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Magnetic Fields In Astrophysical Objects

By L. J. Silvers

Department of Applied Mathematics and Theoretical Physics, University of

Cambridge, Wilberforce Road, Cambridge, Cambridgeshire, CB3 0WA, U.K.

Magnetic fields are known to reside in many astrophysical objects and are now
believed to be crucially important for the creation of phenomena on a wide variety
of scales. However, the role of the magnetic field in the bodies that we observe has
not always been clear. In certain situations, the importance of a magnetic field has
been over looked on the grounds that the large-scale magnetic field was believed to
be too weak to play and important role in the dynamics.

In this article I discuss some of the recent developments concerning magnetic
fields in stars, planets and accretion discs. I choose to emphasise some of the sit-
uations where it has been suggested that weak magnetic fields may play a more
significant role than previously thought. At the end of the article I list some of the
questions to be answered in the future.

Keywords: Magnetic Fields – Magnetohydrodynamics (MHD) – Accretion
Discs – Stellar and Planetary Dynamos – Planetary Magnetic Fields

1. Introduction

Our knowledge of magnetism, and of magnetic fields, began with the study of
lodestones several hundred years before Christ. Stones of this type can become
magnetic, and then two such stones will naturally align (see, for example, Parker
1979). Scholars of the time proposed a variety of reasons for this peculiar behaviour
and it was even suggested at one point that the lodestone might even have a soul!

Many centuries later, at the start of the 17th century, William Gilbert noted
that the Earth also behaves like a large lodestone (see for example Childress &
Gilbert, 1995). Gilbert noted that a lodestone always points to align with what is
now referred to as magnetic north/south in the same way that a small stone aligns
itself relative to a larger one. By the end of the nineteenth century, it had been
concluded that the Earth is not unique in having a magnetic field. In 1908, Hale
determined that the Sun has a magnetic field and that the phenomena that are
known as sunspots, which are dark patches on the surface of the Sun (Hale 1908),
have a magnetic field that is incredibly strong (of the order of 1000 Gauss). In the
last century, studies of different stars, planets and other non-Earth objects, have
been made and it is now known that many of them have a detectable magnetic
field. A useful summary of typical field strengths for some objects can be found in
Zeldovich et al. (1983) and Jones (2007).

Given that there is a measurable magnetic field in many objects in the Universe,
it is natural for us to ask what its role is in the dynamics of different objects. At a
more fundamental level we wish to know if the magnetic field that is being measuring
today is a primordial field, that has resided in the object since its creation, or
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2 L. J. Silvers

if the magnetic field is one that is constantly being generated by some kind of
hydromagnetic dynamo mechanism.

In the last few decades, the importance of a magnetic field in many of the
astrophysical bodies has become increasingly recognised. This has stimulated con-
siderable research in the area of magnetohydrodynamics (MHD) to understand how
a plasma and a magnetic field interact. In some phenomena, such as sunspots, the
role of such a strong magnetic field is fairly easy to grasp at a basic level but only re-
cently has a more comprehensive understanding of these phenomena been obtained
(see the article by Bushby in this volume). However, it has proved to be more dif-
ficult to understand the important and role of weaker fields, where the magnetic
energy is much less than the kinetic energy †. Further, understanding why some
planets have magnetic fields that are easy to detect, and others don’t means that
there is a vast array of issues and interesting questions still to be resolved about
magnetic fields and their interactions with electrically conducting fluids in objects
throughout the universe.

In this short article, I will discuss some of the recent developments in our knowl-
edge and understanding of astrophysical magnetic fields, and discuss some of the
interesting open problems and issues. Much of this revolves around the study of
how astrophysical object generate magnetic fields i.e. their dynamo mechanisms.

2. The Role of the magnetic field in the Sun, other stars and

planets

Figure 1. An illustration showing the different zones of the Sun.

Given that our knowledge of magnetism in non-Earth objects is greatest for
the Sun, this seems a good starting point for our brief trip around a portion of
the magnetic Universe. This star is a fascinating and complex astrophysical object
that has now enthralled mankind for thousands of years. It is a vast ball of plasma
that can, somewhat crudely, be pictured as being comprised of a series of layers, as

† This is the definition of weak that is frequently used for astrophysical scenarios. However,
we note here that is some cases the definition of a weak magnetic field is different and is one for
which the gas pressure is much bigger than the magnetic pressure.
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Magnetic Fields In Astrophysical Objects 3

shown in figure 1. Events in the outer parts of this star (on the the visible surface
of the Sun that is referred to as the photosphere; in the chromosphere and in the
corona) can be observed directly and images such as those from the SOHO mission
show a variety of transient events. Historically, the first solar phenomena feature
to be identified were sunspots, which appear in the records dating as far back as
350BC and have been known to persist for several weeks (Tobias 2002). Figure 2
shows images of a sunspot viewed in three different ways.

In 1908 Hale, utilizing the Zeeman effect (the splitting of a spectral line in the
presence of a magnetic field), was able to show that these patches on the solar
surface are regions with strong magnetic field. In fact, it is the presence of a strong
magnetic field that inhibits convection and gives rise to spots. They are dark in
appearance as the temperature in a spot is lower than its surroundings. Recently
progress has been made in our understanding of these phenomena (Thomas, Weiss,
Tobias & Brummell 2002; 2004; 2006) and a non-technical account of this develop-
ment is discussed by P. J. Bushby in this volume (Bushby 2008).

Figure 2. High resolution (pseudo-colour) images of a sunspot viewed in three different
ways. Left: In Ca II H; Middle: in G-band; Right: Magnetogram. Images are courtesy of the
Hinode mission. (Hinode is a Japanese mission developed and launched by ISAS/JAXA,
with NAOJ, NASA and STFC as partners. It is operated by these agencies in co-operation
with ESA and NSC.)

Observations of sunspots lead to the discovery that the Sun’s magnetic field has
a cyclic behaviour. At the start of a cycle, sunspots appear in pairs with the two
spots of opposite polarity. These spot pairs are approximately aligned in a east-
west orientation, 30 degrees either side of the equator (see, for example, Tobias &
Weiss 2007). The west-most spot of each pair in the northern hemisphere is always
of the same polarity and opposite to the western spots in the southern hemisphere
(see, for example, Tobias & Weiss 2007). Over (approximately) the next 11 years,
the latitude at which emergence of new sunspot pairs gradually moves so that the
new pairs in later years appear closer to the equator. At the end of the 11 years,
the sunspot pairs reappear at higher latitudes but with the polarity of the spot
in the pair reversed. Consequently, the solar cycle does not repeat every 11 years,
but instead on an approximate 22 year period. It is interesting to note that there
have been periods where there have been no visible spots of the surface of the Sun.
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4 L. J. Silvers

The most noted example in history occurred in the 17th century, and is called the
Maunder minimum (see, for example, Tobias 2002).

While sunspots were the first solar phenomena to be observed, there are a host
of others, which include flares (regions of high brightness associated with a complex
topology of the magnetic field) and prominences (regions where cool, dense material
is suspended above the surface of the Sun). The origin of the solar magnetic field,
which is crucial for observed transient phenomena, is rooted deep inside the Sun
and therefore the interactions in the solar interior (below the photosphere), between
the plasma and the magnetic field, give rise to what is observed on, and above, the
surface. Since the observations of the sunspots and other phenomena change with
time, the magnetic field in the interior must also be time dependent. In order
to produce such a complicated collection of magnetic phenomena, the interaction
between the magnetic field and the plasma must be complex, and one of the most
crucial questions in solar physics is: How do a plasma and a magnetic field interact

in the interior of the Sun?

The solar interior can be divided into three principal, large, regions – the core,
radiative zone, and convection zone. Despite the fact that these interior regions are
not observable directly, there is still a fairly large amount that is known about the
internal structure particularly through utilizing a relatively new branch of solar
research called helioseismology. Research in this area seeks to infer information
about the interior of the Sun via the oscillations observed at the surface (Stix
1996; Thompson 2004). Helioseismological inversions (e.g. Schou et al. 1998) suggest
that the differential rotation profile that is observed at the surface of the Sun is
maintained throughout the bulk of the convection zone Furthermore, the radiative
zone rotates essentially as a solid body with angular velocity equal to that of the
surface at a latitude of approximately 35◦. Thus, separating the convection and
radiative zones, there is a thin transition region of strong radial shear - a region
known as the tachocline. This region has been postulated for a number of years,
but has only recently been confirmed by helioseismology and, despite its relatively
narrow radial extent, is believed to play a crucially important role in the evolution
of the solar magnetic field due to its large shear.

The solar magnetic field is not believed to be simply a relic field that has been
part of the star since its formation. It is being generated and maintained by a hy-
dromagnetic dynamo mechanism, which is thought to be the case partially because
of sunspot observations: the polarity of the west-most sunspots changes every 11
years, which suggests the destruction of that component of the large-scale magnetic
field and the generation of that component of the large-scale magnetic field with
the opposite polarity for the next 11 years. As such there has been considerable
work to explain how the magnetic field is being sustained within the Sun. The
original concept for the mechanism that is maintaining the solar dynamo was that
it occurred entirely in the turbulent solar convection zone, as the initial magnetic
field is stretched and folded by the actions of the turbulent flow on it. However,
it was noted in the early 1990s (Parker 1993) that the entire dynamo mechanism
probably does not lie within this region, because a magnetic field can act back on
the flow and impede the rate of regeneration of the magnetic field (Cattaneo &
Vainshtein 1991; Gruzinov & Diamond 1996). The crux of the issue is that, while
this effect has always been known to be a function of the strength of the magnetic
field on the flow, it was noted that extremely weak large-scale magnetic fields can
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Magnetic Fields In Astrophysical Objects 5

still have an incredibly significant effect on the flow and so a catastrophic effect on
the rate of field regeneration †. This leads to the conclusion that the magnetic field
cannot reside entirely in the solar convection zone, and new mechanisms such as
the interface dynamo mechanism were proposed (starting from Parker 1993).

Figure 3. Illustrations showing the poloidal (left) and toroidal (right) components of the
magnetic field courtesy of J. J. Love.

In the interface model, the turbulence within the convection zone retains the
ability to generate the poloidal component of magnetic field (see Figure 3) but it
invokes the natural tendency of overshooting convection to transport the magnetic
field out of the convection zone into the tachocline. This movement of magnetic
field out of the convection zone prevents the catastrophic effects mentioned above.
Once in the tachocline the magnetic field is sheared out to generate a large-scale
toroidal component of the field, which then rises returning magnetic field back into
the convection zone for the cycle to continue. This is shown in figure 4.

It is important to note that the interface dynamo mechanism is not the only
current proposal for a mechanism for the solar dynamo and others include, for
example, the Babcock-Leighton model (Babcock 1961; Leighton 1969)†. Also, there
have been papers in recent years to suggest that the catastrophic quenching that,
in part, motivated the interface dynamo model may not be as severe as anticipated
(Blackman & Field 2000; Silvers 2006). However, recent observational evidence
from another star, τ Boo, with some characteristics similar to the Sun, has added
greater weight to the idea that magnetic fields in stars may be being maintained
by an interface mechanism described above (Donati et al. 2008).

† Extremely weak here refers to fields that are such that the magnetic energy is Rm times
smaller than the kinetic energy, where Rm is a measure of the relative importance of the advective
to diffusive terms that appear in the equation that governs the evolution on the magnetic field.
Rm is known as the magnetic Reynolds number and in the solar convection zone Rm ≫ 1.

† In this model the decay of active regions at the solar surface releases poloidal field. This com-
ponent of the magnetic field is transported to the base of the solar convection zone by meridional
circulation where is is sheared out by differential rotation to give rise to a toroidal component
of the magnetic field. The toroidal field then rises to the surface and gives rise to sunspots. The
decay of these sunspots in active regions then gives rise to poloidal field for the cycle to begin
again.

Article submitted to Royal Society



6 L. J. Silvers

Figure 4. The interface dynamo mechanism.

The star that is known as τ Boo has a similar internal structure to the Sun,
but with a very thin convection zone. The magnetic field for this star has been
monitored over a several year period and recently the first flip in the large-scale
magnetic field of a star other than the Sun has been seen (Donati et al. 2008). This
is an exciting advance in observations of stellar magnetic fields and raises questions
as to how long it would be before detect another reversal. In this star, as is the case
in the Sun, there is region of strong shear (a tachocline) where the convection zone
that differentially rotates joins onto the rest of the interior. This has led the authors
to conclude that there is most likely an interface dynamo mechanism, similar to that
for the Sun discussed above, that is giving rise to the maintenance of a magnetic
field in this star.

As τ Boo reminds us, there is considerable variation in the internal structure
of stars, and not just in the ratio of the thicknesses of the layers, which will play
an important role in the internal dynamics between the electrically conducting
fluid and the magnetic field. For some stars, there is a large convectively driven
core as opposed to a large convectively driven envelope just below the surface.
However, there does not have to be only one convective region within a star and it is
believed that there can be multiple convection zones near the surface of some stars.
Such complex structures inside stars are the result of compositional changes as you
move radially outward from the centre of the star (see Silvers & Proctor 2007 and
references there in). Comparing and contrasting different stars and their magnetic
fields in future years will surely give us greater insight into stellar dynamos.

The precise way in which a magnetic field is maintained in an astrophysical
body, such as the stars mentioned above, is a fascinating topic and not limited to
the consideration of stars. In fact there has been considerable work to understand
the geodynamo –the dynamo mechanism for the Earth (for a recent review see Kono
& Roberts 2002). In recent years, with many missions providing data on planets
within our own solar system, there has been a drive to understand in greater detail
why stars like the Sun, and planets such as the Earth or Jupiter, show evidence of
a dynamo mechanism at work, whilst Venus has no detectable large-scale magnetic
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Magnetic Fields In Astrophysical Objects 7

field (see, for example, Jones 2007 and references therein) and Mars appears to have
have a magnetic field (Stevenson 2001) but there seems to be no current dynamo
mechanism. This has forced astrophysicists to ask questions about what it is about
some planets that give rise to a working dynamo mechanism.

What we are learning about the magnetic field in the planets in the solar system
will help in the long run with our understanding of the extra solar planets that
are now being detected (see the Extrasolar Planets Encyclopedia for a list that is
frequently updated†), of which there is much less detailed observational data. Many
of these extra solar planets are Jovian-like but with considerable variation in the
proximity of the planet to the star it orbits (leading to the name: hot Jupiters). As
such, achieving a comprehensive understanding of the behaviour of the magnetic
field in Jupiter via theory and direct observations and measurements will help us
form a better picture of these planets that have recently been discovered.

3. The role of the magnetic field in accretion discs

Magnetic fields not only play a significant role once stars and planets are formed,
but are also believed to have an important role to play in their formation due to
the interactions of the plasma with the weak magnetic field that resides in parts of
the discs from which these objects are formed. Matter from the disc accretes onto
an initially small object in the centre to form the star or planet.

To accrete onto the central body it is necessary to transport angular momentum
outward. This seems, on the surface, a simple objective. However, it has given rise
to a great deal of debate, with several mechanisms that give rise to the outward
transport of angular momentum in an accretion disc having been proposed (see
Balbus & Hawley 1998 for a discussion of the historical suggestions).

The drive to understand the transport of angular momentum started in the
1970s with papers such as that of Shakura & Sunyaev (1973). Early approaches
sought a purely hydrodynamical based reason (see Balbus & Hawley, 1998, for
a detailed historical overview). Any mechanism that involved the magnetic field
playing a substantial role was discounted until the early 1990s because the magnetic
field in the accretion discs can be extremely weak and so, as in the Sun, initially
considered to be inconsequential. Hence, it was believed for many years that what
was required was a hydrodynamical instability yielding turbulence within the disc.
Turbulence is known to give rise to a greatly enhanced transportation and mixing
rate of quantities - for example movement of a drop of dye in a vat of water is
greatly increased over the pure diffusion rate if the water is turbulent.

However, in the early 1990s it was realised that the role of the magnetic field
had not really been examined despite discussions of the magnetic field in accretion
discs appearing since an article by Lynden-Bell in 1969. It has now become clear
that one way to generate turbulence in a disc is by appealing to an instability
that occurs when there is rotation in the presence of a weak magnetic field (an
instability that was first identified in a different context by Velikov in 1959). Linear
stability analysis has show that a differentially rotating disc, with angular velocity
decreasing outwards, is unstable in the presence of a weak magnetic field (Balbus
& Hawley 1991; Hawley & Balbus 1991). This magnetorotational instability (MRI)

† http://exoplanet.eu/catalog.php
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8 L. J. Silvers

gives rise to an enhanced transportation of angular momentum via the turbulence
that is created in the disc. However, I note here that there are some alternative
theories on how accretion may be occurring within accretion discs which do involve
strong magnetic fields (see for example, Ferreira, 1997, for further details).

Figure 5. Illustration of how the basic MRI instability works in an accretion disc.

To understand the essence of the MRI instability in a disc, one can picture the
weak magnetic field that resides in the disc as acting like a spring that tethers
two elements in the disc together†. Figure 5 shows an initial configuration where
one of our elements starts a little closer to the central mass than the other. As
such, the inner element will orbit the central mass at a faster rate, which would
stretch our hypothetical spring that connects them. This stretching gives rise to
a torque that pulls the inner element back in its orbit and the outer element is
pulled forward at the same time, transferring angular momentum from the inner
element to the outer element. The inner element, which has lost angular momentum,
moves further in, stretching the spring even more, and the process continues. This
descriptive picture of the magnetorotational instability is only valid for a weak field;
if the magnetic field were strong, the particles would be connected by an extremely
stiff spring or bar, and the run-away instability process cannot occur. Therefore, for
the magnetorotational instability to occur, the magnetic field must be weak, which
is precisely the scenario that is found in accretion discs.

While there is now a plausible mechanism through which accretion can occur, it
is not clear how efficient it is i.e. how fast angular momentum would be transferred
in accretion discs via only this mechanism. Due to the non-linear coupled equations
that govern the system, determination of this rate requires the use of numerical
techniques to evolve the equations, but with current resources there is no way that
a fully resolved simulation of the full disc can be constructed for the viscosity,
resistivity and thermal conductivity values associated with discs.

To make some progress in the subject, the initial strategy was to consider the
MRI in a small patch of the disc. By reducing the size of the computational domain,
one can obtain higher resolutions for the same computational cost and so resolve
much smaller scales. Great advances in understanding various issues related to this

† For simplicity in our toy scenario I consider the case of ideal MHD i.e. no viscous etc dissi-
pation.
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instability have been made via local models of a section of the disc (see, for example
Sano, Inutsuka, Turner & Stone 2004; Fromang, Papaloizou, Lesur & Heinemann
2007; Lesur & Longaretti 2007; Pessah, Chan & Psaltis 2007; Silvers 2008). With
the computational resources that exist now, and for the foreseeable future, it is
impossible to work with the real values for viscosity etc but it is possible to gradually
decrease the values towards more astrophysically relevant values. This approach
may make it possible to determine, for example, the behaviour, and possibly a
scaling law, for how key quantities change as the dissipative parameters are reduced.
However it may also prove helpful to consider methods to cut the computational
resources even further, e.g. by including some kind of sub-grid scale modelling, but
this is a complex issue and will require considerable thought on the precise way
that the calculations should be carried out. ‡

It is important to note that, while helpful to some degree, a local modelling
approach leaves many questions unanswered, particularly how the results relate to
the full disc problem. In the full disc there are a lot more questions to resolve such
as the effect of the choice of boundary conditions. As such, one useful goal for the
future, in our way to understanding the rate of accretion in discs, should be higher
resolution computations in full disc models.

4. Concluding remarks

Over the last 100 years, since Hale made the first discovery of a magnetic field in a
non-Earth object, there has been vast progress in our understanding of the interac-
tions between astrophysical plasmas and a magnetic field. There is now a detailed
picture of how solar features arise, what ingredients preclude dynamo action in stars
and planets, and how turbulence in a disc gives rise to accretion of matter onto the
central object. This said, there are still a plethora of questions that remain for us
to answer such as:

• Why is it the case that there are extended periods in history, such as the
Maunder minimum where there is an absence of the ‘usual’ sunspots that
are associated with solar cycle? What is the trigger for the sunspot cycle to
appear again several decades later?

• What is it that makes Venus different, such that no dynamo mechanism op-
erates?

• How does a more complex internal structure within a star affect the mainte-
nance and transport of the magnetic field?

• Are there further astrophysical areas where the magnetic fields have so far
been perceived to be weak, and so neglected, which now warrant reconsider-
ation in the light of the vital role played by weak magnetic fields?

• In how many stars is there a flip in the magnetic field, and on what time-scales
do these flips occur? It is possible to obtain a comprehensive understanding
of how the time-scale for flips relates to the structure of each star?

‡ For a discussion of some of the current subgrid scale models see, for example, Buffett (2003).
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10 L. J. Silvers

Hopefully in the next 100 years new considerable progress will be made on these
topics and other areas with the help of new space-based missions and other tech-
nology that will improve our current knowledge from observations, and advanced
in computer resources.

I would like to thank David Hughes, Michael Proctor, Sam Falle, Steve Balbus, Nigel Weiss,
John Papaloizou, Paul Bushby, Geoffroy Lesur and Steve Tobias for many stimulating
conversations over the years.
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