correctly) the animals learn.
Finally, the individual translates the payoff predictions of the action-value func-
tion into a decision following a stochastic policy, in particular Gibb’s soft-max
policy. I refer to the previous introduction of Q-learning for further details on
the Q-learning algorithm in Section 3.1.3.

I compare a population of learning individuals with a population of mutating
individuals with fixed phenotypes. An individual of the population following the
mutation strategy has a genetically determined decision policy chosen randomly
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from a uniform distribution at the beginning of each generation. The important
differences between the two populations are: (i) the process of simplistic mu-
tation is random and not adaptive operating on fixed phenotypes and (ii) the
learning strategy is adaptive but incurs the cost of exploration. I do not include
any selection in my model as I am purely interested in the fitness distributions
of both populations in a changing environment which makes the mutation fre-
quency of the mutation process irrelevant to my model. A population dynamical
approach would complicate the analysis unnecessarily as it would add further
aspects of mortality, resource depletion, or interactions between individuals.
Similarly to models of evolutionary games, I treat the underlying population
dynamics as a separated layer and assume that it does not alter the biological
relevant outcome of the analysis. I will show that it is not necessary to analyse
complete population dynamics to gain insights into the benefits of learning.

I define the environment for my analysis to be stationary and ergodic and to
consist of two options, a certain and an uncertain one, as shown in Figure 3.7.
In my definition the certain option gives a constant fitness payoff R = 0 and
the uncertain option returns a uniformly distributed fitness payoff g(R) with
the mean being zero. The value of 0 for the fitness of the constant option
and the mean of the variable option is chosen for simplicity. I note that it is
possible to add an arbitrary constant to either and not qualitatively change
the results (to see why this is reasonable here, and when it is not, see the
discussion on long-term fitness effects in Section 3.3.2). The environment is
parametrised with (i) β being the number of changes of the uncertain option
per generation time, (ii) ε being the extent of the absolute fitness change per
generation time, and (iii) l being the length of the generation in interactions
with the environment. The term regularity refers to the predictability of an
environment within models of learning. In my model the learning individual
cannot draw from any secondary source of information such as a correlation
between environmental states. Therefore, I define regularity of the environment
in my model by the number of interactions available for exploitation which is
given by the number of interactions with a given environmental state. Hence,
the regularity of the environment in my model is defined by a combination of β
and l. Accordingly, the environment becomes increasingly irregular with greater
values of β and smaller values of l as an individual has less interactions with a
given environmental state before an environmental change occurs. I define the
limits [−a, a] of the Uniform distribution g(R) as follows:

a =
3

2β
ε, (3.20)

where ε is the absolute average fitness change per generation derived from the
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Symbol Definition
R The fitness payoff following an interaction with the

environment.
F The fitness of an individual at the end of a genera-

tion.
F̂ The scale-free fitness of an individual.
l The length of a generation in interactions with the

environment.
β The number of environmental changes per generation

time affecting the regularity of the environment.
ε The extend of environmental change in absolute av-

erage fitness change per generation time.
α The learning rate of the learning individuals.
γ The discount rate of future payoffs of the learning

individuals.

Table 3.1: Parameters and their definition

triangular distribution h(|Ri−Ri+1|) of the absolute difference of the uniformly
distributed fitness payoff g(R) as illustrated in Figure 3.7b. I assume that an
increased frequency of environmental change β results in smoother and less
pronounced single changes as reflected in the definition of Equation (3.20).

The fitness F of an individual is the sum of the fitness payoff from the
interactions with the environment

F =

l∑
t=1

Rt. (3.21)

3.3.2 Results.

I present the distributions of n = 5000 generations interacting with their envi-
ronment using a scale free variant of the fitness as follows:

F̂ =
β

l ε
F , (3.22)

which will allow a more intuitive comparison of the two populations in respect
to the parameters of the environment.

I will present the results for each population respectively as follows in the
form of box-plots. The box is bounded by the first and third quartiles of the
fitness distributions. The inner band shows the second quartile, the median of
the fitness distributions. The whiskers of the box plots comprise 1.58 times the
interquartile range (IQR). The remaining data is shown as outliers with a simple
cross. The notch around the median is defined as 1.58 × IQR/

√
n and gives
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(a) The two options of the environment with the certain option
being equal to zero and the uncertain option following a Uniform
fitness payoff distribution g(R) with limits −a and a as given by
Equation (3.20).
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(b) The distribution of absolute fitness change follows a triangu-
lar distribution h(|Ri−Ri+1|) with ε = (2/3)a being the average
absolute fitness change given the uniform distribution of fitness
payoff g(R) with β = 1.

Figure 3.7: The environment for my analysis with the choice of a certain and
an uncertain option.
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roughly a 95% confidence interval for the median of the fitness distributions.

Mutation strategy.

Figures 3.8a and 3.8b show the main characteristic of the mutation process:
as the process is random and not adaptive it is independent of the number
of interactions with the environment per generation l and independent of the
extent of the environmental change per generation ε. The fitness distributions
are also symmetric around fitness neutrality with mean zero. Additionally, the
parameters α and γ do not apply to the mutation process.

Figure 3.8c shows the effects of the frequency of environmental changes β.
The fitness distribution is unaffected for frequencies β ≤ 1, i.e. when mutations
occur more frequently than changes in the environment. If the frequency of en-
vironmental changes exceeds β = 1 the fitness distribution of the population of
mutating individuals becomes increasingly narrow. This is a direct result of the
mutation process being non-adaptive and therefore it is less likely that individu-
als are well suited (or poorly suited) for a number of consecutive environmental
states.

Learning strategy.

The population of learning individuals uses Q-learning in order to adapt to the
current state of the environment. This requires the precondition of exploration
which is the sole cost of learning in my model. Additional costs of learning are
difficult to quantify and I assume that during the initial evolution of learning
the additional costs were probably relatively small (Johnston, 1982; Mery and
Kawecki, 2004).

Figure 3.9a shows that learning requires certain environmental conditions
to be beneficial: as an adaptive strategy learning benefits from a changing en-
vironment (Figure 3.9a: 1 vs. 2). The cost and benefits of exploration in the
learning population can be seen (Figure 3.9a: 1) versus the mutating popula-
tion (Figure 3.8a) where the learning strategy cuts off both tails of the fitness
distribution and does not produce the outliers which I find in the mutation
process. Additionally, learning benefits from longer generation times to exploit
experience (Figure 3.9a: 3).

Figure 3.9b shows that the learning strategy is unconditionally affected by
the frequency of environmental change β compared to the population of mutat-
ing individuals which is unaffected for β ≤ 1 (Figure 3.8c). The effect of β on
the fitness distribution of the learning individuals is not linear, and there are
multiple factors underlying this effect. In environments with only very rarely
occurring changes an increasing majority of the population benefits from learn-
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ing (Figure 3.9b: 1). At first, an increasing frequency of environmental change
increases the fraction of individuals benefiting less from learning with the fitness
distribution developing a more pronounced tail of learning individuals having
negative relative fitness (Figure 3.9b: 1-5). Nevertheless, environmental change
benefits learning at the same time with the median of the population increasing
(Figure 3.9b: 4). Secondly, a further increase of β results in the cost of con-
secutive exploration and consequent errors outweighing this initial benefit and
the distribution increasingly aligns with the fitness distribution of the mutating
population. Finally, learning does not provide any benefits in highly irregular
environments interfering with any possibility of exploitation. Therefore the only
difference in the fitness distributions is the shorter tails of the learning strategy,
which is the result of continuous exploration (Figure 3.9b: 8 vs. Figure 3.8c: 6).

Figure 3.10 shows the effects of the extent of environmental change ε in
combination with the frequency of environmental change β on the fitness distri-
bution of learning individuals. It is clear that there are some effects specific to
the two factors but additionally there is also an interaction between environmen-
tal change and regularity. I have already discussed the individual effects of β
relating to Figure 3.9b. Regarding the effects of ε I can see that in environments
with small values of absolute environmental change throughout a generation the
fitness distribution of the learning individuals aligns with the fitness distribution
of the population of mutating individuals. A learning individual prioritises con-
tinuous exploration if the environmental change is small which is a consequence
of learning being an adaptation to changing environments. The shorter tails
in the fitness distribution of the learning population compared to the mutating
population are the result of this continuous exploration as discussed previously
(Figure 3.10a: 1 vs. Figure 3.8a and Figure 3.10b: 1 vs. Figure 3.8b). An
increase of ε has beneficial effects for all learning individuals in the population
as learning requires a certain extent of environmental change to exploit. A
further increase of ε makes mistakes during exploration more expensive which
can potentially neutralise the benefits of exploiting beneficial states of the en-
vironment. The important difference between a severe extent of environmental
change (ε) and an irregular environment (β) is that mistakes in the case of ε are
extremely aversive and stop any further costly exploration. This is the reason
that the fitness distribution of learning individuals in violently changing en-
vironments loses the negative tail compared to rapidly changing environments
(Figure 3.10a: 11 vs. Figure 3.9b: 8). The combined effect of frequency and
extent of environmental change shows that there is a specific combination of
these two factors which hugely benefit the learning strategy (Figure 3.10b: 7).

Figure 3.11 shows that the fitness distribution of the learning population is,
within a meaningful range, independent of the learning rate α and the discount
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factor γ. This result should not be misinterpreted: there are specific values of α
and γ best suited for achieving optimality in a specific state of the environment.
But within a changing environment the distribution of fitness is independent of
the specific choice of α and γ.

Long-term fitness effects.

In the context of population dynamics it becomes important to take potential
long term fitness effects into account. In changing environments especially, the
long term fitness of a population is largely dependent on future states of the
environment.

Suppose that for some population, an individual in generation i lives for l
time steps, and acquires reward c+Ri,j at the jth of these, where c is a constant,
and Ri,j are independent, identically distributed random variables with mean 0
and variance σ2. Such individuals thus have fitness

Fi = lc+

l∑
j=1

Ri,j

= lc

(
1 +

1

c
R̄i

)
,

(3.23)

where

R̄i =
1

l

l∑
j=1

Ri,j . (3.24)

The long-term population displacement is geometric and not linear following
the continuous product of the fitness of the parental and offspring populations.
The logarithm of this long term fitness is given by

ln

(
n∏
i=1

Fi

)1/n

=
1

n

n∑
i=1

lnFi

≈ ln(lc) +
1

c
R̄i −

1

2c2
(R̄i)

2,

(3.25)

which has expectation

ln l + ln c− 1

2c2
σ2

l
. (3.26)

From above it is clear that the larger the value of c, and the smaller the value of
σ2, the higher the fitness of the population. For sufficiently large l, c representing
the arithmetic mean is the dominant term. Nevertheless, two populations can
have the same arithmetic mean fitness and very different variability of their
fitness in a changing environment. If the arithmetic mean fitness term is the
same for two populations, the second term comes into play, and the population
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(a) The fitness distribution of the mu-
tation strategy is independent of the
extend of environmental change (ε)
and the numbers of interactions per
generation time (l). (1) ε = 0.1, β = 1,
and l = 1000. (2) ε = 100, β = 1,
and l = 1000. (3) ε = 10, β = 1,
and l = 10. Distributions are not sig-
nificantly different using Kolmogorov-
Smirnov test with all p > 0.1.
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(b) Fitness distributions scale equally
with the number of changes in the en-
vironment (β) independently of ε and
l. (1) ε = 10, β = 10, and l = 1000.
(2) ε = 1, β = 10, l = 10. Distribu-
tions are not significantly different us-
ing Kolmogorov-Smirnov test with all
p > 0.1.
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(c) Fitness distributions become narrower with increasing
number of environmental changes β > 1 per generation time.
Distributions are not significantly different for β ≤ 1 using
Kolmogorov-Smirnov test with all p > 0.1. (1) β = 0.1, (2)
β = 0.5, (3) β = 1, (4) β = 2, (5) β = 10, and (6) β = 100.
All cases have ε = 1 and l = 1000.

Figure 3.8: Scale-free fitness distributions of the mutation strategy all with
n = 5000 generations.
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(a) Learning requires certain environmental conditions to be
beneficial: firstly, learning requires environmental changes:
(1) ε = 0.1, l = 10 vs. (2) ε = 10, l = 10. Secondly, learning
benefits from longer generation times: (2) vs. (3) ε = 10,
l = 1000. All β = 1, α = 0.5, and γ = 0.9.
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(b) Learning incurs the cost of exploration and the benefits
of learning diminish in unreliable environments. (1) β = 0.1,
(2) β = 0.5, (3) β = 1, (4) β = 2, (5) β = 3, (6) β = 5, (7)
β = 10, and (8) β = 100. All ε = 1, l = 1000, α = 0.5, and
γ = 0.9.

Figure 3.9: Scale-free fitness distributions of the learning strategy presenting
isolated effects of environmental parameters. All cases have n = 5000 genera-
tions.
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(a) β = 1
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(b) β = 10

Figure 3.10: Scale-free fitness distributions of the learning strategy depending
upon the extent of environmental change (ε). Learning benefits from a certain
extend of environmental change but too severe changes incur a high cost of
mistakes during the required exploration. Additionally, there is a combined
effect of regularity and change. (1) ε = 0.1, (2) ε = 0.5, (3) ε = 1, (4) ε = 2, (5)
ε = 5, (6) ε = 10, (7) ε = 20, (8) ε = 50, (9) ε = 100, (10) ε = 500, and (11)
ε = 1000. All cases have n = 5000 generations, l = 1000, α = 0.5 and γ = 0.9.
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(a) β = 1 and ε = 1.
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(b) β = 10 and ε = 10.

Figure 3.11: Scale-free fitness distributions of the learning strategy showing the
independence of α and γ. (1) α = 0.1 and γ = 0.1, (2) α = 0.9 and γ = 0.1,
(3) α = 0.9 and γ = 0.1, and (4) α = 0.9 and γ = 0.9. All cases have n = 5000
generations and l = 1000. Distributions are not significantly different using
Kolmogorov-Smirnov test with all p > 0.1.

with the smaller variance has the higher fitness. For smaller l, the contribution
of the variance may be sufficiently large to reverse the effect of larger arithmetic
mean fitness, and mean that the population with the smaller arithmetic mean
is actually the fitter.

In summary, the application of the arithmetic mean of the fitness at the
moment of reproduction is a suitable descriptor of the short-term success of a
population. But as I discussed above, in changing environments the arithmetic
mean is not necessarily a representative long-term fitness descriptor. Two popu-
lations can have the same arithmetic mean fitness and very different variability
of their fitness in a changing environment. This discrepancy can be addressed
with the geometric mean fitness as described.

3.3.3 Discussion.

In this model I look at the fitness distribution of individuals using a reinforce-
ment learning strategy, i.e. Q-learning, in connection with different aspects of
a changing environment: regularity, frequency, and size of change. My model
compares the fitness distributions of individuals using the learning strategy with
the performance of a population under simplistic mutation of fixed phenotypes
in order to gain insights into the benefits of learning. The main findings are:

• a random mutation process is non-adaptive and consequently the fitness
distribution of a population under a simplistic mutation process is inde-
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pendent of most aspects of a changing environment in my model (I note
that this is because of the situation selected, where there are two options
of identical long term value),

• the fitness distribution of the mutating population is symmetrical around
fitness neutrality in the environment of my model where individuals are
generally well adapted,

• learning requires environmental change and longer generation times to be
beneficial,

• learning is optimal for specific combinations of regularity and size of en-
vironmental change,

• the fitness distribution of learning individuals in changing environments
is independent of the learning rate α and the discount factor γ, and

• regularity is the only environmental factor which impacts whether learning
is generally advantageous.

The motivation of this model lies in questions around the benefits of learning
when individuals are generally well adapted to their environment through evo-
lution. In particular, I am interested in conditions enabling the initial evolution
of learning. I apply Q-learning as an implementation of reinforcement learning
for its simplicity and its increasing support from both behavioural and neural
data. I assumed that the environment only allows inference from trial-and-error
and learning cannot draw from additional sources of information such as the
correlation between environmental states in the initial evolution of learning. As
a result I do not model the environment with regard to absolute states but in
relation to a relative fitness difference between two options. With reference to
animals being generally well-adapted to their environment these options are only
relevant in the light of evolutionary selection if they have the same long term
value (Nowak, 2006). The difference between the two options in my model is the
changing fitness payoff of the uncertain option. This condition does not apply
strictly to the learning strategy. For learning one of the options could be a little
worse than the other on average as long as there is enough variation allowing
for sufficient exploitation. Additionally, the mutating population is affected by
long term fitness effects. In changing environments the arithmetic mean is not
a representative descriptor for fitness in a population dynamical context. Two
populations can have the same arithmetic mean fitness and very different vari-
ability of their fitness in a changing environment. The variability of the fitness
can have a dominating effect on the long-term fitness in a population dynamical
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context, especially when generation times are short. Correspondingly, the pop-
ulation displacement occurs geometrically and not linearly being the continuous
product of the fitnesses of the parental and offspring populations. It can be
shown that if the arithmetic mean of two populations are the same, the popu-
lation which has a more variable fitness has lower overall fitness. Section 3.3.2
on long-term fitness effects provides a more detailed investigation of the fitness
in this context.

I do not present an evolutionary theory of learning in itself. But I show that
a simple reinforcement strategy which is increasingly backed by experimental
studies of neural correlates is beneficial for a vast range of environmental pa-
rameters. In particular, the fact that the success of the learning strategy is
independent of technical parameters of learning, i.e. the learning rate α and the
discount factor γ, is a new reassuring insight. These are technical parameters
which allow the tuning of over-fitting and the extent of exploration for a spe-
cific learning task and have great importance in the field of computing. But in
a biological context of changing environments these technical learning parame-
ters become negligible. This significantly reduces the complexity of the initial
evolution of reinforcement learning. For a coherent evolutionary theory I would
also have to consider the effects the environment has on the development and
the phenotype of individuals, phenotypic plasticity, in addition to the environ-
ments role in the fitness function. Phenotypic plasticity is a genetically defined
process and refers to all environmentally induced changes which derive from a
change in gene expression. Such changes may or may not be permanent and
include behavioural changes. The performance of a plastic behavioural strategy
in my model would depend greatly on the cost of plasticity but might be better
than the fixed phenotype of individuals in the mutating population (DeWitt et
al., 1998). There is a wide range of literature looking into plasticity as a form
of adaptation to changing environments which addresses very similar questions,
e.g. the evolution of plasticity as an adaptation to changing environments and
their benefits (Pigliucci, 2001; Via et al., 1995). Nevertheless, plasticity is dis-
tinct from learning, which relies on cognitive processes.

It has been widely acknowledged that the benefit of learning is the ability to
adapt to a changing environment faster than the time scale on which evolution
operates (Johnston, 1982; Ackley and Littman, 1991). This is certainly an im-
portant population dynamical argument. But the focus on population dynamics
of previous studies emphasises the individual performance on a specific subset
of tasks and therefore the importance of technical parameters. Additionally,
it raises further questions, e.g. depletion of the surrounding resources and the
mortality and interactions of individuals.
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My general model of learning using reinforcement learning does not include
interactions between individuals and is not a population dynamical model. Nev-
ertheless, my results reproduce many of the widely accepted theories of learning
in the context of change and regularity (Stephens, 1991). In my model the ben-
efits of learning originate in the ability of exploitation rather than the speed of
adaptation itself.

Considering the effects of selection the mutating population in my model has
a constant relative arithmetic mean fitness of zero. The environmental changes
only affect the fitness variability of the mutating population in a symmetric
fashion. As the arithmetic payoff of both options in my model are equal, selec-
tion would increase long-term fitness of the mutating population by discarding
the uncertain option from the action space of the mutation process in order
to reduce fitness variability. This provides an alternative interpretation of why
learning is a distinct adaptation to changing environments alongside the cost
argument: a simplistic mutation process cannot exploit environmental change
without the introduction of increased fitness variability at the same time.

Taking the consequences of selection into account, my results show that re-
inforcement learning is a promising starting point for the initial evolution of
learning. The only environmental factor which impacts the general success of
learning is regularity. If selection cannot discard the uncertain option from the
action space of the mutational process, learning is always beneficial as it has
lower fitness variability even in extremely irregular environments when com-
pared to the mutating population. If selection can in fact discard the uncertain
option in the case of the mutating population then learning becomes disadvan-
tageous in irregular environments.
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Chapter 4

A predator lifetime model.

The previous chapter introduced reinforcement learning to models of predator-
prey interactions. I used the Q-learning algorithm to address the question of how
predators generalise information from their encounters with potentially apose-
matic prey into foraging behaviour. In the previous chapter, Q-learning showed
to be an elegant solution to optimal behaviour in changing and uncertain envi-
ronments and its analytical tractability allowed an application in mathematical
models of aposematism and predator-prey interactions. Q-learning is also shown
to be an advantageous adaptation to changing environments within a biological
context in general regardless of technical parameters. Following the promising
results of the previous models I will develop a more complete lifetime model of
predators utilising reinforcement learning in this chapter.

4.1 The motivation to learn.

The previous chapter introduced conditioning as a way for animals to predict
and respond to events in their environment. In particular, in operant condition-
ing, the type of feedback an animal receives depends on the actions it performs.
Operant conditioning is thus closely related to the optimal-control problem and
reinforcement learning theory in computer science which was the motivation to
apply Q-learning to models of predator-prey interactions.

However, an important question remains: what are the biologically and psy-
chologically relevant components of a reward? Biological models are generally
concerned with (Darwinian) fitness as the core of evolutionary theory. On the
individual level, fitness describes the ability of an animal to survive and re-
produce within its environment. However, the fitness definition also applies
transparently to the genetic level through the individual’s contribution to the
gene pool. The fitness of an individual manifests itself through its phenotype
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which connects both levels as the subject of natural selection (Fisher, 1930;
Huxley, 1942). From this evolutionary perspective the previous application of
reinforcement learning (Section 3.3) assumes a monotonically increasing func-
tional relation between rewards and fitness. In such a scenario optimisation of
rewards seems like a straightforward choice. However, little attention has been
paid to this assumption in the previous chapter. The success of reward mediated
learning as a widely observable adaptation to the environment can easily deceive
the observer into believing that this assumption is generally true. Nevertheless,
this chapter is going to open Pandora’s box in an attempt to quantify the link
between reward driven behaviour and fitness driven selection. This is by far the
most ambitious and controversial part of this thesis and this attempt to unify
reward and fitness is bound to fail. Very little is still known about the relation
of behavioural and genetic traits. In particular, the evolutionary dynamics of
phenotypic variance in animal behaviour are poorly understood. To fully un-
derstand the evolution of animal behaviour it requires both mechanistic and
functional approaches. The mechanistic approach tries to quantify the influence
of genetic and environmental factors on the phenotype whereas the functional
approach tries to describe how the interaction of phenotypes and their envi-
ronment affects fitness. However, functional approaches towards understanding
behaviour have received very little attention as summarised in the review by
Dingemanse and Réale (2005). The following model will explore the functional
approach and builds on computational theories of reinforcement learning which
do not implement any psychological elements of rewards themselves. I will
have to revert to a creative definition of the environment to simulate the effects
which psychological elements might have on a predator’s foraging behaviour in
Section 4.3. Even though the model will not be able to provide a complete
description of the functional relations of rewards and fitness it will, firstly, point
out the importance of the functional component in understanding animal be-
haviour and, secondly, it will show how RL provides an interesting methodology
to do so.

What is the discrepancy between maximising biological fitness through nat-
ural selection and maximising rewards through reinforcement learning? In re-
inforcement learning the behaviour of individuals is modulated by its conse-
quences: a desirable outcome, positive reinforcement, increases the probability
of the behaviour and an undesirable outcome, positive punishment, decreases
the probability of behaviour. Many of the behavioural studies have shown that
energy content of food is an example of a strong positive reinforcer which sup-
ports the idea of flavour-calorie learning in the context of foraging behaviour.
In such studies rats were given the choice between two differently flavoured
non-nutritious solutions. If the rat consumes the positively reinforced solution

82



CHAPTER 4. A PREDATOR LIFETIME MODEL.

it leads to the intra-gastric administration of an energy-rich agent versus an
infusion with water in the case of the consumption of the neutral solution. The
outcome of such discriminative learning studies was a clear preference for the
conditioned excitatory stimulus for a large number of energy-rich reinforcers
such as sucrose, glucose, starch, and fats (Sclafani, 1990; 2004).

The question of whether behaviour is always optimal can be addressed from
two perspectives: (i) does behaviour maximise positive reinforcement and (ii) is
behaviour optimal in relation to maximising fitness in a biological context. In
particular, the relation between maximising rewards in flavour-calorie learning
and increasing fitness is not unconditionally positive. Even though obesity is
not a common phenomenon of wild animals, laboratory studies have shown
that also animals are generally prone to health and fitness costs in scenarios
of unrestrained reward maximisation in flavour-calorie learning. Additionally,
realised behaviour can be very subjective and variable with many well doc-
umented examples of apparently non-optimal behaviour where reinforcement
learning seems to fail. See Breland and Breland (1961) for a wide range of ac-
counts on conditioning animals for shows and TV and how the notion of animal
instinct sets boundaries to conditioning by reinforcement. One commonly ob-
served divergence from optimal behaviour in operant conditioning experiments
is risk aversion: given a certain and an uncertain option most subjects tend
to show a preference for the certain option even if the uncertain option has a
higher expected payoff. But even after the removal of the uncertainty subopti-
mal behaviour can be observed in so called self-control experiments: subjects
have to resist a mediocre payoff in order to get a greater payoff. Even though it
would be optimal to resist the mediocre payoff in order to get the better payoff
most subjects choose the mediocre payoff if the greater payoff involves some
time delay (Staddon and Cerutti, 2003).

Of course all such behaviour is only apparently suboptimal under an isolated
reward maximisation point of view which does not take the biological context
of such evolved behaviour into account. It is therefore crucial to understand
animal behaviour in its evolutionary context using mechanistic and functional
approaches.

It is understood that rewards can be divided into three specific psycholog-
ical components: (i) learning (e.g. knowledge produced by associative condi-
tioning), (ii) affect (so called liking, hedonic impact), and (iii) motivation (so
called wanting, incentive salience) (Berridge et al., 2009). All three components
can cause the reward fitness relation to be non-monotonic and aspects of af-
fect and motivation are commonly ignored within the computational theories
of reinforecement learning. As discussed earlier, studies have shown that the
associative learning component of rewards is closely related to reward prediction
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and dopaminergic neurons in the nucleus accumbens (Schultz, 2002). However,
the nature of subjective and objective affective reactions (liking) involves opioid
neurotransmitters and GABAergic neurons in the nucleus accumbens (Berridge,
2003). Most rewards which are liked are also wanted but the processes of sub-
jective desire or objective motivation (wanting) are distinct from the processes
of liking with their own neural substrates, mesolimbic dopamine amongst others
(Dayan and Balleine, 2002). Within the brain all three components of rewards
are interacting with each other and I hypothesise that the processes of liking
and wanting are the main contributions to a potential non-monotony of the
reward and fitness relation (Robinson and Berridge, 2003). In this regard, the
endogenous opiate system in particular seems to play a crucial role in defining
the incentive value of foods (Berridge, 1996).

It is evident that the rewards within the computational theories of reinforce-
ment learning are a great simplification of the true psychological and neuronal
nature of rewards within the brain. The close relationship of RL with optimal
control problems makes it applicable to biological models of fitness but seems
to be an inappropriate choice for models of individual behaviour. There are
various implementations of RL which address the true nature of rewards such
as models of planning and motivational states in actor-critic models (Dayan
and Balleine, 2002; Niv et al., 2006). Summarising, the application of RL to
biological systems and the consequential link between rewards and fitness seems
unproblematic itself. The discrepancy seems to lie in the importance of ‘want-
ing’ and ‘liking’ in the realisation of individual behaviour which does not map
monotonically to fitness. The next section tries to define a lifetime model for
predators which can be interpreted on both levels: (i) the level of realised
behaviour of a single individual driven by rewards including components of af-
fect and motivation and (ii) the level of behavioural repertoires of a population
driven by fitness. The discussion will compare the results and insights from both
levels to find similarities and differences between reward motivated objectives
of individual behaviour and the evolution of behavioural repertoires driven by
fitness.

4.2 A predator lifetime model.

This section introduces the lifetime model of an individual predator and the
definition of the individual’s payoff based on its environment and additional
aspects of its behaviour, metabolism, and lifetime traits which have been ab-
stracted away in the previous chapter. In this model an individual predator is
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Symbol Definition
sk The state vector describing the environment at iteration k.
uk The action vector at iteration k.
T The continuous time variable.
Ṫ The transition function of time T .
A The age of a predator.
Ȧ The transition function of age A.
V The total payoff of predator at the end of its lifetime.
V̇ The state and action dependent payoff.

X,Y The spatial location of the predator.
ex, ey The investment of the predator into locomotion.

gi(X,Y ) The dispersion of prey population i within the environment.
pi The density of prey population i.

R(s) The state dependent reward term.
d(t) The probability of ingesting a prey individual of toxicity t

after taste-sampling.
λ(A) The age-agility of predators of age A.
Tl The length of an episode of foraging given by the cut-off

time Tl.

Table 4.1: Parameters and their definition.

characterised by its state vector sk at iteration k. The state vector is given by

sk = {T,A,X, Y } , (4.1)

with T being the time of an iteration k within an episode, A being the age
of the predator, and X,Y being the spatial location of the predator within its
environment at iteration k. An episode in this model corresponds to a day
of foraging with the length of an episode given by the cut-off time Tl and an
episode being defined as T < Tl.

The predator finds itself in an environment defined by the availability of
different food sources. The dispersion of each prey population i within the
environment is described by a Gaussian function

gi(X,Y ) = pi exp

(
−
(

(X − xi,0)2

2σ2
i,x

+
(Y − yi,0)2

2σ2
i,y

))
, (4.2)

with (xi,0, yi,0) being the centre of the prey population with density pi and
(σi,x, σi,y) being the spread of the prey.

The model assumes that the prey is aposematic with potential mimics being
present. (The model can also be used to include non-aposematic prey. The
limitation to aposematic prey is solely to simplify the forthcoming analysis of
the model.) The predator feeds on prey it encounters as it cannot distinguish
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between models and mimics based on their appearance. However, the predator
has the option to move around freely in its environment to avoid encounters
with possibly aversive prey based on its experience. The predator’s locomotion
is defined by its action vector uk which is given by

uk = {ex, ey} , (4.3)

with ex, ey being the energy invested into locomotion at iteration k.
The value function V describes the total payoff of a predator at the end of

an episode (a day of foraging in this model) and is the result of a predator’s
environment and its actions. Thereby, the predator’s actions have subsequent
effects on the composition of the prey population of its surroundings through
locomotion and the predator’s spatial location within the environment according
to the reinforcement learning model (Figure 3.2). In this section the predator’s
value function V is defined by the sum of its payoffs and is not directly equivalent
to Darwinian fitness following the previous discussion. The following Section 4.4
will discuss necessary modifications of the model to interpret the total payoff V
as Darwinian fitness. The subsequently received payoff for the predator being
in a specific state sk and taking action uk at iteration k is given by the payoff
function as follows

rk+1 = V̇ = λ(Ak)R(sk)− t0Ṫ︸ ︷︷ ︸
state dependent

action dependent︷ ︸︸ ︷
−|E(uk)| , (4.4)

with t0Ṫ being the metabolic cost of the predator, −|E(uk)| being the absolute
energy expenditure of a predator’s actions, and R(s) being the state specific
payoff given as follows

R(sk) =
∑
i

gi(sk)d(ti)(r − t2i ), (4.5)

with r being the baseline reward of a prey item and

d(t) =
1

1 + d0t
(4.6)

being the probability of ingesting a prey individual of toxicity t after taste-
sampling. The model has the option to include age related effects such as an
age dependent agility of the predator given as follows

λ(A) =
1

1 +A
. (4.7)
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The environment of this model is Markovian defined by a state transition
function which is given as follows:

f(s, u)k→k+1 =


Ṫ = 1 +

∑
i gi(sk)

(
d(ti)

(
th + ttt

2
i

)
+ ts

)
Ȧ = (1/λ0)Ṫ

Ẋ = tanh(c0ex)

Ẏ = tanh(c0ey)

 . (4.8)

I use the dot notation to describe the functional change between iterations
(k → k + 1) as a shorthand for the derivative ḟ = df/dk. The transition of
time (Ṫ = dT/dk) between iterations (k → k + 1) occurs in unit time steps
reflecting a basal metabolic expenditure and the additional costs of foraging
such as the sampling of prey items ts, the handling of prey th, and the recovery
from ingested toxins ttt2. The predator ages (Ȧ) linearly with time. The preda-
tor’s locomotion results in a change of its spatial location (Ẋ, Ẏ ) depending on
the predator’s energy investment ex, ey with the maximal spatial displacement
per iteration being an unit step of one. The functions of the model follow the
same motivations as in the previous chapter and are governed by single param-
eters which allow the trade off between the different aspects of the predator’s
behaviour, lifetime traits, and environment (x0, y0, t0, d0, λ0, c0).

In the next Section 4.3, I introduce a foraging simulator for individual preda-
tors based on the lifetime model presented here. The aim of the individual based
simulation is to gain a better understanding of the psychological components of
rewards which characterise the individual’s realised behaviour such as affect and
motivation. In Section 4.4, the model is modified to reflect the Darwinian fitness
component of the rewards based on behavioural repertoires and the assumption
of a co-evolution of predator and prey under stabilising selection. Finally, the
discussion in Section 4.5 will present and analyse the differences in the results.

4.3 A TD learning based foraging simulator.

This section combines the previously introduced lifetime model with TD learning
into a foraging simulator. It is possible to observe realised behaviour of preda-
tors interacting with their prey within their natural environment which they
are adapted to. With regard to the lifetime model there are different factors
which can be measured or quantified such as the metabolic rate of a predator,
the handling time, sampling time and toxin recovery time after ingesting apose-
matic prey. Additionally, the prey can be quantified by the toxicity of prey
individuals and the density of a prey population. Also, it should be possible to
quantify the average energy expenditure of a predator into different behaviours
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but especially into locomotion based on the size of a predator’s territory and its
average travelling distance.

These parameters define my lifetime model. The only term missing is the
subjective payoff r in Equation (4.5). The assumption and motivation for the
simulator is that this subjective payoff can be reverse engineered from the ob-
served foraging behaviour of the predator using a reinforcement learning algo-
rithm. The aim is to find the subjective value of the payoff r for prey type i in
order to reproduce the observed foraging behaviour of the predator.

Additionally to the lifetime model, the simulation defines a final instanta-
neous cost Ψ of the terminal state sl with l being the final iteration of an episode
based on the spatial distance of the predator from its den at (X = 0, Y = 0):

Ψ(~s)l =

−rl
√
X2 + Y 2 if

√
X2 + Y 2 > ε

0 otherwise,
(4.9)

with −rl being a punishment for not returning to the den at the end of an
episode. The lifetime model defines the predator’s payoff in terms of subjective
rewards. However, the final instantaneous cost Ψ adds an additional Darwinian
fitness component to the model. This will allow to simulate the discrepancy
of maximising rewards and maximising fitness within the computational RL
algorithms. Within a biological context I suspect such a final cost Ψ to be
step-like around the predator’s den. If a predator has to feed offspring staying
behind in the den the cost of almost returning will not decrease smoothly within
the proximity of the den. (There are smooth penalty functions which are also
biologically meaningful, e.g. defining an increasing penalty for returning late to
the den instead of a precise cut-off at the end of an episode. However, such a
penalty function is difficult to implement with the episodal RL algorithms used
in this chapter. Additionally, this functional shape has been chosen to simulate
psychological effects of rewards as I will explain in detail in Section 4.3.5.)

The simulator (Figure 4.1) has been written in C++ utilising two implemen-
tations of reinforcement learning: 1) back-propagation through time (BPTT),
a hill climbing method on the value function, and 2) value gradient learning
(VGL), a hill climbing method on the target gradients themselves. Addition-
ally, the simulator makes use of artificial neural networks as universal function
approximators in order to implement the different elements of the learning prob-
lem such as the behavioural policy. I refer the reader to the Section 4.3.1 which
follows for a detailed introduction of artificial neural networks (ANN) as univer-
sal function approximators. The learning algorithms will build on the existing
concepts of efficiently calculating the derivatives of the network function from
ANNs by extending it to the optimisation problem of episodal tasks as in this
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predator lifetime model.

4.3.1 Artificial neural networks.

An artificial neural network (ANN) is a computational model inspired by the
information processing functionality of the brain. But how does the brain com-
pute? Generally, the central elements of computation are processing, trans-
mission, and storage. Within the brain the neuron is the central computing
element. Neurons receive signals and produce responses. The transmission of
information at the neural level involves electrical signals – so called action po-
tentials – based broadly on ions and semipermeable membranes, and chemical
signals at the synapses. In the brain the storage of information corresponds
to learning which occurs at the synapses. These synapses are at the interface
between neurons and regulate the transmission of information from neuron to
neuron.

An ANN widely corresponds to the processing paradigm of neural networks
with the nodes of the ANN being the central computing element similar to the
neuron. In fact, ANNs are nothing but networks of primitive functions where the
chain of function compositions transforms an input to an output. The composi-
tion of the computational model is contained implicitly in the interconnections
of the nodes and is referred to as the network function.

Each node comprises a primitive function transforming its input into an out-
put (Figure 4.2). Typically, the inputs of a node have an associated weight wi by
which the input xi is multiplied. The node integrates all its inputs – usually by
adding the different inputs – followed by the evaluation of its primitive function
f . The primitive function f computed in the node can be any function but com-
mon choices are differentiable functions such as the sigmoid function. Models of
ANNs mainly differ in their choice of the primitive function, the topology of the
network, and rarely in the timing of the evaluation of the primitive function.

In feed-forward ANNs the network is composed of distinctive layers where
each neuron only receives input from neurons of the previous layer. Accordingly,
a feed-forward network has a distinct input and output layer with the interme-
diate layers being referred to as hidden layers (Figure 4.3). The second class of
ANNs are recurrent networks where connections between nodes form directed
cycles.

The network function of an ANN can be understood as a universal function
approximation. However, the difference between ANNs and a Taylor or Fourier
series is that the function to be approximated is given not explicitly but implic-
itly, through a representative set of input-output examples. It will be the task
of the learning algorithm to adjust the parameters of the ANN to reflect the
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#include "config.hpp"
#include "predator.hpp"
#include "environment.hpp"

int main(int argc, char* argv[])
{

Config * CONFIG = new Config();
CONFIG->use_defaults();

// Adding a food source to the environment
Array<double,1> mu(2);
mu = 5;
Array<double,1> sig(2);
sig = 5;
Gaussian gaus(mu, sig);
ptr_food_source food_source(new FoodSource<Gaussian>

(CONFIG, gaus,
2.0, // toxicity
2.0, // payoff
0.1, // handling_time
0.5)); // density

ptr_environment environment(new Environment(CONFIG));
environment->add_food_source(food_source);

// creating a predator(CONFIG, Environment, use_rprop,
// learning method)
Predator predator(CONFIG, environment, false, 1);
std::vector<int> layout_actor;
layout_actor = {4,10,2};
predator.set_Actor(layout_actor);
std::vector<int> layout_critic;
layout_critic = {4,10,4};
predator.set_Critic(layout_critic);

while (!stopFlag) {
predator->run_episode();

}
delete CONFIG;
delete predator;
return 1;

}

Figure 4.1: Code-fragment defining the elements of the predator lifetime sim-
ulator. The complete source code of the simulator can be found on GitHub
(Teichmann, 2014).
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Figure 4.2: An abstract neuron representing a node in an artificial neural net-
work. The neuron is evaluating its primitive function f(e) whereas the neurons
excitement e is given by the weighted w inputs x.
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Figure 4.3: A feed-forward artificial neural network characterized by its distinc-
tive layers.

input-output examples and to extrapolate to new input patterns in an optimal
manner. The learning algorithm is an adaptive method by which the network
self-organises to reflect the function to be approximated. The computational
effort directly relates to the number of parameters and therefore to the topol-
ogy of the network and increases substantially for more complicated ANNs. It
was not until the proposal of back-propagation as a learning algorithm (Werbos,
1974) that the application of ANNs gained momentum and it has been the most
widely used algorithm for neural network learning ever since.

The back-propagation algorithm uses gradient descent on the error function
of an ANN in weight space. Thus, the weights of an ANN which minimise
its error function are considered to be the solution of the learning problem.
As a precondition for gradient descent the error function of an ANN needs to
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be continuous and differentiable. Since the ANN is simply the composition of
its primitive functions the error function becomes differentiable if the networks
primitive functions are differentiable themselves.

In the back-propagation algorithm an ANN is initialised randomly with
weights. Next, the gradient of the error function is computed recursively and
the weights of the ANN are adjusted accordingly using gradient descent. Be-
cause an ANN is a complex chain of a sequential function composition the chain
rule plays a most important role in calculating the gradient of the network func-
tion’s error. The back-propagation algorithm implements the chain rule for the
recursive calculation of the gradient of the error function in weight space in a
very efficient manner.

Learning in an ANN with back-propagation consists of two stages: in the
first stage, the feed-forward step, the information progresses form the input layer
throughout the network towards the output layer. Each node of the network
evaluates its primitive function fj(e) and emits the result yj to the connected
nodes in the subsequent layer. Additionally, each node calculates and stores
the derivative of its primitive function dfj(e)/de. The second stage, the back-
propagation step, consists in reversing the flow of information throughout the
network whereby a unit input propagates from the output layer towards the
input layer with the activation of each neuron now being the back-propagation
term δj . At each node the back-propagation term δj is multiplied by the stored
derivative of the node’s primitive function from the previous feed-forward step
which gives the gradient in weight space (dfj(e)/de)δj . Finally, the weights are
updated using gradient descent as given by

w′i,j = wi,j + αyi
dfj(e)

de
δj , (4.10)

with α being the learning rate and wi,j being the weight of the feed-forward
connection from neuron i in the previous layer to neuron j in the subsequent
layer.

In the case of batch or off-line learning the weight changes are aggregated
over the complete set of input/ output examples and the ANN is updated after
all examples have been presented to the ANN. In so called on-line learning the
weights are updated sequentially after the presentation of each input/ output
example.

In the lifetime model presented here, the ANN is used in an episodal learning
problem where the ANN is applied repeatedly to generate a trajectory. The
weight update of the ANN occurs at the end of a completed trajectory which
will now not only depend on the current input/ output example but also on
the prevailing inputs and outputs of the ANN which subsequently determined
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the current example. Therefore, the reinforcement learning algorithm has to
address the weight update of an ANN in episodal tasks.

4.3.2 Back-propagation through time.

The previous chapter introduced Q-learning as an algorithm to solve the rein-
forcement learning problem. In Q-learning the individual receives a subsequent
reward which it uses to form a target of the value of the occurred state transition.
Thereby, the individual bases its target formation on the prevailing estimates of
discounted future rewards, also known as bootstrapping. I used Gibb’s soft-max
policy as the behaviour policy to address the exploration-exploitation trade-off
under the precondition of continuous learning and exploration. In the lifetime
model presented here the individual takes episodal decisions and is trying to
optimise the value of an episode of foraging under the constraints of locomo-
tion, metabolism, the composition of the prey population, and returning to the
den at the end of every episode. Many aspects of the reinforcement learning
problem in the lifetime model are equivalent to elements and concepts of the
Q-learning algorithm of the previous chapter.

However, in this model the behaviour policy has been implemented with an
artificial neural network which is also called the actor. Within the episodal task
the individual repeatedly applies the actor to generate a trajectory of actions and
consequent state transitions and rewards. The usage of the ANN as universal
function approximator for the behaviour policy and the episodal nature of the
reinforcement learning problem in this model requires a different type of RL
algorithm.

As discussed previously, the control problem in reinforcement learning is
about finding an optimal behaviour policy. Reformulating the RL problem us-
ing an actor, the aim becomes to find the parametrisation ~z of the actor π(~s, ~z)

which maximises the total value or minimises the overall temporal difference
error for a complete trajectory based on V (~s, π(~s, ~z)). This can be achieved
using hill climbing on the total value of a complete trajectory itself with re-
spect to ~z, i.e. ∆~z = α(∂V/∂~z), which is also called a policy gradient with
back-propagation through time (BPTT) being an efficient implementation of the
optimisation problem for episodal tasks as in this model here (Werbos, 1990;
Fairbank, 2013). BPTT uses the actor π(~s, ~z) which has been implemented as
an artificial neural network with weights ~z as a universal function approximator
and is equivalent to the behaviour policy of previous models. As such, BPTT is
an off-line learning algorithm which issues a weight update ∆~z at the end of an
episode. Differently to the previous chapter, the delayed effects of actions in the
RL problem means that the outcome of a trajectory is not only dependent on its
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initial conditions but also on all the actions of an individual and the subsequent
state transitions. Therefore, an episodal learning algorithm has to consider
the entirety of actions and state transitions of a trajectory within its updates.
Thereby, the trajectory of a complete episode is unrolled backwards using the
Markovian properties of the environment with the component (∂V/∂~z)k being
computed from the prevailing quantity (∂V/∂~z)k+1, i.e. the policy gradient of
the value function is computed backwards in time starting at the end of an
episode (eq: (4.12)). This property gives the methodology its name. As intro-
duced earlier, back-propagation is an efficient way of calculating the derivative
of the network function in artificial neural networks. Back-propagation through
time is the extension of that methodology to efficiently calculate the derivative
of the network function in episodal tasks where the neural network has been
applied multiple times to create a trajectory of states and payoffs – similarly to
recurrent neural network problems – including the previously introduced con-
cepts of discounting and bootstrapping. Hence, the derivative of the overall
network function is the sum of the discounted incremental gradients at each
iteration of the trajectory with their calculation expanding as follows: at the
beginning of the BPTT algorithm the partial gradients of the value function are
initialised: (∂V/∂~z)l ← ~0 and (∂V/∂~s)l ← (∂Ψ/∂~s)l with Ψ (eq (4.9)) being the
final instantaneous cost of the terminal state sl and l being the final iteration
in an episode of finite length.

The following RL algorithms are presented using the trajectory-shorthand
notation as introduced by Fairbank (2013). The subscript k refers to a specific
iteration of an episode with the corresponding states sk and actions uk, thus
(r)k := rk+1(~sk, ~uk) and (∂V/∂~z)k is ∂V (~sk, ~z)/∂~z evaluated at (~sk, ~z).

Following the initialisation, the algorithm processes the trajectory of an
episode backwards in time starting from the second last iteration to the first
iteration in the episode. At each step the algorithm adds the partial policy gra-
dient of the current iteration to the overall policy gradient of the value function
for an episode ∂V/∂~z as follows:

(
∂V

∂~z

)
k

←
(
∂V

∂~z

)
k+1

+

γk
(
∂π(~s, ~z)

∂~z

)
k︸ ︷︷ ︸

actor

((
∂r

∂~u

)
k

+ γ

(
∂f

∂~u

)
k

(
∂V

∂~s

)
k+1

)
︸ ︷︷ ︸

behavioural target gradient

, (4.11)

which gives the iterative calculation of the gradient on the total value of any
given trajectory in the parameter space of the actor. The single contributions to
the overall gradient are discounted by a factor γ. The iterative contributions to
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the gradient in the parameter space of the actor are the product of the partial
derivative of the actor and the behavioural target gradient. The target gradient
is given by the effects of a predator’s behaviour on the short term reward payoff
∂r/∂~u and on the long term value due to changes in the environmental state
caused by the predator’s behaviour γ(∂f/∂~u)k(∂V/∂~s)k+1. The state depen-
dent value contribution ∂V/∂~s derives from the Markovian properties of the
environment as follows:(

∂V

∂~s

)
k

=

(
∂r

∂~s

)
k

+ γ

(
∂f

∂~s

)
k

(
∂V

∂~s

)
k+1︸ ︷︷ ︸

environmental target gradient

+

(
∂π(s, ~z)

∂~s

)
k︸ ︷︷ ︸

actor

((
∂r

∂~u

)
k

+ γ

(
∂f

∂~u

)
k

(
∂V

∂~s

)
k+1

)
︸ ︷︷ ︸

behavioural target gradient

. (4.12)

Because of the recurrent nature of the episodal learning task where the preda-
tor’s behaviour has consequent effects on the environmental state, the state
dependent value contribution itself is the sum of the state dependent environ-
mental target gradient and the behavioural target gradient. Thus, the BPTT
algorithm is bootstrapping the value function just as the Q-learning algorithm
does.

The final weight update gives the implementation of hill climbing on the
value function V with respect to the policy gradient of π(~s, ~z) as follows:

~z ← ~z + α
∂V

∂~z
, (4.13)

with α being the learning rate.
Summarising, the BPTT algorithm can be understood as propagating the

policy gradient of the value function with respect to a future state (∂V/∂~s)k+1

backwards in time through the actor, the state transition function, and the pay-
off function to obtain the policy gradient of the value function (∂V/∂~s)k of the
previous state. As BPTT utilises the Markovian properties of the environment
using the state transition function for the propagation of the state dependent
gradient backwards through time it is a model-based methodology. BPTT as
a simple hill-climbing algorithm on the value function has robust convergence
proofs (Fairbank, 2013). Additionally, its implementation using an actor and the
application to episodal tasks is relatively simple. However, the BPTT algorithm
has some shortcomings: as every gradient based optimisation it is sensitive to-
wards local optima. Especially in combination with the exploration-exploitation
dilemma the BPTT algorithm might converge to a suboptimal trajectory.
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4.3.3 Value gradient learning.

In the previous section I introduced the BPTT algorithm to find the parametri-
sation of an actor which maximises the value of a complete trajectory in episo-
dal tasks. As such BPTT is a policy gradient method with respect to ~z, the
parametrisation of the actor π(~s, ~z).

An alternative would be the usage of a gradient with respect to the state
space ~s. Such a method is called value-gradient learning or VGL for short
(Fairbank, 2013). The aim of VGL is to learn the value gradient

G(~s, ~w) =
∂V (~s, ~w)

∂~s
, (4.14)

where the ~w is the parametrisation of the value gradient function which is also
called the critic and which, similarly to the actor, has been implemented with
an artificial neural network as universal function approximator. Hence, VGL
requires two ANNs one implementing the behaviour policy, called the actor, and
one implementing the value-gradient, called the critic. The reason for choosing
an ANN to implement the critic lies in the fact that the gradient of the critic
defined by Equation (4.14) ∂G/∂ ~w would require second-order back-propagation
∂G/∂ ~w = ∂2V/(∂ ~w∂~s) and using an ANN to approximate G(~s, ~w) requires only
first-order back-propagation.

The aim of VGL is to learn the value gradient G over the state space S
equivalent to ∂V/∂~s; which is the same as learning V (~s, ~w) with the addition of
a constant.

Similarly to BPTT, the VGL algorithm unrolls the trajectory of a com-
plete episode backwards in time to calculate the overall value gradient as the
sum of discounted incremental gradients at each iteration of the trajectory.
The VGL algorithm unfolds as follows: the VGL algorithm is initialised at
the terminal iteration of a trajectory with G′l ← (∂Ψ/∂~s)l, ∆~z ← ~0, and
∆~w ← (∂G/∂ ~w)l(G

′
l −Gl) with Ψ(~sl) (eq. (4.9)) being the final instantaneous

cost of the terminal state ~sl and l being the final iteration in an episode.
Following the initialisation, the VGL algorithm unrolls the trajectory of an

episode similarly to the BPTT algorithm backwards in time beginning from the
second last iteration to the first iteration in the episode. At each step the algo-
rithm aggregates the discounted incremental value gradient of each iteration to
the overall experience based value gradient of the complete episode ∂V (~s, ~w)/∂~s

as follows:
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G′k ←
(
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∂~s

)
k

+ γ

(
∂f

∂~s

)
k
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environmental target gradient
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(
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(
∂f

∂~u
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k

~p
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behavioural target gradient

, (4.15)

which is almost identical to the state dependent value contribution term of
the BPTT algorithm. However, VGL uses a critic to learn the value gradient
additionally to the bootstrapping in the previous algorithms. The combination
of bootstrapping and an additional critic is given by ~p with

~p← λ G′k+1︸ ︷︷ ︸
experience

+(1− λ) Gk+1︸ ︷︷ ︸
learning critic

. (4.16)

The parameter λ in the previous Equation (4.16) refers to a concept called eligi-
bility traces. From a mechanistic perspective an eligibility trace corresponds to
a temporary memory of previously visited states, taken actions, and occurred
rewards. In such a backwards view the currently observed state and its corre-
sponding value is not just critical for improving the latest action taken by the
individual but also for previous actions which in consequence led to the current
state. However, Equation (4.16) shows that the actual trace is calculated in
a forward direction. On the one hand, the extreme case of λ = 1 results in
the trace being solely based on G′, the experience based value gradient, which
corresponds to a Monte-Carlo methodology. On the other hand, the extreme
case of λ = 0 results in the trace being solely based on G, the learning critic
itself which corresponds to bootstrapping as in the one-step temporal difference
Q-learning algorithm presented in the previous chapter. In general, introducing
eligibility traces stabilises learning and increases convergence in episodes with
many iterations and with delayed rewards which is the case in the lifetime model
of a foraging predator presented here. I expand on this further in the Discussion.

At each iteration of the algorithm within an episode the incremental weight
changes are calculated as follows:

∆~w ← ∆~w +

(
∂G

∂ ~w

)
k

(G′k −Gk)︸ ︷︷ ︸
reinforcement error

(4.17)

for the parameters of critic with (G′k−Gk) being the reinforcement error between
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experienced gradient G′ and learned gradient G and

∆~z ← ∆~z +

(
∂π(~s, ~z)

∂~s

)
k︸ ︷︷ ︸

actor
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∂~u

)
k

+ γ

(
∂f

∂~u

)
k

Gk+1

)
︸ ︷︷ ︸

behavioural target gradient

, (4.18)

for the parameters of the actor which is identical to the recurrent element of
the state dependent value contribution in BPTT (Equation (4.12)) giving the
behavioural effects on the consequent state transition and the long term value.
Thus, the actor again uses bootstrapping to learn the value gradient.

The final weight updates for actor and critic occur when the algorithm ag-
gregated the weight changes of each iteration of an episode as follows:

~z ← ~z + α∆~z (4.19)

and
~w ← ~w + β∆~w (4.20)

with α and β being learning rates.
The open question still remaining is why use VGL? I already hinted that

eligibility traces are beneficial in long running episodes with delayed rewards.
Another aspect is the differences in the exploration-exploitation trade-off be-
tween BPTT and VGL. Even though there has been no explicitly defined ex-
ploration in BPTT the algorithm is always locally exploring different policies as
part of the methodology. For global optimality a hill climbing algorithm such
as BPTT has to explore the entire state space S and even for local optimal-
ity the BPTT algorithm has to evaluate all adjacent trajectories. The BPTT
algorithm therefore requires extensive exploration to learn the value along ev-
ery adjacent trajectory. This becomes unnecessary if the algorithm learns the
value-gradient instead (Figure 4.4). The weight update of the VGL algorithm
contains additional information about adjacent trajectories implicitly through
the state dependent gradient of the value function as the learning objective. This
improves overall convergence and reduces the computational cost of exploration.

4.3.4 Derivatives used by the learning algorithms.

As both BPTT and VGL algorithms are model based they require a number
of derivatives of the underlying lifetime model. The lifetime model is imple-
mented as a Markovian decision process and the propagation of incremental
gradients backwards through time in both algorithms requires the state and ac-
tion dependent derivatives of the state transition function f , ∂f(~sk, ~uk)/∂~s and
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Figure 4.4: The reduction of necessary exploration when using b) VGL over a)
BPTT. The VGL algorithm learns a wider range of the state space than the
BPTT algorithm as the VGL weight update contains more information about
adjacent trajectories. Figure by M. Fairbank taken from Fairbank (2013).

∂f(~sk, ~uk)/∂~u respectively, as follows:

∂f(~sk, ~uk)

∂~u
=
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∂Ṫ

∂~u
,
∂Ȧ

∂~u
,
∂Ẋ
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∂Ẏ
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}
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and
∂f(~sk, ~uk)

∂~s
=

{
∂Ṫ

∂~s
,
∂Ȧ

∂~s
,
∂Ẋ

∂~s
,
∂Ẏ

∂~s

}
. (4.22)

Furthermore, both algorithms require the state and action dependent deriva-
tive of the payoff function rk+1, ∂rk+1(~sk, ~uk)/∂~s and ∂rk+1(~sk, ~uk)/∂~u respec-
tively, as follows:

∂rk+1(~sk, ~uk)

∂~u
=

{
∂V̇

∂~u

}
(4.23)

and
∂rk+1(~sk, ~uk)

∂~s
=

{
∂V̇

∂~s

}
. (4.24)

Concerning the previously defined lifetime model the derivatives of the state
transition function f are as follows: the state dependent time transition ∂Ṫ /∂~s
is defined by the predator’s spatial location within the environment and its
interactions with the prey present. Otherwise time progresses at constant rate
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and independently of age and time itself, i.e.

∂Ṫ

∂~s
=
∑
i

pi
∂gi(X,Y )

∂~s

(
ts + d(ti)

(
th,i + ttt

2
i

))

=



∂Ṫ
∂T = 0

∂Ṫ
∂A = 0

∂Ṫ
∂X =

∑
i pi
(
−gi(X,Y )(X − xi,0)/σ2

i,x

) (
ts + d(ti)

(
th,i + ttt

2
i

))
∂Ṫ
∂Y =

∑
i pi
(
−gi(X,Y )(Y − yi,0)/σ2

i,y

)︸ ︷︷ ︸
encounter with prey

(
ts + d(ti)

(
th,i + ttt

2
i

))︸ ︷︷ ︸
prey handling

.

(4.25)

From the definition of Ṫ in Equation (4.8) the prey specific handling time is a
constant term which results in the state dependent time transition being solely
affected by the spatially defined chance of encounter with a prey type i following
Equation (4.2).

The state dependent derivative of the predator’s ageing follows directly from
the time transition in Equation (4.25):

∂Ȧ

∂~s
=



∂Ȧ
∂T = 0

∂Ȧ
∂A = 0

∂Ȧ
∂X = (1/λ0) ∂Ṫ∂X
∂Ȧ
∂Y = (1/λ0) ∂Ṫ∂Y .

(4.26)

As such age is simply a scaled aggregation of time.
Other relevant derivatives of the state transition function f are the action

dependent changes in the predator’s spatial location within the environment.
The predator can invest energy ex, ey into locomotion with respect to X and
Y respectively. The locomotion of the predator itself is bound by a unit length
per iteration as follows:

∂X

∂~u
=

 ∂X
∂ex

= c0(1− (tanh(c0ex))2)

∂X
∂ey

= 0

∂Y

∂~u
=

 ∂Y
∂ex

= 0

∂Y
∂ey

= c0(1− (tanh(c0ey))2).

(4.27)

Equation (4.27) follows from Equation (4.8) and shows that the predator can
choose the spatial components of its movement independently. Thus, there is
no “wind” or “drag” in my model.
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By definition of the lifetime model the remaining derivatives of the state
transition function f are independent of the state or the predator’s actions:

∂Ṫ

∂~u
=
∂Ȧ

∂~u
=
∂Ẋ

∂~s
=
∂Ẏ

∂~s
= ~0, (4.28)

with the spatial location of the predator being solely affected by the predator’s
action. Additionally, time and age progress independently to the predator’s
investment into locomotion within each iteration.

Next I give the state and action dependent derivatives related to the value
function V which is given by the sum of discounted payoffs r along the trajectory
of an episode. The derivatives of the incremental changes to the value of an
episode along a trajectory are given as follows:

∂V̇

∂~s
=



∂V̇
∂T = 0

∂V̇
∂A = λ̇R(sk)

∂V̇
∂X = λ(A)∂R(sk)

∂X −
(
t0
∂Ṫ
∂X

)
∂V̇

∂~Y
= λ(A)∂R(sk)

∂Y −
(
t0
∂Ṫ
∂Y

)
,

(4.29)

following the state dependent payoff in Equation (4.4). The time T affects
the payoff through the metabolic rate only at a constant rate. It is the age
A of a predator which has a varying effect on a predator’s payoff. The main
components of the state dependent value derivative are the spatial elements
where ∂R(~s)/∂~s is the derivative of the state dependent payoff from interacting
with prey given by

∂R(~s)

∂~s
=
∑
i

pi
∂gi(X,Y )

∂~s
d(ti)(ri − t2i )

=



∂R(~s)
∂T = 0

∂R(~s)
∂A = 0

∂R(~s)
∂X =

∑
i pi
(
−gi(X,Y )(X − xi,0)/σ2

i,x

)
d(ti)(ri − t2i )

∂R(~s)
∂Y =

∑
i pi
(
−gi(X,Y )(X − xi,0)/σ2

i,x

)︸ ︷︷ ︸
encounter with prey

d(ti)(ri − t2i )︸ ︷︷ ︸
prey payoff

(4.30)

and
λ̇(A) = − 1

(A+ 1)2
. (4.31)

Just as in the case of the state dependent time transition given by Equa-
tion (4.25) the state dependent derivative of the payoff R defined in Equa-
tion (4.5) is solely affected by the spatially defined chance to encounter prey
with the prey specific payoff being a constant.
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A predator’s actions affect the value of an episode also directly through
the absolute amount of energy invested into locomotion during each iteration
|E(uk)|, Equation (4.4), as follows:

∂V̇

∂~u
=

 ∂V̇
∂ex

= − sgn(ex)

∂V̇
∂ey

= − sgn(ey),
(4.32)

with the signum function being defined as

sgn(x) :=


1 if x > 0

0 if x = 0

−1 if x < 0.

(4.33)

4.3.5 Results.

In this chapter I have presented a model of a predator’s foraging behaviour
which incorporates aspects of a predator’s life history traits which have been
abstracted away from the models in the previous chapter, such as metabolic
costs, locomotion, prey handling, and toxin recovery. The model presented
is designed for episodal tasks of finite length such as a day of foraging in an
environment with aposematic prey and Batesian mimics. The written simulator
generates trajectories of a predator throughout its environment using either
back-propagation through time (BPTT) or value gradient learning (VGL) as
reinforcement learning algorithms. The simulator is written in C++ and available
for download from GitHub (Teichmann, 2014).

This behavioural model using reinforcement learning assumes payoffs in the
form of rewards which do not necessarily reflect the fitness component of a
prey item and which are subjective to the individual predators. The aim of
the simulator is to find the payoff which generates an observed trajectory or
preference for a specific prey type of an individual predator defined by its life
history traits.

Unfortunately, the simulator does not always generate meaningful trajec-
tories where the predator returns to den. This occurs for different reasons:
generally, the learning side of the simulator depends on a great number of ad-
ditional parameters. Firstly, the actor and critic are implemented as artificial
neural networks which are generally difficult to train. In the case of VGL both
networks are trained at the same time but are also dependent on each other
which can prevent convergence. This is a technical issue which can be cir-
cumvented in future work as shown in Fairbank (2013). Additionally, the sign
change of the desired functional response of the actor to allow the returning of
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(a) The state dependent reward payoff
R(sk) (Equation (4.5)) for a predator
not utilising taste sampling: d0 = 0
and ts = 0.
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(b) The state dependent reward payoff
R(sk) (Equation (4.5)) for a predator
utilising taste sampling: d0 = 1 and
ts = 0.1.
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(c) The partial derivative of the re-
ward with respect to the spatial posi-
tion (Equation (4.30)) of the predator
not utilising taste sampling: d0 = 0
and ts = 0.
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(d) The partial derivative of the re-
ward with respect to the spatial posi-
tion (Equation (4.30)) of the predator
utilising taste sampling: d0 = 1 and
ts = 0.1.

Figure 4.5: The state dependent reward of an exemplary environment with
aposematic prey and Batesian mimics. Additionally, (a) and (b) show a realised
trajectory of the simulator for a predator using the BPTT algorithm. All cases
have th = 0.1, tt = 0.2, p1 = p2 = 0.5, x1,0 = y1,0 = 5, σ1,x = 5, σ1,y = 2.55,
t1 = 5, r1 = 1, x2,0 = 10, y2,0 = 8, σ2,x = 2, σ2,y = 2, t2 = 0, r2 = 15, Tl = 80.
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mises the energy expenditure |E(u)|
as defined in Equation (4.4) with
maxe dẊ/de = dẎ /de = 0.5 and√
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(b) This plot shows the difference of
behavioural energy expenditure |E(u)|
in the second half compared to the first
half of an episode (∆). The predator
prefers to feed longer and return to its
den using a greater step size than the
optimal of 0.7.

Figure 4.6: The locomotion profile of a predator not utilising taste sampling
with an episode of length Tl = 80. (The values are of a single trajectory as
shown in Figure 4.5a for a simulation using the BPTT algorithm.)

the predator to its den is a challenging learning problem for an artificial neural
network. There is also the question of choosing an appropriate network layout
with the right number of nodes in the hidden layer and learning rates. Secondly,
the learning problem of the model is by design ill-posed. The model defines a
final instantaneous cost which makes the predator return to its den at the end
of an episode. Initially, the trajectories returning to the den are suboptimal,
usually ending short. Further iterations improve the trajectory in order to avoid
the final cost Ψ and to increase the payoff along the trajectory. However, as
soon as the learning algorithm successfully finds a trajectory returning to the
den the final cost is avoided with Ψl = 0. At this point the aversiveness of the
final cost Ψl starts to decay with the continuous rewards from feeding, tempting
the predator to overstay in its feeding grounds. Consequently, the trajectory
collapses completely with the predator not returning to its den any longer. In
summary, the nature of the final cost Ψ results in a continuous loop between
trajectories returning to the den in order to avoid the final cost and trajectories
staying in the feeding ground until the end of the episode. Consequently, the
simulator does not converge on optimality regarding finding a stable trajectory
which maximises the overall payoff. This instability could be avoided with a
continuous final cost Ψ. On the one hand, the observed instability was desired
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to simulate the previously discussed psychological components of rewards which
interfere with a linear reward fitness relationship. On the other hand, a contin-
uous penalty function also has pitfalls: in a model with a cut-off at the end of
an episode and a continuous final cost Ψ the predator is weighting the rewards
from feeding against the final cost and is consequently not fully returning to the
den. Such trajectories might be optimal from a computing point of view but
make little sense in a biological context. I presume that in a biological context
this final cost function has a step like behaviour around the den, e.g. when the
individual has offspring to feed in the den the final cost of stopping close to
the den will not be smooth. An alternative smooth penalty function which is
also biologically meaningful would be an increasing cost for returning late to
the den. Unfortunately, such a cost function is difficult to implement with the
episodal RL algorithms used by this model here. Both algorithms, BPTT and
VGL, are off-line learning algorithms which only issue a weight update at the
end of an episode. If the end of an episode is defined by a predator’s return
rather than by a cut-off time, episodes will be long or even open-ended, par-
ticularly in the beginning of the simulation, due to the infinite state space S.
Clearly, the solution would be the implementation of psychological components
of rewards within a computational RL algorithm using on-line learning. Unfor-
tunately, such an extension was not within the scope of this thesis and has to
be addressed in future work.

I conclude that the definition of the penalty function Ψ in my model causes
the observed instability of the simulator which can be interpreted as the simu-
lated effects of the interaction of the three components of rewards: associative
learning, wanting, and liking. When the predator returns to the den successfully
the parts of wanting and liking of the rewards outweigh the aversiveness of the
final cost which is decaying. It becomes obvious that the instability of the sim-
ulator driven by maximising rewards along the trajectory (excluding the final
cost) does not maximise the overall value of a complete trajectory (including
the final cost).

The results in Figure 4.5 and Figure 4.6 show trajectories which are close
to an optimal trajectory and which were found running the BPTT learning
algorithm continuously saving trajectories which increased the overall payoff V
for an episode. The environment is composed of an aposematic prey population
and a population of Batesian mimics. The predator cannot distinguish between
them visually and has to utilise experience from ingesting prey individuals to find
a rewarding feeding ground. The trajectory of a predator which is not utilising
taste-sampling (Figure 4.5a) shows avoidance of the aversive prey population
taking a non-direct route to the population of mimics. The pre-condition of
exploration to successfully form and maintain aversion and the non-direct route
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result in a very low value for the locomotion parts of the trajectory. In order
to make the predator exploit the population of mimics the length of an episode
had to be high, with Tl = 80 in this simulation. The taste-sampling predator
takes a more direct route towards the population of mimics and experiences a
much higher value for the locomotion parts of the trajectory (Figure 4.5b).

Figure 4.6 shows the locomotion profile for the non-taste sampling predator
for the trajectory presented in Figure 4.5a using BPTT. The predator’s locomo-
tion in general is optimised towards efficiency maximising the displacement per
energy expenditure maxex dẊ/dex and maxey dẎ /dey which is at ex = ey = 0.5

in this simulation with a diagonal locomotion of
√
Ẋ(0.5)2 + Ẏ (0.5)2 = 0.7 be-

ing most efficient. There is a trade-off in this simulation as the population of
mimics is not located on the diagonal and due to the presence of an apose-
matic prey population (Figure 4.6a). Additionally, the predator over-stays in
the feeding grounds with the second half of the trajectory showing a more rapid
locomotion than the first half (Figure 4.6b).

Even though it is difficult to get meaningful trajectories from the simulator
due to the great number of learning related parameters and the instability of
the learning task the results presented show some interesting properties:

• in a biological context the trajectories of the predator are unstable due
to effects which can be attributed to wanting and liking of rewards in
individual based models,

• the element of the model which is generally optimised is the efficiency of
locomotion (the behavioural expenditure),

• however, rewards can interfere with this general optimisation of behavioural
expenditure. A non-taste sampling predator, for example, avoids the
aposematic prey population in order to minimize its metabolic costs from
toxin ingestion and

• the predator shows a tendency to over-stay in the feeding grounds and
returns to the den with above optimal energy expenditure for locomotion.

4.4 From rewards to Darwinian fitness.

In the previous section I presented a simulator based on my predator lifetime
model generating trajectories of individuals based on reinforcement learning
and payoffs reflecting subjective rewards. The simulator showed interesting
properties around the psychological components of rewards such as wanting
and liking which cause a suboptimal maximisation of payoffs along a trajectory
ignoring the fitness relevant final cost of not returning to the den at the end of
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an episode. On the one hand, the model showed a general tendency to optimise
behavioural expenditure. On the other hand, the simulator showed elements
which interfered with optimal behaviour such as the predator overstaying in
the feeding ground, or avoiding aversive prey to minimise metabolic costs of
ingesting toxins.

However, the core of evolutionary models is Darwinian fitness as discussed in
the initial motivation of this chapter. In an evolutionary context models such as
OFT look at optimal behaviour with regard to maximising fitness. It becomes
obvious that the findings of the previous section contradict the idea of max-
imising fitness with behaving animals showing clear reward driven motivations.
Nevertheless, the evolution of behavioural repertoires should maximise fitness.

It is apparent that rewards reflect some fitness component and that there
should be a general relation between strength of rewards and fitness. The moti-
vational question was: would it be possible to determine the fitness component
of rewards from the environmental set-up and the behaviour of predators.

In a situation with two types of prey a predator could completely prefer
one type over the other out of subjective choice. Especially in the previous
simulation of an aposematic prey population and a population of mimics the
predator shows clear preference for the non-defended prey. However, it is the
consequent co-evolution of predator and prey and their ongoing arms-race which
allow such complex systems of defence like aposematism in the first place. This
implies that prey avoided by an individual predator is also potential prey for
that predator within an evolutionary context. In particular the precondition
of exploration and the presence of inexperienced predators results in aversive
prey experiencing some level of predation as seen in the results of the previous
Chapter 3.

It can be assumed that predators generally show evolved behaviour adapted
to their environment and that without the occurrence of new mutants selection is
of a stabilising nature: the end-result is a stable system of balanced interactions
of co-evolved predators and all their prey. I will use the stability argument
to infer the fitness components of the previous subjective rewards as follows:
for the very reasons of co-evolution and stability some kind of fitness related
quantity of interacting predators and prey is assumed to be balanced. The
observed environment is interpreted as an evolutionarily stable snapshot without
the presence of any mutants with fitness advantages/disadvantages. Figure 4.7
shows the evolutionary model with t0Ṫ representing the metabolic cost of the
predator, E(u) being the behavioural expenditure (including amongst others
locomotion and reproduction costs), and R being the influx of some fitness
quantity from predation. I leave the units of the terms open but they could be
interpreted as a form of energy and generally toṪ < 0 and R > 0. Under the
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predator

t0Ṫ

|E(u)|
R

Figure 4.7: The evolutionary model of predator-prey interactions including ele-
ments of the predator lifetime model. The predator has an metabolic cost t0Ṫ
and a behavioural expenditure |E(u)|. The costs are balanced by the influx of
some fitness related quantity R.

assumption of interim stability without the presence of mutants it follows that

t0Ṫ − |E(u)|+R = 0. (4.34)

If that condition is not met and the l.h.s. of Equation (4.34) is positive the
population of predators would grow and if the l.h.s. is negative the population
of predators would shrink. In a coupled system of co-evolution this would lead
to changing selective pressure on the prey population which is assumed to be
stabilising (or either predator or prey would go extinct). For simplicity I assume
that the system has reached a stable point of balanced interactions between
predator and prey. This seems reasonable under the assumption of a process of
co-evolution.

The next step is to reformulate the state transition function using population
averages in order to move from individual preferences for rewards to Darwinian
fitness. This follows the assumption of this model that evolution acts on the
overall behavioural repertoire which maximises fitness and that the average of
observed individual behaviour gives an indication of the behavioural repertoire.
Additionally, it seems reasonable to assume that the state transition function
defined in terms of energy relates to fitness. For the predator, costly behaviour
such as having big territories or complicated mating behaviour E(u) will have a
negative influence on reproduction. The same is true for predators which spend
a long time on handling prey or recovering from toxins toṪ . Therefore, the
state transition function itself can be interpreted in terms of some energy-based
fitness quantity assuming a relation between energy and fitness.

Following the previous definition of the lifetime model in Equation (4.2), the
total available prey from the prey population i is given by the integral over the
prey dispersion as follows:

Gi =

∫
x

∫
y

gi(x, y) dx dy = 2piπσi,xσi,y. (4.35)

Substituting (4.35) into the previous payoff function of the lifetime model (4.5)
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gives the predator’s fitness payoff in terms of Darwinian fitness as follows:

R =
∑
i

Gid(ti)(r
∗ − t2i ), (4.36)

with r∗ being the assumed fitness component of the reward payoff of the pre-
vious section. I presume that the fitness component r∗ of the reward to the
predator is related to the fitness of the prey. For example if the unit of fitness
is energy the predator has a high fitness influx R from a prey which also had
a great amount of energy reserves for reproduction. Finally, if r∗ relates to
the fitness of prey this value has to be equal for different types of prey under
the assumption of stability. If the fitness of a type of prey would be greater
than the fitness of other prey types it would be advantageous for the predator
to feed exclusively on this prey. It is apparent that fitness in such an inter-
pretation is not equivalent to the number of offspring. r∗ is better interpreted
as a kind of energy quantity from which individuals can allocate towards the
cost of predator defences (Section 1.2.1), reproduction, metabolic costs of toxin
ingestion, or behavioural expenditures. I refer to the Discussion (Section 4.5)
for an interpretation of r∗ in the context of aposematic prey and mimics.

In summary, solving Equation (4.34) for the fitness component r∗ for a preda-
tor prey interaction with just a single type of prey results in:

r∗ =
1

Gdλ(A)

(
E(u) + t0 +G (t0ts + d(t2λ(A) + to(tt + th)))

)
. (4.37)

Consequently, r∗ needs to be higher to sustain stability when

(i) a predator feeds on toxic prey,

(ii) when the prey requires lengthy handling,

(iii) prey is rare,

(iv) the predator has a high metabolic rate t0,

(v) the predator utilises costly behaviour, or

(vi) when predators live longer.

On the predator’s side r∗ can be termed the nutritional value of prey within
this context.

The results in Figure 4.8 show the effects of different aspects of the lifetime
model on the nutritional value r∗ in the context of a single prey type. We see that
an increasing prey abundance σ reduces the required nutritional value of prey for
a stable predator population. Nevertheless, there is a minimal nutritional value
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(a) The fitness component r∗ of a sin-
gle prey type with respect to the prey-
population’s abundance σ, the preda-
tor’s behavioural costs |E(u)|, and the
predator’s metabolic rate t0. Without
ageing λ(A = 0) = 1.
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(b) The fitness component r∗ of a sin-
gle prey type with respect to the prey-
population’s abundance σ, the preda-
tor’s behavioural costs E(u), and the
predator’s metabolic rate t0. With age
distribution A = 5.
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(c) The fitness component r∗ of a sin-
gle prey type with respect to the prey-
population’s toxicity t, the predator’s
behavioural costs E(u), and the preda-
tor’s metabolic rate t0. With σ = 1,
without ageing λ(A = 0) = 1.
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(d) The fitness component r∗ of a sin-
gle prey type with respect to the prey-
population’s toxicity t, the predator’s
behavioural costs E(u), and the preda-
tor’s metabolic rate t0. With σ = 1
and age distribution A = 5.

Figure 4.8: Effects of a single aposematic prey population on the required fit-
ness component r∗ for there to be an equilibrium of a stable predator-prey
environment. Without taste-sampling: d(t) = 1, ts = 0, th = 0.1, and tt = 0.1.
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prey must have which depends on the metabolic rate of the predator t0 and which
is independent of the predator’s behavioural expenditure E(u) and the prey’s
abundance σ (Figure 4.8a and 4.8b). If prey is rare the predator’s behavioural
expenditure E(u) has a much greater impact on r∗ than its metabolic rate t0.
This result is in agreement with the predictions of the optimal foraging theory in
Section 3.2.1, if prey is rare predator’s are believed to be generalists and forage
on every prey item they encounter. The metabolic costs of ingesting toxins or
mediocre prey is less relevant to a predator’s fitness in such a situation than
the behavioural expenditure of searching for an alternative prey item. The age
distribution or longevity of predators acts as a simple multiplicative factor in
this context. In the case of longevity prey has to be more nutritious but the
functional shape with regard to prey abundance σ is identical.

Figures 4.8c and 4.8d show the effects of prey toxicity t on the nutritional
requirement r∗. Generally, increasing prey toxicity t requires higher nutritional
values r∗ for stability. In the case of less toxic prey the predator’s behavioural
expenditure E(u) has again a greater impact on r∗ than its metabolic rate.
With increasing prey toxicity the predator’s metabolic rate has greater impact
on r∗. The simulation showed the same result with the non-taste sampling
predator avoiding the aversive prey population in order to reduce its metabolic
cost from ingesting toxins. This result extends the definition of the optimal
foraging theory and shows that predators are predicted to be specialists and
avoid prey if their toxicity imposes high metabolic costs for the predator.

With regard to prey toxicity the age distribution or longevity of predators
acts not just as a simple factor as in the case of prey abundance. Generally,
longevity increases the required nutritional value of prey. Additionally it af-
fects the impact of the prey’s toxicity on r∗ which weakens for the predator’s
metabolic costs in the case of low prey toxicity and increases for the predator’s
behavioural expenditure in the case of high prey toxicity. Consequently, older
predators are predicted to be specialists when prey is highly defended and gen-
eralists when prey is only weakly defended. A prediction of this model is that
the greater the longevity of a predator the clearer should the classification into
specialists or generalists become.
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As in the previous section using the simulator, I will move to a predator
feeding on an aposematic prey in the presence of a Batesian mimic with the
following figure illustrating such an environment with two prey populations:

models mimics

.

The predator cannot distinguish between the two prey populations and has to
use experience obtained from a precondition of exploration. As such both prey
populations experience some levels of predation. Moving the evolutionary model
from Figure 4.7 to multiple food sources i gives the following condition under
the assumption of stability:

0 =
∑
i

Ri − t0Ṫ − E(u), (4.38)

with the predator now having multiple sources of fitness influx Ri. As discussed
previously, I assume that both types of prey have the same r∗ whereas the models
allocate parts of their energy inventory towards the cost of their anti-predator
defences and mimics have to allocate greater amounts towards reproduction to
compensate for higher levels of predation especially in the case of predators able
to taste-sample their prey. Solving Equation (4.38) for r∗ in the model-mimic
system results in:

r∗ =
1∑

iGi di λ(A)
×(

E(u) + t0 +
∑
i

Gi (t0ts + di (t2iλ(A) + to(tt,i + th,i)))

)
, (4.39)

simply expanding the previous solution in Equation (4.37) to multiple sources
of fitness influx Ri.

Figure 4.9 shows the results of Equation (4.39) as a function of different
parameters of the lifetime model. The overall prey abundance

∑
iGi is held

constant in all charts. Figures 4.9a and 4.9b show the effects of a second apose-
matic type of prey in comparison to an environment with only one aposematic
prey type. With the second aposematic prey being less toxic than the first prey
type it overall lowers r∗ and vice versa when the second type is more toxic. An
increasing fraction of the second prey type p amplifies the effects on r∗. Addi-
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tionally, taste-sampling also amplifies the effect of the second prey type on r∗.
However, the impact of taste-sampling is greater if the second prey type is less
toxic than the first prey type.

Figures 4.9c and 4.9d show the effects of mimics. Generally, the presence of
mimics lowers r∗ and mimics have an increasing impact on r∗ with increasing
toxicity of the aposematic model t1. In the case of non-taste-sampling predators
the effect of mimics on r∗ is linear with respect to the fraction of mimics in the
overall prey population p2. Taste-sampling in predators generally increases r∗

for stability and the effect of mimics on r∗ becomes non-linear with increasing
impact in case of mimics being rare.
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(a) Effects of a second aposematic prey
population with respect to its level of
defence t2 and density p2. The horizon-
tal line ∆r∗ = 0 and the vertical line
t2 = 2 indicate no differences. With-
out taste-sampling d(t) = 1 and ts = 0.
t1 = 2 and p1 = 1− p2.
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(b) Effects of a second aposematic prey
population with respect to its level of
defence t2 and density p2. The horizon-
tal line ∆r∗ = 0 and the vertical line
t2 = 2 indicate no differences. With
taste-sampling d0 = 1 and ts = 0.1.
t1 = 2 and p1 = 1− p2.
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(c) The effects of mimics within an
aposematic prey population with re-
spect to the mimics density p2 and
the models toxicity t1. Without taste-
sampling d(t) = 1 and ts = 0. p1 =
1− p2.
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(d) The effects of mimics within an
aposematic prey population with re-
spect to the mimics density p2 and
the models toxicity t1. With taste-
sampling d0 = 1 and ts = 0.1. p1 =
1− p2.

Figure 4.9: Effects of aposematic prey expressed as the relative change in the
fitness component ∆r∗ in a stable predator-prey environment with multiple prey
populations when compared to an environment with a single prey-population.
With th = 0.1, tt = 0.1, t0 = 2.5, E(u) = 25, λ(A = 0) = 1, and σ = 1. The
total prey abundance

∑
iGi is held constant.
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4.5 Discussion.

In this chapter I presented a predator lifetime model including life history traits
which had been abstracted away in the previous chapters, such as metabolic
costs, locomotion, prey handling, and toxin recovery. The presented model was
defined in such a way that it can be interpreted in a psychological context of
subjective behaviour driven by reward motivated objectives and an evolutionary
context of a behavioural repertoire which is driven by fitness and co-evolution
between predator and prey.

I applied two reinforcement learning algorithms, i.e. back-propagation through
time (BPTT) and value gradient learning (VGL), to simulate behaviour of sin-
gle individuals driven by rewards. Both algorithms address learning in episodal
tasks based on experience including discounted future rewards. I used artificial
neural networks as universal function approximators for the policy implemen-
tation (the actor) and in case of VGL also for the implementation of the value
function (the critic). BPTT is computationally cheaper as it does not require
a critic for learning. However, BPTT requires a great amount of exploration of
the state space for convergence as each learning iteration contains only infor-
mation about the value of the current trajectory. VGL requires an additional
critic. However, VGL is learning the gradient of the value function directly
which provides additional information about the value of adjacent trajectories.
This reduces the amount of exploration and makes VGL less sensitive towards
local optima.

The learning task for the simulator is defined in a way to address the initial
discussion of when behaviour is optimal. On the one hand, the environment in
the simulation contains rewards and punishment and optimal behaviour should
maximise positive reinforcement. On the other hand, the environment contains
a fitness related element in the form of an instantaneous final cost in the case
when the predator does not return to its den at the end of an episode. From
a biological context this penalty function is a steep step-like function: if the
predator has to feed offspring in its den then being close to the den will not
gradually reduce the cost of not returning. The trajectories from the simulator
show a great instability due to the interference of maximising positive reinforce-
ment along the trajectory (excluding the fitness cost) and maximising the value
of a complete trajectory (including the fitness cost). The simulator oscillates
between two states: (i) a state of maximising rewards along the trajectory
excluding the final cost where the predator stays in the feeding ground and does
not return to its den and (ii) a state of maximising the value of the complete
trajectory including the final cost where the predator successfully returns to its
den. I interpreted this as a manifestation of wanting and liking in the simula-
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tions of individual behaviour (I note that this effect has been constructed with
the choice of the final cost function as the reinforcement learning algorithms
used in the simulation do not incorporate psychological effects of rewards and
are purely of associative nature).

The simulation shows that the predator generally optimises the efficiency of
its behavioural expenditure. But again the rewards interfere with the optimal
behaviour as the predator overstays in the feeding grounds and uses above op-
timal energy for its locomotion on its return to the den. This result coincides
with the observations of many studies testing the quantitative predictions of
foraging behaviour under the marginal value theorem (See Nonacs (2001) for a
summary).

Furthermore, the simulation of a predator which does not utilise taste-
sampling shows avoidance of the aversive prey population. The exposure to
higher toxicity intake makes the metabolic cost a crucial factor. This result is
the same as in the analysis of the fitness quantity r∗ which also predicts that
the optimisation of the metabolic cost of a predator dominates the behavioural
expenditure in environments with highly defended prey.

The fitness quantity is obtained by assuming a stabilising co-evolution be-
tween predator and prey and can be interpreted as a form of energy. On the
predator’s side this might be the nutritional value of prey and on the prey’s
side it might be interpreted as an energy inventory which the prey can allo-
cate towards the costs of defence and reproduction. Aposematic prey allocates
greater amounts towards the cost of its defence whereas the mimics have to
allocate greater amounts towards their reproduction due to higher risks of pre-
dation from experienced predators. The presence of mimics generally lowers the
value of r∗ for such a system to be stable. If models and mimics co-exist with
an unchanged r∗ the prediction is that the models are better defended than in
scenarios without mimics. If mimics and models co-exist but with unchanged
levels of defence then models are predicted to be smaller and have lower nu-
tritional value than in a system without mimics. Taste-sampling as a strategy
increases r∗ if mimics are rare or if models are only moderately well defended.
However, the impact of taste-sampling is non-linear especially in systems with
highly defended models. In such situations taste-sampling lowers the value of
r∗. Consequently, under the assumption of a fixed value for r∗ and stability,
a predator evolves a taste-sampling strategy because mimics are less common
or models are better defended than in a comparable stable environment where
predators do not utilise taste-sampling.

Another interesting aspect is the effect of different age distributions: in
general, longevity in predators increases r∗ for stability. The effects are linear
with regard to prey abundance but non-linear with regard to prey toxicity where
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behavioural expenditure gains increasing impact in the case of defended prey
and older predators. Alternatively, metabolic costs have an increased impact
in the case of non-defended prey. This finding predicts that longevity creates a
clear classification of predators into generalists or specialists depending on the
toxicity of their prey.

Reflecting on the initial motivation of this chapter, the lifetime model con-
cludes with a recognised discrepancy between reward driven behaviour and max-
imising fitness. The definition of a final instantaneous cost as part of the lifetime
model simulated the interference of fitness related components of the rewards
with the additional psychological aspects of wanting and linking. Particularly
within a biological context, reinforcement learning generates unstable trajec-
tories due to interfering aspects of maximising rewards along a trajectory and
maximising the value of a complete trajectory (including fitness components
like the instantaneous final cost in this model). The lifetime model showed that
the predator in the simulation generally optimises its behavioural expenditure
(locomotion in this model) at low toxin intake. However, rewards, on the one
hand, can interfere with this optimisation with the predator overstaying in its
feeding grounds. On the other hand, a predator in the simulation optimises its
metabolic cost rather than its behavioural expenditure at increasing toxin in-
take from highly defended prey. This results are equivalent with the predictions
of the evolutionary lifetime model and optimal foraging theory.

I conclude that behavioural repertoires allow the derivation of a fitness re-
lated quantity r∗ under the assumption of co-evolution and stabilising selection.
On the predator’s side this quantity is related to the nutritional value of prey
and on the prey’s side it relates to an energy inventory which can be allocated
amongst others towards the cost of defences or reproduction.

Summarising, the main conclusions of this chapter are that the simulation
of an individual predator allows subjective reward driven trajectories which in-
terfere with the maximisation of the overall value of a trajectory and contradict
predictions of the evolutionary lifetime model. However, many aspects of sub-
jective trajectories are also predicted by behavioural repertoires under selective
pressure and stabilising co-evolution of predators and their prey. These are as
follows:

• the behavioural expenditure has a greater impact than metabolic costs
when prey is rare and undefended in which case predators are predicted
to be generalists,

• alternatively, the metabolic costs have a greater impact when prey is abun-
dant or highly defended where predators are predicted to be specialists.

• Longevity in predators generally increases the nutritional value of prey
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items required for stability.

• Additionally, longevity increases the importance of the behavioural expen-
diture in case of highly defended prey and the impact of metabolic costs
if prey is undefended. This finding suggests that longevity creates a clear
classification of predators into generalists or specialists.

• Finally, mimics generally lower r∗ which leads to less nutritional prey or
better defended models for stability under the assumption of a fixed value
for r∗

• and predators utilise taste-sampling if mimics are rare or models are highly
toxic.

In conclusion, the results of the two interpretations of the lifetime model, re-
wards and fitness respectively, allow to distinguish which parts of observed in-
dividual behaviour are caused by subjective preferences for rewards including
psychological aspects of wanting and liking, and which are actually part of an
evolved behavioural repertoire which maximises fitness. Even though Section 4.3
does not conclude fully satisfactorily, the lifetime of this chapter has shown some
great opportunities for such a combined approach. Many predictions made by
the lifetime model are reasonable or could be tested, i. e. the effects of longevity
on predator classification into generalists and specialists.
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Chapter 5

Conclusions.

A conclusion is the place where you got tired thinking.

(Martin H. Fischer)

5.1 Summary.

The aim of this thesis was to develop models of aposematism addressing open
questions beyond its initial evolution. I presented a wide body of work on two
main aspects revolving around: 1.) the properties of aposematic solutions in
finite populations and their stability under the influence of drift, and 2.) rein-
forcement learning as an implementation of the predator’s aversive learning to
generalise from encounters with prey items to optimal foraging behaviour.

I started this thesis from the prey perspective by introducing a new and
more flexible methodology for assessing the evolutionary dynamics and stability
of the co-evolution of secondary defences and signalling of such defences in
chapter 2. I extended a previous game-theoretical framework with a discussion
of finite population size and the resulting drift as an additional evolutionary
force affecting aposematic solutions and their stability. The main conclusions
were:

• Drift is an important aspect of real population systems and leads to an
increased inter-population diversification of aposematic solutions. It re-
sults in a wide region of possible levels of defence and signalling of such
defence comparable to an evolutionarily stable set where strategies can
change within the solution space due to approximately neutral drift, but
resist invasion from outside.

• For aposematism to evolve in finite populations the number of mutants
needs to be relatively large. However, stability of aposematic solutions
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is tightly bound to selection against rare prey types (anti-apostatic selec-
tion) due to the predator’s aversive learning which prevents cheating and
intra-population differences (e.g. automimicry and continuous variation in
defences). In particular, an aposematic prey population has to look alike
or its level of aversiveness decreases and aposematism loses its advantage.

• An accelerated learning process of strong aversion in predators allows for
a negative correlation between the strength of signals and defence where
aversive prey can reduce their defences with increasing conspicuousness of
their signals.

In particular the last two conclusions illustrate the importance of the preda-
tor’s learning process. The details of the predator’s generalisation of aversive
information are not only decisive for stability, they are critical to the relation
of defence and signals in aposematism.

Following these insights the thesis investigated the predator’s aversive learn-
ing within models of aposematism. As the selective agent the predator co-evolves
with its prey in a continues arms-race and the evolution and details of its aver-
sive learning process attracted my scientific attention for the majority of this
thesis.

Chapter 3 introduced operant conditioning as a generalised theory of associa-
tive learning and Q-learning as a methodology implementing the reinforcement
learning problem where a predator receives feedback depending on its actions.
To begin with I applied Q-learning to an optimal diet model to investigate the
link between aposematism, aversive learning, and optimal foraging behaviour.
The main conclusions were as follows:

• Temporal difference learning is a suitable and elegant approach to optimal
foraging in the context of aposematic prey, Batesian mimics, and uncertain
environments.

• A pre-condition of continuous exploration in changing environments or
situations of conflicting rewards results in aversive prey experiencing some
level of predation as part of the predator’s aversive memory formation.
This can cause foraging behaviour which is conditionally suboptimal in a
stationary environment. However, continuous exploration is a good policy
precisely because environments are inherently uncertain.

• The model reproduced many expected results of established models and
allowed new insights into the effects of uncertainty and changing environ-
ments.

Following the successful application of Q-learning to optimal foraging in the
presence of aposematic prey I looked into the initial evolution of associative
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learning. Comparing the fitness distributions of an adaptive learning strategy
with a non-adaptive strategy of random mutations with regard to regularity,
frequency, and size of changes it showed that:

• A learning strategy incurs the cost of exploration and requires environ-
mental change and longer generation times to be beneficial. Learning is
optimal for specific combinations of regularity and size of environmental
change.

• Regularity is the only environmental factor which impacts whether learn-
ing is generally advantageous.

• The fitness distributions of the learning strategy are independent of tech-
nical parameters of reinforcement learning such as learning and discount
rate within a biological context of changing environments.

Chapter 3 showed that Q-learning can be applied successfully to models of
aposematism to investigate how a predator includes aversive information from
an encounter with aposematic prey into generalised foraging behaviour. Addi-
tionally, Q-learning was shown to be a generally advantageous adaptation to
changing environments allowing its initial evolution.

However, the chapter abstracted away many aspects of the aposematic predator-
prey interaction. In particular, it made the broad assumption of a monoton-
ically increasing functional relation between rewards and fitness. Chapter 4
added some components of established models of aposematism such as life his-
tory traits of the predator and prey handling to the previous model of optimal
foraging. Additionally, it discussed optimal behaviour in both contexts of max-
imising rewards and maximising fitness using a predator lifetime model. In
summary the main conclusions were:

• There is a widely recognised discrepancy between individual behaviour
driven by reward motivated objectives and the maximisation of fitness.
This phenomenon was observable in the simulated trajectories of the
predator lifetime model where an instability caused by wanting and liking
of rewards intervenes with, firstly, the aversiveness of not meeting a con-
straint of returning to the den and, secondly, with the optimal behavioural
expenditure of overstaying in the feeding ground.

• The predator traits off against the metabolic cost and its behavioural
expenditure depending on the toxicity of aposematic prey and the presence
of Batesian mimics.

• The generalisation to behavioural repertoires and the assumption of the
co-evolution of predators and their prey under stabilising selection allows
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us to infer a fitness related energy quantity as a subcomponent of the
rewards in the predator lifetime model. This quantity can be interpreted
as a nutritional value of prey items and as an energy inventory from which
prey can allocate towards the cost of their defence and reproduction.

• In both contexts, individual reward motivated behaviour and fitness driven
behavioural repertoires, the model makes similar predictions about the
impact of metabolic cost and behavioural expenditure on the predator’s
optimal foraging behaviour.

• Additionally, the model makes interesting predictions about the effects of
taste-sampling and longevity on the composition of a stable aposematic
predator-prey system.

5.2 Future work.

Even though this thesis gives important insights into new aspects of aposema-
tism, naturally, it cannot be complete. In particular, it only touched the surface
of the role of the predator as the selective agent. There are many options for
future work which are, amongst others:

• Adding population dynamical interactions to build a complete evolution-
ary model of learning.

• Adding explicit psychological elements of rewards to a reinforcement learn-
ing method to investigate the impact of wanting and liking on associative
learning.

• Include constraints from innate behaviour such as returning to the den as
a limitation to the state and action space in the RL model.

• Compare the exploration patterns of a learning predator with Levy-flight
patterns.

• Allowing the aposematic prey to evolve the amount of energy it allocates
towards the costs of aposematism and reproduction in the model of co-
evolving behavioural repertoires.

• Building a complete model with co-evolving defence and signalling of such
a defence and co-evolving predators with their prey using associative learn-
ing to generalise information from encounters with prey into optimal for-
aging behaviour.

• Investigating different reward fitness relations and their consequences on
the co-evolution of predators and their prey in the context of aposematism.
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• Formulating a consistent definition of evolutionary stability of aposematic
solutions including associative learning and the pre-condition of explo-
ration.
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