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Abstract

Modelling the dependence structure of financial variables is of paramount impor-
tance for a wide range of financial applications. Financial variables exhibit various
forms of dependence and tail dependence whereas the magnitude of dependence is
not constant over time but rather time-varying and can also be affected by exoge-
nous factors. The present thesis investigates the effects of multivariate dependence
on a broad range of financial applications. In particular, the first empirical part of
the thesis investigates the implications of dependence and tail dependence for the
accurate risk modelling of financial portfolios. The joint behaviour of the returns of
the financial portfolios is modelled employing extreme value theory methods for the
univariate distributions and pair-copula constructions for describing the joint depen-
dence. The results indicate that risk estimates, derived within this framework, can
be successfully forecasted at extreme quantiles. The second empirical part deals with
the estimation of systemic risk in the European banking sector based on the CoVaR
methodology. In this part, a new methodology, based on copula functions, is pro-
posed and extended to different CoVaR definitions and systemic risk measures. The
proposed approach also recognises the time-varying dependence of financial variables
by allowing the dependence parameters to be functions of lagged information. The
results highlight the importance of taking into account accurate specifications for
the marginal distributions and the dependence structure when modelling systemic
risk. The empirical results also show that systemic risk in the European banking
sector can be explained by several macroeconomic and financial variables as well as
factors directly related to institution-specific characteristics. Finally, the third em-
pirical part focuses on the modelling of the interdependence structure of European
sovereign yield curves as functions of market-wide and country-specific liquidity and
credit quality measures. The empirical results highlight the significance of both
liquidity and credit measures in explaining the dynamics and covariation of Euro-
pean yields and reveal important contagion and spillover effects among European
economies. Overall, the empirical findings of this thesis outline the importance of
taking into account the behaviour and the distribution characteristics of the finan-
cial variables that are modelled; failure to do so may lead to incorrect inference and
erroneous implications.
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Chapter 1

Introduction

1.1 Motivation and objectives

The aim of this PhD thesis is to develop multivariate modelling procedures that
address the dependence modelling challenges found in financial data and improve
methods for risk management, systemic risk measurement and interest rate mod-
elling. In principle, modelling the dependence structure of financial variables is a
non-trivial task due to the complex dynamics of individual variables on the one
hand, and the varying dependence structure between the variables on the other
hand. Evidence that the univariate distributions of many common financial vari-
ables are non-normal, exhibiting excess kurtosis (or fat tails) and skewness, has
been widely reported in the literature, as far back as Mills (1927). Furthermore, the
traditional multivariate time-series approach seems unable to capture the depen-
dence properties and co-movements of financial data. The traditional multivariate
time-series approach relies on the assumption of multivariate normality and employs
the usual linear correlation as a measure of dependence between financial variables.
Nevertheless, the linear correlation measures only linear dependence and does not
explore any non-linear dependence. Another drawback of the traditional time-series
approach is that correlation is assumed to be constant over time. Several studies in
the finance literature have reported deviations from multivariate normality, in the
form of asymmetric dependence. One typical example of asymmetric dependence
is that returns tend to be more dependent during market downturns than during
market upturns.1 These properties have important implications for a broad range
of financial applications.

The contribution of this PhD thesis aims at providing tools for going one step further:
What are the stylised facts of dependence and tail dependence in financial data ? Can
we develop flexible multivariate models that allow us to go beyond normal depen-
dence for applications to financial data ? Can we develop high-dimensional models
that take into account the stylised facts of dependence and tail dependence between
financial variables, while being relatively flexible and computationally tractable at
the same time ? In addition, we investigate time-varying conditional dependence,

1For evidence of asymmetry in financial time series, see Longin and Solnik 1995, 2001; Ang and
Bekaert 2002a,b; Das and Uppal 2004; Patton 2004; Garcia and Tsafack 2011, among others.
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spillover and contagion effects, the interaction of exogenous variables with the de-
pendence structure, as well as the behaviour of correlation under varying market
conditions. We explore all the above issues employing different modelling strate-
gies, while focusing on different markets which share distinct dependence modelling
challenges.

1.2 Copula functions as a modelling tool

To develop multivariate models that deviate from the normality assumption and,
at the same time, address the complex dynamics of financial asset return distri-
butions, we work with copula distributions in Chapters 3 and 4 of this PhD thesis.
The copula theory provides an efficient approach for modelling the high-dimensional
dependency. The use of copulas, which dates back to Sklar (1959) but was made
popular in finance through the pioneering work of Embrechts et al. (1999b), makes
it possible to separate the dependence model from marginal distributions. Patton
(2006) argues that the copula is a more informative measure of dependence than
linear correlation, since the usual correlation coefficient is not sufficient to describe
the dependence structure if both the joint distribution and the marginals of finan-
cial returns are non-elliptical.2 Copulas also allow the modelling of tail dependence,
which means that unlike in the case of the Gaussian distribution, the dependence
does not vanish as we consider increasingly negative returns.3 Especially in times
of financial market turmoil, neglecting the tail dependence between financial times
series may have significant effects on multiple financial modelling applications.4

A large number of parametric bivariate copulas have been proposed to address vari-
ous dependency forms. Among the class of non-elliptical copulas, Archimedean cop-
ulas have found wide usage in the finance literature recently, because of their simple
closed-form cumulative distribution functions and their appropriateness for mod-
elling the dependence between random variables. In this regard, the Archimedean
copulas have been found to adequately model the lower tail dependence of finan-
cial portfolios (see for example, Ané and Kharoubi (2003) and Fantazzini (2009),
among others) because they can capture a broad range of types of tail dependence
and asymmetric tail dependence. Nevertheless, the simple parametric copula models

2Embrechts et al. (2003c) and Rachev (2003) illustrate the drawbacks of using linear correlation
to analyse dependency.

3Elliptical copula models have been found to perform as poorly as their correlation-based coun-
terparts in many financial applications due to their symmetric tail dependence (see for example,
Cherubini et al. 2004; Fischer et al. 2009, among others).

4Several studies find that there is more extremal dependence in more volatile periods (see for
example, Longin and Solnik 2001; Ang and Chen 2002; Jondeau and Rockinger 2006; Chollete et al.
2009, among others).
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are not flexible enough to model the complex dependence structures of multivariate
data. For example, only a small set of copulas can be extended to higher dimen-
sions. Moreover, multivariate copulas assume the same form of dependence among
marginal series. There have been several attempts to construct multivariate exten-
sions of Archimedean copulas such as the exchangeable multivariate Archimedean
copulas (EAC) and the nested Archimedean constructions (NACs) (see for exam-
ple, Bandeen-Roche and Liang 1996; Joe 1997; Nelsen 2007; Whelan 2004; Embrechts
et al. 2003c; McNeil 2008; Savu and Trede 2009, among others). Nevertheless, these
models are not flexible enough to model all mutual dependencies among the vari-
ables.

The most prominent high-dimensional copula models which are flexible enough to
model complex multivariate data are the so-called vine copulas (also called pair-
copula constructions, PCC). This structure was originally introduced by Joe (1996)
and subsequently extended by Bedford and Cooke (2001, 2002), Kurowicka and
Cooke (2006) and Aas et al. (2009). The model is hierarchical in nature and is
based on a decomposition of a multivariate density into a cascade of simple bivariate
copula densities, applied to original data and to their conditional and unconditional
distribution functions. For high-dimensional distributions, there are a significant
number of pair-copula constructions. To organise them, Bedford and Cooke (2001,
2002) introduced a graphical model known as the regular vine (R-vine). The class
of regular vines is still very general; it includes a large number of pair-copula de-
compositions. Until now, the focus has been on two special cases of regular vines;
the canonical vine (C-vine) and the drawable vine (D-vine). Vine copulas have been
used recently in various financial applications such as risk management, asset pricing
and portfolio decision problems.5

In Chapter 2, we define copulas and provide some of their basic properties. We
also present the notion of tail dependence and introduce various dependence coef-
ficients focusing on Kendall’s τ correlation coefficient, which is the most popular
of the “scale-invariant” measures of dependence. In addition, we introduce various
copula families, which are common in the multivariate modelling of financial data,
and present their dependence and tail dependence properties. The pair-copula con-
structions and vines are also presented in this Chapter. In particular, we present in
detail the pair-copula construction principle (PCC) and focus on the canonical vine
(C-vine) decomposition. Practical issues related to canonical vines such as infer-
ence, simulation and model selection are also discussed in this Chapter. In addition,

5For the various applications of vine copulas in finance see for example, Chollete et al. 2009;
Heinen and Valdesogo 2008; Min and Czado 2010; Brechmann et al. 2012; Czado et al. 2012;
Brechmann and Czado 2013, among others.

3



Chapter 1 : Introduction

we present various graphical and analytical goodness-of-fit methodologies for copula
selection.

1.3 Outline of the thesis

As explained, the aim of this PhD thesis is to develop modelling techniques that
take into account the complex dependence dynamics of financial data and propose
procedures that focus on different markets and financial applications. Therefore,
each of Chapters 3, 4 and 5 in this PhD thesis can be seen as a standalone research
paper that deals with a particular topic in financial modelling and attempts to shed
light on distinct research questions employing alternative methodologies and data.
More specifically, Chapter 3 deals with portfolio risk modelling and introduces an
approach that combines extreme value theory (EVT) methods and the pair-copula
construction (PCC) principle for portfolio risk management. In addition, Chapter 4
centres on systemic risk and presents a new methodology, based on copula functions,
for systemic risk measurement, while Chapter 5 presents a modelling approach for
jointly modelling the evolution of sovereign yield curves and their dependence struc-
ture as a function of market-wide and country-specific liquidity and credit quality
measures. A more detailed overview of each particular Chapter is provided below.

In Chapter 3, we propose modelling the conditional distribution of financial portfo-
lios using a strategy that combines extreme value theory (EVT) and pair-copula con-
struction methods and forecasting portfolios’ Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR, also known as Expected Shortfall) by focusing on extreme
quantiles. In particular, we propose a combination of semi-parametric modelling
for the marginal series, to address the complex dynamics of individual return series,
and a vine copula approach, to address all mutual dependences among portfolio con-
stituents. In this respect, the proposed methodology acknowledges the individual
characteristics of the marginal series on the one hand and the varying dependence
structure of the portfolio components on the other hand, while focusing on the mod-
elling of joint extremes, which is, in practice, the main focus of all risk management
applications.

The modelling strategy involves the inference functions for margins (IFM) method
(see Joe and Hu 1996; Joe 1997, for more details) which is used for fitting the mul-
tivariate models. Within this framework, we model the temporal dependence and
dynamic volatility of the marginal series using GARCH-type models and use extreme
value theory (EVT) methods to estimate the tails of the innovations’ conditional dis-
tribution. We employ both sequential estimation (SE) (see Czado et al. 2012, for
more details) and full maximum likelihood estimation (MLE) to fit the canonical
vine models. The selection of each pair-copula in the canonical vine specification
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is based on Akaike’s information criterion (AIC). Motivated by the theoretical and
empirical findings of Joe et al. (2010) and Nikoloulopoulos et al. (2012) respectively,
we also propose an asymmetric canonical vine model specification by replacing the
bivariate symmetric Student-t copula models selected by the AIC criterion in the
first level of the vine specification with copula families that allow asymmetric tail
dependence, in an attempt to address the asymmetries found in multivariate data
and further improve the model’s fit and forecasting performance.

We apply our methodology focusing on portfolios of energy products because the
distribution of returns is characterised by high volatility and extreme price spikes,
and thus portfolio risk modelling is a challenging task by its nature. The univariate
distribution of the marginal series under study appears highly volatile, being lep-
tokurtotic with fat tails and non-symmetric. Therefore, the assumption of normality
cannot be supported for any of the series under study. In addition, the joint distribu-
tion of energy return series cannot be sufficiently described by a multivariate normal
distribution due to the varying tail dependence between portfolio constituents and
the presence of asymmetries in the tails of the joint distribution. We illustrate the
superior performance of our proposed methodology in the extreme quantiles over
naive benchmark risk models and elliptical vine copula models by performing an
out-of-sample Value-at-Risk forecasting evaluation. We also compare the Value-at-
Risk and Conditional Value-at-Risk estimates on the basis of several loss functions.

In Chapter 4, we propose a new methodology to estimate the Conditional Value-
at-Risk (CoVaR), the Value-at-Risk (V aR) of the financial system conditional on
an institution being under financial distress. The Conditional Value-at-Risk (Co-
VaR) attempts to capture the risk spillovers among financial institutions and has
recently attracted great attention from the regulatory and academic community.6

The CoVaR, originally proposed by Adrian and Brunnermeier (2011), depends on
the conditional distribution of the returns representing the entire financial system
given that a financial institution is exactly at its Value-at-Risk (VaR) level. Re-
cently, Girardi and Ergün (2013) modified the original CoVaR definition to take
into account more severe distress events for financial institutions and to overcome
some of the shortcomings of the original definition.

In this study, we derive simple, analytical expressions for both CoVaR definitions,
based on copula distributions, for a broad range of copula families. Given the
distinctive characteristics of copula distributions that enable the separation of de-

6Prominent research papers in the field also include Acharya et al. 2012; Brownlees and Engle
2012; Billio et al. 2012; Engle et al. 2014, among others. For an overview of the main quantitative
systemic risk models which have been proposed over the past years see Bisias et al. (2012).
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pendence from marginal distributions, our Copula CoVaR methodology provides
greater flexibility in the computation of systemic risk, while focusing on the extreme
co-movements of financial system returns and financial institution returns. We also
propose a dynamic version of the Copula CoVaR model to take into account the
time-varying dependence between the financial system returns and financial insti-
tution returns. Moreover, we extend this methodology and derive expressions that
enable the estimation of alternative “co-risk” systemic risk measures such as the
Conditional Expected Shortfall (CoES). We also provide numerical examples to il-
lustrate that systemic risk estimates derived from the Copula CoVaR framework
exhibit the main dependence consistency properties reported in Mainik and Schaan-
ning (2014), and to show that our methodology can easily facilitate stress testing
exercises.

We apply the Copula CoVaR methodology to measure systemic risk in the Euro-
pean banking system focusing on a portfolio of large European banks. We compute
systemic risk estimates employing alternative marginal assumptions to assess the
impact of asymmetries in the marginal series on systemic risk measurement. In
addition, we compute both CoVaR and CoES measures to assess the impact of al-
ternative systemic risk models on systemic risk. We also employ a panel regression
methodology to investigate the main drivers of systemic risk in the European bank-
ing system. In particular, we assess the significance of important financial variables
in triggering systemic risk episodes conditional on periods of reduced and height-
ened market uncertainty and analyse their implications for systemic risk modelling.
Finally, we examine the significance of institution-specific characteristics such as in-
stitutions’ VaR, market-to-book, size, leverage, beta and equity volatility estimates
in systemic risk across different forecasting horizons.

In Chapter 5, we jointly model the dynamic evolution and the cross-country depen-
dence structure of European sovereign yield curves as a function of market-wide and
country-specific liquidity and credit quality measures. In principle, we deal with
three distinct forms of dependence and relate them to market-wide and country-
specific liquidity and credit quality measures: the inter-temporal, the term-structure
and the cross-country dependence of sovereign yields. There is ample evidence in
the finance literature that liquidity and credit concerns are important components
of yield spreads (see for example, Duffie et al., 2003; Longstaff et al., 2005; Ericsson
and Renault, 2006; Beber et al., 2009, among others). Nevertheless, so far, most
studies have explored the effects of liquidity and credit risks on yield levels or yield
spreads by concentrating on certain maturities or markets in isolation and neglecting
their intrinsic interdependence.
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In this study, we seek to understand the dynamic interdependence of European
sovereign yield curves and relate them to broader European and country-specific
measures of liquidity and credit quality. In other words, we seek to understand how
investors in the sovereign fixed income markets react in response to market-wide
and country-specific liquidity and credit shocks and to investigate whether their
behaviour varies over time, across different investment horizons and across assets
of different credit quality. In addition, we investigate the relative importance of
liquidity and credit concerns over periods of reduced and heightened economic un-
certainty. We also assess the impact of liquidity and credit risks on the European
sovereign yields and cross-country spreads and investigate whether market-wide and
country-specific shocks can generate significant spillover effects between the Euro-
pean economies.

To model jointly the multiple forms of dependence found in European sovereign
yields and relate them to market-wide and country-specific liquidity and credit qual-
ity measures, we follow a two-step modelling strategy. In the first step, we model
the dynamics of each individual sovereign yield curve under study using the macro-
finance Nelson-Siegel model of Diebold et al. (2006), while in the second step, we
model the cross-country dependence structure of sovereign yield curves using the co-
variance regression model of Hoff and Niu (2012). The macro-finance Nelson-Siegel
model of Diebold et al. (2006) is a dynamic latent factor model, where the shape
and form of the yield curve are governed by three latent factors. We model the
dynamics of the latent factors (i.e. level, slope and curvature) as autoregressive
processes augmented with observable macroeconomic and financial variables and
European proxies for liquidity and credit quality. The heteroskedasticity of the Eu-
ropean sovereign yield prediction errors is subsequently modelled as a function of
country-specific liquidity and credit quality proxies using the covariance regression
model of Hoff and Niu (2012). In this regard, we relate the dynamic evolution of
the covariance matrix of the prediction errors to country-specific liquidity and credit
quality components.

Finally, we provide a modelling framework that enables quantifying the impact of
country-specific liquidity and credit quality shocks directly on the yield curve for
each individual country. Given the full state-space model representation, the effects
of the shocks to any of the country-specific liquidity and credit quality variables
are transmitted via the estimated covariance regression model to the yield curve for
each individual country allowing the study of linkages and spillover effects among
European economies.
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1.4 Summary of findings and contribution to the liter-
ature

This PhD thesis contributes to multiple segments of the economics and finance liter-
ature and provides a number of significant findings useful for improving portfolio risk
management, systemic risk measurement and interest rate modelling. In particular,
Chapter 3 contributes to the broad risk management literature (see for example, Hull
and White 1998; Cherubini and Luciano 2001; Embrechts et al. 2002, 2003a; Poon
et al. 2004, among others) and the segment of the literature that proposes the use of
copulas and pair-copula construction methods as a risk management tool for mod-
elling portfolio risk (see for example, Kole et al. 2007; Brechmann et al. 2012; Czado
et al. 2012; Weiß and Scheffer 2012; Nikoloulopoulos et al. 2012; Brechmann and
Czado 2013; Weiß and Scheffer 2015, among others). We strongly believe that our
proposed methodology, which combines extreme value theory (EVT) and pair-copula
construction (PCC) methods, contributes to and provides an alternative perspective
on the study of multivariate extremes.

The main empirical results in Chapter 3 suggest that elliptical vine copula models
are adequate to model portfolio risk at higher quantiles but perform inadequately at
extreme quantiles. It is shown that a combination of extreme value theory methods
and the pair-copula construction principle can improve the Value-at-Risk forecast-
ing performance of the model at extreme quantiles. In addition, it is shown that for
inference involving the tails of the joint distribution, pair-copula selection should not
be entirely based on likelihood ratio criteria but should also rely on non-parametric
dependence measures. These results provide new insight into risk management ap-
plications within the vine copula modelling framework and also support the findings
of Joe et al. (2010) and Nikoloulopoulos et al. (2012). In particular, Joe et al.
(2010) show that vine copulas can have a different upper and lower tail dependence
for each bivariate margin when asymmetric bivariate copulas with upper/lower tail
dependence are used in the first level of the vine. In addition, Nikoloulopoulos et al.
(2012) show that vine copulas with bivariate Student-t linking copulas tend to be
preferred by likelihood-based selection methods because they provide a better fit in
the middle for the first level of the vine.

Motivated by the theoretical and empirical findings of Joe et al. (2010) and Nikoloulopou-
los et al. (2012), we also propose an asymmetric vine model where the Student-t cop-
ula families (selected by the AIC information criterion) in the first level of the vine
are replaced by copula families that allow for asymmetric tail dependence. More-
over, the Independence copula is employed for those pair-copulas that could not
reject the null hypothesis of independence. The asymmetric canonical vine copula
model shows superior performance over alternative modelling specifications accord-
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ing to the Value-at-Risk forecast evaluations and loss function results, implying that
portfolio losses can be satisfactorily forecasted and, at the same time, that the reg-
ulatory risk capital can be reduced even further, especially at extreme quantiles.

Furthermore, Chapter 4 contributes directly to the segment of the literature that em-
ploys the Conditional Value-at-Risk (CoVaR) methodology to address the existence
of systemic interrelations between financial institutions (see for example, Adrian and
Brunnermeier 2011; Girardi and Ergün 2013; Wong and Fong 2011; Gauthier et al.
2012; Lòpez-Espinosa et al. 2012, 2013, among others). It also contributes to the
broader literature that proposes measures of systemic risk alternative to CoVaR and
investigates the determinants that trigger systemic episodes (see for example, Sego-
viano and Goodhart (2009); Huang et al. (2009); Zhou (2010); Acharya et al. (2012);
Nicolò and Lucchetta (2011); Brownlees and Engle (2012); Engle et al. (2014); Billio
et al. (2012); Bisias et al. (2012), among others). In this respect, the contribution of
Chapter 4 to the existing literature is two-fold. On the one hand, we propose a new
methodology for estimating CoVaR, while extending it to a dynamic setting and to
measures of systemic risk alternative to CoVaR such as the Conditional Expected
Shortfall (CoES). On the other hand, we investigate the impact of distributional
assumptions on the modelling of systemic risk and assess the impact of important
financial variables as well as of institution-specific characteristics on the evolution
of systemic risk in the European banking sector.

The main empirical results in Chapter 4 suggest that systemic risk estimates can be
substantially affected by alternative distribution assumptions in the marginals and
the dependence structure but are robust across alternative systemic risk models.
Therefore, the ordering of systemically important financial institutions is sensitive
to alternative marginal specifications and dependence models. The statistical test
results support the use of asymmetric over symmetric marginal distribution assump-
tions for systemic risk modelling. The use of inappropriate marginal assumptions
may also cause biases in the selection of dependence models and thus provide erro-
neous systemic risk estimates. It is shown that the majority of the selected copula
models do not imply any tail dependence when Gaussian marginals are employed.
In contrast, the use of the asymmetric Skewed-t assumption in the marginal series,
favours the preference of dependence models for copulas that allow asymmetric tail
dependence. The results of non-parametric tail dependence estimators on return
series provide clear evidence of asymmetric tail dependence for the majority of the
pairs under study, indicating that systemic risk estimates can be significantly af-
fected by the presence of asymmetries both in the marginals and in the dependence
structure, if not addressed properly.

9



Chapter 1 : Introduction

The empirical results show that financial institutions such as BBVA, UBS, Deutsche
Bank, Credit Suisse and BNP Paribas are placed among the most systemic European
banks under both marginal specifications. The cross-country analysis results also
suggest that the French and Spanish banks are the most systemic of all European
financial institutions under study. In contrast, financial institutions from Eurozone
countries that have been significantly hit by the sovereign debt crisis such as Por-
tugal, Ireland or Greece, appear to be among the least systemic European banks.
We attribute these findings to the fact that the financial institutions from these
particular countries are typical commercial banks with strong presence in the local
market but limited international activity and cross-country exposure. Therefore, the
degree of dependence and more importantly the degree of tail dependence implied
between the financial system and institution returns is relatively weak generating,
on average, lower systemic risk estimates.

Furthermore, the regression results in Chapter 4 highlight the importance of the im-
plied market volatility, liquidity spread, credit risk and short-term funding variables
in explaining systemic risk. The large impact of the liquidity spread on systemic risk
demonstrates the significant role of liquidity risk in the evolution of the European
financial crisis. The conditional regression analysis results also reveal an asymmetric
response of financial variables between periods of reduced and heightened economic
uncertainty. The asymmetric behaviour of financial variables is partly attributed
to the coordinated intervention of central banks to avert the liquidity crunch in the
interbank markets and restore financial stability. The majority of these variables are
also important in explaining the time-varying correlation and the financial system’s
volatility estimates, while displaying the same asymmetric response between calm
and crisis periods. The regression analysis results also suggest that the effects of the
liquidity risk on systemic risk, at the outset of the financial crisis, were transmitted
though the financial system’s volatility channel and not though the correlation’s
channel. Finally, leverage and size appear to be the most robust institution-specific
determinants of systemic risk implying that larger and highly leveraged banks con-
tribute more to systemic risk.

Finally, Chapter 5 contributes to the segments of the econometrics and finance litera-
ture that deal with the modelling of the term structure of interest rates. Specifically,
Chapter 5 relates to the research stream that employs the Nelson-Siegel modelling
approach of Diebold and Li (2006) and Diebold et al. (2006) to model the dynamic
feature of yield curves (see for example, Yu and Zivot 2011; Yu and Salyards 2009;
Bianchi et al. 2009; Koopman et al. 2010; Diebold et al. 2008; Christensen et al.
2011, among others) and to the literature that associates macroeconomic variables
with the yield curve (see for example, Kozicki and Tinsley 2001; Ang and Piazzesi
2003; Hördahl et al. 2006; Ang et al. 2006; Dewachter and Lyrio 2006; Balfoussia
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and Wickens 2007; Rudebusch and Wu 2008, among others). In addition, Chap-
ter 5 provides new insight into the literature that investigates the determinants of
sovereign yields and, more specifically, the extent to which credit and liquidity risks
determine the yields in the bond markets (see for example, Longstaff 2004; Duffie
et al. 2003; Longstaff et al. 2005; Goldreich et al. 2005; Chordia et al. 2005; Liu
et al. 2006; Ericsson and Renault 2006; Chen et al. 2007; Covitz and Downing 2007;
Beber et al. 2009; Goyenko et al. 2011; Monfort and Renne 2014, among others).
Therefore, Chapter 5 contributes to the existing literature by introducing a method-
ology that jointly models the dynamic interaction between sovereign yield curves
and relates it to broader and country-specific measures of liquidity and credit qual-
ity. The proposed methodology is also capable of quantifying the effects of liquidity
and credit shocks on the yield curve for each individual country providing a useful
tool for studying significant spillover and contagion effects.

The main empirical results, in the first stage of the analysis in Chapter 5, sug-
gest that markets separate Eurozone countries into two distinct groups according
to their overall credit risk profiles: peripheral (Spain and Italy) and core (Germany
and France) Eurozone countries. The results also suggest that markets distinguish
between Eurozone countries and non-Eurozone countries such as the United King-
dom (UK). In addition, the results highlight Germany’s significant role in explaining
the variation of the estimated latent factors in the Nelson-Siegel specification. The
market-wide liquidity and credit quality proxies also appear highly significant in the
latent factor specification for Germany, while the significance of these variables is
less pronounced for the remaining countries under study. Furthermore, the sensi-
tivity analysis results show that the German yields have a negative relation to both
market-wide liquidity and credit quality measures possibly implying that investors
view German bonds as a safe haven in periods of increased illiquidity and credit
uncertainty in the European fixed income markets.

The covariance regression results, in the second stage of the analysis in Chapter 5,
also underscore also the significance of liquidity and credit quality measures in ex-
plaining the heteroscedasticity of European sovereign yields both unconditionally
and conditional on periods of heightened market volatility. In particular, the un-
conditional analysis results show that the German bid-ask spreads are the most
significant country-specific liquidity explanatory variables, whereas the Italian and
Spanish CDS spreads appear to be the most significant country-specific credit quality
explanatory variables. The time-series average correlation estimates implied by the
estimated covariance regression models are positive for most of the country-pairs
under study highlighting the positive dependence among the European sovereign
yields.
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The conditional analysis results, on the other hand, show that country-specific liq-
uidity and credit quality variables are equally significant in the calm period. Never-
theless, the significance of credit quality measures is considerably more pronounced
than that of liquidity proxies in the stress period possibly indicating that investors
are more concerned with the credit quality than the liquidity of sovereign debt instru-
ments in times when equity markets are perceived to be more volatile. Additionally,
the liquidity and credit quality measures of the peripheral Eurozone countries ap-
pear highly significant in the stress period highlighting investors’ concerns about
their future debt sustainability. The time-series average correlation estimates im-
plied by the estimated covariance models also reveal a change in the dependence
structure of European sovereign yields between calm and crisis periods.

In addition, the sensitivity analysis results show that shocks to country-specific liq-
uidity and credit quality variables have a great impact on cross-country spreads.
Nevertheless, the impact of the shocks differs across shock types and investment
horizons. In general, shocks in the Spanish liquidity and credit variables tend to
have, on average, the greatest impact on cross-country spreads. It can also be noted
that the effects of the shocks in the short-term liquidity and credit quality mea-
sures not only have a significant impact on the corresponding short-term yields, but
are also transmitted along the yield curve for each individual country. In contrast,
the impact of the shocks in the medium and long-term measures is limited only
to the yields of the corresponding maturities. Finally, it is shown that the Euro-
pean sovereign yields appear more sensitive to shocks in liquidity and credit quality
variables over periods of increased equity market volatility.

1.5 Conclusions

To sum up, this PhD thesis deals with the modelling of the multiple forms of depen-
dence structure found in financial variables and develops alternative methodologies
to tackle important issues in risk management, systemic risk and interest rate mod-
elling. The methodologies followed to address the dependence modelling challenges
of financial time-series in Chapter 3 and Chapter 4 are primarily based on copula
theory. For this reason, the basic properties of copula theory and some important
extensions of it for the purposes of high-dimensional modelling are presented in
Chapter 2. In addition, Chapter 3 introduces a methodology that combines extreme
value theory and vine copula methods for portfolio risk modelling, whereas Chapter 4
relates to systemic risk modelling and uses copula distribution functions. Finally,
Chapter 5 relates to the joint modelling of sovereign yield curves as a function of
liquidity and credit quality variables. The results derived from these Chapters re-
confirm that the modelling of the multivariate dependence of financial variables is a
non-trivial task. It is, therefore, critical to take into account the stylised features of
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financial data when modelling their corresponding multivariate distributions because
incorrect assumptions or the omission of certain dependence properties may lead to
incorrect inference and erroneous results for a broad range of financial applications.
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Chapter 2

Background material: Copula the-
ory

2.1 Introduction

In this Chapter we introduce some of the main concepts of copulas and outline
some recent developments in the copula theory. Therefore, the present Chapter
provides the necessary background material for the study of multivariate depen-
dence in the context of copula modelling and facilitates the understanding of the
research ideas presented in Chapters 3 and 4 of the present thesis. In particular,
Section 2.2 introduces copulas and presents the theorem of Sklar (1959), which pro-
vides the theoretical foundation for the application of copulas. Section 2.3 presents
a number of bivariate copula families as well as their association with the common
dependence measures Kendall’s τ and tail dependence. In addition, Section 2.4 in-
troduces the pair-copula construction (PPC) principle whereas Section 2.5 focuses
on the canonical vine (C-vine) model, which suggests a unique way of decomposing
the joint distribution into a cascade of bivariate copulas using a star tree methodol-
ogy. Section 2.6 deals with the estimation of the C-vine model focusing particularly
on the maximum likelihood estimation methodology and the sequential estimation
methodology. Moreover, Section 2.7 describes an overall selection procedure for
the C-vine model whereas Section 2.8 introduces rules that uniquely decompose the
C-vine model. Finally, Section 2.9 focuses on the selection of an appropriate C-
vine model; Section 2.10 focuses on the selection of appropriate copula models and
presents both analytical and graphical tools that facilitate the selection procedure;
and Section 2.11 concludes.

2.2 Copulas

A copula is a multivariate distribution function C(u1 . . . ud) defined on the unit cube
[0, 1]d with uniformly distributed marginals. It provides a way of isolating the depen-
dence structure between d random variables while allowing for arbitrary marginal
distributions. The copula concept was initially developed by Sklar (1959). The fa-
mous theorem of Sklar (1959) gives the mapping between the individual distribution
functions to the joint distribution. In general, a copula function can be extended for
an arbitrary dimension d, but since our mission is to develop multivariate copulas
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using only bivariate copulas as building blocks, we will only focus on the bivariate
case d = 2. The mathematical definitions of this Section are taken from the book
of Nelsen (2007) and the papers of Genest (2007), Brechmann (2010), Czado (2010)
and Belgorodski (2010).

Definition 2.2.1 (two-dimensional copula) A two-dimensional copula is a func-
tion C : [0, 1]2 → [0, 1] with the following properties:

(i) C(0, u) = C(u, 0) = 0 for all u ∈ [0, 1] .

(ii) C(u, 1) = u and C(1, u) = u for all u ∈ [0, 1] .

(iii) C(v1, v2)−C(v1, u1)−C(u1, v2)+C(u1, u2) ≥ 0 for all (u1, u2), (v1, v2) ∈ [0, 1]×
[0, 1] with u1 ≤ v1 and u2 ≤ v2 .

Theorem 2.2.1 (Sklar (1959)) Let F : R2 → [0, 1] with R = R ∪ {−∞,+∞} be
a bivariate distribution with one-dimensional marginals F1, F2 : R → [0, 1]. Then
there exists a two-dimensional copula C, such that for all (x1, x2) ∈ R2

F(x1 , x2 ) = C
(
F1 (x1 ),F2 (x2 )

)
(2.1)

holds, and vice versa

C (u1 , u2 ) = F
(
F−1

1 (u1 ),F−1
2 (u2 )

)
, (2.2)

where u1 and u2 ∈ [0, 1] and F−1
1 (u1) and F−1

2 (u2) are the inverse distribution func-
tions of the marginals.

Definition 2.2.2 (Copula density) Let C be a twice partially differentiable cop-
ula. Then the function c : [0, 1]× [0, 1]→ [0, 1] with

c(u, v) = ∂2 C (u, v)
∂u∂v (2.3)

is called the density of the copula.

Let fX(x) and fY (y) be marginal densities with joint density of fXY (x, y). It can be
shown that the joint density can be decomposed as a product of marginal densities
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and copula density as follows

fXY (X, Y ) = ∂2FXY (X, Y )
∂x∂y

= ∂2C(FX(x), FY (y))
∂x∂y

= ∂2C(FX(x), FY (y))
∂FX(x)∂FY (y) · ∂FX(x)

∂x
· ∂FY (y)

∂y
(2.4)

= ∂2C(u, v)
∂u∂v

fX(x)fY (y)

= c(u, v)fX(x)fY (y) .

Moreover, it can be shown that the copula density can be expressed in terms of
marginals and joint density as

c(u, v) =
fXY

(
F−1
X (u), F−1

Y (v)
)

fX
(
F−1
X (u)

)
fY
(
F−1
Y (v)

) (2.5)

Embrechts et al. (2003b) showed a very important property of copula, namely that
it is invariant under any increasing continuous transformation of the margins.

2.3 Copula and dependence measures

Copulas provide a natural way to study and measure the dependence among random
variables. There are a variety of ways to measure dependence. Many of these mea-
sures are “scale-invariant”, that is, they remain unchanged under strictly increasing
transformations. The most popular scale-invariant measures of dependence are the
population versions of Spearman’s ρ, Kendall’s τ and Blomqvist’s β. These measures
are useful to determine the dependence structure of random variables, on the one
hand, and estimate copula parameters from the empirical data, on the other. The
most important of these measures for our study is Kendall’s τ . It is not based on
any particular distribution assumptions, it is easy to calculate and it helps estimate
non-linear dependencies.

Definition 2.3.1 (Kendall’s τ ) Let (X1, Y1) and (X2, Y2) be independent and iden-
tically distributed random vectors with joint distribution FXY and marginal distri-
butions FX and FY . Then the population version of Kendall’s τ is defined as the
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probability of concordance minus the probability of discordance

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]

= E[sgn(X1 −X2)sgn(Y1 − Y2)] (2.6)

= P (X1 < X2, Y1 > Y2)− P (X1 > X2, Y1 < Y2),

where sgn is the sign function.

Proposition 2.3.1 Let FXY be a joint distribution function of a bivariate contin-
uous random variable (X, Y ) with marginal distributions FX and FY respectively.
Further, let C be a copula distribution function that is C(FX(x), FY (y)) = FXY (x, y).
The Kendall’s τ dependence measure, can be linked to the copula C as

τ(X, Y ) = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1. (2.7)

Tail dependence is another very useful copula-based measure of extreme co-movements.
It is a very important property for applications concerned with the study of the de-
pendence of extreme values. Many empirical studies in finance (e.g. Longin and
Solnik (1995, 2001), Ang and Chen (2002), Hong et al. (2007) among others) have
indicated the presence of asymmetries in financial data, meaning that lower tail
dependence can be stronger than upper tail dependence or vice versa. Therefore,
standard symmetric multivariate distributions are inappropriate for addressing this
feature.

Moreover, tail dependence is one of the properties that help distinguish between the
different copula families. There are copula families that do not allow for tail depen-
dence, such as the Gaussian or the Frank copula, and copula families that only allow
for either lower (such as the Archimedean Clayton copula) or upper tail dependence
(such as the Archimedean Gumbel copula). There are also “reflection symmetric”
copulas, such as the Student-t copula, which imply same upper and lower tail depen-
dence for any bivariate margin, and “reflection asymmetric” copulas, which allow
for flexible upper and lower tail dependence, such as the two-parametric bivariate
copula families of Joe (1997), known as BB1 and BB7 copulas.

Definition 2.3.2 (Upper tail dependence) Let X and Y be continuous random
variables with marginal distribution functions FX and FY , respectively. The coeffi-
cient of upper tail dependence λU is

λU = lim
u↗1

P (Y > F−1
Y (u)|X > F−1

X (u)) (2.8)
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provided that the limit λU ∈ [0, 1] exists. If λU ∈ [0, 1], we say that X and Y are
asymptotically dependent in the upper tail ; if λU = 0, we say that X and Y are
asymptotically independent in the upper tail.

Definition 2.3.3 (Lower tail dependence) Let X and Y be continuous random
variables with marginal distribution functions FX and FY , respectively. The coeffi-
cient of lower tail dependence λL is

λL = lim
u↘0

P (Y ≤ F−1
Y (u)|X ≤ F−1

X (u)) (2.9)

provided that the limit λL ∈ [0, 1] exists. If λL ∈ [0, 1], we say that X and Y are
asymptotically dependent in the lower tail ; if λL = 0, we say that X and Y are
asymptotically independent in the lower tail.

Definition 2.3.4 (Upper tail dependence for copulas) If a bivariate copula C
is such that

λU = lim
u↗1

1 − 2u + C (u, u)
1 − u (2.10)

exists, then C has upper tail dependence if λU ∈ (0, 1], and upper tail independence
if λL = 0.

Definition 2.3.5 (Lower tail dependence for copulas) If a bivariate copula C
is such that

λU = lim
u↘0

C (u, u)
u (2.11)

exists, then C has lower tail dependence if λL ∈ (0, 1], and lower tail independence
if λL = 0.

Table 2.3.1 and 2.3.2 summarise the most common copula families, their correspond-
ing Kendall’s τ and the degree of tail dependence for each of them. Figures 2.3.1
and 2.3.2 show the probability (pdf) and cumulative (cdf) density functions of a
bivariate Normal, Student-t, Clayton, Gumbel, BB1 and BB7 copula with approx-
imately same level of dependence (ρ = 0.70) while Figures 2.3.3 and 2.3.4 present
the scatter plot and the empirical and theoretical contour plots for the same level
of dependence and bivariate copula families.
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Table 2.3.1: Theoretical properties of bivariate elliptical copula families

Elliptical distribution Parameter range Kendall’s τ Tail dependence

Gaussian ρ ∈ (−1, 1) 2
πarcsin(ρ) 0

Student-t ρ ∈ (−1, 1), ν > 2 2
πarcsin(ρ) 2 tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
This table reports parameter range, theoretical Kendall’s τ values and tail dependence coefficients of elliptical
copula families. Source: Brechmann and Schepsmeier (2013).

Table 2.3.2: Theoretical properties of bivariate Archimedean copula families

Name Parameter range Kendall’s τ Tail dependence (lower,
upper)

Clayton θ > 0 θ
θ+2 (2−1/θ, 0)

Gumbel θ ≥ 1 1− 1
θ (0, 2− 21/θ)

Franka θ ∈ R\{0} 1− 4
θ + 4D1(θ)

θ (0, 0)

Joe θ > 1 1 + 4
θ2

∫ 1
0 tlog(t)(1− t) 2(1−θ)

θ dt (0, 2− 21/θ)

BB1 θ > 0, δ ≥ 0 1− 2
δ(θ+2) (2−1/(θδ), 2− 21/δ)

BB6 θ ≥ 1, δ ≥ 1 1 + 4
∫ 1

0
(
− log

(
− (1− t)θ + 1

)
×

(1−t−(1−t)−θ+t(1−t)−θ)
δθ

)
dt

(0, 2− 21/θδ)

BB7b θ ≥ 1, δ > 0 1− 2
δ(2−θ) + 4

θ2δB( 2−θ
θ , δ + 2) (2−1/δ, 2− 21/θ)

BB8 θ ≥ 1, 0 < δ ≤ 1 1 + 4
∫ 1

0
(
− log

( (1−tδ)θ−1
(1−δ)θ−1

)
×

1−tδ−(1−tδ)−θ+tδ(1−tδ)−θ

θδ

)
dt

(0, 0c)

This table reports parameter range, theoretical Kendall’s τ values and tail dependence coefficients of bivariate
Archimedean copula families. Source: Brechmann and Schepsmeier (2013).

a D1(θ) =
∫ θ

0
c/θ

exp(x)−1dx (Debey function)
b B(x, y) =

∫ 1
0 t

x+1(t− 1)y−1dt (Beta function)
c Except for δ = 1, then the upper tail dependence coefficient is 2− 21/θ
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(a) CDF and PDF of a bivariate Normal copula with dependence parameter τ = 0.7, ρ = 0.8910065
and λL = λU = 0.
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(b) CDF and PDF of a bivariate Student-t copula with dependence parameter τ = 0.7, 3 degrees
of freedom and λL = λU = 0.4480999.
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(c) CDF and PDF of a bivariate Clayton copula with dependence parameter τ = 0.7, θ̂ = 4.666667,
λL = 0.8619728 and λU = 0.

Figure 2.3.1: CDF and PDF of bivariate Normal, Student-t and Clayton copulas with approximately same
level of dependence (ρ = 0.70).
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(a) CDF and PDF of a bivariate Gumbel copula with dependence parameter τ = 0.7, θ̂ = 3.333333,
λL = 0 and λU = 0.7688556.

0.2 0.4 0.6 0.80.2
0.4

0.6
0.8

5

10

15

20

25

BB1 copula PDF

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

BB1 copula CDF

(b) CDF and PDF of a bivariate BB1 copula with dependence parameter τ̂ = 0.7007108, θ = 0.43,
δ = 2.75, λL = 0.5564539 and λU = 0.7133351.
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(c) CDF and PDF of a bivariate BB7 copula with dependence parameter τ̂ = 0.7001527, θ = 4.8,
δ = 0.82, λL = 0.4294279 and λU = 0.8446473.

Figure 2.3.2: CDF and PDF of bivariate Gumbel, BB1 and BB7 copulas with approximately same level
of dependence (ρ = 0.70).

21



Chapter 2 : Background material: Copula theory

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

(a) Scatter plot, theoretical and empirical contour plots of a Normal copula with dependence pa-
rameter τ = 0.7, ρ = 0.8910065 and λL = λU = 0.
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(b) Scatter plot, theoretical and empirical contour plots of a Student-t copula with dependence
parameter τ = 0.7, 3 degrees of freedom and λL = λU = 0.4480999.
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(c) Scatter plot, theoretical and empirical contour plots of a Clayton copula with dependence
parameter τ = 0.7, θ̂ = 4.666667, λL = 0.8619728 and λU = 0.

Figure 2.3.3: Scatter plots, theoretical and empirical contour plots of bivariate Normal, Student-t and
Clayton copulas with approximately same level of dependence (ρ = 0.70).
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Chapter 2 : Background material: Copula theory
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(a) Scatter plot, theoretical and empirical contour plots of a Gumbel copula with dependence
parameter τ = 0.7, θ̂ = 3.333333, λL = 0 and λU = 0.7688556.
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(b) Scatter plot, theoretical and empirical contour plots of a BB1 copula with dependence parameter
τ̂ = 0.7007108, θ = 0.43, δ = 2.75, λL = 0.5564539 and λU = 0.7133351.
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(c) Scatter plot, theoretical and empirical contour plots of a BB7 copula with dependence parameter
τ̂ = 0.7001527, θ = 4.8, δ = 0.82, λL = 0.4294279 and λU = 0.8446473.

Figure 2.3.4: Scatter plot, theoretical and empirical contour plots of bivariate Gumbel, BB1 and BB7
copulas with approximately same level of dependence (ρ = 0.70).
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Chapter 2 : Background material: Copula theory

2.4 Pair-copula construction

Pairwise copula construction constitutes a very useful way of building flexible multi-
variate distributions. Joe (1996) was the first to introduce the pairwise construction
principle based on the theorem of Sklar (1959) and using cumulative distribution
functions (cdf). Bedford and Cooke (2001, 2002) realised that there any many differ-
ent combinations for pair-copula construction and proposed a graphical way based
on sequentially designing trees in an attempt to organise them. They called these
distributions regular vines.

The modelling principle is based on a decomposition of a multivariate density into
a cascade of bivariate copulas, which is applied to original variables and to their
conditional and unconditional distributions. Aas et al. (2009) were the first to re-
alise that this construction principle can be extended by allowing arbitrary pair-
copula families as building blocks, since there are no restrictions on the choice of
the bivariate copulas. Therefore, a multivariate distribution that is decomposed
by using the pair-copula principle that allows different copula families as building
blocks is called mixed vine, and it represents a very flexible way to construct higher-
dimensional copulas and addresses the complexity of the dependence structure of
original variables. Moreover, Aas et al. (2009) proposed algorithms for standard
maximum likelihood estimation based on recursive conditioning and simulation from
a pair-copula decomposed model.

In general, vine copulas are vine distributions with uniformly distributed marginals.
Regular vines include two main types of vines, C-vines and D-vines. Their main dif-
ference lies in the way they organise a multivariate density decomposition. C-vines
utilise a star tree methodology to decompose a multivariate density whereas D-vines
employ a line tree methodology.

Let X = (X1, . . . , Xd)t be a vector of random variables with a joint density f(x1, . . . , xd),
marginal densities f(x1), . . . , f(xd) and marginal distributions F1(x1), . . . , Fd(xd).
This density can be decomposed as

f(x1, . . . , xd) = fd(xd) · f(xd−1|xd) · f(xd−2|xd−1, xd) · · · f(x1|x2, . . . , xd), (2.12)

and this factorisation is unique up to a re-labelling of the variables. Aas et al. (2009)
note that every joint distribution function implicitly contains not only a description
of the behaviour of the marginal distribution of each individual variable but also
a description of their dependence structure. Therefore, copulas provide a way of
isolating the description of their dependence structure.
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It can be shown that the joint distribution function f(x1, . . . , xd), for an absolutely
continuous multivariate distribution F with strictly increasing, continuous marginal
densities can be factorised as

f(x1, . . . , xd) = c1...d
(
F1(x1), . . . , Fd(xd)

)
· f1(x1) · · · fd(xd) (2.13)

where c1...d is a uniquely identified d-variate copula density. In Section 2.2 we show
that a bivariate joint distribution can be factorised as a product of a copula and of
marginal densities as follows

f(x1, x2) = c12(F (x1), F (x2))f1(x1)f2(x2). (2.14)

Moreover, the conditional density f(x1|x2) can be expressed in terms of a copula as

f(x1|x2) = f(x1, x2)
f2(x2) = c12(F (x1), F (x2))f1(x1)f2(x2)

f2(x2) (2.15)

= c12(F (x1), F (x2))f1(x1).

A three-dimensional conditional density can be expressed in terms of copulas in two
different ways

f(x1|x2, x3) = f(x1, x2, x3)
f(x2, x3) = f(x1, x2|x3)

f(x2|x3)

= c12|3(F (x1|x3), F (x2|x3))f(x1|x3)f(x2|x3)
f(x2|x3) (2.16)

= c12|3(F (x1|x3), F (x2|x3))f(x1|x3)

= c12|3(F (x1|x3), F (x2|x3))c13(F1(x1), F3(x3))f1(x1),

or

f(x1|x2, x3) = f(x1, x2, x3)
f(x2, x3) = f(x1, x3|x2)

f(x3|x2)

= c13|2(F (x1|x2), F (x3|x2))f(x1|x2)f(x3|x2)
f(x3|x2) (2.17)

= c13|2(F (x1|x2), F (x3|x2))f(x1|x2)

= c13|2(F (x1|x2), F (x3|x2))c12(F1(x1), F2(x2))f1(x1).
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In the d-dimensional case the following general formula can be applied to the con-
ditional density

f(x|ν) = cx,νj |ν−j (F (x|ν−j), F (νj|ν−j)) · f(x|ν−j), (2.18)

where ν is a d-dimensional vector, νj is an arbitrary chosen component of ν and
ν−j represents the ν vector, excluding this component.

In general, under appropriate regularity conditions, a joint density can be decom-
posed as a product of bivariate copulas, acting on several different conditional prob-
ability distributions. For example, one possible pair-copula decomposition for d = 3
is

f(x1, x2, x3) = f3(x3) · f(x2|x3) · f(x1|x2, x3)

= f3(x3) · f2(x2) · c23(F2(x2), F3(x3))︸ ︷︷ ︸
f(x2|x3)

· (2.19)

c12|3(F (x1|x3), F (x2|x3)) · c12(F1(x1), F2(x2)) · f1(x1)︸ ︷︷ ︸
f(x1|x2,x3)

,

and another possible pair-copula decomposition for d = 3 can be obtained as follows

f(x1, x2, x3) = f1(x1) · f(x2|x1) · f(x3|x2, x1)

= f1(x1) · f2(x2) · c12(F1(x1), F2(x2))︸ ︷︷ ︸
f(x2|x1)

· (2.20)

c23|1(F (x2|x1), F (x3|x1)) · c13(F1(x1), F3(x3)) · f3(x3)︸ ︷︷ ︸
f(x3|x1,x2)

.

It is also clear that given a specific decomposition, there are still many different re-
parame -
terizations. Thus we need to introduce rules that will enable us to decompose a joint
density into a cascade of pair-copulas. However, before introducing these rules, we
need to introduce another concept related to pair-copula construction. The pair-
copula construction involves marginal conditional distributions of the form F (x|ν)
and we need a way to evaluate such marginal conditional distribution functions.

Joe (1996) showed that for every uj in the vector ν, F (x|ν) can be written as

F (x|ν) =
∂Cx,νj |ν−j (F (x|ν−j), F (νj|ν−j))

∂F (νj|ν−j)
, (2.21)

where Cx,νj |ν−j is an arbitrary copula distribution function. Following the notation
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of Aas et al. (2009) we will use the function h(x, ν;θ) to represent the conditional dis-
tribution function when x and ν are uniforms. In this case f(x) = f(ν) = 1, F (x) = x

and F (ν) = ν. Moreover, we assume a parametric specification for Cx,νj |ν−j with a
parameter vector θ.

For x, v ∼ U [0, 1] it holds

hθ = ∂Cθ(Fx(x), Fv(v))
∂Fv(v) = ∂Cθ(x,v)

∂v
. (2.22)

For the special case where x = x1 and ν = x2, it follows

F (x1|x2) = ∂Cx1,x2(x1, x2;θ1,2)
∂F (x2) . (2.23)

To illustrate the usefulness of h-functions we derive the conditional distribution of
F (x1|x2, x3, x4), where x1, x2, x3, x4 ∼ U [0, 1]. One way to obtain the F (x1|x2, x3, x4)
is the following one

F (x1|x2, x3, x4) =
∂C1,2|3,4

(
F (x1|x3, x4;θ1,3|4), F (x2|x3, x4;θ2,3|4)

)
∂F (x2|x3, x4;θ2,3|4) , (2.24)

or
F (x1|x2, x3, x4) = hθ1,2|3,4

(
F (x1|x3, x4), (F (x2|x3, x4)

)
. (2.25)

Further, it is clear that we need to evaluate the conditional distributions F (x1|x3, x4)
and F (x2|x3, x4) before estimating the final F (x1|x2, x3, x4). Following the same
approach, one possible way to obtain these conditional distributions is

F (x1|x3, x4) =
∂C1,3|4

(
F (x1|x4;θ1,4), F (x3|x4;θ3,4)

)
∂F (x3|x4;θ3,4) , (2.26)

or
F (x1|x3, x4) = hθ1,3|4

(
F (x1|x4), (F (x3|x4)

)
, (2.27)

F (x2|x3, x4) =
∂C2,3|4

(
F (x2|x4;θ2,4), F (x3|x4;θ3,4)

)
∂F (x3|x4;θ3,4) , (2.28)

or
F (x2|x3, x4) = hθ2,3|4

(
F (x2|x4), (F (x3|x4)

)
. (2.29)

Finally, the univariate conditional distributions F (x1|x4), (F (x2|x4) and F (x3|x4)
can be evaluated in the same way

F (x1|x4) = ∂C1,4(F (x1), F (x4))
∂F (x4) , (2.30)
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or
F (x1|x4) = hθ1,4(F (x1), F (x4)), (2.31)

F (x2|x4) = ∂C2,4(F (x2), F (x4))
∂F (x4) , (2.32)

or
F (x2|x4) = hθ2,4(F (x2), F (x4)), (2.33)

F (x3|x4) = ∂C3,4(F (x3), F (x4))
∂F (x4) , (2.34)

or
F (x3|x4) = hθ3,4(F (x3), F (x4)). (2.35)

To summarise, the conditional distribution function F (x1|x2, x3, x4) can be expressed
as a set of nested h-functions as follows

F (x1|x2, x3, x4) =hθ1,2|3,4

(
hθ1,3|4

(
hθ1,4(F (x1), F (x4)), hθ3,4(F (x3), F (x4))

)
,

hθ2,3|4

(
hθ2,4(F (x2), F (x4)), hθ3,4(F (x3), F (x4))

))
. (2.36)

Table 2.4.1 below gives the h-functions, as obtained from Czado et al. (2012), of the
Gaussian, Student-t, BB1 and BB7 copula.

Table 2.4.1: The h-function of the Gaussian, Student-t, BB1 and BB7 copula

Copula h-function

Gaussian h(u|v; ρ) = Φ
(

Φ−1(u)−ρ12Φ−1(v)√
1−ρ2

)
Student-t h(u|v; ρ, ν) = tν+1

{
t−1
ν (u)−ρt−1

ν (v)√
(ν+(t−1

ν (v))2)(1−ρ2)
ν+1

}

BB1 h(u|v; θ, δ) =
(

1 + ((u−θ − 1)δ + (v−θ − 1)δ) 1
δ

)− 1
θ−1
· ((u−θ − 1)δ +

(v−θ − 1)δ) 1
δ−1(v−θ−1)δ−1v−θ−1

BB7 h(u|v; θ, δ) =
(
1 + [(1− (1− u)θ)−δ + (1− (1− v)θ)−δ − 1]− 1

δ

)− 1
δ−1 ·

[(1−(1−u)θ)δ+(1−(1−v)θ)−δ−1]− 1
δ−1 ·(1−(1−v)θ)−δ−1(1−v)θ−1

This table reports the h-function of the Gaussian, Student t, BB1 and BB7 copula. Source: Czado et al.
(2012).
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2.5 Canonical vines (C-vines)

As shown in the previous Section, there are a significant number of possible pair-
copula decompositions for high-dimensional distributions. It is therefore crucial to
introduce rules that enable us to reduce this complexity. Bedford and Cooke (2001,
2002) have introduced a graphical way of organising pair-copula density decomposi-
tions, known as regular vine. However, the class of regular vines is still very extended.
Canonical vine (C-vine) and drawable vine (D-vine) (Kurowicka and Cooke, 2006)
constitute two special cases of regular vines each of which provides a specific way
of decomposing the density. In this study, we will concentrate on C-vines because
they have not been extensively investigated in financial applications so far.

The joint density decomposition, as organised by a C-vine, is given in the form of a
nested set of star trees. For the d-dimensional C-vine, the pairs at level 1 are (1, i),
for i = 2 . . . d, and for level `, 2 ≤ ` < d, the (conditional) pairs are (`, i|1, . . . , `− 1)
for i = `+1, . . . , d. Figure 2.5.1 shows the specification for a six-dimensional C-vine.
It consists of five trees, Tj, j = 1 . . . , d − 1. Tree Tj has d + 1 − j nodes and d − j
edges. Each edge corresponds to a bivariate copula density, while the edge labels
correspond to the subscript of the bivariate copula density. For example, edge 34|12
corresponds to the conditional copula density c34|12(·), where copula density c34|12(·)
can be of any parametric form. In total, d(d − 1)/2 pair-copula families should be
chosen for the whole decomposition. The nodes in tree Tj are necessary for deter-
mining the labels of next tree Tj+1.

As can be seen from Figure 2.5.1, there is one node in each tree which is connected
with the remaining nodes of this particular tree. C-vines are very useful, when there
exists a variable order with sequentially decreasing driving force. The order starts
with a variable that has the highest dependency on all remaining variables, the
“pilot” variable. Conditioning all remaining variables on the first pilot variable, we
can obtain the variable with the second highest dependency on all other variables.
This approach is completed once we select all pilot variables for every tree (Czado
et al., 2012).
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Figure 2.5.1: Tree representation of a canonical vine structure with 6 variables, 5 trees and 15
edges.
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The d-dimensional canonical decomposition is given by Aas et al. (2009) as follows

f(x) =
d∏
k=1

fk(xk)×
d−1∏
i=1

d−i∏
j=1

ci,i+j|1:(i−1)
(
F (xi|x1, . . . , xi−1), F (xi+j|x1, . . . , xi−1)

)
(2.37)

For example, the six-dimensional canonical vine structure of Figure 2.5.1 can be
written as

f(x1, x2, x3,x4, x5, x6) =

f1(x1)f2(x2)f3(x3)f4(x4)f5(x5)f6(x6) · c1,2(F (x1), F (x2))

· c1,3(F (x1), F (x3)) · c1,4(F (x1), F (x4)) · c1,5(F (x1), F (x5))

· c1,6(F (x1), F (x6)) · c2,3|1(F (x2|1), F (x3|1)) · c2,4|1(F (x2|1), F (x4|1))

· c2,5|1(F (x2|1), F (x5|1)) · c2,6|1(F (x2|1), F (x6|1)) · c3,4|1,2(F (x3|1,2), F (x4|1,2))

· c3,5|1,2(F (x3|1,2), F (x5|1,2)) · c3,6|1,2(F (x3|1,2), F (x6|1,2))

· c4,5|1,2,3(F (x4|1,2,3), F (x5|1,2,3)) · c4,6|1,2,3(F (x4|1,2,3), F (x6|1,2,3))

· c5,6|1,2,3,4(F (x5|1,2,3,4), F (x6|1,2,3,4)) (2.38)

It is clear that the construction is iterative in nature, and given a specific decom-
position in Equation (2.37) there are as many as d!

2 possible C-vine structures. As
already mentioned, for a mixed C-vine copula model we also need to choose a bi-
variate copula family for each of the d(d− 1)/2 pair-copulas. It is worth taking into
consideration the special case of a C-vine model with all pair-copulas being Gaus-
sian. In this special case the C-vine model simplifies to a multivariate Gaussian
distribution. Similarly, a C-vine structure with all bivariate copulas being Student-t
and a common degree of freedom can be viewed as a multivariate Student-t distri-
bution with a common degree of freedom (Czado et al., 2012). It is therefore quite
important to develop selection rules that allow us to select an appropriate copula
family for each edge in the C-vine model. However, most of these selection rules
are based on estimated C-vines. Thus, we now turn to the parameter estimation in
C-vines.

2.6 Inference for a C-vine model

In this Section, we present two main estimation methods for C-vine models, the
maximum likelihood estimation (MLE) and the sequential estimation (SE) method.
Each estimation approach has its own merits and demerits in terms of mathematical
tractability, statistical efficiency and computational feasibility.

31



Chapter 2 : Background material: Copula theory

Assume a vector xi = (xi,1, . . . , xi,T )T , i = 1, . . . , d of random variables at T points
in time. Further, assume that the T observations of each random variable xi,t are
independent over time and uniformly distributed on [0,1]. The assumption of in-
dependence, as Aas et al. (2009) note, is not a limiting assumption. Most of the
financial time series are serial correlated and thus univariate time-series models can
be fitted to the margins and filter the time dependencies. As a result, the analysis
can be continued with the residuals.

The log-likelihood of a C-vine model can be written, according to Aas et al. (2009),
as

`(x;θ) =
d−1∑
j=1

d−j∑
i=1

T∑
t=1

log
[
cj,j+i|1,...,j−1

(
F (xj,t|x1,t, . . . , xj−1,t), F (xj+i,t|x1,t, . . . , xj−1,t)

)]
(2.39)

where F (xj,t|x1,t, . . . , xj−1,t) and F (xj+i,t|x1,t, . . . , xj−1,t) are conditional distribu-
tions and determined by Equation (2.21) and the h-function definition of Equa-
tion (2.22).

Schepsmeier (2010) shows that the log-likelihood function can also be written as

`(x;θ) =
T∑
t=1

[ d−1∑
i=1

log
(
c(x1,t, xi+1,t; θ1,i)

)
+

d−1∑
j=2

d−j∑
i=1

log
(
c(uj−1,i+1,t, uj−1,1,t; θj,i)

)]
(2.40)

for all t = 1, . . . , T and

u1,i,t = h(xi+1, x1; θ1,i) i = 1, . . . , d− 1,

uj,i,t = h(uj−1,i+1,t, uj−1,1,t; θj,i), j = 2, . . . , d− 1 and i = 1, . . . , d− j,

where θ is the vector of copula parameters to be estimated while θj,i is the set of
parameters of the corresponding copula density cj,j+i|1,...,j−1(·, ·).

For example, the log-likelihood function for a four-variable C-vine model can be
given by
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`(x;θ) = l(x1, x2, x3, x4;θ)

= log
(
c(x1, x2; θ1,1)

)
+ log

(
c(x1, x3; θ1,2)

)
+ log

(
c(x1, x4; θ1,3)

)
+ log

(
c2,3|1

(
u1,1, u1,2; θ2,1

))
+ log

(
c2,4|1

(
u1,1, u1,3; θ2,2

))
+ log

(
c3,4|1,2

(
u2,1, u2,2; θ3,1

))
= log

(
c(x1, x2; θ1,1)

)
+ log

(
c(x1, x3; θ1,2)

)
+ log

(
c(x1, x4; θ1,3)

)
(2.41)

+ log
(
c2,3|1

(
h(x2, x1; θ1,1), h(x3, x1; θ1,2); θ2,1

))
+ log

(
c2,4|1

(
h(x2, x1; θ1,1), h(x4, x1; θ1,3); θ2,2

))
+ log

(
c3,4|1,2

(
h [h(x2, x1; θ1,1), h(x3, x1; θ1,2); θ2,1] , h [h(x2, x1; θ1,1), h(x4, x1; θ1,3); θ2,2] ; θ3,1

))
For each bivariate copula in the sum of Equation (2.40) there is at least one param-
eter to be determined. The number depends on the parametric assumption for each
pair-copula in the C-vine model. For example, a Gaussian copula has one parameter
whereas a Student-t copula has two parameters. If parametric margins are also es-
timated, i.e. fi(xi,t; δi) with i = 1, . . . , d, the added contribution to Equation (2.40)
is

T∑
t=1

d∑
i=1

fi(xi,t; δi). (2.42)

Under this setting, full MLE estimates can be obtained by maximising Equation (2.40)
combined with Equation (2.42) with respect to the parameters (θ, δi, . . . , δd). In gen-
eral, the full MLE estimation would be our preferred choice due to its well-known
optimality properties. However, the Inference Functions for Margins (IFM) method
is usually preferred to full MLE due to its computational tractability and compara-
ble efficiency.

The IFM method (see Joe and Hu (1996); Joe (1997), for more details) is a multi-step
optimisation technique. It divides the parameter vector into separate parameters for
each margin and parameters for the copula model. Therefore, one may break up the
optimisation problem into several smaller optimisation steps with fewer parameters.
For example, in the first step one may maximise the log-likelihood function of the
margins in Equation (2.42) over the parameter vector (δi . . . , δd) and in the second
step the log-likelihood function of the C-vine model in Equation (2.40), given the
estimated parameters of the margins from the first step, over the parameter vector θ.
The IFM method has been found highly efficient compared to full MLE optimisation
for a number of multivariate models in a study by Joe (1997).
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Nevertheless, IFM is a fully parametric method and thus a misspecification of the
marginal distributions may have an effect on the performance of the estimator. In
addition, marginal distributions are almost always unknown in practice. This fact
increases the probability of marginal misspecification and as a result non-robust
copula estimation. The semi-parametric (SP) method, proposed by Genest et al.
(1995), can tackle the marginal misspecification problem since it treats the marginal
distributions as unknown functions.

The SP method is also known as pseudo maximum likelihood (PML) and as canoni-
cal maximum likelihood (CML) method. The PML method estimates each marginal
distribution non-parametrically by the empirical distribution function (edf) with-
out assuming any particular parametric distribution for the marginals. Once this
is completed, the dependence structure between the marginals is estimated using a
parametric multivariate copula family or in our particular study a C-vine model with
appropriate pair-copula families. Kim et al. (2007) have shown that the MLE/IFM
methods are non robust against marginals misspecification, and that the SP method
performs better than the MLE and IFM methods, overall.

We now turn to the estimation of C-vine models. C-vine parameters can be es-
timated using the sequential estimator (SE) or the maximum likelihood estimator
(MLE). Following Czado et al. (2012) suppose i.i.d. data ut = (u1,t, . . . , ud,t)t for
t = 1, . . . , T is available. For SE, we first estimate the parameters of the uncondi-
tional bivariate copulas of tree 1. Then these estimates are used to estimate pair-
copula parameters with a single conditioning variable. The estimation proceeds tree
by tree, since the conditional pairs in trees 2, . . . , d− 1 depend on the specification
of the previous trees via the h-function, defined in Equation (2.22). Hence, C-vine
models are estimated sequentially until all parameters are estimated. The estima-
tion, in this context, can be carried out using the inversion of Kendall’s τ for one
parameter bivariate copulas or using MLE.

(1, 2), (1, 3), (1, 4), . . . , (1, d), (Tree1)

(2, 3|1), (2, 4|1), . . . , (2, d|1), (Tree2)

(3, 4|1, 2), (3, 5|1, 2), . . . , (3, d|1, 2), (Tree3)

. . . ,

(d− 1, d|1, . . . , d− 2). (Tree d− 1)

In particular, the parameter vector θ1,j+1 of bivariate copula families c1,j+1 in tree
1 is estimated using data (u1,t, uj+1,t), t = 1, . . . , T for j = 1, . . . , d − 1. Given the
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estimated parameter vector θ̂SE of tree 1, we next want to estimate the parameter
vector θ2,j+1 corresponding to c2,j+2|1 for j = 1, . . . , d− 2 in tree 2. Define

v̂2|1,t := F (u2,t|u1,t; θ̂
SE

1,1 ) = h(u2,t|u1,t; θ̂SE1,1),

v̂j+2|1,t := F (uj+2,t|u1,t; θ̂
SE

1,j+1) = h(uj+2,t|u1,t; θ̂SE1,j+1),

for j = 1, . . . , d − 2 and denote these estimates by θ̂
SE

2,j . We can subsequently use
data (v̂2|1,t, v̂j+2|1,t), t = 1, . . . , T to estimate θ2,j for j = 1, . . . , d − 2. In order to
estimate the parameter vector θ3,j corresponding to tree 3 and pair-copula families
with double conditioning variables c3,j+3|1,2 for j = 1, . . . , d− 3, we define

v̂3|1,2,t := h(v̂2|1,t|v̂3|1,t; θ̂
SE

2,1 ),

v̂j+3|1,t := h(v̂j+3|1,t|v̂3|1,t; θ̂
SE

2,j ),

and estimate θ3,j using (v̂3|1,2,t, v̂j+3|1,2,t), t = 1, . . . , T for j = 1, . . . , d− 3.

Following the same reasoning, one can sequentially estimate the pair-copula pa-
rameters for each nested set of trees in the C-vine structure until all unconditional
and conditional bivariate copula parameters have been estimated. The sequential
estimates have been recently found by Haff (2013) to be asymptotically normal
under some regularity conditions but their asymptotic covariance properties are in-
tractable (Czado et al., 2012).
To improve estimation efficiency we can use MLE estimation. The parameters of a
C-vine model can be estimated by optimising the log-likelihood function of Equa-
tion (2.40). It is clear that MLE requires a high-dimensional optimisation of the log-
likelihood and is therefore much more time consuming compared to SE. Moreover,
MLE requires good starting values of the parameters in the numerical maximisation
of the log-likelihood for quick convergence. Hence, the sequential estimates can be
used as starting values for the optimisation.

2.7 Simulation from a C-vine model

Simulation from pair-copula decomposed models is an important element for empir-
ical applications. Aas et al. (2009) have provided simulation algorithms for C-vines
and D-vines. Thus, the presentation of the C-vine simulation algorithm in this
Section is based on the paper of Aas et al. (2009).
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The general algorithm for sampling n dependent uniform [0, 1] variables is common
for C-vines and D-vines:

Sample w1, . . . , wn, independent uniform on [0, 1]

Then set

x1 = w1,

x2 = F−1(w2|x1),

x3 = F−1(w3|x1, x2),

· · · = · · ·

xn = F−1(wn|x1, . . . , xn−1).

The conditional distribution F (xj|x1, x2, . . . , xj−1) for each j, can be evaluated re-
cursively for both vine models through the h-function in Equation (2.22) and the
relationship in Equation (2.21). For the C-vine we always choose

F (xj|x1, . . . , xj−1) =
∂Cj,j−1|1,...,j−2

(
F (xj|x1, . . . , xj−2), F (xj−1|x1, . . . , xj−2)

)
∂F (xj−1|x1, . . . , xj−2) .

The following algorithm (Algorithm 1) gives the procedure for sampling from a C-
vine. The variables to be sampled are represented by the outer for-loop. This loop
entails two other for-loops. In the first for-loop, the i-th variable is sampled, while
in the other, the conditional distribution functions needed for sampling the (i+ 1)-
th variable are computed. The computation of conditional distribution functions
is performed by repeatedly using the h-function defined in Equation (2.22), having
previously computed conditional distribution functions, vi,j = F (xi|x1, . . . , xj−1), as
the first two arguments. The last argument of the h-function, θj,i, is the set of
parameters of the corresponding copula density cj,j+i|1,...,j−1(·, ·).

36



Chapter 2 : Background material: Copula theory

Algorithm 1: Simulation algorithm for a canonical vine.
Generates one sample x1, . . . , xn from the vine.

1: Sample w1, . . . , wn independent uniform on [0, 1].
2: x1,1 = v1,1 = w1,1

3: for i = 2 to n do
4: vi,1 = wi
5: for k = i− 1 to 1 do
6: vi,1 = h−1(vi,1, vk,k, θk,i−k)
7: end for
8: xi = vi,1
9: if == n then
10: STOP
11: end if
12: for j = 1 to i− 1 do
13: vi,j+1 = h(vi,j , vj,j , θj,i−j)
14: end for
15: end for

2.8 Model selection

In Section 2.6, we described how to estimate a specific C-vine structure. However,
this is only one piece of the full inference problem. Full inference for a pair-copula de-
composition entails (a) the selection of a specific decomposition, (b) the selection of
a copula family for each pair-copula and (c) the estimation of the copula parameters.

As shown in the previous Section the complexity (number of possible decomposi-
tions, number of possible pair-copula family selections) increases very rapidly with
the dimension of the data set. Moreover, in C-vine models we should also determine
which bivariate relationships are the most important, since we need to specify the
relationships between one specific pilot variable and the others, and consequently
determine the appropriate factorisation(s) to estimate.

Therefore, given the empirical observations, it is necessary to choose a specific C-
vine factorisation and parametric shape for each pair-copula. For example, in the
C-vine decomposition of Figure 2.5.1 we have to select appropriate copula families
for the unconditional copulas in the first tree, i.e., C1,2(·, ·), C1,3(·, ·), . . . etc, and
subsequently the copula families for the conditional copulas in the remaining trees,
i.e., C2,3|1(·, ·), C3,4|1,2(·, ·), . . . etc. When the pair-copulas of the C-vine structure do
not belong to the same family, the C-vine model is known as mixed. The reasoning
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behind this mixing procedure is to choose for each pair of variables the parametric
copula family that best fits the data and thus improve the overall fit.
We propose the following steps to determine a specific factorisation and copula
family for each bivariate copula in the C-vine model:

(a) Define the pilot variable in tree 1 of the C-vine model based on the empirical
rule of Czado et al. (2012).

(b) Given the empirical data and selected pilot variable, determine which copula
families to use in tree 1. The selection of appropriate copula families in tree 1
is based on graphical and analytical tools as well as goodness-of-fit tests.

(c) Estimate the parameters of the selected copula families using the original data.

(d) Transform observations as required for tree 2, using the estimated copula pa-
rameters from tree 1 and the h-function defined in Equation (2.22).

(e) Determine the pilot variable in tree 2 in the same way as in tree 1 based on
the transformed observations of (d).

(f) Determine which copula families to use in tree 2 in the same way as in tree 1.

(g) Iterate.

2.9 Selecting an appropriate C-vine decomposition

As noted in Aas et al. (2009) there are exactly d!/2 different C-vine structures avail-
able. It is obvious that the variation increases along with the dimension of the
dataset. As a result, on the one hand it is necessary to develop selection rules that
uniquely decompose a C-vine model and thus reduce the complexity of all available
permutations and, on the other hand, to provide an overall good fit to the multi-
variate distribution of the data.

According to Aas et al. (2009) it is preferable to choose models with high dependence
in the bivariate conditional distributions. Moreover, fitting a C-vine model might be
more challenging when there is not a particular variable that governs interactions in
the data set. So far there exist only empirical selection procedures which propose a
specific C-vine decomposition (see Nikoloulopoulos et al. (2012); Czado et al. (2012)).
In this study, the empirical selection rule of Czado et al. (2012), which is based on
Kendall’s τ estimates, is followed.
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The rule suggests a data driven sequential approach to determine the pilot variable
and the d− 1 unconditional pair-copulas needed in tree 1 of the C-vine model. The
rule works as follows. Estimate all possible pairwise Kendall’s τi,j coefficients, noted
τ̂i,j, and find the variable i∗ that maximises

Ŝi :=
d∑
j=1
|τ̂i,j|, (2.43)

over i = 1, . . . , d. Once the variable that is the most dependent on other variables,
i∗, is selected for tree 1, we reorder the variables so that i∗ becomes the first variable.
We can then link the pilot variable i∗ with the remaining variables and select the
unconditional pair-copulas for c1,j+1, j = 1, . . . , d− 1. The selection of appropriate
copula-families is based on multiple criteria such as graphical and analytical tools
as well as goodness-of-fit tests. We will discuss this choice later and assume for
the moment that we are able to select a pair-copula family for each unconditional
bivariate copula c1,j+1, j = 1, . . . , d− 1.

As in the sequential estimation procedure d− 1 transformed variables

v̂j+2|1,t := h(uj+2,t|u1,t;θSE1,j+1) j = 0, . . . , d− 2, t = 1, . . . , T (2.44)

are formed. Based on d − 1 variables of size T all pairwise Kendall’s τ coefficients
are estimated and the pilot variable i∗∗ of tree 2 that maximises Equation (2.43) is
selected. Subsequently, we reorder the variables i = 2, . . . , d in such a way that i∗∗ is
variable 2. Having selected i∗∗ as the pilot variable for tree 2, we can consequently se-
lect the copula families with single conditioning variable 1, c2,j+2|1 for j = 1, . . . , d−2.

This procedure is continued until we determine the pilot variable for each tree and
therefore a specific factorisation of the C-vine model as well as all corresponding
pair-copulas and their associated sequential parameter estimates θ̂

SE
.

2.10 Selecting an appropriate copula family

After selecting the pilot variable for the first tree, the next step is to select appropri-
ate parametric copula families for each pair-copula of the first level and, following the
sequential selection approach of Czado et al. (2012), to determine a unique C-vine
decomposition and choose the copula families for each bivariate copula accordingly.

In general, when modelling the dependence structure of random variables using
copulas, the true copula is always unknown. Therefore, we need tools to specify a
copula family appropriate for describing the observed dependence structure of the
variables. For our sequential selection procedure we only need selection rules for
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bivariate copulas and hence our analysis will concentrate only on copula selection in
two dimensions.
The problem of selecting an appropriate (bivariate) copula family is a well studied
problem in the literature and many procedures have been proposed. In principle
there are two different classes of tools that help in the copula selection procedure,
graphical and analytical tools. In our study, we will use both tool sets for our copula
selection procedure.

2.10.1 Graphical tools

Two of the most common graphical tools for detecting dependence are the scatter
and contour plots, introduced in 2.10.2 1 and particularly in Figures 2.3.3 and 2.3.4.
Both plots are rather general tools and provide general information about the de-
scription of the dependence structure of the variables. Scatter plots provide a general
description of the dependence structure of the variables while contour plots can be
used for comparison studies among different copula families. Based on bivariate data,
empirical contour plots can be plotted against contour plots with specified margins
(standard normal margins are usually used since they allow for direct comparisons
and indicate tail dependence) and specified copula families and parameter(s), and
useful visual comparisons between empirical contour plots and theoretical copula
contour plots can be drawn.

While scatter and contour plots are general tools, there also exist graphical tools that
can be used to detect bivariate copula dependence directly. Chi-plots (χ-plots) and
Kendall’s plots (k-plots) are two of these graphical tools for detecting dependence.
Chi-plots can also be helpful for detecting tail dependence. Furthermore, the λ
function of Genest and Rivest (1993) is another useful graphical tool that can be
employed in the copula selection procedure. The presentation of these tools is based
on Belgorodski (2010), Brechmann and Schepsmeier (2013) and Genest (2007) where
the properties and practical applications of these tools are well-analysed.

2.10.1.1 Chi-plots

Chi-plots were initially introduced by Fisher and Switzer (1985) and are based on
the chi-square statistic for independence in a two way-table. Let (x1, y1), . . . , (xn, yn)
be a random sample from some pair (X, Y ) of continuous random variables, where
FXY (x, y) is the joint distribution function that characterises their joint behaviour
and FX(x) and FY (y) denote their respective marginal distributions. Specifically,
introduce
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F̂XY,i = F̂XY,i(xi, yi) = 1
n− 1 {j 6= i : Xj ≤ Xi, Yj ≤ Yi} (2.45)

F̂X,i = F̂X,i(xi) = 1
n− 1 {j 6= i : Xj ≤ Xi} (2.46)

F̂Y,i = F̂Y,i(Y ) = 1
n− 1 {j 6= i : Yj ≤ Yi} (2.47)

where these quantities depend exclusively on the ranks of the observations, i.e., FXY ,
FX and FY are estimated by empirical cumulative distribution functions.

Fisher and Switzer propose to plot the pairs (λi, xi), where

xi = F̂XY,i − F̂X,iF̂Y,i√
F̂X,i(1− F̂X,i)FY,i(1− F̂Y,i),

(2.48)

λi = 4 sing · (F̃X,iF̃Y,i) max (F̃ 2
X,i, F̃

2
Y,i) (2.49)

and F̃X,i = F̂X,i − 1/2, F̃Y,i = F̂Y,i − 1/2 for i = 1, . . . , n. Fisher and Switzer (1985,
2001) argued that λi, xi ∈ [−1, 1]. Moreover, λi measures the distance between the
pairs (x1, y1), . . . , (xn, yn) and the center of the scatter plot while xi accords to a
correlation coefficient between dichotomised values of X and Y .

Under independence, one would expect F̂XY,i ≈ F̂X,i · F̂Y,i for all i = 1 . . . , n. There-
fore, values of xi that are far away from zero are indicative of a departure from the
hypothesis of independence whereas values of xi close to zero indicate independence.
For positively dependent margins, the pairs (λi, xi) tend to be located on the posi-
tive (upper) part of the xi axis, and vice versa for the negatively dependent margins.
Moreover, Fisher and Switzer suggested to draw “control limits” at ±cp/

√
n, where

cp is selected in such a way that approximately 100p% of the pairs (λi, xi) lie be-
tween these limits, to help identify whether values of xi lie close enough to zero.
They show, through simulations, that the cp values 1.54, 1.78 and 2.18 correspond
to p = 0.90, 0.95 and 0.99, respectively. Figure 2.10.2 and more specifically graphs
(iv), (v) and (vi) display Chi-plots for independent, positively dependent and nega-
tively dependent bivariate data, respectively.

As pointed out in Belgorodski (2010), Fisher and Switzer did not discuss the tail
dependence problem when they introduced the Chi-plots as a graphical method for
detecting dependence. Abberger (2005) was the first to show how the Chi-plots can
be employed to detect tail dependence and its form (upper or lower) in a bivariate
data set.
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To detect tail dependence Abberger proposed to compute Chi-plots for only positive
values of λi. Since λi measures the distance of a data point (xi, yi) from the center of
a bivariate data set, data points with λi values close to −1 are not located far away
from the data center whereas data points with λi values close to +1 are placed far
away from the data center. Thus, Abberger argued that λi values close to +1 can
be used to assess tail dependence. In particular, when there is no tail dependence
and for λi values close to +1, the xi values should return to the zero line at the
right edge of the Chi-plot while the presence of tail dependence can be detected
by the deviation of xi values from the zero line. Figure 2.10.3 and particularly
panels (c) and (d) display examples of Chi-plots detecting (i) no tail dependence,
(ii) symmetric tail dependence, (iii) only upper tail dependence and (iv) only lower
tail dependence.

2.10.1.2 K-plots

The Kendall-process-plot (or K-plot), proposed by Genest and Boies (2003), is an-
other rank-based graphical tool for detecting dependence. It is similar in spirit
to the familiar QQ-plot. Genest and Boies (2003) proposed to plot the pairs of
(Wi:n, F̂XY,i:n) for i = 1, . . . , n, where F̂XY,i:n are the order statistics of F̂XY,i defined
in Equation (2.45). As for Wi:n, it is the expected value of the i-th statistic from a
random sample of size n from the random variable Wi = F̂XY (xi, yi) under the null
hypothesis of independence between X and Y .
The Wi:n is given by

Wi:n = n

(
n− 1
i− 1

)∫ 1

0
wk0(w) {K0(w)}i−1 {1−K0(w)}n−i dw (2.50)

where
K0(w) = w − wlog(w)

and k0(·) is the corresponding density.

The interpretation of the K-plot is similar to that of the QQ-plot. If the points of
the K-plots lie approximately in the line y = x, there is no evidence for dependence
between X and Y . Any deviation from the main diagonal is a sign of dependence in
the K-plot. Further, positive or negative dependence may be detected in the data,
depending on whether the points of the K-plots lie above or below the main diagonal.
In principle, the further the deviation from the diagonal the greater the dependence.
In addition, perfect positive dependence would imply points (Wi:n, F̂XY,i:n) lying on
the bent curve K0(w) above the main diagonal whereas perfect negative dependence
would imply points (Wi:n, F̂XY,i:n) positioned on the x-axis. Figure 2.10.2 and more
specifically graphs (vii), (viii) and (iv) display an example of K-plots for independent,
positively dependent and negatively dependent bivariate data, respectively.
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2.10.1.3 The λ-function

The λ-function, introduced by Genest and Rivest (1993), is another graphical tool
that can be employed for choosing the copula family that best describes the observed
dependence. The λ-function is different for each copula family and is defined as
follows

λ(u,θ) := u−K(u,θ) (2.51)

where K(u,θ) := P (C(U1, U2|θ) ≤ u) is Kendall’s cumulative distribution function
for a copula C with parameter (s) θ, u ∈ [0, 1] and (U1, U2) distributed according to
C with uniformly distributed margins. For Archimedean copulas the λ-function is
given by

λ(u,θ) = φ(u)
φ′(u) (2.52)

where φ is the generator function and φ′ its corresponding derivative. There are no
closed form expressions of the theoretical λ-function for the Gaussian and Student-t
copula but they can be obtained through simulations. Moreover, control bounds
corresponding to independence and comonotonicity (λ = 0) are usually plotted with
the theoretical λ-function.

In general, λ-functions are useful tools for selecting the appropriate copula family. A
comparison of the empirical and the theoretical λ-function provides an indication as
to whether a selected copula family is adequate to describe the dependence structure
of empirical data or not. Figure 2.10.1 displays an illustrative example. In the upper
panel of Figure 2.10.1 the empirical λ-function of simulated data (N = 1000) from
the Joe copula family is plotted whereas in the middle panel the theoretical one is
plotted. Finally, the lower panel displays both λ-functions.
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Figure 2.10.1: Upper panel: empirical λ-function of simulated bivariate data from
the Joe copula with θ = 2. Middle panel: theoretical λ-function from the Joe Copula
with θ = 2. Lower panel: empirical vs theoretical λ-functions. Dashed lines are bounds
corresponding to independence and comonotonicity (λ = 0), respectively.
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(i) Scatter−plot: No dependence
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(ii) Scatter−plot: Positive dependence
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(iii) Scatter−plot: Negative dependence
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(iv) Chi−plot: No dependence
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(v) Chi−plot: Positive dependence
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(vi) Chi−plot: Negative dependence
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(vii) K−plot: No dependence
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(viii) K−plot: Positive dependence
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(ix) K−plot: Negative dependence

Figure 2.10.2: Panels (i), (iv) and (vii) display scatter, Chi and K-plots for independent data, respectively;
panels (ii), (v) and (viii) display scatter, Chi and K-plots for positively dependent data, respectively; panels
(iii), (vi) and (ix) display scatter, Chi and K-plots for negatively dependent data, respectively
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Chapter 2 : Background material: Copula theory
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(i) No tail−dependence
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(ii) Symetric tail−dependence
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(iii) Upper tail−dependence
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(iv) Lower tail−dependence

(a) Scatter plots of bivariate data with different dependence structure
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(i) No tail−dependence
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(ii) Symetric tail−dependence
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(iii) Upper tail−dependence
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(iv) Lower tail−dependence

(b) General Chi-plots of bivariate data with different dependence structure
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(i) No tail−dependence
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(ii) Symetric tail−dependence
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(iii) Upper tail−dependence

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

λ

χ

(iv) Lower tail−dependence

(c) Chi-plots for detecting upper tail dependence
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(i) No tail−dependence
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(ii) Symetric tail−dependence
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(d) Chi-plots for detecting lower tail dependence

Figure 2.10.3: Chi-plots for detecting (tail) dependence: (a) bivariate scatter plots with different de-
pendence form; (b) General Chi-plots; (c) Chi-plots for upper tail dependence; (d) Chi-plots for lower tail
dependence.
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2.10.2 Analytical tools

In addition to the graphical tools there are also a broad range of analytical tools
that can be employed in the copula selection procedure. In practice, analytical
tools consist of various goodness-of-fit tests and information criteria that assist in
the selection procedure. A goodness-of-fit test of a statistical model describes how
well a given model fits the observed data. Typically, measures of goodness-of-fit
summarise the discrepancy between observed and expected values under the model
in question. These tests are usually employed in statistical testing. Therefore, in
our model selection procedure we test the hypothesis of whether a chosen copula can
adequately fit the observed data. On the other hand, information criteria are not
tests used in the spirit of hypothesis testing but rather tests used to compare models;
in other words, they are tools for model selection. In this study, the Independence
test of Genest (2007), the Akaike and Bayesian Information Criteria (AIC and BIC,
respectively) and the Vuong (1989) and Clarke (2007) tests are presented and utilized
in the copula selection procedure.

2.10.2.1 Independence test

In general, a good initial step for bivariate data analysis, especially when the de-
pendence appears to be weak, is to test for independence between random variables.
The independence test of Genest (2007) serves this purpose. The test is based on
Kendall’s τ estimate. The test relies on the asymptotic normality of the test statistic

T :=
√

9N(N − 1)
2(2N + 5) |τ̂ |, (2.53)

where N is the number of observations and τ̂ the empirical Kendall’s τ of the data.
The p-value of the null hypothesis of bivariate independence is given by

p− value = 2× (1− Φ(T )).

2.10.2.2 Information criteria

In financial econometrics model selection is usually based on so called information
criteria. The Akaike Information Criterion (AIC) of Akaike (1974) is one of the most
popular model selection criteria. Joe (1997) proposed a copula selection procedure
based on the Akaike information criterion. Given observations xi, i = 1 . . . n, the
Akaike Information Criterion (AIC) is defined as

AIC := −2
N∑
i=1

logf(xi; θ̂) + 2k, (2.54)

where θ̂ denotes the maximum likelihood estimates of θ and k is the number of
parameters θ = (θ1, . . . , θk)′ in the model that penalise the log likelihood function
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to avoid over-fitting. The AIC for a copula with density c can be written as

AIC := −2
N∑
i=1

log[c(ui,1, ui,2|θ̂)] + 2k. (2.55)

Alternatively, the Bayesian Information Criterion (BIC) of Schwarz (1978) can also
be used in the copula selection procedure. The BIC for a copula model with density
c is given by

BIC := −2
N∑
i=1

log[c(ui,1, ui,2|θ̂)] + log(N)k. (2.56)

Model selection based on AIC or BIC is obtained by choosing the model which min-
imises the criterion used. In principle, the Bayesian information criterion penalises
the log likelihood function more than the Akaike information criterion and hence
usually leads to more parsimonious models.

2.10.2.3 Vuong and Clarke Tests

The Vuong test, proposed by Vuong (1989), compares two models that are non-
nested and allows for a statistically significant decision between them. The test
is based on the Kullback-Leiber information criterion (KLIC), which measures the
distance between two statistical models. Let c1 and c2 be two competing copula
densities with estimated parameters θ̂1 and θ̂2, respectively. In general, the model
with the smaller KLIC is the preferable one, since it is closer to the true but un-
known specification.

Vuong proposes to compute the standardised sum, ν, defined by

ν =
1
n

∑N
i=1 mi√∑N

i=1(mi − m̄)2
with m̄ = 1

N

N∑
i=1

mi, (2.57)

of the following statistic

mi := log
[c1(ui,1, ui,2|θ̂1)
c2(ui,1, ui,2|θ̂2)

]
, (2.58)

for observations ui,j , i = 1, . . . , N, , j = 1, 2, i.e. Vuong showed that ν is asymptoti-
cally standard normal. Therefore, the test favours copula model 1 over copula model
2 if ν > z1− 1

α
, where z1− 1

α
is a (1− α

2 )-quantile of the standard normal distribution.
On the other hand, if ν < z1− 1

α
, model 2 is preferred. If, however, |ν| ≤ z1−α2 , both

models are statistically equivalent.

An alternative test for non-nested model comparison is the distribution-free test
proposed by Clarke (2007). The Clarke test is similar to the Vuong test since it
compares the log-likelihood of two competing models and the one with the higher
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value is preferred to the other. Similar to the Vuong test, the Clarke test is based on
the Kullback-Leiber Information Criterion (KLIC). The null hypothesis of statistical
indistinguishability in the Clarke test, is given by

H0 : P (mi > 0) = 0.5 ∀i = 1, . . . , N.

The intuition behind the null hypothesis is, that under statistical equivalence of the
two models, the individual log-likelihood ratios are uniformly distributed around
zero i.e. one half of the individual log-likelihood ratios should be greater than zero
and the other half should be less that zero. Clarke (2007) proposed the following
test statistic

B =
N∑
i=1

1(0,∞)(mi), (2.59)

where 1 is an indicator function. B corresponds to the number of positive differ-
ences and is distributed as Binomial with parameters N and p = 0.5. Model 1 is
statistically equivalent to model 2 if B is equal to the expectation Np = N

2 , under
the null hypothesis.

The test statistics of both the Vuong (1989) and the Clarke (2007) test are sensitive
to the number of estimated parameters in each model. Both test statistics, Equa-
tion (2.57) and Equation (2.59), can be penalised by the number of parameters se-
lected in each model, using the correction specification of the Akaike Information
Criterion (AIC) in the case of the Vuong test and the parsimonious Bayesian Infor-
mation Criterion (BIC) in the case of the Clarke test.

2.11 Conclusions

In this Chapter we formally define copulas and present the dependence and tail de-
pendence properties of some of the most widely used copulas in finance literature
such as the classes of elliptical and Archimedean copulas. In addition, we intro-
duce the pair-copula construction (PCC) principle and highlight its flexibility in
decomposing a multivariate density into a product of marginal densities and bivari-
ate copula densities. We also address the need of introducing rules that uniquely
decompose a joint density and thus simplify the number of possible pair-copula de-
compositions for high-dimensional distributions. We focus on the C-vine models
which provide a distinct approach to decomposing the joint density that uses a star
tree methodology. We also describe methods for inference and simulation for the
C-vine models and discuss in more detail empirical methods for selecting an appro-
priate C-vine model. Finally, we present the tools which are commonly employed in
the copula selection procedure and discuss their strengths and limitations for iden-
tifying an appropriate copula model. The practical implications in the modelling of
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multivariate dependence for the majority of the models and methodologies presented
in this Chapter are clearly illustrated in the empirical analysis in Chapters 3 and 4
of the present thesis.
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Chapter 3

Extreme value theory and mixed
canonical vine copulas on mod-
elling energy price risks

3.1 Introduction

The understanding of joint asset return distributions is an integral part of managing
portfolio risks successfully. Modelling the joint return distribution of a portfolio,
however, is a non-trivial task. What makes this task non-trivial is the complex dy-
namics and specific characteristics of each particular asset in the portfolio on the
one hand, and the varying dependency structure between all portfolio constituents
on the other. In this Chapter we are concerned with describing the joint return
distribution of power portfolios and computing risk measures such as Value-at-Risk
(VaR) and Conditional Value-at-Risk (CVaR).

Our modelling strategy comprises two main stages. The first stage combines pseudo-
maximum-likelihood fitting of time series models and extreme value theory to es-
timate both tails of the conditional innovations distribution of time series models.
Within this framework we take into account the conditional volatility for each indi-
vidual return series while assigning an explicit model to each tail of the conditional
returns distribution. In the second stage, the dependency structure among portfolio
return series is modelled employing a mixed canonical vine copula model. Hence, by
combining a semi-parametric approach to the margins and a vine copula method-
ology for describing the dependency structure we aim to provide a flexible way of
modelling the conditional distribution of asset returns while, at the same time, pay-
ing particular attention to the tails of the distribution, which is in practice the focus
of all risk management applications.

The modelling of extreme events is the central concern of extreme value theory and
the main objective of this theory is to provide asymptotic models allowing the mod-
elling of the tails of the distribution. Extreme Value Theory (EVT) has found appli-
cations in many fields of modern science such as engineering, insurance, hydrology
and many others (see for example, Embrechts et al. 1999a; Reiss and Thomas 1997,
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among others). Over the last years, more and more research has been undertaken
to analyse extreme events of financial series via EVT (see for example, Embrechts
et al. 1999c; Danielsson and de Vries 1997; McNeil and Frey 2000, and references
therein). EVT-based methods are suitable for tail estimation of financial time series
because they provide better fit in extreme quantiles for heavy-tailed data. Further-
more, EVT-methods treat the tails of the distribution separately, offering a distinct
parametric form for each tail of the distribution and allowing for asymmetry and
extrapolation beyond the range of the data.

Therefore, EVT has found various risk management applications. For example, Mc-
Neil and Frey (2000) propose a method for estimating VaR and related risk measures
by filtering return series with GARCH models and then applying threshold-based
EVT techniques to residuals series. They found that a conditional approach that
models the conditional distribution of returns is better suited for VaR estimation
than the unconditional approach. In addition, Gençay and Selçuk (2004) apply EVT
to daily stock market returns of emerging markets. They report that the EVT-based
model dominates other parametric models in terms of VaR forecasting in extreme
quantiles. With respect to the energy markets, Byström (2005) focuses on the Nord
Pool intra-daily price changes and calculates extreme quantiles by fitting traditional
time-series models and an EVT-based model to empirical data. He found that both
in-sample and out-of sample estimates of moderate and extreme tail quantiles are
more accurate than the corresponding estimates of time series models with normal
or Student-t innovations. Moreover, Fong Chan and Gray (2006) propose an AR-
EGARCH-EVT model for forecasting VaR which uses daily electricity prices from
various power markets. In markets where the distribution of returns is characterised
by high volatility, skewness and kurtosis the AR-EGARCH-EVT model dominates
in terms of VaR performance.

Nevertheless, there is only limited multivariate research on the statistical properties
of power portfolios. In this regard, Börger et al. (2007) analyse the joint return
distribution of various energy futures series. With respect to power data, they
focus on monthly and yearly Phelix futures series. According to their findings, the
multivariate Normal hypothesis is strongly rejected within a commodity class as well
as across commodities. They show that the class of Generalised Hyperbolic (GH)
distributions is capable of fitting power futures prices and clearly outperforms the
Normal distribution. Moreover, they demonstrate how the multivariate fit of the
distributions can be used to estimate risk measures and also state that the exact
choice of the distribution has a major influence on risk measures.
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To the best of our knowledge, however, there are no studies analysing the depen-
dence of power or other commodities portfolios using the concept of vine copula
modelling. The use of copulas enables the separation of the dependence model from
the marginal distributions. While over the last years there has been a growing lit-
erature on copulas, most of the research is still limited to the bivariate case where
a rich variety of different copula families with distinct characteristics is available.
Nevertheless, the choice of multivariate copulas is rather limited compared to the
bivariate case. Apart from the multivariate Gaussian copula that does not allow
for tail dependence and the Student-t copula that can only capture symmetric tail
dependence, the exchangeable multivariate Archimedean copulas are extremely re-
strictive. Therefore, building higher-dimensional copulas is a natural next step.

The so-called pair-copula constructions (PCC) provides an alternative and flexible
way of building multivariate distributions. The first pairwise structure was proposed
by Joe (1996) and further extended by Bedford and Cooke (2001, 2002) and Kurow-
icka and Cooke (2006). In particular, Bedford and Cooke realised that there are
many possible ways to decompose a d-dimensional density using a pairwise con-
struction and hence they organised them graphically in the form of sequentially
designed trees where only products of bivariate copulas, the so-called pair-copulas,
are involved. They called these distributions regular vines. Aas et al. (2009) were
the first to recognise that bivariate copulas for any copula family as well as several
copula families can be mixed in one pair-copula construction. They also developed
algorithms that allow standard maximum likelihood estimation (MLE) and simu-
lation for two special classes of regular vines; the canonical vine (C-vine) and the
drawable vine (D-vine), where each model provides a specific way of decomposing
the density.

While the use of copulas in finance is popular nowadays, the literature on vine copula
modelling is mainly concentrated on illustrative applications. For example, Aas and
Berg (2009) fit two different classes of models for constructing higher-dimensional
dependence on a four-dimensional equity data set; the nested Archimedean con-
struction (NAC) and the pair-copula construction (PCC). The goodness-of-fit tests
employed, strongly reject the NCA while the PCC (D-vine) provides an adequate
fit. They also show that the PCC does not overfit the data and works satisfactory
for out-of-sample VaR calculations. Czado et al. (2012) developed a data driven se-
quential approach, based on Kendall’s τ estimates, for C-vine specifications. They
conducted simulation studies that show the satisfactory performance of the max-
imum likelihood estimation procedure for mixed/non-mixed C-vine models. They
also consider an application involving US-exchange rates by fitting univariate time
series models to the exchange rate return series and modelling the dependencies
among the resulting standardised residuals through a mixed C-vine model.
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There are a few recent studies in finance literature that support the use of vine
copulas for financial applications. In particular, Mendes et al. (2010) employ a D-
vine model on a six-dimensional global portfolio with the Skewed-t distribution as
the unconditional model for the marginals. They show how pair-copulas can be
used on a daily basis for constructing efficient frontiers and computing VaR. In
addition, Heinen and Valdesogo (2008) propose the canonical vine autoregressive
(CAVA) model that can be viewed as a time-varying non-linear and non-Gaussian
extension of the CAPM model. They focus on high-dimensional vine copula mod-
elling. They show that neither the marginal distribution nor the dependency struc-
ture is Gaussian and the persistence in the dependence between all pairs is not the
same, as implied by the DCC model. They also show that in terms of in-sample and
out-of sample VaR, the CAVA model performs better than the DCC model in all
portfolios examined. Brechmann and Czado (2013) also focus on high-dimensional
vine copula modelling. They propose a factor model for analysing the dependency
structure among European stocks of the Euro Stoxx 50 index, the so-called Regular
Vine Market Sector (RVMS) model. The model employs a general R-vine copula
construction, thus avoiding imposing the independence assumptions of the CAVA
model. The authors show that the RVMS model provides good fits of the data and
accurate VaR forecasts. Moreover, they show that their proposed methodology can
reduce the required risk capital in contrast to the DCC model with Gaussian inno-
vations when employed for VaR forecasting.

We believe that the contribution of our study to the existing literature is threefold.
Firstly, we introduce the concept of vine copula as an alternative and more flexible
way to describe the joint return distribution of power portfolios. To our best knowl-
edge, vine copula modelling has never been used before to describe the dependency
structure of power related portfolios in the literature. Secondly, we propose an ex-
tension of extreme value theory in the context of vine copula modelling that focuses
mainly on extreme quantiles. We strongly believe that our proposed methodology
adds an alternative perspective to the study of multivariate extremes. Finally, we
compute risk measures based on this framework and discuss the implications of our
findings for portfolio risk management.

The rest of this Chapter is organised as follows. Section 3.2 summarises the basic
concepts of extreme value theory. Section 3.3 introduces the copula theory and
presents the pair-copula construction principles and particularly the canonical vine
copula modelling. Practical issues related to vines such as inference and model
selection are also discussed. The model setup is explained in Section 3.4 whereas
Section 3.5 presents the data. Section 3.6 reports the estimated model parameters.
Section 3.7 reports VaR and CVaR forecasts and their corresponding backtest results
and Section 3.8 concludes.
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3.2 Extreme value theory

Let X1, . . . , Xn be a sequence of n independent and identically distributed (i.i.d.)
random variables with distribution function F . Univariate extreme value theory
(EVT) centres on the distribution function F with a particular focus on extreme
tail quantiles. In general, within the EVT context, there are two approaches of
identifying extreme events in real data. The first approach, known as block maxima,
is the direct modelling of the distribution of minimum or maximum realisations.
The other approach, known as peak over threshold, concentrates on the realisations
that exceed a pre-specified threshold level. The peak over threshold (POT) method
is employed in this particular study.

3.2.1 Peak over threshold (POT) method

The peak over threshold method is concerned with the behaviour of large observa-
tions that exceed a high threshold. Let’s consider an (unknown) distribution function
F of a random sample X1, . . . Xn. The peak over threshold approach focuses on es-
timating the distribution function Fu of values of x above a high threshold level u.
The distribution function Fu is called conditional excess distribution function (cedf)
and is defined as

Fu(y) = P (X − u ≤ y | X > u), 0 ≤ y ≤ xF − u , (3.1)

where X is a random variable, u is a given threshold, y = x−u are the excesses and
xF ≤ ∞ is the right endpoint of F . This conditional probability may be written as

Fu(y) = Pr (X − u ≤ y,X > u)
Pr(X > u) = F (u+ y)− F (u)

1− F (u) = F (x)− F (u)
1− F (u) . (3.2)

The estimation of Fu is a difficult exercise as we have in general very little observa-
tions in this area. A theorem by Balkema and De Haan (1974) and Pickands (1975)
is very useful at this point since it provides a powerful result about the cedf.

Theorem 3.2.1 (Pickands (1975), Balkema and De Haan (1974)) For a large
number of underlying distribution functions, Fu(y) is well approximated by Gξ,σ, the
Generalised Pareto Distribution (GPD):

Fu(y) ≈ Gξ,σ(y) , u→∞ ,

where

Gξ,σ(y) =

1− (1 + ξ
σ
y)−1/ξ if ξ 6= 0 ,

1− e−y/σ if ξ = 0 ,
(3.3)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈
[
0,−σ

ξ

]
if ξ < 0. Gξ,σ is the so-called
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generalised Pareto distribution (GPD), ξ = 1/α is a shape parameter and α is the
tail index.

The GPD includes a number of other distributions. For ξ > 0, it takes the form
of the ordinary Pareto distribution, which is the most relevant for modelling the
fat tails of financial time series. Also, when ξ > 0, E[xk] is infinite for k > 1/ξ.
Moreover, when ξ = 0, the GPD corresponds to the exponential distribution whereas
for ξ < 0 it corresponds to the Pareto II type distribution. The GPD model can be
estimated with the maximum likelihood method. More precisely, Hosking and Wallis
(1987) showed that the maximum likelihood estimates are asymptotically normally
distributed for ξ > −0.5.

3.3 Copula theory

A copula is a multivariate distribution function C(u1 . . . ud) defined on the unit cube
[0, 1]d with uniformly distributed marginals. It provides a way of isolating the depen-
dency structure between d random variables while allowing for arbitrary marginal
distributions. The copula concept was initially developed by Sklar (1959). The fa-
mous theorem of Sklar (1959) gives the connection of marginals and copulas to the
joint distribution. In general, a copula function can be extended for an arbitrary
dimension d, but since our mission is to develop multivariate copulas using only
bivariate copulas as building blocks, we will only focus on the bivariate case d = 2.

Theorem 3.3.1 (Sklar (1959)) Let F : R2 → [0, 1] with R = R ∪ {−∞,+∞} be
a bivariate distribution with one-dimensional marginals F1, F2 : R → [0, 1]. Then
there exists a two-dimensional copula C, such that for all (x1, x2) ∈ R2

F(x1 , x2 ) = C
(
F1 (x1 ),F2 (x2 )

)
, (3.4)

holds, and vice versa

C (u1 , u2 ) = F
(
F−1

1 (u1 ),F−1
2 (u2 )

)
, (3.5)

where u1 and u2 ∈ [0, 1] and F−1
1 (u1) and F−1

2 (u2) are the inverse distribution func-
tions of the marginals.

Let fX(x) and fY (y) be marginal densities with joint density of fXY (x, y). It can be
shown that the joint density can be decomposed as a product of marginal densities
and copula density, c(u, v), as follows

fXY (X, Y ) = ∂2FXY (X, Y )
∂x∂y

= ∂2C(FX(x), FY (y))
∂x∂y

= c(u, v)fX(x)fY (y) .
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Tail dependence is another very useful copula-based measure of extreme co-movements.
It is a very important property for applications concerned with the study of the de-
pendence of extreme values, such as risk management. Many empirical studies in
finance (see for example, Longin and Solnik 1995, 2001; Ang and Chen 2002; Hong
et al. 2007, among others) have indicated the presence of asymmetries in financial
data, meaning that lower tail dependence can be stronger than upper tail depen-
dence or vice versa. Therefore, standard symmetric multivariate distributions are
inappropriate for addressing this feature. Moreover, tail dependence is one of the
properties that help distinguish between the different copula families. There are
copula families that do not allow for tail dependence and copula families that only
allow for either lower or upper tail dependence. There are also “reflection sym-
metric” copulas that imply same upper and lower tail dependence for any bivariate
margin and “reflection asymmetric” copulas that allow for flexible upper and lower
tail dependence.

3.3.1 Pair-copula construction

Pairwise copula construction constitutes a very useful way of building flexible mul-
tivariate distributions. The modelling principle is based on a decomposition of a
multivariate density into a cascade of bivariate copulas, which is applied to orig-
inal variables and to their conditional and unconditional distributions. Aas et al.
(2009) were the first to realise that this construction principle can be extended by
allowing arbitrary pair-copula families as building blocks. Therefore, a multivariate
distribution that is decomposed using the pair-copula principle and which allows
for different copula families as building blocks is called mixed vine. Regular vines
include two main types of vines, C-vines and D-vines. Their main difference lies in
the way they organise a multivariate density decomposition. C-vines utilise a star
tree methodology whereas D-vines employ a line tree methodology.

Let X = (X1, . . . , Xd)t be a vector of random variables with a joint density f(x1, . . . , xd),
marginal densities f(x1), . . . , f(xd) and marginal distributions F1(x1), . . . , Fd(xd).
This density can be decomposed as

f(x1, . . . , xd) = fd(xd) · f(xd−1|xd) · f(xd−2|xd−1, xd) · · · f(x1|x2, . . . , xd) , (3.6)

and this factorisation is unique up to a re-labelling of the variables. It can be
shown that the joint distribution function f(x1, . . . , xd), for an absolutely continuous
multivariate distribution F with strictly increasing, continuous marginal densities
can be factorised as

f(x1, . . . , xd) = c1...d
(
F1(x1), . . . , Fd(xd)

)
· f1(x1) · · · fd(xd) , (3.7)
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where c1...d is a uniquely identified d-variate copula density.

At the beginning of this Section, we show that a bivariate joint distribution can be
factorised as a product of a copula and marginal densities as follows

f(x1, x2) = c12(F (x1), F (x2))f1(x1)f2(x2) . (3.8)

Moreover, the conditional density f(x1|x2) can be expressed in terms of a copula as

f(x1|x2) = f(x1, x2)
f2(x2) = c12(F (x1), F (x2))f1(x1)f2(x2)

f2(x2) = c12(F (x1), F (x2))f1(x1) .

(3.9)

For the d-dimensional case it holds that

f(x|ν) = cx,νj |ν−j (F (x|ν−j), F (νj|ν−j)) · f(x|ν−j) , (3.10)

where ν is a d-dimensional vector, νj is an arbitrarily chosen component of ν and
ν−j represents the ν vector, excluding this component. In general, under appro-
priate regularity conditions, a joint density can be decomposed as a product of
bivariate copulas, acting on several different conditional probability distributions.
For example, one possible pair-copula decomposition for d = 3 is

f(x1, x2, x3) = f3(x3) · f(x2|x3) · f(x1|x2, x3)

= f3(x3) · f2(x2) · c23(F2(x2), F3(x3))︸ ︷︷ ︸
f(x2|x3)

· (3.11)

c12|3(F (x1|x3), F (x2|x3)) · c12(F1(x1), F2(x2)) · f1(x1)︸ ︷︷ ︸
f(x1|x2,x3)

.

It is also clear that given a specific decomposition, there are still many different
re-parameterizations. Thus we need to introduce rules that will enable us to de-
compose a joint density into a cascade of pair-copulas. However, before introducing
these rules, we need to introduce another concept related to pair-copula construc-
tion. The pair-copula construction involves marginal conditional distributions of the
form F (x|ν) and we need a way to evaluate such marginal conditional distribution
functions. Joe (1996) showed that for every νj in the vector ν, F (x|ν) can be written
as

F (x|ν) =
∂Cx,νj |ν−j (F (x|ν−j), F (νj|ν−j))

∂F (νj|ν−j)
, (3.12)

where Cx,νj |ν−j is an arbitrary copula distribution function. Following the notation
of Aas et al. (2009) we will use the function h(x, ν;θ) to represent the conditional
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distribution function when x and ν are uniforms. For x, ν ∼ U [0, 1] it holds

hθ = ∂Cθ(Fx(x), Fν(ν))
∂Fν(ν) = ∂Cθ(x,ν)

∂ν
. (3.13)

3.3.2 Canonical vines (C-vines)

There is a significant number of possible pair-copula decompositions for high-dimensional
distributions. It is therefore crucial to introduce rules that can help reduce this
complexity. Bedford and Cooke (2001, 2002) have introduced a graphical way of or-
ganising pair-copula density decompositions, known as regular vines. However, the
class of regular vines is still very extended. Canonical vine (C-vine) and drawable
vine (D-vine) (Kurowicka and Cooke, 2006) constitute two special cases of regular
vines. In this study, we concentrate on C-vines because they have not been exten-
sively investigated in financial applications so far.

The joint density decomposition, as organised by a C-vine, is given in the form of a
nested set of star trees. For the d-dimensional C-vine, the pairs in level 1 are (1, i),
for i = 2 . . . d, and for level `, 2 ≤ ` < d, the (conditional) pairs are (`, i|1, . . . , `− 1)
for i = `+1, . . . , d. Figure 3.3.1 shows the specification for a six-dimensional C-vine.
It consists of five trees, Tj, j = 1 . . . , d − 1. Tree Tj has d + 1 − j nodes and d − j
edges. Each edge corresponds to a bivariate copula density whereas the edge labels
correspond to the subscript of the bivariate copula density. For example, edge 34|12
corresponds to the conditional copula density c34|12(·), where copula density c34|12(·)
can be of any parametric form. In total, d(d − 1)/2 pair-copula families should be
chosen for the whole decomposition. The nodes in tree Tj are necessary for deter-
mining the labels of next tree Tj+1.

As can be seen from Figure 3.3.1, there is one node in each tree which is connected
with the remaining nodes of this particular tree. In principle, the order starts with
a variable that has the highest dependency on all remaining variables, the “pilot”
variable. Conditioning all remaining variables on the first pilot variable, we can
obtain the variable with the second highest dependency on all other variables. This
approach is completed once we select all pilot variables for every tree (Czado et al.,
2012).
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Figure 3.3.1: Tree representation of a canonical vine with 6 variables, 5 trees and 15
edges.
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The d-dimensional canonical decomposition is given by Aas et al. (2009) as follows

f(x) =
d∏
k=1

fk(xk)×
d−1∏
i=1

d−i∏
j=1

ci,i+j|1:(i−1)
(
F (xi|x1, . . . , xi−1), F (xi+j|x1, . . . , xi−1)

)
.

(3.14)
For example, the six-dimensional canonical vine structure of Figure 3.3.1 can be
written as

f(x1, x2, x3,x4, x5, x6) =

f1(x1)f2(x2)f3(x3)f4(x4)f5(x5)f6(x6) · c1,2(F (x1), F (x2))

· c1,3(F (x1), F (x3)) · c1,4(F (x1), F (x4)) · c1,5(F (x1), F (x5))

· c1,6(F (x1), F (x6)) · c2,3|1(F (x2|1), F (x3|1)) · c2,4|1(F (x2|1), F (x4|1))

· c2,5|1(F (x2|1), F (x5|1)) · c2,6|1(F (x2|1), F (x6|1)) · c3,4|1,2(F (x3|1,2), F (x4|1,2))

· c3,5|1,2(F (x3|1,2), F (x5|1,2)) · c3,6|1,2(F (x3|1,2), F (x6|1,2))

· c4,5|1,2,3(F (x4|1,2,3), F (x5|1,2,3)) · c4,6|1,2,3(F (x4|1,2,3), F (x6|1,2,3))

· c5,6|1,2,3,4(F (x5|1,2,3,4), F (x6|1,2,3,4)) . (3.15)

It is clear that the construction is iterative by nature, and given a specific decom-
position in Equation (3.14) there are as many as d!

2 possible C-vine structures. As
already mentioned, for a mixed C-vine copula model we also need to choose a bi-
variate copula family for each of the d(d − 1)/2 pair-copulas. It is therefore quite
important to develop selection rules that allow us to select an appropriate copula
family for each edge in the C-vine model. However, most of these selection rules
are based on estimated C-vines. Thus, we now turn to the parameter estimation in
C-vines.

3.3.3 Inference for a C-vine model

Assume a vector xi = (xi,1, . . . , xi,T )T , i = 1, . . . , d of random variables at T points
in time. Further, assume that the T observations of each random variable xi,t

are independent over time and uniformly distributed on [0,1]. The assumption of
independence, as Aas et al. (2009) note, is not a limiting assumption. Most financial
time series are serial correlated and thus univariate time-series models can be fitted
to the margins and filter the time dependencies. As a result, the analysis can be
continued with the residuals. The log-likelihood of a C-vine model can be written,
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according to Aas et al. (2009), as

`(x;θ) =
d−1∑
j=1

d−j∑
i=1

T∑
t=1

log
[
cj,j+i|1,...,j−1

(
F (xj,t|x1,t, . . . , xj−1,t), F (xj+i,t|x1,t, . . . , xj−1,t)

)]
,

(3.16)
where F (xj,t|x1,t, . . . , xj−1,t) and F (xj+i,t|x1,t, . . . , xj−1,t) are conditional distribu-
tions and determined by Equation (3.12) and the h-function definition in Equa-
tion (3.13).
For each bivariate copula in the sum of Equation (3.16) there is at least one param-
eter to be determined. The number depends on the parametric assumption for each
pair-copula in the C-vine model. For example, a Gaussian copula has one parameter
whereas a Student-t copula has two parameters. If parametric margins are also es-
timated, i.e. fi(xi,t; δi) with i = 1, . . . , d, the added contribution to Equation (3.16)
is

T∑
t=1

d∑
i=1

fi(xi,t; δi) . (3.17)

Under this setting, full MLE estimates can be obtained by maximising Equation (3.16)
combined with Equation (3.17) with respect to the parameters (θ, δi, . . . , δd). In gen-
eral, the full MLE estimation would be our preferred choice of estimation due to its
well-known optimality properties.

Nevertheless, the Inference Functions for Margins (IFM) method is usually preferred
to full MLE due to its computational tractability and comparable efficiency. The
IFM method (see Joe and Hu 1996; Joe 1997, for more details) is a multi-step op-
timisation technique. It divides the parameter vector into separate parameters for
each margin and parameters for the copula model. Therefore, one may break up the
optimisation problem into several smaller optimisation steps with fewer parameters.
For example, in the first step one may maximise the log-likelihood function of the
margins in Equation (3.17) over the parameter vector (δi . . . , δd) and in the second
step the log-likelihood function of the C-vine model in Equation (3.16), given the es-
timated parameters of the margins from the first step, over the parameter vector θ.
The IFM method has been found highly efficient compared to full MLE optimisation
for a number of multivariate models in a study by Joe (1997).

The IFM is a fully parametric method and thus a misspecification of the marginal
distributions may affect the performance of the estimator. In addition, marginal
distributions are almost always unknown in practice. This fact increases the prob-
ability of marginal misspecification. The semi-parametric (SP) method, proposed
by Genest et al. (1995), can tackle the marginal misspecification problem since it
treats the marginal distributions as unknown functions. The SP method is also
known as pseudo maximum likelihood (PML) method. The PML method estimates
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each marginal distribution non-parametrically by the empirical distribution function
(edf) without assuming any particular parametric distribution for the marginals.
Once this is completed, the dependency structure between the marginals is esti-
mated using a parametric multivariate copula family or in our particular study a
C-vine model. Kim et al. (2007) have shown that the MLE/IFM methods are non
robust against marginals misspecification, and that the SP method performs better
than the MLE and IFM methods, overall. Note that in our study the estimation of
a C-vine model, corresponds to the IFM method when marginals are transformed
to uniforms parametrically, or to the PML method when marginal transformations
of the data are obtained non-parametrically.

We now turn to the estimation of C-vine models. C-vine parameters can be es-
timated using the sequential estimator (SE) or the maximum likelihood estimator
(MLE). Following Czado et al. (2012) suppose i.i.d. data ut = (u1,t, . . . , ud,t)t for
t = 1, . . . , T are available. For SE we first estimate the parameters of the un-
conditional bivariate copulas of tree 1. Then these estimates are used to estimate
pair-copula parameters with a single conditioning variable. The estimation proceeds
tree by tree, since the conditional pairs in trees 2, . . . , d − 1 depend on the specifi-
cation of the previous trees via the h-function, defined in Equation (3.13). Hence,
C-vine models are estimated sequentially until all parameters are estimated. The
estimation, in this context, can be carried out either using the inversion of Kendall’s
τ estimates for one parameter bivariate copulas or using MLE.

In particular, the parameter vector θ1,j+1 of bivariate copula families c1,j+1 in tree
1 is estimated using data (u1,t, uj+1,t), t = 1, . . . , T for j = 1, . . . , d − 1. Given the
estimated parameter vector θ̂SE of tree 1, we next want to estimate the parameter
vector θ2,j+1 corresponding to c2,j+2|1 for j = 1, . . . , d− 2 in tree 2. Define

v̂2|1,t := F (u2,t|u1,t; θ̂
SE

1,1 ) = h(u2,t|u1,t; θ̂SE1,1) ,

v̂j+2|1,t := F (uj+2,t|u1,t; θ̂
SE

1,j+1) = h(uj+2,t|u1,t; θ̂SE1,j+1) ,

for j = 1, . . . , d − 2 and denote these estimates by θ̂
SE

2,j . We can subsequently use
data (v̂2|1,t, v̂j+2|1,t), t = 1, . . . , T to estimate θ2,j for j = 1, . . . , d − 2. In order to
estimate the parameter vector θ3,j corresponding to tree 3 and pair-copula families
with double conditioning variables c3,j+3|1,2 for j = 1, . . . , d− 3, we define

v̂3|1,2,t := h(v̂2|1,t|v̂3|1,t; θ̂
SE

2,1 ) ,

v̂j+3|1,t := h(v̂j+3|1,t|v̂3|1,t; θ̂
SE

2,j ) ,

and estimate θ3,j using (v̂3|1,2,t, v̂j+3|1,2,t), t = 1, . . . , T for j = 1, . . . , d− 3.
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Following the same reasoning, one can sequentially estimate the pair-copula pa-
rameters for each nested set of trees in the C-vine structure until all unconditional
and conditional bivariate copula parameters have beed estimated. The sequential
estimates have been recently found by Haff (2013) to be asymptotically normal
under some regularity conditions but their asymptotic covariance properties are in-
tractable (Czado et al., 2012). To improve estimation efficiency we can use MLE
estimation. It is clear that MLE requires a high-dimensional optimisation of the
log-likelihood and therefore it is time consuming compared to SE. Moreover, MLE
requires good starting values of the parameters in the numerical maximisation for
quick convergence. Sequential estimates can be used as starting values for the opti-
misation.

3.3.4 C-vine decomposition and copula selection

In general, there are exactly d!/2 different C-vine structures available and the vari-
ation increases along with the dimension of the dataset. As a result, it is necessary
to develop selection rules that uniquely decompose a C-vine model and provide an
overall good fit to the data. So far, there exist only empirical selection procedures
for a C-vine decomposition (see Nikoloulopoulos et al. (2012); Czado et al. (2012),
for more details). The empirical selection rule of Czado et al. (2012) is followed in
this study. The rule suggests a data driven sequential approach to determine the
pilot variable and the d−1 unconditional pair-copulas in level 1 of the C-vine model.
The rule works as follows. Estimate all possible pairwise Kendall’s τi,j coefficients,
noted τ̂i,j, and find the variable i∗ that maximises

Ŝi :=
d∑
j=1
|τ̂i,j| , (3.18)

over i = 1, . . . , d. Once the variable that is the most dependent on other variables,
i∗, is selected for tree 1, we reorder the variables so that i∗ becomes the first variable.
We can then link the pilot variable i∗ with the remaining variables and select the
unconditional pair-copulas c1,j+1, j = 1, . . . , d − 1. The selection of appropriate
copula-families is based on multiple criteria such as graphical and analytical tools
as well as goodness-of-fit tests. We will discuss this choice later and assume for
the moment that we are able to select a pair-copula family for each unconditional
bivariate copula c1,j+1, j = 1, . . . , d − 1. As in the sequential estimation procedure
d− 1 transformed variables are formed.

v̂j+2|1,t := h(uj+2,t|u1,t;θSE1,j+1) j = 0, . . . , d− 2, t = 1, . . . , T . (3.19)

Based on d− 1 variables of size T all pairwise Kendall’s τ coefficients are estimated
and the pilot variable i∗∗ of tree 2 that maximises Equation (3.18) is selected. Sub-
sequently, we reorder the variables i = 2, . . . , d in such a way that i∗∗ is variable 2.
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Having selected i∗∗ as the pilot variable for tree 2, we can consequently select the
copula families with single conditioning variable 1 c2,j+2|1, j = 1, . . . , d−2. This pro-
cedure is continued until we determine the pilot variable for each tree as well as all
corresponding pair-copulas and their associated sequential parameter estimates θ̂

SE
.

When modelling the dependency structure of random variables using copulas, the
true copula is always unknown. Therefore, we need tools to specify a copula family
appropriate for describing the observed dependence structure of the variables. For
our sequential selection procedure we only need selection rules for bivariate copulas
and hence our analysis will concentrate only on copula selection in two dimensions.
The problem of selecting an appropriate (bivariate) copula family is a well studied
problem in the literature and many procedures have been proposed. In principle
there are two different classes of tools that help in the copula selection procedure,
graphical and analytical tools. In our study, we employ both sets of tools for selecting
the appropriate copula family.

3.4 Model setup

To compute risk estimates for given portfolios of power price series 1, . . . ,M on a
daily basis, we choose a moving window size T for each series in the portfolio, a
sample size N = 1, 000 and portfolio weights ωj , j = 1, . . . ,M with

∑M
j=1 ωj = 1

for equally weighted long only and
∑M
j=1 ωj = −1 for equally weighted short only

portfolios.

(a) We fit an ARMA(p,q) - GARCH(m,r) model for each series in the portfolio.
Therefore, for j = 1, . . . ,M and t = 1, . . . , T we estimate:

rt,j = µj +
p∑
k=1

φk,jrt−k,j + εt,j +
q∑

k=1
θk,jεt−k,j , (3.20)

σ2
t,j = ωj +

m∑
k=1

αk,jε
2
t−k,j +

r∑
k=1

βk,jσ
2
t−k,j , (3.21)

εt,j = σt,jzt,j , (3.22)

where the error term zt,j in Equation (3.22) is an i.i.d. sequence with zero
mean, unit variance and distribution functions, denoted by Fnorm,j and Ft,j (i.e.,
standard normal and standardised Student-t), respectively. Subsequently, we
compute standardised residuals

ẑt,j = 1
σ̂t,j

(
rt,j − µ̂j −

p∑
k=1

φ̂k,jrt−k,j − σ̂t,j ẑt,j −
q∑

k=1
θ̂k,jσ̂t−k,j ẑt−k,j

)
. (3.23)

65



Chapter 3 : Extreme value theory and mixed canonical vine copulas

(b) For the C-vine-EVT and A-C-vine-EVT models we fix a high threshold level
u for the upper and lower tails of the residuals distribution and assume that
excess residuals over this threshold follow the Generalised Pareto Distribution
(GPD). The resulting piecewise semi-parametric distribution, denoted by Fevt,j,
encompasses the estimates of the parametric tails and the non-parametric kernel-
smoothed interior.

(c) We transform the standardised residuals to copula data either parametrically
(C-vine-Norm, C-vine-t) or non-parametrically (C-Vine-EVT, A-C-vine-EVT).

(d) We fit a canonical vine model to the set u = (ut,1, . . . ,ut,M) obtained from the
previous step.

(e) For each n = 1, . . . , N , we generate a sample of ũ1, . . . , ũM uniforms from the
estimated C-vine model, Ĉt, of the previous step.

(f) We convert ũ1, . . . , ũM to standardised residuals (ẑt+1,1, . . . , ẑt+1,M)′ using the
inverse of the corresponding distribution function for each model, F̂−1

evt,j(ũj),
F̂−1

norm,j(ũj) or F̂−1
t,j (ũj).

(g) Based on the estimated conditional mean in Equation (3.20) and variance in Equa-
tion (3.21) of step (a), we compute the ex-ante GARCH variance forecasts for
j = 1, . . . ,M ,

σ2
t+1,j = ω̂j +

m∑
k=1

αk,jε
2
t+1−k,j +

r∑
k=1

βk,jσ
2
t+1−k,j . (3.24)

(h) The estimated ARMA parameters and the GARCH variance forecasts in Equa-
tion (3.24) are used to compute the ex-ante return forecast for j = 1, . . . ,M ,

r̂t+1,j = µ̂j +
p∑
k=1

ϕ̂k,jrt+1−k,j + σ̂t+1,j ẑt+1,j +
q∑

k=1
θ̂k,jσ̂t+1−k,j ẑt+1−k,j . (3.25)

(i) The portfolio return forecast, r̂t+1,P , is given by

r̂t+1,P = ω1r̂t+1,1 + . . .+ ωM r̂t+1,M . (3.26)

(j) We compute VaR and CVaR forecasts by taking α-quantiles of the portfolio
return forecasts

V aRt+1|t(α) = F−1(q) r̂t+1,P , (3.27)

CV aRt+1|t(α) = E(r̂t+1,P |r̂t+1,P > V aRt+1|t(α)) , (3.28)
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where F−1(q) is the qth quantile (q = 1 − α) of the portfolio return forecasts,
r̂t+1,P .

3.5 Data description

This study focuses on power portfolios consisting of spot and futures Phelix power
contracts traded at the European Energy Exchange (EEX). Phelix Futures are
traded for the current week and the next four weeks (Phelix Week Futures), the
current month and the next nine months (Phelix Month Futures), the next eleven
quarters (Phelix Quarter Futures) and the next six years (Phelix Year Futures).
Year and quarter futures are fulfilled by cascading, i.e. futures contracts with longer
delivery periods are replaced by equivalent futures contracts with shorter delivery
periods on the last day of trading. Therefore, three exchange trading days before
the beginning of delivery, year and quarter futures cascade into the respective quar-
ter or month futures whereas the month Phelix futures remain tradeable during the
delivery period and reach their expiry date on the exchange trading day before the
last delivery day. The power portfolios of the present analysis include time series
of spot and futures contracts with delivery during the base (Phelix Baseload) and
peak (Phelix Peakload) hours of each day. The choice of the portfolio constituents
is based on their high level of trading interest and liquidity. The Baseload and
Peakload portfolios include:

• One, two and three months ahead generic time series of daily electricity Phelix
Baseload (F1BM, F2BM and F3BM) and Phelix Peakload (F1PM, F2PM and
F3PM) futures prices.

• One and two quarters ahead generic time series of daily electricity Phelix
Baseload (F1BQ and F2BQ) and Phelix Peakload (F1PQ and F2PQ) futures
prices.

• One and two years ahead generic time series of daily electricity Phelix Baseload
(F1BY and F2BY) and Phelix Peakload (F1PY and F2PY) futures prices.

• Historical time series of daily day-ahead electricity Phelix Baseload (SpotB)
and Phelix Peakload (SpotP) prices.

Both datasets cover a time period of almost 8 years worth of data. The Baseload
dataset covers the period from January 2, 2004 to February 7, 2012 whereas the
Peakload dataset covers the period from January 2, 2004 to February 22, 2012.
In total, there are 2,058 and 2,068 daily price observations for each series in the
Baseload and Peakload portfolios, respectively. However, the present study does
not analyse the price levels of portfolio constituents directly, but instead focuses on
the log-returns of “generic time series”.
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Generic time series are artificially constructed time series that represent the prices
of futures with (approximately) same time to maturity. For example, a one-month-
ahead generic Phelix Baseload futures is the price series that corresponds to the
next-to-delivery contract. The employment of generic time series is useful for ruling
out the well-known Samuelson effect of futures contracts. In general, the variance of
a futures contract increases when the contract approaches maturity. This behaviour
is known as the Samuelson effect and is observable both in price levels and in the
log-returns of individual contracts. Since generic time series always correspond to
futures contracts with same time before delivery, they will not exhibit increasing
volatility within any of the time series (Börger et al., 2007).

For generic return series, however, we transform the data further to account for the
roll-over of the futures contracts and the large jumps in the returns series that do
not stem from price formation at exchanges. For example, the price for a one-month-
ahead generic on January 31, 2011 is the price of the Phelix Feb 2011 Month contract
and the price of the same contract on the next trading day (February 1, 2011) is the
price of the Phelix Mar 2011 Month contract. Calculating the return between these
two days may involve a significant jump in the return series due to the possibility
of the products having different means. To overcome this problem, we apply an
overlap of one day every time that a specific contract approaches its last trading
day and a new contract comes into play. Another problem arises with the quarterly
and yearly futures contracts because they cease trading three business days before
the delivery period. For example, the Phelix Apr 2011 Quarter contract is traded
until March 29, 2011. The last return for this contract can be calculated using the
prices on March 28 and 29, 2011. The return on March 29 is excluded since it is
based on the price of the Phelix Apr 2011 Quarter contract obtained on March 29,
2011 and that of the Phelix Jul 2011 Quarter contract obtained on the next trading
day, March 30, 2011. Therefore, as in the monthly contract case, we have an overlap
of one day every time that a quarterly or yearly futures contract reaches its last
trading day and a new contract comes into play. Nevertheless, monthly and quar-
terly or yearly contracts, as explained above, expire on different trading days within
the same calendar month. Hence, when calculating returns of generic time series,
the monthly return overlaps do not tally with the quarterly or yearly return overlaps.

This problem is solved by excluding the monthly returns every time that they cor-
respond to the one day overlap of the quarterly or yearly contracts. Since we deal
with multivariate time series and are thus interested in the longest possible joint
time series, we also delete trading days which are statutory holidays or weekend
days. Phelix futures contracts are not traded during weekends or statutory holidays
whereas Phelix day-ahead spot power contracts are traded every day of every single
week during the entire year. Figure 3.5.1 displays the actual and transformed generic

68



Chapter 3 : Extreme value theory and mixed canonical vine copulas

return series of the Baseload portfolio. Figure 3.5.1 makes clear the presence of price
spikes due to the roll-over of the futures contracts. Therefore, if we do not take this
fact into account and exclude them from our estimation sample, their presence will
cause severe misspecification problems to our model.
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Figure 3.5.1: Upper: Log-returns of generic Phelix Baseload futures without ad-
justment for the roll-over of futures contracts. Lower: Log-returns of generic Phelix
Baseload futures with adjustment for the roll-over of the futures contracts.

Tables 3.5.1 and 3.5.2 show the descriptive statistics of spot and generic futures
returns, after excluding the artificial jumps from each futures contract. At first
glance, we can note that the number of observations in both samples has been
reduced due to the adjustment in the futures contracts. The mean returns are close
to zero and slightly negative for most of the series considered in both datasets.
What is also evident is the decrease in volatility as we move from the spot series
to futures contracts with longer time to maturity. In other words, the volatility
term-structure can be read off across the different generics. Figure 3.5.2 displays
the contrast between the one-month-ahead generic Phelix Baseload and Peakload
futures returns and the three-months-ahead generic Phelix Baseload and Peakload
futures returns. It is clear that the one-month-ahead futures returns are more volatile
compared to the three-months-ahead futures returns both in the Baseload and the
Peakload portfolios. This behaviour can also be observed in Tables 3.5.1 and 3.5.2
by comparing the sample volatility estimates for each series in the two portfolios.
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Figure 3.5.2: Left: Log-returns of generic Phelix Baseload one-month-ahead and
three-months-ahead power futures. Right: Log-returns of generic Phelix Peakload
one-month-ahead and three-months-ahead power futures.

The volatility of the spot series is the highest among all series in both portfolios
whereas it declines gradually as the expiration of the futures contracts increases.
The maximum and minimum returns of the spot series reach extreme values in both
portfolios, while the maximum and minimum returns of generic futures in the Peak-
load portfolio are higher compared to the values of the corresponding contracts in
the Baseload portfolio. All return series are leptokurtotic with fat tails, as indicated
by the positive values of (excess) kurtosis which is present in all series. The spot
return series are characterised by negative skewness due to the extreme negative
spikes that are present in the spot series whereas almost all generic return series
in both portfolios have positive values of skewness. Furthermore, the high values
of Jarque-Bera statistics and their respective zero p-values reject the assumption of
normality for each series in the two portfolios.

Table 3.5.1: Baseload portfolio summary statistics

SpotB F1BM F2BM F3BM F1BQ F2BQ F1BY F2BY

# of Obser. 1934 1934 1934 1934 1934 1934 1934 1934
Mean 0.0025 -0.0012 -0.0005 -0.0002 -0.0003 0.0000 0.0002 0.0002
Variance 0.0260 0.0005 0.0003 0.0002 0.0002 0.0002 0.0001 0.0001
Stand. Dev. 0.1613 0.0218 0.0173 0.0146 0.0144 0.0123 0.0112 0.0097
Min -1.0764 -0.1461 -0.1423 -0.0727 -0.0836 -0.0615 -0.0705 -0.0634
Max 1.0964 0.1627 0.1489 0.1261 0.1463 0.1091 0.0884 0.0699
Exc. Kurtosis 6.8255 6.0707 7.4221 4.7930 7.9588 6.5901 6.3463 7.0465
Skewness -0.0677 0.1914 0.2660 0.3097 0.5523 0.3647 0.0118 0.1531
JB 3766.7 29.7 4474.9 18.4 5217.3 3553.1 3255.4 4020.6
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
This table reports summary statistics of spot and generic futures returns for the Baseload portfolio.
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Table 3.5.2: Peakload portfolio summary statistics

SpotP F1PM F2PM F3PM F1PQ F2PQ F1PY F2PY

# of Obser. 1945 1945 1945 1945 1945 1945 1945 1945
Mean 0.0031 -0.0019 -0.0019 -0.0010 -0.0004 -0.0007 -0.0003 -0.0001
Variance 0.0338 0.0008 0.0007 0.0004 0.0002 0.0002 0.0002 0.0001
Stand. Dev. 0.1838 0.0278 0.0272 0.0195 0.0158 0.0157 0.0123 0.0101
Min -1.3757 -0.1898 -0.2263 -0.1691 -0.0918 -0.1457 -0.0886 -0.0615
Max 1.3233 0.3295 0.1944 0.1415 0.1549 0.1501 0.1254 0.0670
Exc. Kurtosis 8.8130 27.4211 9.5097 8.2933 9.3500 12.3454 10.4967 4.5930
Skewness -0.1440 2.1953 -0.1580 0.0194 0.4320 0.2912 0.3861 0.0030
JB 6318.5 62640.4 7356.9 5589.6 7164.6 12410.5 9001.2 1715.4
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
This table reports summary statistics of spot and generic futures returns for the Peakload portfolio

3.6 Application to Phelix power portfolios

In this Section we implement the modelling framework, described in Section 3.4, to
forecast daily VaR and CVaR estimates. First, we model the conditional mean and
variance of each return series through time series models. An appropriate ARMA-
GARCH model is selected for each individual series. For the C-vine-EVT mod-
els, a semi-parametric distribution is fitted to each series of standardised residuals.
We transform the standardised residuals to uniforms either parametrically (C-vine-
Norm and C-vine-t) or non-parametrically (C-vine-EVT and A-C-vine-EVT). The
uniforms are used as input data for pair-copula construction. A canonical mixed vine
copula structure is fitted to model the joint distribution of the portfolio return series.
Both sequential and full maximum likelihood parameters for the C-vine models are
estimated. Based on the estimated C-vine structures and ARMA-GARCH models,
next-period returns are simulated and VaR and CVaR estimates are computed.

3.6.1 Univariate fitting of margins using ARMA-GARCH models

The modelling procedure for building an appropriate ARMA-GARCH model, espe-
cially when data are “messy”, is not always straightforward. The stylised features of
each time series analysed in this study are very complex and hence the selection of an
appropriate model is a non-trivial exercise. To select an appropriate model for the
conditional mean and variance of each particular series we work as follows. Firstly,
the AIC information criterion is applied to every return series of both portfolios
and the models, as suggested by the criterion, are estimated. For the conditional
variance equation a low-order GARCH(1,1) model is specified for each series and,
if we cannot adequately model the volatility dynamics of the series, an extra term
is added each time until all “ARCH-effects” have been successfully removed from
the squared residual series. If a model cannot remove the serial correlation from the
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residual series due to significant higher order autocorrelation and partial autocorre-
lation lags, then a suitable AR or MA term is added to the mean specification at
the specific significant high lag orders, to address the seasonal behaviour, and the
model is re-estimated and tested for its adequacy. The conditional mean equations
for all series under consideration can be found in Appendix 3.A. With respect to the
conditional variance models, it seems that a GARCH(1,1) specification is adequate
for all series. The estimated parameters of the ARMA-GARCH models for almost
all cases appear statistically significant at 5% level. Moreover, there is clear evidence
that the models’ assumptions are satisfied1. Therefore, we assume that the selected
time series models are adequate to model the conditional mean and variance of the
Phelix Baseload and Peakload portfolio return series.

3.6.2 Semi-parametric modelling of margins

The semi-parametric modelling of margins has the advantage that we have an ex-
plicit model for each tail. Therefore, we implement the peak over threshold (POT)
method and fit the GPD to observations in the residual series that exceed a high
threshold level u. The most important step in estimating the parameters of the
GPD is the choice of the threshold u. Theorem 3.2.1 tells us that u should be high
enough to approximate the conditional excess distribution by the GPD. On the other
hand, the higher the threshold the less observations are left for the estimation of
parameters and consequently the variance of the parameter estimates increases. So
far, there is no formal method for optimal threshold level selection. In this study
we follow McNeil and Frey (2000) and set the threshold level at the 8th and 92th
percentiles of the residuals distribution for the lower and upper tail, respectively.

As a result of these threshold levels, 134 observations for the Baseload portfolio
residual series and 135 observations for the Peakload portfolio residual series are
used in the estimation process. Table 3.6.1 presents the percentage return threshold
values u and the maximum likelihood GPD estimates of the tail index ξ and the scale
parameter σ with the corresponding standard errors for upper and lower tails. The
estimated tail index values for the Phelix Baseload portfolio range between -0.124
(F2BQ, upper tail) and 0.180 (F1BY, lower tail) whereas for the Phelix Peakload
portfolio they range between -0.140 (F1PY, upper tail) and 0.138 (F2PM, upper
tail). Recall that ξ > 0 corresponds to heavy-tailed distributions whose tails decay
like power functions, such as the Pareto, Student’s-t, Cauchy and Fréchet distribu-
tions. The case ξ = 0 corresponds to distributions whose tails decay exponentially.
In this category belong the normal, exponential, gamma and lognormal distribu-
tions. Finally, the case ξ < 0 corresponds to short-tailed distributions with a finite

1The estimation results and residual diagnostic tests are not presented due to space limitation
but are available upon request to the authors.
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right endpoint, such as the uniform and beta distributions (McNeil and Frey, 2000).

Table 3.6.1: Maximum likelihood GPD estimates

Baseload Portfolio

Lower tail Upper tail
Series u (%) ξ̂ se(ξ) σ̂ se(σ) u (%) ξ̂ se(ξ) σ̂ se(σ)

SpotB -1.259 0.126 0.091 0.606 0.076 1.273 0.087 0.099 0.603 0.079
F1BM -1.342 -0.037 0.078 0.549 0.064 1.340 -0.099 0.092 0.729 0.092
F2BM -1.340 0.004 0.083 0.503 0.060 1.351 -0.018 0.091 0.650 0.081
F3BM -1.337 -0.050 0.085 0.592 0.072 1.391 -0.072 0.070 0.610 0.068
F1BQ -1.337 -0.060 0.095 0.580 0.075 1.391 0.000 0.090 0.577 0.072
F2BQ -1.363 0.120 0.099 0.477 0.063 1.374 -0.124 0.086 0.612 0.074
F1BY -1.279 0.180 0.096 0.530 0.068 1.368 -0.096 0.092 0.522 0.066
F2BY -1.245 0.161 0.093 0.589 0.075 1.378 0.010 0.097 0.517 0.067

Peakload Portfolio

Lower tail Upper tail
Series u ξ̂ se(ξ) σ̂ se(σ) u ξ̂ se(ξ) σ̂ se(σ)

SpotP -1.259 0.068 0.101 0.528 0.070 1.323 0.057 0.104 0.704 0.095
F1PM -1.335 0.065 0.103 0.562 0.075 1.274 -0.013 0.106 0.727 0.099
F2PM -1.365 -0.056 0.080 0.565 0.066 1.276 0.138 0.098 0.589 0.077
F3PM -1.326 -0.087 0.091 0.672 0.084 1.285 0.096 0.108 0.612 0.084
F1PQ -1.387 0.092 0.114 0.476 0.068 1.292 0.069 0.090 0.602 0.075
F2PQ -1.323 -0.042 0.084 0.697 0.084 1.282 -0.008 0.073 0.613 0.069
F1PY -1.278 0.110 0.092 0.568 0.071 1.333 -0.140 0.076 0.634 0.072
F2PY -1.320 0.045 0.076 0.635 0.073 1.336 -0.014 0.106 0.552 0.075
This table reports maximum likelihood estimates (MLE) of the parameters of the Generalised
Pareto Distribution (GPD) and threshold percentage returns (u (%)) corresponding to 8%
and 92% of empirical quantiles for lower and upper tail, respectively.

High values of the estimated tail index are an indication of extreme values since
ξ > 0 reflects heavy-tailed distributions. According to the tail index parameter es-
timates, most of the tail forms do not correspond to fat-tailed distributions. The
highest positive tail index value equals to 0.180 and corresponds to the F1BY Phe-
lix Baseload series. This value, though, does not imply a very fat-tail form. For
example, an empirical study by Byström (2005), using extremely fat-tailed Nord
Pool hourly electricity prices, found that a Fréchet distribution applies to the upper
tail of standardised residuals. Similar results were also found by Fong Chan and
Gray (2006). The above evidence is not strongly supported by our empirical GPD
parameter estimates. The upper tail index GPD estimates for Spot Baseload and
Peakload data are positive but their numerical values cannot reach the values of
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the tail index parameters of the above studies. This is probably an indication that
Phelix Spot market does not experience so many extreme price events compared to
other electricity markets.

3.6.3 Selection and estimation of C-vine models

Four different C-vine structures are estimated for both portfolios. Table 3.6.2 sum-
marises the specifications of the models investigated. The selection of copula families
for each pair-copula in the C-vine specification is mainly based on the Akaike Infor-
mation Criterion (AIC). There are two main reasons behind this choice. Firstly, it is
practically impossible, in large dimensions, for one to investigate every single uncon-
ditional and conditional pair-copula in the vine structure and define accordingly an
appropriate copula family for each of these pairs. As a result, we use the AIC, which
is the most frequently used criterion in copula selection literature. The range of all
possible copula families employed by the criterion is defined in Appendix 3.B. The
second main reason that drives our copula selection strategy is related to the theo-
retical and empirical results of the studies by Joe et al. (2010) and Nikoloulopoulos
et al. (2012).

Joe et al. (2010) show that vine copulas can have a different upper and lower tail
dependence for each bivariate margin when asymmetric bivariate copulas with up-
per/lower tail dependence are used in level 1 of the vine. In other words, in order
for a vine copula to have tail dependence for all bivariate margins, it is necessary
for the bivariate copulas in level 1 to have tail dependence but it is not necessary
for the conditional bivariate copulas in levels 2, . . . , d − 1 to have tail dependence,
too. At levels 2 or higher, Independence or Gaussian copulas might be adequate
to model the dependency structure. Moreover, Nikoloulopoulos et al. (2012) show
that vine copulas with bivariate Student-t linking copulas tend to be preferred in
likelihood-based selection methods because they provide a better fit in the middle
for the first level of the vine. They suggest that for inference involving the tails,
the “best-fitting” copula should not be entirely likelihood-based but also depend on
matching the non-parametric tail dependence measures and extreme quantiles. Tak-
ing these results into account, we also consider a hybrid of the C-vine-EVT model,
where all Student-t bivariate linking copulas selected by the AIC in level 1 are re-
placed by asymmetric copula families. If the empirical data present different degrees
of tail dependence, we expect to get more accurate risk measure estimates from vine
models that allow asymmetries.

74



Chapter 3 : Extreme value theory and mixed canonical vine copulas

Table 3.6.2: Summary of models investigated for the Phelix Baseload and Peakload portfolios

Model Model type

C-vine-EVT Mixed C-vine model with semi-parametric margins

A-C-vine-EVT Same as C-vine-EVT model but all t-copulas in tree 1 are replaced
by asymmetric copula families

C-vine-Norm C-vine copula with all pair-copulas being Gaussian copulas and
normal margins

C-vine-t C-vine with all pair-copulas being t-copulas and Student-t margins

This table summarises the alternative specifications applied to the Phelix Baseload and Peakload
portfolios for modelling their joint distribution and forecasting VaR and CVaR.

3.6.4 Baseload selection and estimation results

After filtering the original return series with the appropriate ARMA-GARCH mod-
els, the resulting standardised residual series are transformed to uniform pseudo-
observations. Figure 3.6.3 displays scatter plots and the estimated Kendall’s τ
coefficients of standardised residual series. The results highlight the positive de-
pendence among the generic residual series and the almost absolute independence
between the spot residual series and the rest of the series in the Phelix Baseload
portfolio. Moreover, Figure 3.6.4 provides insight regarding the degree of tail de-
pendence. In particular, Figure 3.6.4 displays Chi-plots of the upper right and lower
left quadrats of the series that allow us to detect upper and lower tail dependence.
Figure 3.6.4 illustrates a variety of tail dependence behaviours among the residual
series. Most of the series either do not show significant tail dependence or show
symmetric tail dependence. However, there are a few cases that display some degree
of asymmetric tail dependence.

We now apply the sequential procedure of Czado et al. (2012) to select an appropriate
C-vine copula model for the Phelix Baseload copula data. Table 3.6.3 reports the
empirical Kendall’s τ correlation matrix of the transformed residual series and the
sum of their absolute values, denoted by Ŝ and defined in Equation (3.18). According
to Table 3.6.3, the i∗ variable that maximises the sum of absolute values, Ŝ, is the
F1BQ series and consequently it is placed as the pilot variable in level 1 of the
vine structure. Table 3.6.4 presents the empirical Kendall’s τ matrix of the series,
conditioned on i∗ = F1BQ, and the sum over the absolute entries of each row. The
i∗∗ variable that maximises Ŝ is the F1BY series and is set as the pilot variable in
level 2. Following the same identification procedure, the ordering of the variables
for the mixed C-vine structure in the Baseload portfolio is specified as follows

F1BQ− F1BY − F1BM − F2BY − F2BQ− SpotB − F3BM − F2BM
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Table 3.C.1 in Appendix 3.C provides an overview of selected unconditional and
conditional pairs for each level of the C-vine model. The above sequential procedure
not only identifies an appropriate factorisation for the mixed C-vine model but also
identifies the pair-copula families for each tree and provides sequential estimates
θ̂SE.

Table 3.6.3: Kendall’s τ correlation matrix and Ŝ estimates for the Phelix Baseload portfolio

SpotB F1BM F2BM F3BM F1BQ F2BQ F1BY F2BY Ŝ

SpotB 1.00 -0.02 -0.02 -0.03 -0.03 -0.03 -0.04 -0.05 1.20
F1BM -0.02 1.00 0.66 0.58 0.65 0.48 0.45 0.39 4.22
F2BM -0.02 0.66 1.00 0.68 0.75 0.57 0.54 0.48 4.70
F3BM -0.03 0.58 0.68 1.00 0.79 0.61 0.58 0.50 4.76
F1BQ -0.03 0.65 0.75 0.79 1.00 0.64 0.62 0.54 5.02
F2BQ -0.03 0.48 0.57 0.61 0.64 1.00 0.72 0.63 4.67
F1BY -0.04 0.45 0.54 0.58 0.62 0.72 1.00 0.75 4.70
F2BY -0.05 0.39 0.48 0.50 0.54 0.63 0.75 1.00 4.35

This table reports the unconditional empirical Kendall’s τ estimates and the sum over the
absolute entries of each row for the Phelix Baseload portfolio copula data. The boldface value
in the Ŝ column indicates the variable that maximises the sum of Kendall’s τ absolute values.

Table 3.6.6 presents the resulting mixed C-vine-EVT model and the sequential and
maximum likelihood estimates. All pair-copula families are selected by the AIC
without testing for independence, and the sequential estimates are used as initial
values to obtain maximum likelihood estimates. It can be seen that the sequential
θ̂SE and maximum likelihood θ̂MLE estimates are pretty close for all estimated
models. These findings support the employment of sequential estimation as the
preferred optimisation method. With respect to copula selection, 13 different copula
types were selected for the 28, in total, different pair-copulas in the C-vine-EVT
model. The majority of the selected copula families correspond to the Student-t
copula. The empirical results of our likelihood-based copula selection procedure seem
to agree with the empirical findings of Nikoloulopoulos et al. (2012). In particular,
5 out of 8 selected copula families in level 1 belong to the Student-t copula. Based
on the above results, we specify the A-C-vine-EVT model by replacing the selected
Student-t copula families of level 1 with asymmetric copula families. For levels
2 . . . d − 1, the selection of the appropriate copula family is based on the AIC. We
also test for independence in the C-vine model. The Independence copula is selected
for pair-copulas that cannot reject the null hypothesis of independence.
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Table 3.6.4: Kendall’s τ correlation matrix and Ŝ estimates for the Phelix Baseload portfolio.

F3BM|i∗ F1BY|i∗ F2BM|i∗ F2BQ|i∗ F2BY|i∗ F1BM|i∗ SpotB|i∗ Ŝ

F3BM|i∗ 1.00 0.07 -0.01 0.08 0.02 -0.06 0.01 1.25
F1BY|i∗ 0.07 1.00 -0.00 0.48 0.59 -0.08 -0.02 2.24
F2BM|i∗ -0.01 -0.00 1.00 0.01 -0.02 0.20 0.01 1.25
F2BQ|i∗ 0.08 0.48 0.01 1.00 0.38 -0.07 -0.01 2.03
F2BY|i∗ 0.02 0.59 -0.02 0.38 1.00 -0.10 -0.03 2.13
F1BM|i∗ -0.06 -0.08 0.20 -0.07 -0.10 1.00 0.01 1.52
SpotB|i∗ 0.01 -0.02 0.01 -0.01 -0.03 0.01 1.00 1.09
This table reports the conditional empirical Kendall’s τ estimates and the sum over the absolute
entries of each row for the Phelix Baseload portfolio copula data, conditioned on i∗ = F1BQ
variable. The boldface value in the Ŝ column indicates the variable that maximises the sum of
Kendall’s τ absolute values.

The specification of appropriate asymmetric copula families in place of the selected
Student-t copula families in level 1 of the C-vine-EVT model is based on a set of an-
alytical and graphical tools. In particular, we employ the Vuong (1989) and Clarke
(2007) goodness-of-fit tests as well as the empirical and theoretical contour plots
and λ-function plots to assess the fit of the selected copula families to the empirical
data. Table 3.6.5 reports the Vuong and Clarke test results of the selected Student-t
pair-copulas in level 1 against copula families with a different tail dependence. We
employ copula families with only upper or only lower tail dependence and fami-
lies whose upper tail dependence is different from their lower tail dependence. The
goodness-of-fit results of Table 3.6.5 are in line with the AIC results of the C-vine-
EVT model. Both tests provide the highest scores for the Student-t copula for each
pair analysed. The BB1 and SBB1 families obtain the second highest scores whereas
the rest of the copula families employed obtain negative scores for most of the pairs
under consideration.

Table 3.6.5: Vuong and Clarke goodness-of-fit test results

Test Pairs Student-t C G J BB1 BB6 BB7 BB8 SBB1 SBB7

Vuong test

F1BQ-F1BY 8 -8 -1 -8 5 -3 -2 6 5 -2
F1BQ-F1BM 9 -8 0 -8 6 -2 -1 -1 6 -1
F1BQ-F2BQ 9 -8 0 -8 5 -2 -1 1 5 -1
F1BQ-F3BM 9 -8 1 -8 6 -1 0 -5 6 0
F1BQ-F2BM 9 -8 3 -8 6 1 -3 -3 6 -3

Clarke test

F1BQ-F1BY 9 -8 1 -8 5 -1 -4 5 5 -4
F1BQ-F1BM 9 -8 3 -8 6 1 -4 -1 6 -4
F1BQ-F2BQ 9 -7 2 -9 6 0 -4 1 6 -4
F1BQ-F3BM 9 -8 3 -8 5 1 -2 -5 7 -2
F1BQ-F2BM 9 -8 3 -8 6 1 -3 -3 6 -3

This table reports results for the Vuong and Clarke goodness-of-fit tests. For each possible pair of
copula families the Vuong and the Clarke tests decides which of the two families fits the given data
best and assigns a score - pro or contra a copula family - according to this decision.
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The above test results imply tail dependence in the pairs analysed, since the copula
families with the highest scores suggest symmetric (Student-t copulas) or asymmet-
ric (BB1 and SBB1) upper and lower tail dependence while copula families that have
only upper or only lower tail dependence are disregarded. Therefore, it seems that
the employment of asymmetric copula families is not necessary for our data set. As
indicated by the Chi-plots of Figure 3.6.4 and the likelihood-based goodness-of-fit
test results, it seems that there is a symmetric tail dependence and thus Student-t
copula is the appropriate copula family for modelling this behaviour.

Nevertheless, we want to investigate whether the specification of asymmetric copula
families in place of Student-t selected copula families in level 1 of the vine structure
can improve the model performance in VaR and CVaR forecasting. Thus, we replace
the Student-t copulas of the F1BQ-F1BY, F1BQ-F1BM, F1BQ-F2BQ and F1BQ-
F2BM pairs with the BB1 copula whereas for the F1BQ-F3BM pair we choose the
SBB1 copula. Figures 3.6.1 and 3.6.2 compare the fit of Student-t and BB1 copulas
on the F1BQ-F1BM pair-copula data through contour and λ-function plots.

In general, the theoretical Student-t contour plots for all pairs analysed match the
corresponding empirical contour plots better than the theoretical BB1 contour plots.
The same conclusions can be drawn from the λ-function plot comparisons. The sim-
ulated Student-t copula λ-function plots seem to fit the interior part of the bivariate
distribution better than the corresponding BB1 λ-function plots. However, the
BB1 λ-functions appear adequate for fitting the tails of the distribution. Table 3.6.7
presents the resulting mixed A-C-vine-EVT model and the sequential and maximum
likelihood estimates.2

2Similar graphs were also plotted for the rest of the pairs under investigation.
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Empirical contour plot
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Figure 3.6.1: Empirical and theoretical contour plots for assessing the fit of Student-t
and BB1 copulas on the transformed pair-copula F1BQ-F1BY Phelix Baseload data.

0.0 0.2 0.4 0.6 0.8 1.0

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

t copula

v

λ(v
)

0.0 0.2 0.4 0.6 0.8 1.0

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

BB1 copula

v

λ(v
)

Figure 3.6.2: Plots of λ-functions for assessing the fit of Student-t and BB1 copulas
on the transformed pair-copula F1BQ-F1BY Phelix Baseload data.
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Table 3.6.6: Maximum likelihood and sequential estimates of the C-vine-EVT model

Level Block Family Param. θ̂SE θ̂MLE

1

C1,2 t
ρ̂ 0.81 0.81
ν̂ 7.68 7.79

C1,3 Student-t
ρ̂ 0.84 0.85
ν̂ 7.48 7.47

C1,4 F θ̂ 6.55 6.37

C1,5 Student-t
ρ̂ 0.83 0.83
ν̂ 9.59 9.6

C1,6 BB8_90 θ̂ -1.08 -1.09
δ̂ -0.97 -0.95

C1,7 Student-t
ρ̂ 0.94 0.94
ν̂ 6.98 6.93

C1,8 Student-t
ρ̂ 0.92 0.92
ν̂ 6.69 6.69

2

C2,3|1 N ρ̂ -0.12 -0.12

C2,4|1 Student-t
ρ̂ 0.79 0.8
ν̂ 6.31 6.33

C2,5|1 Student-t
ρ̂ 0.68 0.68
ν̂ 6.93 6.95

C2,6|1 F θ̂ -0.21 -0.18

C2,7|1 Student-t
ρ̂ 0.11 0.12
ν̂ 8.28 8.31

C2,8|1 C 270 θ̂ -0.01 -0.01

3

C3,4|1,2 BB8_270 θ̂ -1.12 -1.13
δ̂ -0.96 -0.94

C3,5|1,2 F θ̂ -0.17 -0.15
C3,6|1,2 SC θ̂ 0.04 0.04

C3,7|1,2 Student-t
ρ̂ -0.07 -0.09
ν̂ 9.34 9.38

C3,8|1,2 SBB7 θ̂ 1.29 1.29
δ̂ 0.26 0.24

4

C4,5|1,2,3 G θ̂ 1.04 1.04

C4,6|1,2,3 Student-t
ρ̂ -0.04 -0.04
ν̂ 10.84 10.84

C4,7|1,2,3 N ρ̂ -0.08 -0.08

C4,8|1,2,3 Student-t ρ̂ -0.03 -0.03
ν̂ 18.69 18.69

5
C5,6|1,2,3,4 C90 θ̂ -0.03 -0.03

C5,7|1,2,3,4 Student-t
ρ̂ 0.06 0.05
ν̂ 16.72 16.72

C5,8|1,2,3,4 SJ θ̂ 1.05 1.05

6 C6,7|1,2,3,4,5 J θ̂ 1.02 1.01
C6,8|1,2,3,4,5 SC θ̂ 0.01 0

7 C7,8|1,2,3,4,5,6 Student-t
ρ̂ 0.01 0.01
ν̂ 6.1 6.09

This table reports the estimated parameters of the C-vine-EVT model for the Phelix Baseload port-
folio. θ̂SE and θ̂MLE correspond to sequential and maximum likelihood estimated parameters, re-
spectively. Selected copula families are explained in Table 3.B.1.
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Table 3.6.7: Maximum likelihood and sequential estimates of the A-C-vine-t model

Level Block Family Param. θ̂SE θ̂MLE

1

C1,2 BB1 θ̂ 0.49 0.49
δ̂ 1.91 1.91

C1,3 BB1 θ̂ 0.54 0.54
δ̂ 2.05 2.05

C1,4 F θ̂ 6.55 6.55

C1,5 BB1 θ̂ 0.58 0.58
δ̂ 1.95 1.95

C1,6 Ind.

C1,7 SBB1 θ̂ 0.29 0.29
δ̂ 3.76 3.76

C1,8 BB1 θ̂ 0.56 0.56
δ̂ 2.87 2.87

2

C2,3|1 N ρ̂ -0.1 -0.1

C2,4|1 Student-t ρ̂ 0.78 0.78
ν̂ 6.6 6.6

C2,5|1 Student-t ρ̂ 0.68 0.68
ν̂ 6.97 6.97

C2,6|1 Ind.
C2,7|1 Student-t ρ̂ 0.11 0.11

ν̂ 8.29 8.29
C2,8|1 Ind.

3

C3,4|1,2 BB8_270 θ̂ -1.15 -1.15
δ̂ -0.97 -0.97

C3,5|1,2 Ind.
C3,6|1,2 Ind.
C3,7|1,2 Student-t ρ̂ -0.07 -0.07

ν̂ 10.08 10.08

C3,8|1 SBB7 θ̂ 1.29 1.29
δ̂ 0.26 0.26

4
C4,5|1,2,3 G θ̂ 1.04 1.04
C4,6|1,2,3 Ind.
C4,7|1,2,3 N ρ̂ -0.09 -0.09
C4,8|1,2,3 Ind.

5
C5,6|1,2,3,4 Ind.
C5,7|1,2,3,4 Student-t ρ̂ 0.06 0.06

ν̂ 18.45 18.45
C5,8|1,2,3,4 Ind.

6 C6,7|1,2,3,4,5 Ind.
C6,8|1,2,3,4,5 Ind.

7 C7,8|1,2,3,4,5,6 Ind.
This table reports the estimated parameters of the A-C-vine-t model for the Phelix Baseload portfolio.
θ̂SE and θ̂MLE correspond to sequential and maximum likelihood estimated parameters, respectively.
Selected copula families are explained in Table 3.B.1.
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Figure 3.6.3: Dependence structure of standardised residuals in the Baseload portfolio. Upper diagonal
matrix: Sample Kendall’s τ correlation coefficients for each pair of standardised residual series. Lower
diagonal matrix: Bivariate scatter plots for each pair of standardised residual series.
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Figure 3.6.4: Tail dependence of transformed standardised residuals in the Baseload portfolio. Upper
diagonal matrix: Chi-plots for each pair of transformed standardised residuals for the upper right quadrat.
Lower diagonal matrix: Chi-plots for each pair of transformed standardised residuals for the lower left
quadrat.
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Chapter 3 : Extreme value theory and mixed canonical vine copulas

3.7 Empirical results

We forecast the one-day-ahead VaR and CVaR of equally weighted long only and
short only Phelix Baseload and Peakload portfolios. The competing models are spec-
ified in Table 3.6.2. We also employ the RiskMetrics (RM) model with smoothing
constant λ = 0.94 as a naive benchmark. To backtest the models we use a period of
250 trading days that corresponds approximately to one year of trading. The fore-
casting period for the Baseload portfolio corresponds to the period from January
25, 2011 to February 07, 2012 and that of the Peakload portfolio spans the period
from February 10, 2011 to February 22, 2012. We evaluate all risk estimates at 1%
and 5% confidence levels, since they constitute the levels most commonly used for
model evaluation both in literature and in financial markets. Figure 3.7.1 displays
the Baseload portfolio return series and the 95%-VaR forecasts for the mixed C-
vine-EVT and A-C-vine-EVT models. For a backtesting period of 250 observations
and confidence levels 1% and 5% we expect 2.5 and 12.5 exceedances, respectively.
According to Figure 3.7.1, both models seem to respond well to volatility changes
and produce an acceptable number of failures. However, the VaR performance for
each single model is hard to assess visually and hence a two-stage selection proce-
dure, similar to Sarma et al. (2003), is followed. In the first stage, all models are
tested for statistical accuracy and, if they survive rejection, a second stage filtering
of the surviving models is employed using subjective loss functions.

3.7.1 Statistical tests

The first-stage of the model selection procedure is useful for examining whether
the VaR estimates coming from alternative models satisfy the appropriate theo-
retical statistical properties. A well-specified VaR model should produce statisti-
cally meaningful VaR forecasts. Therefore, the proportion of exceedances should
approximately equal the VaR confidence level (unconditional coverage) while the
exceedances should not occur in clusters but instead independently. For example, a
well-specified model should produce low VaR forecasts in times of low volatility and
high VaR forecasts in times of high volatility, so that exceedances are spread over the
entire sample period, and do not come in clusters. Therefore, a model which fails to
capture the volatility dynamics of the underlying return distribution will suffer from
a clustering of failures, even if it can produce the correct unconditional coverage.
The term “conditional coverage” includes both properties. In the literature, there
have been proposed a wide range of tests designed to test for these two properties.
In principle, there are no universal guidelines on which tests to employ, since each
test has its own merits and demerits. Thus, we employ the Kupiec (1995) uncondi-
tional coverage test, the conditional coverage test by Christoffersen (1998) and the
duration-based Weibull test of independence by Christoffersen and Pelletier (2004),
which are very popular, in the literature, for testing the above two properties.

83



Chapter 3 : Extreme value theory and mixed canonical vine copulas

−0
.0

5
0.

00
0.

05

● ●

●

● ●
●●

● ●
●

Apr−11 Jul−11 Oct−11 Jan−12

−0
.0

5
0.

00
0.

05

VAR: Mixed A−C−vine−EVT model

Back−Test Period (250 Days)

R
et

ur
ns

Portfolio Returns
VaR at 95%

● ●

●

●
●

−0
.0

5
0.

00
0.

05

● ● ●
●

●
●

●●
●

●
●

Apr−11 Jul−11 Oct−11 Jan−12

−0
.0

5
0.

00
0.

05

VAR: Mixed C−vine−EVT model

Back−Test Period (250 Days)

R
et

ur
ns

Portfolio Returns
VaR at 95%

● ●

●

● ● ●

Figure 3.7.1: Baseload portfolio returns and 95%-VaR forecasts for the A-C-vine-EVT and
C-vine-EVT models. VaR exceedances are marked by red points

3.7.1.1 Kupiec (1995) test for unconditional coverage (LRuc)

The most well-known test based on failure rates has been proposed by Kupiec (1995).
The test is a likelihood-ratio test and measures whether the number of exceedances
is consistent with the confidence level. Under the null hypothesis that the model is
“well-specified”, the number of exceedances should follow the binomial distribution.
Therefore, the idea is to examine whether the observed failure rate π̂ is significantly
different from α, the failure rate implied by the confidence level. The likelihood-ratio
test statistic is given by

LRuc = −2log
[
αn1(1− α)n0

π̂n1(1− π̂)n0

]
∼ χ2

(1) , (3.29)

where n1 is the number of exceedances, n0 is the number of non-exceedances, α is
the confidence level at which VaR measures are estimated and π̂ = n1/(n0 + n1)
is the MLE estimate of α. Under the null hypothesis, LRuc is asymptotically χ2

distributed with one degree of freedom. Nevertheless, Kupiec’s test exhibits two
major shortcomings. First, the test is statistically weak with sample sizes consistent
with the current regulatory framework (one year). Second, the test only considers
the frequency of exceedances and does not take into account the time when they
occur. This means that it may fail to reject a model which suffers from clustered ex-
ceedances. Therefore, backtesting should not rely entirely on unconditional coverage
but clustered exceedances should also be taken into account.
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3.7.1.2 Christoffersen (1998) test for conditional coverage (LRcc)

Christoffersen (1998) proposed a “conditional coverage” test that jointly examines
whether the total number of exceedances is equal to the expected one, and whether
the VaR failures are independently distributed. The test is carried out, given the
realisation of return series rt and the ex-ante VaR for a α% coverage rate by first
defining an indicator function It+1 that gets the value of 1 if a VaR violation occurs
and 0 otherwise. If the model is “well-specified”, then an exception today should not
depend on whether or not an exception occurred on the previous day and the total
number of exceedances should be consistent with the confidence level. Therefore,
by combining the test statistic of independence (LRind) with Kupiec’s test statistic
(LRuc), we obtain a conditional coverage test LRcc = LRuc+LRind that jointly tests
for these two properties - i.e. the correct VaR failures and the independence of the
exceedances. The LRcc test statistic for the correct conditional coverage is given by

LRcc = −2log (1− α)n0αn1

(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11
∼ χ2

(2), (3.30)

where nij is the number of i values followed by a j value in the It+1 series (i, j = 0, 1),
πij = Pr{It+1 = i|It = j} (i, j = 0, 1), π̂01 = n01/(n00 + n01), π̂11 = n11/(n00 + n01).
LRcc is χ2 distributed too, but with two degrees of freedom. The above tests are
reliable for detecting misspecified risk models when the temporal dependence in the
sequence of VaR violations is a simple first-order Markov structure. However, we
are interested in tests that have power against more general forms of dependence.
The duration-based Weibull test of Christoffersen and Pelletier (2004) deals with
this issue.

3.7.1.3 Christoffersen and Pelletier (2004) duration based test

The intuition behind the duration-based tests is that the clustering of exceedances
will result in an excessive number of relatively short or relatively long no-hit dura-
tions (i.e., the duration of time (in days) between two VaR violations), corresponding
to market turmoil and market calm, respectively. Following Christoffersen and Pel-
letier (2004), we denote by di the duration between two consecutive VaR violations
(i.e., the no-hit duration)

di = ti − ti−1 ,

where ti denotes the day of the ith exceedance. Under the conditional coverage
hypothesis, the duration process di follows a geometric distribution with probability
equal to α and a probability density function, given by

f(d;α) = α(1− α)d−1 d ∈ N∗ . (3.31)
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The general idea of the test is to specify a distribution that nests Equation (3.31),
so that the memoryless property can be tested via parameter restriction (Hurlin
and Pérignon, 2011). The only memory free (continuous) random distribution is the
exponential one, and thus under the null hypothesis the distribution of the no-hit
durations should be

fexp(d; p) = p exp(−pd) . (3.32)

In Equation (3.32) we have E(d) = 1/α and, since the conditional coverage hypothe-
sis implies a mean of duration equal to 1/α, it also implies the condition p = a.
With regard to statistical testing for independence, Christoffersen and Pelletier
(2004), specify an alternative distribution that allows dependence. They consider
the Weibull distribution where

fw(d; p, b) = pbbdb−1 exp
(
(−pdi)b

)
. (3.33)

This particular type of distribution is able to capture violation clustering. When
b < 1, the Weibull will have a decreasing hazard function that corresponds to a high
number of very short durations (very volatile period) and a high number of very
long durations (low volatile period). This can be evidence of misspecified volatility
dynamics in the risk model (Christoffersen and Pelletier, 2004).

Since the exponential distribution corresponds to a Weibull with a flat hazard func-
tion, i.e., b = 1, the test for independence (Christoffersen and Pelletier, 2004) is

H0,ind : b = 1 . (3.34)

Berkowitz et al. (2009) extended this approach to address the conditional coverage
hypothesis, which is

H0,cc : b = 1 & p = α . (3.35)

3.7.2 Loss functions

The idea of employing loss functions to assess VaR performance was firstly intro-
duced by Lopez (1998, 1999). The loss function evaluation method is not based on a
hypothesis-testing framework, but rather on assigning to VaR estimates a numerical
score that reflects the evaluator’s specific concerns. As such, it provides a measure
of relative performance that can be utilised to assess the performance of VaR esti-
mates. Under this approach, a model which minimises the loss is preferred to other
models (Lopez, 1998). The general form of a loss function for the ith model is

Li,t+1 =

f(rt+1, V aRi,t+1|t) if rt+1 < V aRi,t+1|t ,

g(rt+1, V aRi,t+1|t) if rt+1 ≥ V aRi,t+1|t ,
(3.36)
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where f(x, y) and g(x, y) are functions such that f(x, y) ≥ g(x, y) for a given y.
Lower values of Li,t+1 are preferred because exceedances are given higher scores
than non exceedances. The total numerical score for each risk model i, is obtained
by summing out the individual loss function estimates for the complete regulatory
sample.

Under general conditions, accurate VaR estimates generate the lowest possible nu-
merical scores. This approach for evaluating VaR performance is very flexible since
the loss function can take different forms that represent the evaluator’s specific
concerns. However, this approach is vulnerable to misspecification of the loss func-
tion.Various loss functions have been proposed in the literature in order to address
specific regulatory concerns. In this study, we employ the magnitude loss function
(MLF) of Lopez (1998), the regulatory loss function (RLF) of Sarma et al. (2003)
and the predictive quantile loss function (PQLF) of Koenker and Bassett (1978)
in order to evaluate the VaR performance of our risk models. We also evaluate
the CVaR performance by employing the mean absolute error (MAE) and mean
squared error (MSE) loss functions of Angelidis and Degiannakis (2007).

The magnitude loss function of Lopez (1998) incorporates two main regulatory con-
cerns: the magnitude as well as the number of exceedances. The magnitude loss
function has the following general representation

QLi,t+1 =

1 + (ri,t+1 − V aRi,t+1|t)2 if ri,t+1 < V aRi,t+1|t ,

0 if ri,t+1 ≥ V aRi,t+1|t .
(3.37)

A score of 1 is given when a violation occurs, and an additional quadratic term,
based on its magnitude, is also included. The numerical score increases with the
magnitude of the exception and hence can provide additional information about
the VaR relative performance. The second type of loss function we apply is the
regulatory loss function of Sarma et al. (2003), which is similar to the magnitude
loss function of Lopez (1998). This function does not penalise for the number of
exceedances but only for the magnitude of the failure. It takes the following form

RLFi,t+1 =

(ri,t+1 − V aRi,t+1|t)2 if ri,t+1 < V aRi,t+1|t ,

0 if ri,t+1 ≥ V aRi,t+1|t .
(3.38)

As in the loss function in Equation (3.37), the quadratic term in Equation (3.38)
ensures that large VaR exceedances are penalised more than small VaR exceedances.
The predictive quantile loss function of Koenker and Bassett (1978) penalises more
heavily observations for which an exception occurs, and represents a measure of the
predicted tail at a given confidence level. The loss function may take the following
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form

PQLFi,t+1 =

|ri,t+1 − V aRi,t+1|t| · (1− α) if ri,t+1 < V aRi,t+1|t ,

|ri,t+1 − V aRi,t+1|t| · α if ri,t+1 ≥ V aRi,t+1|t .
(3.39)

A backtest based on this loss functional form is carried out by calculating the sample
average loss

PQLFi = 1
T

T∑
j=1

PQLFi,t+j , (3.40)

where T denotes the total number of observations. The economic intuition behind
the PQLF is that capital charges should also be considered in the evaluation of VaR
performance. Therefore, the capital foregone for over-predicting the true VaR should
not be disregarded.

The above loss functions only take into account the magnitude and do not consider
the size of the expected loss, given a VaR violation. Since the size of the expected loss
is also an integral part in a regulator’s utility function, we backtest the risk models’
performance by using loss functions that take into account the Expected Shortfall
(ES) or the Conditional-VaR (CVaR), if a VaR violation occurs. Therefore, we
employ the mean absolute error (MAE) and mean squared error (MSE) loss functions
of Angelidis and Degiannakis (2007). The MAE loss function can be described by
the following equation

Ψ1
i,t+1 =

|ri,t+1 − CV aRi,t+1|t| if ri,t+1 < V aRi,t+1|t ,

0 if ri,t+1 ≥ V aRi,t+1|t ,
(3.41)

whereas the MSE loss function can obtain the following form

Ψ2
i,t+1 =

(ri,t+1 − CV aRi,t+1|t)2 if ri,t+1 < V aRi,t+1|t ,

0 if ri,t+1 ≥ V aRi,t+1|t .
(3.42)

A backtest based on the loss functional forms of Equation (3.41) and Equation (3.42)
is carried out by calculating the sample average expected loss (T observations) for
MAE and MSE:

MAEi = 1
T

T∑
j=1

Ψ1
i,t+j , MSEi = 1

T

T∑
j=1

Ψ2
i,t+j .

3.7.3 Statistical test results

Table 3.8.1 presents the number of exceedances and p-values of the statistical tests
for the Phelix Baseload and Peakload long only and short only portfolios. It is
evident from the p-values of the tests that almost all VaR forecasts at 1% and 5%
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confidence levels are sufficiently accurate. For most of the risk models, the null
hypotheses of independence (Weibull), unconditional coverage (uc) and conditional
coverage (cc) cannot be rejected at 5% significance level. The only exceptions are the
rejection of the null hypothesis for the conditional coverage test at 5% significance
level (but not at 1%) for the Phelix Baseload short portfolio 99%-VaR forecasts
for all C-vine models and the rejection of the null hypothesis of independence in
the Christoffersen and Pelletier (2004) test for C-vine-t model 99%-VaR forecasts
for the Phelix Peakload long portfolio.

The rejection of the conditional coverage null hypothesis, at 5% significance level, for
all C-vine models 99%-VaR forecasts of the Phelix Baseload short portfolio is due to
the first-order Markov structure of the independence test, which is embedded in the
conditional coverage test. As explained, the unconditional and conditional coverage
tests have low statistical power with the current regulatory backtest sample. This
weakness is the reason for the rejection of the conditional coverage test in our par-
ticular case. Nevertheless, the hypothesis of independence is pretty strong, since the
Weibull independence test cannot be rejected at 5% level for any risk model except
for the C-vine-t model 99%-VaR forecasts for the Phelix Peakload long portfolio.
This exception, however, is not of great concern since there is only 1 exceedance in
this level and this affects the respective test statistic. The corresponding uncondi-
tional and conditional coverage tests cannot be rejected.

Moreover, the number of exceedances for all risk models are very close to the ex-
pected number of exceedances and therefore the hypothesis of unconditional coverage
cannot be rejected. The p-values of the corresponding Kupiec tests are very high
for all VaR forecast levels and all risk models. As expected, the benchmark RM
model most of the time produces the highest number of exceedances without being
rejected, though, by any statistical test at 5% level. It also seems that the C-vine-
EVT and A-C-vine-EVT models obtain the highest p-values in the unconditional
coverage tests at 1% level whereas for the 5% VaR forecast level, no clear conclusion
can be drawn on the basis of the Kupiec test. In this stage, all VaR model fore-
casts can be considered statistically adequate and hence can be subsequently used
in the second stage of the backtesting procedure, which entails evaluation through
the employment of the subjective loss functions introduced in Section 3.7.2.

3.7.4 Loss function results

The second-stage of the selection procedure entails the employment of loss func-
tions in order to assess the VaR and CVaR forecast performance of the various
risk models under consideration. Tables 3.8.2 and 3.8.3 report the average out-of-
sample VaR and CVaR estimates, the numerical scores for the VaR-based regulatory

89



Chapter 3 : Extreme value theory and mixed canonical vine copulas

(RLF), magnitude (MLF) and predictive quantile (PQLF) loss functions as well as
the numerical scores of the CVaR-based MAE and MSE loss functions for the Phelix
Baseload and Peakload long only and short only portfolios, respectively.

The numerical scores of the VaR-based loss functions are highly supportive of the
A-C-vine-EVT model at 1% confidence level. In particular, almost all numerical
scores for every possible Phelix Baseload and Peakload long only and short only
portfolio combination tend to favour the A-C-vine-EVT model over the rest of the
models at 1% significance level. The A-C-vine-EVT model’s numerical scores are
minimised in this level in 9 out of 12 cases for all VaR-based loss functions employed.
The C-vine-EVT model also produces satisfactory results in this level. Moreover,
the CVaR-based loss function results favour the A-C-Vine-EVT model. In total, 3
out of 8 times the corresponding MAE and MSE loss functions are minimised by
the A-C-vine-EVT model.

Therefore, the statistical test results in the previous Section and the loss function
findings in this Section, support our modelling approach for the extreme quantiles.
It seems that a mixed A-C-vine structure can successfully describe the dependency
structure of portfolio return series while the employment of extreme value theory
can provide better fit in the tails. Moreover, these findings support the theoret-
ical and empirical findings of Joe et al. (2010) and Nikoloulopoulos et al. (2012).
Based on the loss function results at 1% level, it seems that the VaR and CVaR
forecasts produced by the A-C-vine-EVT model outperform those of the C-Vine-
EVT model. Therefore, for inference involving the tails, the pair-copula selection
procedure should not be entirely likelihood-based.

At 5% level the numerical score results seem to be mixed, since there is no strong
preference towards a specific risk model. In general, the C-vine-Norm model esti-
mates most of the time tend to minimise the VaR-based loss functions. Nevertheless,
there is not the case where the C-vine-Norm model is preferred by all three loss func-
tions simultaneously. The A-C-vine-EVT and C-vine-EVT models tend to minimise
the VaR-based loss functions in some cases too, with the C-vine-t model and the
RM model being the least preferred models according to the VaR-based loss function
numerical scores at this level. The CVaR-based loss function results at 5% level also
fail to provide more insight.

3.8 Conclusions

In this study we introduced the vine copula modelling as an alternative and more
flexible way to describe the joint distribution of power portfolios. Our approach com-
bines pseudo-maximum-likelihood fitting of time series models and extreme value
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theory to model the tails of the resulting innovations conditional distribution. We
modelled the dependency structure of portfolios using a canonical vine copula mod-
elling approach. We also employed an alternative vine specification based on the
theoretical and empirical results of Joe et al. (2010) and Nikoloulopoulos et al.
(2012). In particular, we replaced the AIC selected Student-t copula families in
level 1 of the vine with copula families having asymmetric tail dependence whereas
the Independence copula was employed for pair-copulas that could not reject the null
hypothesis of independence. Baseload and Peakload portfolio VaR and CVaR fore-
casts were computed by five alternative models. The evaluation of their forecasting
performance was conducted using standard statistical and subjective loss function
techniques. In general, the statistical tests for all models show good unconditional
and conditional coverage. However, the A-C-vine-EVT model shows superior per-
formance according to the VaR and CVaR-based loss function results at extreme
quantiles (α = 0.01) compared to the rest of the models employed.

These results provide new insight regarding risk management applications within
the vine copula modelling framework and also support the findings of Joe et al.
(2010) and Nikoloulopoulos et al. (2012). It seems that the A-C-vine-EVT model
provides better fit in the tails of the joint distribution and hence better risk es-
timates compared to the entirely AIC selected C-vine-EVT model. Even though
neither data set shows significant tail asymmetries, it seems that the asymmetric
copulas, instead of the likelihood-selected Student-t copulas, in level 1 of the vine
structure as well as the employment of Independence copulas for the pairs that dis-
play independence improve the fit in the tails and as a consequence the risk measure
estimates. We strongly believe that the employment of the A-C-vine-EVT model for
risk management applications in portfolios that exhibit more significant asymmetric
tail dependences will further enhance the importance and predictive ability of the
model in extreme quantiles.

The fit and performance of the model can also be improved in various ways. For ex-
ample, the selection of asymmetric copula families in level 1 of the vine should not be
entirely based on empirical and theoretical scatter and λ-function plots comparisons
but also on matching the empirical tail dependence of the data with the theoretical
tail dependence of the corresponding asymmetric copula families. Moreover, the fit
of the semi-parametric marginals and of the canonical vine copula model can be im-
proved by re-estimating the model at fixed periods of time, i.e., every month, when
considering forecasting applications. All risk measure forecasts presented in this
study were obtained by a static version of the model. To sum up, we believe that
the proposed methodology has a lot of potential in modelling large-scale portfolios
and can substantially improve the existing portfolio risk management methods.
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Table 3.8.1: Statistical test results

Phelix Baseload Long Portfolio Phelix Baseload Short Portfolio

Model Level No. of
exceed.

Kupiec
(uc)

Christoff.
(cc)

Weibull
(ind.)

No. of
exceed.

Kupiec
(uc)

Christoff.
(cc)

Weibull
(ind.)

RM 99% 4 0.38048 0.63771 0.93515 3 0.75799 0.06329 1.00000
95% 14 0.66907 0.39618 0.74427 13 0.88535 0.36735 0.57266

C-vine-EVT 99% 3 0.75799 0.91938 0.25047 2 0.74193 0.02235 1.00000
95% 11 0.65706 0.54490 0.26182 8 0.16322 0.18966 0.19264

A-C-vine-EVT 99% 3 0.75799 0.91938 0.25047 2 0.74193 0.02235 1.00000
95% 10 0.45291 0.49648 0.83140 7 0.08281 0.08830 0.30945

C-vine-Norm 99% 4 0.38048 0.63771 0.93515 2 0.74193 0.02235 1.00000
95% 9 0.28602 0.40385 0.70539 7 0.08281 0.08830 1.00000

C-vine-t 99% 4 0.38048 0.63771 0.93515 2 0.74193 0.02235 1.00000
95% 11 0.65706 0.54490 0.26182 9 0.28602 0.05618 1.00000

Phelix Peakload Long Portfolio Phelix Peakload Short Portfolio

Model Level No. of
exceed.

Kupiec
(uc)

Christoff.
(cc)

Weibull
(ind.)

No. of
exceed.

Kupiec
(uc)

Christoff.
(cc)

Weibull
(ind.)

RM 99% 6 0.05935 0.14575 0.86344 6 0.05935 0.05032 0.56562
95% 16 0.32937 0.62119 0.71425 15 0.48124 0.43564 0.18624

C-vine-EVT 99% 3 0.75799 0.91938 0.52624 4 0.38048 0.08733 1.00000
95% 10 0.45291 0.49648 0.39991 10 0.45291 0.53023 0.82869

A-C-vine-EVT 99% 4 0.38048 0.63771 0.78387 3 0.75799 0.06329 1.00000
95% 9 0.28602 0.40385 0.60371 11 0.65706 0.71727 0.65718

C-vine-Norm 99% 4 0.38048 0.63771 0.78387 5 0.16185 0.07766 1.00000
95% 7 0.08281 0.18141 0.90648 10 0.45291 0.53023 0.48095

C-vine-t 99% 1 0.27807 0.55307 0.00686 4 0.38048 0.08733 1.00000
95% 9 0.28602 0.40385 0.64173 11 0.65706 0.71727 0.31980

This table reports Phelix Baseload and Peakload Long and Short portfolio p-values of statistical tests, described in Section 3.7.1, and number of VaR exceedances
for each risk model at α = 0.01 and α = 0.05 level.



Table 3.8.2: Loss function results: Phelix Baseload

Phelix Baseload Long Portfolio
Model Level Av.VaR RLF MLF PQLF Av.CVaR MAE MSE

RM 99% -0.03515 0.0015646 4.0015646 0.00063489 -0.04027 0.0002127 0.00000418
95% -0.02485 0.0032817 14.0032817 0.00181747 -0.03117 0.0004567 0.00000871

C-vine-EVT 99% -0.04351 0.0009507 3.0009507 0.00060692 -0.05586 0.0001885 0.00000273
95% -0.02706 0.0030201 11.0030201 0.00188056 -0.03779 0.0006105 0.00001073

A-C-vine-EVT 99% -0.04447 0.0004391 3.0004391 0.00057180 -0.05717 0.0001387 0.00000171
95% -0.02780 0.0028869 10.0028869 0.00187775 -0.03869 0.0005913 0.00000869

C-vine-Norm 99% -0.03965 0.0011447 4.0011447 0.00062836 -0.04553 0.0001531 0.00000272
95% -0.02828 0.0027324 9.0027324 0.00189274 -0.03541 0.0005316 0.00000921

C-vine-t 99% -0.04275 0.0010770 4.0010770 0.00061632 -0.05578 0.0002377 0.00000403
95% -0.02650 0.0030967 11.0030967 0.00186608 -0.03723 0.0005666 0.00001030

Phelix Baseload Short Portfolio
Model Level Av.VaR RLF MLF PQLF Av.CVaR MAE MSE

RM 99% -0.03515 0.0033335 3.0033335 0.00072408 -0.04027 0.0003077 0.00000939
95% -0.02485 0.0060319 13.0060319 0.00188622 -0.03117 0.0005375 0.00001741

C-vine-EVT 99% -0.04209 0.0015976 2.0015976 0.00062577 -0.05348 0.0001290 0.00000268
95% -0.02638 0.0039360 8.0039360 0.00174001 -0.03658 0.0003646 0.00001235

A-C-vine-EVT 99% -0.04274 0.0015196 2.0015196 0.00062027 -0.05440 0.0001639 0.00000261
95% -0.02705 0.0037340 7.0037340 0.00175258 -0.03733 0.0003497 0.00001051

C-vine-Norm 99% -0.03850 0.0019666 2.0019666 0.00061009 -0.04421 0.0001832 0.00000524
95% -0.02728 0.0037337 7.0037337 0.00176239 -0.03436 0.0003213 0.00001163

C-vine-t 99% -0.04189 0.0017390 2.0017390 0.00062869 -0.05528 0.0001372 0.00000529
95% -0.02557 0.0042147 9.0042147 0.00171525 -0.03635 0.0005921 0.00003091

This table reports Phelix Baseload Long and Short portfolio VaR and CVaR loss function results, described in Section 3.7.2; Av.VaR is the average forecasted Value-
at-Risk for the out-of-sample period; Av.CVaR is the average forecasted Conditional Value-at-Risk ( Expected Shortfall) for the out-of-sample period; Bold values
indicate the minimum loss function scores across different risk models and at same confidence level.



Table 3.8.3: Loss function results: Phelix Peakload

Phelix Peakload Long Portfolio
Model Level Av.VaR RLF MLF PQLF Av.CVaR MAE MSE

RM 99% -0.03476 0.0002246 6.0002246 0.00046690 -0.03982 0.0000514 0.00000015
95% -0.02457 0.0018197 16.0018197 0.00170577 -0.03082 0.0003675 0.00000328

C-vine-EVT 99% -0.04013 0.0000530 3.0000530 0.00044744 -0.04959 0.0005616 0.00002937
95% -0.02607 0.0017057 10.0017057 0.00167023 -0.03511 0.0008263 0.00001875

A-C-vine-EVT 99% -0.04040 0.0000103 4.0000103 0.00041746 -0.04941 0.0004356 0.00001614
95% -0.02653 0.0015422 9.0015422 0.00164987 -0.03537 0.0008030 0.00001670

C-vine-Norm 99% -0.03912 0.0000829 4.0000829 0.00043210 -0.04475 0.0003761 0.00001305
95% -0.02790 0.0013726 7.0013726 0.00168505 -0.03496 0.0007567 0.00001505

C-vine-t 99% -0.04444 0.0000004 1.0000004 0.00044276 -0.05827 0.0008244 0.00004366
95% -0.02748 0.0013035 9.0013035 0.00168213 -0.03881 0.0008689 0.00002239

Phelix Peakload Short Portfolio
Model Level Av.VaR RLF MLF PQLF Av.CVaR MAE MSE

RM 99% -0.03476 0.0034548 6.0034548 0.00078469 -0.03982 0.0003358 0.00000990
95% -0.02457 0.0064371 15.0064371 0.00205432 -0.03082 0.0006236 0.00001797

C-vine-EVT 99% -0.04402 0.0022995 4.0022995 0.00076175 -0.05596 0.0002175 0.00000536
95% -0.02721 0.0051004 10.0051004 0.00199222 -0.03807 0.0005311 0.00001767

A-C-vine-EVT 99% -0.04482 0.0010725 3.0010725 0.00064555 -0.05705 0.0001116 0.00000300
95% -0.02794 0.0048558 11.0048558 0.00201820 -0.03898 0.0005384 0.00001737

C-vine-Norm 99% -0.03852 0.0028474 5.0028474 0.00074071 -0.04417 0.0002642 0.00000686
95% -0.02714 0.0052233 10.0052233 0.00201169 -0.03427 0.0004958 0.00001775

C-vine-t 99% -0.04364 0.0017716 4.0017716 0.00070101 -0.05916 0.0000865 0.00000123
95% -0.02678 0.0055913 11.0055913 0.00200585 -0.03841 0.0005459 0.00001618

This table reports Phelix Peakload Long and Short portfolio VaR and CVaR loss function results, described in Section 3.7.2; Av.VaR is the average forecasted Value-
at-Risk for the out-of-sample period; Av.CVaR is the average forecasted Conditional Value-at-Risk (Expected Shortfall) for the out-of-sample period; Bold values
indicate the minimum loss function scores across different risk models and at same confidence level.



Appendices

3.A Time series models for the conditional mean

The conditional mean time series models for the Phelix Baseload portfolio return
series are:

SpotB-ARMA(1,1): rt =ϕ1rt−1 + εt + θ1εt−1

F1BM - ARMA(15,1): rt =ϕ8rt−8 + ϕ15rt−15 + εt + θ1εt−1

F2BM - ARMA(8,1): rt =ϕ8rt−8 + εt + θ1εt−1

F3BM - ARMA(8,1): rt =ϕ8rt−8 + εt + θ1εt−1

F1BQ - ARMA(8,1): rt =ϕ8rt−8 + εt + θ1εt−1

F2BQ - ARMA(4,1): rt =ϕ4rt−4 + εt + θ1εt−1

F1BY - MA(1): rt =εt + θ1εt−1

F2BY - ARMA(4,1): rt =ϕ4rt−4 + εt + θ1εt−1

The conditional mean time series models for the Phelix Peakload portfolio return
series are:

SpotP-ARMA(1,1): rt =ϕ1rt−1 + εt + θ1εt−1

F1PM - ARMA(15,1): rt =ϕ8rt−8 + ϕ9rt−9 + ϕ15rt−15 + εt + θ1εt−1

F2PM - ARMA(18,1): rt =ϕ8rt−8 + ϕ18rt−18 + εt + θ1εt−1

F3PM - ARMA(15,1): rt =ϕ8rt−8 + ϕ15rt−15 + εt + θ1εt−1

F1PQ - ARMA(18,1): rt =ϕ8rt−8 + ϕ15rt−15 + ϕ18rt−18 + εt + θ1εt−1

F2PQ - ARMA(8,1): rt =ϕ3rt−3 + ϕ4rt−4 + ϕ8rt−8 + εt + θ1εt−1

F1PY - ARMA(9,1): rt =ϕ4rt−4 + ϕ8rt−8 + ϕ9rt−9 + εt + θ1εt−1

F2PY - ARMA(4,1): rt =ϕ4rt−4 + εt + θ1εt−1
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3.B Copula family abbreviations

Table 3.B.1: Copula family abbreviations

No. Short name Long name
0 I Independence
1 N Gaussian
2 t t
3 C Clayton
4 G Gumbel
5 F Frank
6 J Joe
7 BB1 Clayton-Gumbel
8 BB6 Joe-Gumbel
9 BB7 Joe-Clayton
10 BB8 Frank-Joe
13 SC Survival Clayton
14 SG Survival Gumbel
16 SJ Survival Joe
17 SBB1 Survival Clayton-Gumbel
18 SBB6 Survival Joe-Gumbel
19 SBB7 Survival Joe-Clayton
20 SBB8 Survival Joe-Frank
23 C90 Rotated Clayton 90 degrees
24 G90 Rotated Gumbel 90 degrees
26 J90 Rotated Joe 90 degrees
27 BB1_90 Rotated Clayton-Gumbel 90 degrees
28 BB6_90 Rotated Joe-Gumbel 90 degrees
29 BB7_90 Rotated Joe-Clayton 90 degrees
30 BB8_90 Rotated Frank-Joe 90 degrees
33 C270 Rotated Clayton 270 degrees
34 G270 Rotated Gumbel 270 degrees
36 J270 Rotated Joe 270 degrees
37 BB1_270 Rotated Clayton-Gumbel 270 degrees
38 BB6_270 Rotated Joe-Gumbel 270 degrees
39 BB7_270 Rotated Joe-Clayton 270 degrees
40 BB8_270 Rotated Frank-Joe 270 degrees
This table reports the number, short and long names of copula families in CDVine package, R
statistical software.
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3.C Pair-copulas for the Phelix Baseload portfolio

Table 3.C.1: Determination of unconditional and conditional pair-copulas for C-vine model

Level Numerical
representation

Unconditional & Conditional pair-copulas

1

1,2 F1BQ,F1BY

1,3 F1BQ,F1BM

1,4 F1BQ,F2BY

1,5 F1BQ,F2BQ

1,6 F1BQ,SpotB

1,7 F1BQ,F3BM

1,8 F1BQ,F2BM

2

2,3|1 F1BY,F1BM|F1BQ

2,4|1 F1BY,F2BY|F1BQ

2,5|1 F1BY,F2BQ|F1BQ

2,6|1 F1BY,SpotB|F1BQ

2,7|1 F1BY,F3BM|F1BQ

2,8|1 F1BY,F2BM|F1BQ

3

3,4|12 F1BM,F2BY|F1BQ F1BY

3,5|1,2 F1BM,F2BQ|F1BQ,F1BY

3,6|1,2 F1BM,SpotB|F1BQ,F1BY

3,7|1,2 F1BM,F3BM|F1BQ,F1BY

3,8|1,2 F1BM,F2BM|F1BQ,F1BY

4

4,5|123 F2BY,F2BQ|F1BQ,F1BY,F1BM

4,6|1,2,3 F2BY,SpotB|F1BQ,F1BY,F1BM

4,7|1,2,3 F2BY,F3BM|F1BQ,F1BY,F1BM

4,8|1,2,3 F2BY,F2BM|F1BQ,F1BY,F1BM

5
5,6|1234 F2BQ,SpotB|F1BQ,F1BY,F1BM,F2BY

5,7|1,2,3,4 F2BQ,F3BM|F1BQ,F1BY,F1BM,F2BY

5,8|1,2,3,4 F2BQ,F2BM|F1BQ,F1BY,F1BM,F2BY

6 6,7|12345 SpotB,F3BM|F1BQ,F1BY,F1BM,F2BY,F2BQ

6,8|1,2,3,4,5 SpotB,F2BM|F1BQ,F1BY,F1BM,F2BY,F2BQ

7 7,8|1,2,3,4,5,6 F3BM,F2BM|F1BQ,F1BY,F1BM,F2BY,F2BQ,SpotB
This table reports the specification of unconditional and conditional pair-copulas for all levels of
canonical vine structure selected by the empirical rule of Czado et al. (2012).
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Chapter 4

Measuring systemic risk in the
European banking sector: A Cop-
ula CoVaR approach

4.1 Introduction

The recent financial crisis has highlighted in the most prominent way the need for
prudent monitoring and assessment of systemic risk. Systemic risk can be seen as
the adverse consequence, for the financial system and the broader economy, of a
financial institution being in distress. The failure of large credit institutions can not
only threaten the stability of the financial system but also have dramatic effects on
the real economy. It is well-documented that conditional correlations between asset
returns are much stronger in periods of financial distress (see e.g. Longin and Solnik
2001; Ang and Chen 2002) and typically arise from exposure to common shocks,
although amplifications of financial shocks are also associated with balance sheet
channels and liquidity spirals (see e.g. Brunnermeier 2009; Adrian and Shin 2010).
As a result, losses tend to spread across financial institutions during stress times,
amplifying the risk of systemic contagion.

Assessing the level of contribution of the so-called systemically important financial
institutions (SIFIs) to systemic risk and designing a regulatory framework capable of
ensuring financial stability is the foremost objective of international financial regu-
latory institutions. The Value-at-Risk (VaR), the risk measure most widely used by
financial institutions, is not capable of capturing the systemic nature of risk since it
focuses on the risk of an individual institution when viewed in isolation. As a result,
there has been recently a growing interest in developing alternative risk measures
that reflect systemic risk and avoid the shortcomings of VaR.

One such measure of systemic risk is the Conditional Value-at-Risk (CoVaR) of Adrian
and Brunnermeier (2011), which attempts to capture risk spillovers among financial
institutions and has attracted a lot of attention by the regulatory and academic
community, especially after the financial crisis in the summer of 2007. The general
framework of CoVaR depends on the conditional distribution of a random variable
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Rs,t representing the returns of the entire financial system at time t given that an-
other financial institution i, represented by a random variable Ri,t, is in distress.
Currently, there are two different definitions of CoVaR in the literature. In the
original definition by Adrian and Brunnermeier (2011), CoVaR is defined as the
conditional distribution of Rs,t given that Ri,t = V aRit, while in the modified def-
inition of CoVaR, proposed by Girardi and Ergün (2013), the conditioning event
is Ri,t ≤ V aRit. In other words, the former definition represents the VaR of the
system assuming that institution i is exactly at its VaR level whereas the latter
definition of CoVaR represents the same risk metric assuming that institution i is at
most at its VaR level. This change in the CoVaR definition is arguably very useful.
First of all, it considers more severe distress events for institution i that are further
in the tail of the loss distribution (below V aRit level) in contrast to the highly se-
lective and over-optimistic scenario Ri,t = V aRit. Moreover, the CoVaR estimates
based on Ri,t ≤ V aRit can be tested for statistical accuracy and independence using
modified versions of the standard Kupiec (1995) and Christoffersen (1998) tests,
respectively. Finally, and perhaps most importantly, Mainik and Schaanning (2014)
show that conditioning on Ri,t ≤ V aRit has great advantages for dependence mod-
elling.

In this study, we propose a new methodology based on copula functions to esti-
mate CoVaR under both definitions. We derive simple closed-form expressions for
a broad range of copula families that allow us to model various forms of depen-
dence, while focusing on extreme co-movements of financial system-institution re-
turns, which is, in practice, the main concern of all systemic risk measures. Given the
distinctive characteristics of copula families, our modelling approach enables the sep-
aration of dependence from marginal distributions providing greater flexibility and
eliminating misspecification biases. A dynamic version of the model is also proposed
- one that is capable of incorporating time-varying correlation into CoVaR calcula-
tions. Through counterexamples, we show that CoVaR measures generated by our
modelling approach share the dependence consistency properties found in Mainik
and Schaanning (2014). In addition, we extend the Copula CoVaR methodology
to other “co-risk” measures. In this respect, we derive expressions for Conditional
Expected Shortfall (CoES) under both definitions. Furthermore, we show that our
approach can be easily employed by financial regulators as a useful stress testing
tool for assessing the impact of extreme market conditions on the stability of the
financial system.

Focusing on a portfolio of large European banks, we measure the contribution of
each individual bank to systemic risk using both CoVaR and CoES systemic risk
metrics. We show that distribution assumptions are extremely important for the
accurate modelling of systemic risk. In this respect, we show that the ordering of
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systemically important institutions and the magnitude of the corresponding systemic
risk measures are substantially affected by the alternative distribution assumptions
both in marginals and dependence but are robust across different systemic risk mea-
sures with the same assumptions. In a cross-country comparison, we find that banks
from Spain and France have, on average, the highest contribution to systemic risk.
Moreover, we investigate whether common market factors or institution specific
characteristics are important determinants of systemic risk. We show that liquidity
risk is an important determinant of systemic risk contribution. The large impact
of funding liquidity in the pre-crisis period partly explains the “liquidity spirals”
that occurred after the break out of the financial crisis in summer 2007. Its relative
impact has been reduced in the post-crisis period due to the coordinated interven-
tion of the European Central Bank (ECB) and the Federal Reserve in the interbank
market. We also find that size and leverage are the most robust determinants of
systemic risk contribution concluding that larger and more leveraged financial insti-
tutions can be harmful for the overall stability of the financial system.

The rest of the Chapter is organised as follows: Section 4.2 discusses the relevant
literature, while Section 4.3 formally defines the CoVaR and CoES measures and
presents the Copula CoVaR methodology. The derivation of closed-form expressions
both for CoVaR and CoES systemic risk measures is also presented in this Section.
Section 4.4 describes the data we use in the empirical part of this study and Sec-
tion 4.5 presents the computation of systemic risk measures. Section 4.6 reports
the results of financial institutions’ contribution to systemic risk. This Section also
analyses the determinants of systemic risk and discusses their implications for the
stability of the financial system. Section 4.7 concludes.

4.2 Related literature

Our study builds on the CoVaR methodology initially proposed by Adrian and Brun-
nermeier (2011) and subsequently modified by Girardi and Ergün (2013) to address
the shortcomings of the original CoVaR definition. Recently, a number of papers
have extended the CoVaR methodology and applied it to different financial sectors.
For example, Wong and Fong (2011) analyse interconnectivity among economies us-
ing sovereign credit default swap (CDS) spreads of 11 Asia-Pacific economies. Gau-
thier et al. (2012) estimate systemic risk exposures for the Canadian banking system
and set macro-prudential capital requirements equal to an institution’s contribution
to systemic risk using ∆CoVaR as a risk allocation mechanism. Recently, Lòpez-
Espinosa et al. (2012, 2013) have used the CoVaR methodology to analyse the impact
of bank-specific factors on an institution’s solvency risk and its contribution to sys-
temic risk in a portfolio of large international banks.
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There also exists a growing literature that proposes a number of quantitative mea-
sures of systemic risk alternative to CoVaR using different approaches and data. For
instance, Segoviano and Goodhart (2009) work with credit default swap (CDS) data
and develop bank stability measures that assess banks’ contribution to systemic risk
within a multivariate framework. Huang et al. (2009) propose a systemic risk indi-
cator measured by the price of insurance against systemic financial distress based
on ex-ante measures of default probabilities of individual banks and equity return
correlation forecasts. Zhou (2010) assesses the systemic importance of financial insti-
tutions within a multivariate Extreme Value Theory (EVT) framework and suggests
two measures of systemic risk: the systemic impact index (SII), which measures the
size of the systemic impact if one bank fails, and the vulnerability index (VI), which
measures the impact on a particular bank when the other part of the system is in
financial distress.

In addition, Acharya et al. (2012) use equity returns of financial institutions to cal-
culate the systemic expected shortfall (SES), which represents the propensity of a
financial institution to be undercapitalised when the financial system as a whole
is undercapitalised, and the marginal expected shortfall (MES), which denotes an
institution’s average loss when the financial system is in its left tail. Systemic ex-
pected shortfall measures are calculated as the weighted average of an institution’s
MSE and its leverage. Alternatively, Nicolò and Lucchetta (2011) use a dynamic
factor model on quarterly time-series sets of indicators of financial and real activity
for the G-7 economies and obtain joint forecasts and stress-tests of indicators of
systemic real risk and systemic financial risk. More recently, Brownlees and Engle
(2012) have introduced the SRISK index, the expected capital shortage of a firm
conditional on a substantial market decline, as an alternative measure of systemic
risk. The SRISK index is a function of the leverage, size and marginal expected
shortfall (MES) of an institution. Moreover, Engle et al. (2014) develop an econo-
metric approach to measure the systemic risk of European financial institutions,
with several factors explaining the dynamics of European financial institutions’ re-
turns. Finally, Billio et al. (2012) propose several econometric measures to capture
the connectedness among financial institutions based on principal components anal-
ysis and Granger-causality networks. An extensive survey of the main quantitative
measures of systemic risk proposed over the past several years in the literature can
be found in Bisias et al. (2012).
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4.3 CoVaR methodology

4.3.1 Definition of CoVaR

Consider a random variable Ri,t that represents the returns of financial institution
i at time t (i = 1, . . . , N ; t = 1, . . . , T ). The Value-at-Risk (VaR)1 of the random
variable Ri,t at the confidence level α ∈ (0, 1), V aRiα,t, is defined as the α-quantile
of the return distribution

V aRia,t = F−1
i,t (α) , (4.1)

where F−1
i,t is the generalised inverse distribution function of the return distribution

Fi,t, i.e., F−1
i,t (α) := inf {ri,t ∈ R : Fi,t(ri,t) ≥ α}. Equivalently, Equation (4.1) can

also be written as
Pr(Ri,t ≤ V aRia,t) = α . (4.2)

Two alternative definitions of Conditional Value-at-Risk (CoVaR) appear in the
literature using different conditioning events. The notion of CoV aR=

α,β,t denotes
the original definition, introduced by Adrian and Brunnermeier (2011), representing
the β-quantile of the returns of financial system Rs,t conditional on Ri,t = V aRiα,t,
while the notion of CoV aRα,β,t denotes the alternative definition of CoVaR, pro-
posed by Girardi and Ergün (2013), where the conditioning event is Ri,t ≤ V aRiα,t.
Formally, CoV aR=

α,β,t and CoV aRα,β,t are defined as the β-quantiles of the following
conditional distributions

Pr(Rs,t ≤ CoV aR=
α,β,t|Ri,t = V aRiα,t) = β , (4.3)

Pr(Rs,t ≤ CoV aRα,β,t|Ri,t ≤ V aRiα,t) = β , (4.4)

where s 6= i. The confidence levels α and β are decided ex-ante by the financial
regulator. Typical values are 1% or 5%. In most studies a common confidence level
for α and β is used, i.e., α = β; however, working with different confidence levels,
i.e., α 6= β, is also feasible.

To obtain CoV aR=
α,β,t estimates, Adrian and Brunnermeier (2011) employ linear

quantile regressions.2 Within this framework, time-varying V aRiα,t and CoV aR
=
α,β,t

measures are generated from the predicted values of quantile regression specifica-

1It is common to present downside risk statistics, such as VaR, in positive values. In this study,
we do not follow this sign convention and instead maintain the original (negative) sign of the
conditional quantile for all downside risk measures reported in the subsequent Sections, such as
VaR, CoVaR, ∆CoVaR, CoES, ∆CoES.

2They also show in the appendix of their study that CoV aR=
α,β,t can be estimated using

GARCH-type models, providing closed-form expressions for CoVaR estimation in the bivariate
Gaussian framework.
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tions, that is

V aRiα,t = φ̂i + γ̂iMt−1,

CoV aR=
α,β,t = µ̂i + θ̂i V aRiα,t + ψ̂iMt−1,

where Mt−1 is a vector of exogenous variables and φ̂i,γ̂i, µ̂i, θ̂i and ψ̂i denote the
estimated parameters of quantile regressions for each institution i. The CoV aR=

α,β,t

estimates derived from this procedure, however, do not have a time-varying exposure
to its V aRiα,t. The effect of V aRiα,t on CoV aR=

α,β,t, which is given by the coefficient
estimate θ̂i, remains the same regardless of any changes in the correlation between
the returns of the financial system and the financial institution over time.

On the contrary, Girardi and Ergün (2013) follow a three-step procedure to obtain
time-varying CoV aRα,β,t estimates. In step one, they fit univariate time-series mod-
els on Rs,t and Ri,t returns, while in step two they apply the DCC model of Engle
(2002) to the residuals of these regressions to obtain time-varying correlations. In the
final step, given the V aRiα,t estimates obtained in step one and the time-varying cor-
relations obtained in step two, they solve numerically the following two-dimensional
integral for CoV aRα,β,t

∫ CoV aRα,β,t

−∞

∫ V aRiα,t

−∞
pdft(x, y) dy dx = α · β, (4.5)

where pdft(x, y) denotes the bivariate density of Rs,t and Ri,t. The time-varying
correlations for each Rs,t and Ri,t pair imply that CoV aRα,β,t measures reflect time-
varying exposure to an institution’s V aRiα,t. Nevertheless, solving numerically for
CoV aRα,β,t in Equation (4.5) for each time-point correlation estimate is a non-trivial
task. It is computationally intensive and time expensive, especially when the bivari-
ate density pdft(x, y) is mathematically more involved. In addition, the marginal
specification in this framework is restricted and needs to result from the choice of
the bivariate distribution of Rs,t and Ri,t. In practice, the distributional charac-
teristics of Rs,t and Ri,t can differ substantially and hence restricting the marginal
specification may introduce misspecification bias in the computation of CoV aRα,β,t.

4.3.2 Copula CoVaR methodology

In this Section we show how the Conditional Value-at-Risk (CoVaR) can be esti-
mated using copula functions. We provide simple analytical expressions for a broad
range of copula families for both CoVaR definitions. In this respect, our Copula Co-
VaR approach overcomes the burden of numerical integration and also incorporates
the time-varying dependence between Rs,t and Ri,t into the computation of the sys-
temic risk measure through the copula parameter(s), which is allowed to vary over
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time as a function of lagged information. Furthermore, the Copula CoVaR approach
provides greater flexibility in the specification of the marginals and the dependence
structure, i.e., the marginal specification is not restricted by the choice of the bi-
variate copula distribution, eliminating in this way potential misspecification bias in
the computation of risk measures. This modelling setting also enables the decompo-
sition of systemic risk into three main components: 1) the dependence structure, 2)
the magnitude of dependence and 3) the marginal series. As a result, we can assess
the relevant contribution of any of these three components to systemic risk.

The joint distribution function of bivariate random variables (Y,X) can be repre-
sented as

FY X(y, x) = Pr(Y ≤ y,X ≤ x) .

The famous theorem of Sklar (1959) gives the connection of marginals and copulas
with the joint distribution. Let FY X represent a bivariate cumulative distribution
function with marginal distributions FY and FX , then there exists a two dimensional
copula cumulative distribution function C on [0, 1]2, such that for all (y, x) ∈ R2 it
holds that

FY X(y, x) = C(FY (y), FX(x)) .

For continuous FY and FX , C is uniquely determined by

C(u, v) = FY X(F−1
Y (u), F−1

X (v) ) ,

where random variables u = FY (y) and v = FX(x) (i.e., obtained by the probability
integral transform) are uniformly distributed on [0, 1], while F−1

Y (u) and F−1
X (v) are

the generalised inverse distribution functions of the marginals.

It can be shown3, that the conditional probability distribution Pr(Y ≤ y|X = x)
can be expressed in terms of a copula function as

Pr(Y ≤ y|X = x) = ∂C(u, v )
∂v

. (4.6)

In contrast, the conditional probability distribution Pr(Y ≤ y|X ≤ x) can be ex-
pressed in terms of a copula function as

Pr(Y ≤ y|X ≤ x) = Pr(Y ≤ y,X ≤ x)
Pr(X ≤ x) = C(FY (y), FX(x))

FX(x) = C(u, v)
v

. (4.7)

The class of Archimedean copulas has recently found wide usage in the economics
and finance literature, because of their simple closed-form cumulative distribution

3See proof in Bouyè and Salmon (2009, p. 726).
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functions and due to their properties allowing the modelling of the dependence
between random variables. The Archimedean copulas can capture a broad range
of forms of asymmetric tail dependence, which we know to be extremely impor-
tant for modelling multiple relationships between financial asset returns. Bivariate
Archimedean copulas are defined as

C(u, v) = ϕ−1 [ϕ(u) + ϕ(v)] ,

where ϕ : [0, 1] → [0,∞) is a continuous strictly decreasing convex function such
that ϕ(1) = 0 and ϕ−1 is the inverse of ϕ. The function ϕ is called generator function
of the copula C (see Nelsen (2007), for further details).

We begin with the presentation of CoV aR=
α,β,t in terms of Archimedean copulas and

provide general solutions through their corresponding generator functions.4 From
the general result in Equation (4.6) we have

Pr(Y ≤ y|X = x) = ∂C(u, v)
∂v

= ϕ′(v)
ϕ′
(
C(u, v)

) = ϕ′(v)
ϕ′
(
ϕ−1 [ϕ(u) + ϕ(v)]

) . (4.8)

Assuming that the above random variables Y and X represent the returns of the
financial system, Rs,t, and the returns of the institution i, Ri,t, with distribu-
tion functions Fs,t and Fi,t, respectively; the conditional distribution Pr(Rs,t ≤
CoV aR=

α,β,t|Ri,t = V aRiα,t) can be equivalently expressed in terms of a copula gen-
erator function as follows

Pr(Rs,t ≤ CoV aR=
α,β,t|Ri,t = V aRjα,t) = ϕ′(v)

ϕ′
(
ϕ−1 [ϕ(u) + ϕ(v)]

) = β .

Solving for u, under the general condition that ∂/∂v C(u, v) is partially invertible in
its first argument u, we obtain the copula conditional quantile

u= ≡ u = ϕ−1
[
ϕ

(
ϕ
′−1
( 1
β
ϕ′(v)

))
− ϕ(v)

]
. (4.9)

Applying the probability integral transform in Equation (4.9), we derive an explicit
expression for CoV aR=

α,β,t for a broad range of Archimedean copula functions, that

4In Appendix 4.A we also provide general solutions for elliptical copula families, i.e., Gaussian
and Student-t copulas. Even though these particular families do not have copula distributions in
closed form, an explicit solution for CoV aR=

α,β,t can be derived. Unfortunately, there is no explicit
solution for CoV aRα,β,t and hence numerical integration is needed.
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is

CoV aR=
α,β,t = F−1

s,t

(
ϕ−1

[
ϕ

(
ϕ
′−1
( 1
β
ϕ′
(
Fi,t
(
V aRiα,t

))))
− ϕ

(
Fi,t
(
V aRiα,t

))])
,

(4.10)
where F−1

s,t is the generalised inverse distribution function of Fs,t. From the definition
of VaR it holds that v = Fi,t

(
V aRiα,t

)
= Fi,t

(
F−1
i,t (α)

)
= α. Therefore, the expression

for CoV aR=
α,β,t in Equation (4.10) can be simplified further as follows

CoV aR=
α,β,t = F−1

s,t

(
ϕ−1

[
ϕ

(
ϕ
′−1
( 1
β
ϕ′(α)

))
− ϕ(α)

])
. (4.11)

Alternatively, an analytical expression can also be given for CoV aRα,β,t for a wide
range of Archimedean copula families. Given the general result in Equation (4.7), the
conditional distribution Pr(Rs,t ≤ CoV aRα,β,t|Ri,t ≤ V aRiα,t) can be equivalently
written as

Pr(Rs,t ≤ CoV aRα,β,t|Ri,t ≤ V aRiα,t) =
ϕ−1 [ϕ(u)+ ϕ

(
v
)]

v
= β . (4.12)

Similarly, from the definition ofVaR it holds that v = Fi,t
(
V aRiα,t

)
= Fi,t

(
F−1
i,t (α)

)
=

α. Therefore, the expression in Equation (4.12) can be expressed as

ϕ−1 [ϕ(u)+ ϕ(α)
]

= α · β . (4.13)

Finally, after solving for u and applying the probability integral transform, under the
general condition that C(u, v) is partially invertible in its first argument u, CoV aRα,β,t
has a general representation for Archimedean copulas, that is

u≤ ≡ u = ϕ−1 [ϕ(α · β)− ϕ(α)
]
, (4.14)

CoV aRα,β,t = F−1
s,t

(
ϕ−1 [ϕ(α · β)− ϕ(α)

] )
. (4.15)

The general representation of CoVaR in Equation (4.11) or Equation (4.15) implies a
constant correlation between Rs,t and Ri,t. Nevertheless, it is known that the depen-
dence structure between financial asset returns is not constant over a long horizon
but rather time-varying. Numerous studies have also indicated that the correlation
between financial series tends to be more pronounced during downturns than during
upturns, a stylised feature that should be considered in the estimation of systemic
risk. In this respect, the use of constant correlations may severely affect the risk
estimates and lead to incorrect inferences. We follow the specification proposed
by Patton (2006) in order to introduce a dynamic version of the Copula CoVaR
model and hence incorporate time-varying correlation into CoVaR estimation. Pat-
ton (2006) proposed observation driven copula models for which the time-varying
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dependence parameter(s) of a copula is a parametric function of transformed lagged
data. It is essentially an ARMA(1,10)-type process. In Appendix 4.B we derive
analytical expressions for CoV aR=

α,β,t and CoV aRα,β,t, while in Appendix 4.C we
present the time-varying parameter specification for the Clayton, Frank, Gumbel5

and BB7 copulas. These copula families are very popular in the literature for mod-
elling the dependence between financial asset returns since they allow for very flexible
dependency structures and can capture various forms of tail dependence.

4.3.3 Extension to CoES

The CoVaR concept can be easily adopted for other “co-risk” measures. One of
them is the Conditional Expected Shortfall (CoES). We denote by CoES=

α,β,t the
expected shortfall of the financial system conditional on Ri,t = V aRiα,t and similarly
by CoESα,β,t the expected shortfall of the financial system conditional on Ri,t ≤
V aRiα,t. In this respect, CoES estimates can be easily obtained for both definitions
within our framework as follows

CoES=
α,β,t = 1

β

∫ β

0
CoV aR=

α,q,t dq , (4.16)

CoESα,β,t = 1
β

∫ β

0
CoV aRα,q,t dq , (4.17)

where CoV aR=
α,q,t = Pr(Rs,t ≤ F−1

s,t (q)|Ri,t = V aRiα,t) and CoV aRα,q,t = Pr(Rs,t ≤
F−1
s,t (q)|Ri,t ≤ V aRiα,t).

4.3.4 Systemic risk contributor and dependence consistency

Adrian and Brunnermeier (2011) define institution i’s contribution to systemic risk
by

∆CoV aR=
α,β,t = CoV aR=

α,β,t − CoV aR=
0.5,β,t ,

where ∆CoV aR=
α,β,t denotes the difference between the VaR of the financial system

conditional on Ri,t = V aRiα,t and the VaR of the financial system conditional on
Ri,t = V aRi0.5,t (institution i being exactly at its median state). Following Adrian
and Brunnermeier (2011), we adopt ∆CoVaR as a measure of institution i’s con-
tribution to systemic risk and also define by ∆CoV aRα,β,t the difference between
the CoVaR of the financial system conditional on Ri,t ≤ V aRiα,t and the CoVaR of
the financial system conditional on Ri,t ≤ V aRi0.5,t (institution i being at most at

5The ∂/∂v C(u, v) of the Gumbel copula is not partially invertible in its u and hence we cannot
derive analytical expressions for CoV aR=

α,β,t.
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its median state)6, that is

∆CoV aRα,β,t = CoV aRα,β,t − CoV aR0.5,β,t .

The computation of CoV aR=
0.5,β,t or CoV aR0.5,β,t is straightforward and can be car-

ried out as in the CoV aR=
α,β,t or CoV aRα,β,t procedure by simply modifying the

stress scenario. We also employ ∆CoES as a measure of institution i’s contribution
to systemic risk where the contribution is measured in terms of CoES. Therefore,
we define

∆CoES=
α,β,t = CoES=

α,β,t − CoES=
0.5,β,t ,

∆CoESα,β,t = CoESα,β,t − CoES0.5,β,t ,

where ∆CoES=
α,β,t denotes the difference between the CoES of the financial system

conditional on Ri,t = V aRiα,t and on the CoES of the financial system conditional on
Ri,t = V aRi0.5,t, while ∆CoESα,β,t denotes the same risk metric with stress scenarios
being Ri,t ≤ V aRiα,t and Ri,t ≤ V aRi0.5,t, respectively.

To investigate whether the different representations for measuring contribution to
systemic risk, derived within the Copula CoVaR framework, encompass the depen-
dence consistency properties reported in Mainik and Schaanning (2014), we com-
pare ∆CoV aR estimates for the bivariate distribution with a Clayton copula.7 Fig-
ure 4.3.1 presents ∆CoV aR=

α,β,t and ∆CoV aRα,β,t measures as a function of the
dependence parameter θ for a Clayton copula with Student-t marginals with three
degrees of freedom at three different confidence levels, i.e., 1%, 5% and 10%. The
behaviour of risk measures in these two models confirms the results in Mainik and

6Girardi and Ergün (2013) define the systemic risk contribution of a particular institution i by

∆CoV aRα,β,t = 100 × (CoV aRα,β,t − CoV aRbi,β,t)/CoV aRbi,β,t ,

that is the percentage difference of the VaR of the financial system conditional on the distressed
state of institution i from the VaR of the financial system conditional on the benchmark state of
institution i. They define the benchmark state bi as a one-standard deviation about the mean event:
µi,t−σi,t ≤ Ri,t ≤ µi,t+σi,t, where µi,t and σi,t are the conditional mean and the standard deviation
of institution i’s returns, respectively. Nevertheless, the VaR of the financial system conditional
on the benchmark state of institution i can not be derived in explicit form within our framework
and thus numerical integration is needed. So far, there is no consensus in the literature regarding
the definition of systemic risk contribution. For example, Adrian and Brunnermeier (2011) changed
the definition of ∆CoV aR twice in two earlier versions of their paper. Nevertheless, Mainik and
Schaanning (2014) show that the primary deficiency of ∆CoV aR is due to the underlying stress
scenario Ri,t = V aRiα,t. As a result, we decided to adopt ∆CoV aR, as defined in Adrian and
Brunnermeier (2011), as a measure of an institution’s contribution to systemic risk but modified
the distress events to ensure that CoVaR is a continuous function of the dependence parameter.

7We have also compared ∆CoVaR for the bivariate distribution with a Frank copula. The
dependence consistency properties are in line with the results reported for the bivariate distribution
with a Clayton copula.
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Schaanning (2014). Initially, ∆CoV aR=
α,β,t increases with respect to the dependence

parameter; however, after a certain threshold it counter-intuitively starts to de-
crease. In other words, ∆CoV aR=

α,β,t fails to detect dependence when it becomes
more pronounced. On the other hand, ∆CoV aRα,β,t increases with respect to the
dependence parameter. Therefore, conditioning on Ri,t ≤ V aRiα,t gives a much more
consistent response to dependence than conditioning on Ri,t = V aRiα,t.8
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Figure 4.3.1: Clayton with Student-t margins with 3 degrees of freedom: ∆CoV aR=
α,β,t and

∆CoV aRα,β,t as a function of θ.

4.4 Data

We focus on the STOXX Europe 600 Banks Index that consists of 46 large European
banks from 15 European countries, characterised by a large market capitalisation,
international activity, cross-country exposure and a representative size in the local
market. The STOXX Europe 600 Banks Index is a component of the STOXX Eu-
rope 600 Index that represents large, mid and small capitalisation companies across
18 countries of the European region. It is the largest, in market capitalisation, sector
index of STOXX Europe 600 Index (e748.5 billion as of June, 2013), which indicates
the relative importance and size of the banking sector in Europe. We exclude 4 in-
stitutions from the initial sample because the history of their corresponding datasets
is narrow and does not cover the time period we want to analyse. Therefore, the
resulting sample is formed by a total of 42 European banks, starting on 01/04/2002
and ending on 31/12/2012. This time period provides a good platform to assess the
level of contribution of the systemically important financial institutions in Europe to
systemic risk since it includes a number of significant events (e.g. the U.S subprime
mortgage crisis, the Lehman Brothers collapse, the European sovereign-debt crisis
etc.). We assign the Q3 2007 - Q4 2012 as the crisis period because the majority of
these events occurred within this time window.

8Similar dependence consistency results are obtained when ∆CoES is employed for the same
stochastic models.
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We obtain weekly equity adjusted prices, to account for capital operations (i.e.,
splits, dividends etc.), from the Datastream database and convert them to weekly
log returns. There are 562 weekly returns for each institution in our sample. Ap-
pendix 4.D lists these institutions. For each bank, an equally-weighted average of
the returns of the remaining banks in the sample is used as a proxy for the financial
system. In this way, the resulting system return portfolios can be considered repre-
sentative of the European financial system, allowing the study of possible spillover
effects between a stressed institution and the financial system. Moreover, this ap-
proach rules out any spurious correlation that may be induced due to the sizeable
disparity in the composition of the financial system proxy. For example, HSBC has
a total contribution of 20.5% to the composition of the STOXX Europe 600 Banks
Index. As a result, if the corresponding index is used as a proxy for the financial
system, systemic risk estimates generated conditional on HSBC will be severely af-
fected by the presence and the large scale factor of HSBC in the financial system’s
portfolio proxy.

4.5 Copula CoVaR estimation

The computation of CoVaR or CoES requires the estimation of the parameter(s)
of the marginal densities and the copula function that captures the dependence
between Rs,t and Ri,t. Assume a vector of system and institution returns Rt =
(Rs,t, Ri,t)′, (t = 1, . . . , T ; i = 1, . . . , N) where s 6= i. Given that a copula func-
tion and the marginals are continuous, their joint probability density function can
be expressed in terms of the copula density function, c(·, · ; θt), and the univariate
marginal densities, fs,t(Rs,t;φs) and fi,t(Ri,t;φi), as follows

f(Rs,t, Ri,t) = c(ut, vt ; θt) · fs,t(Rs,t ;φs) · fi,t(Ri,t ;φi) , (4.18)

where θt denotes the copula parameter while φs and φi denote the parameters for
the system’s and institution i’s marginal distributions, respectively. In the above
expression ut = FRs,t(Rs,t ;φs) and vt = FRi,t(Ri,t ;φi) are the uniformly transformed
marginal series. The log-likelihood function of Equation (4.18) is given by

L(θt, φs, φj) =
T∑
t=1

[log c(ut, vt ; θt) + log fs,t(Rs,t ;φs) + log fi,t(Ri,t ;φi)] . (4.19)

The marginal densities fs,t(Rs,t; φs) and fi,t(Ri,t ;φi) can be conditional densities
and the series Rs,t and Ri,t are usually modelled by a GARCH-type model, whose
residuals are treated as i.i.d random variables. Under this setting, full maximum
likelihood estimates (MLE) can be obtained by maximising Equation (4.19) with re-
spect to the parameters (θt, φs, φi). In general, the full MLE estimation would be our
first choice due to the well-known optimality properties of the maximum likelihood.
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However, the Inference Functions for Margins (IFM) method is usually preferred
to full MLE due to its computational tractability and comparable efficiency. The
IFM method (see Joe and Hu (1996); Joe (1997), for further details) is a multi-step
optimisation technique. It divides the parameter vector into separate parameters
for each marginal distribution and parameters for the copula model. Therefore, one
may break up the optimisation problem into two parts. In this study we adopt the
IFM method to estimate the parameters of the marginal distributions and copula
function and subsequently obtain CoVaR and CoES estimates.

When modelling the distribution of financial asset returns, the critical issues are
dynamic volatility and the modelling of asymmetries. It is well-documented that
asset return distributions are skewed and fat-tailed. Moreover, the volatility of
asset returns is not constant; it is mean-reverting and it tends to cluster. Another
important stylised characteristic of asset returns volatility is that a large negative
price shock increases volatility much more than a positive price shock of the same
magnitude, which is also known as “leverage-effect”. To address these features we
assume that the returns of the financial system and institution i at time t, Rt =
(Rs,t, Ri,t)′, follow an AR(1)-GJR-GARCH(1,1) model.9 Therefore for j ≡ s, i and
time t = 1, . . . , T we estimate

Rj,t = µj,t + εj,t = φj,0 + φj,1Rj,t−1 + σj,tzj,t , (4.20)

σ2
j,t = ωj + αjσ

2
j,t−1 + βjε

2
j,t−1 + ξjIt−1ε

2
j,t−1 , (4.21)

where It−1 is an indicator function equal to 1 if εj,t−1 < 0, and 0 otherwise. We
assume that the distribution of the innovations zj,t is a white noise process with
zero mean, unit variance and a distribution function given by Fzj ,t. To allow for
asymmetry in the marginal distributions, we assume that the distribution of the
innovations follows the Skewed-t distribution, as introduced in Fernández and Steel
(1998). It is very common, however, when modelling asset returns, to assume nor-
mality. In this respect, we also estimate the time-series models in Equation (4.20)
and Equation (4.21) based on the assumption of normal distributed innovations.10

We denote the cumulative distribution functions of the financial system and insti-
tution i’s innovations by ut ≡ Fzs,t(zs,t) and vt ≡ Fzi,t(zi,t), respectively.11 The

9The asymmetric GJR-GARCH model is developed in Glosten et al. (1993).

10Note that given the innovations distributional assumptions we can easily obtain time-varying
VaR estimates for each institution i (see Duffie and Pan (1997); Jorion (2001) among others, for
further details)

11The innovations can also be transformed to uniformly distributed data non-parametrically by
their corresponding empirical distribution functions without assuming any particular parametric
distribution for the marginals. This semi-parametric (SP) method is also known as pseudo maximum
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dependence parameter is then estimated by maximising the log-likelihood function
in Equation (4.19), given the estimated parameters of the marginal series.

In this respect, CoVaR estimates can be obtained by evaluating the analytical expres-
sions derived in Section 4.3.2. Note that the conditional quantiles implied by Equa-
tion (4.9) and Equation (4.14) correspond to the conditional quantiles of innovations.
To obtain time-varying CoVaR measures, we rescale CoV aR=

α,β,t or CoV aRα,β,t es-
timates with the fitted conditional mean µs,t and standard deviation σs,t of Rs,t,
obtained from estimated Equation (4.20) and Equation (4.21), as follows

CoV aR=
α,β,t = µs,t + σs,t F

−1
zs,t

(u=
t ) ,

CoV aRα,β,t = µs,t + σs,t F
−1
zs,t

(u≤t ) ,

where F−1
zs,t is the generalised inverse of the financial system’s innovation distribu-

tion function and u=
t and u≤t are the conditional quantiles of the general solutions

in Equation (4.9) and Equation (4.14), respectively.12 Also note that the conditional
quantiles in Equation (4.9) and Equation (4.14) correspond to a static model (i.e.,
θ is constant). However, the dynamic version of the model (i.e., θt is time-varying)
implies that conditional quantiles are also time-varying. Therefore, we use the sub-
script t in u=

t and u≤t to distinguish between the dynamic and static model.

4.6 Results

4.6.1 Computing CoVaR and CoES measures

In this Section we present results based on the representation of CoVaR by Girardi
and Ergün (2013).13 In our search for the copula model that can sufficiently describe
the dependence between financial system and institution returns, we consider four
alternative copula functional forms: Clayton, Frank, Gumbel and BB7. Each of
these copula families allows for positive dependence but implies a different type of

likelihood (PML) method (see Genest et al. (1995), for further details). The semi-parametric (SP)
method can tackle the marginal misspecification problem since it treats the marginal distributions
as unknown functions.

12To obtain time-varying CoES measures, the same process as in the computation of CoVaR is
followed; however, the copula conditional quantiles u=

t and u≤t are obtained from the corresponding
expressions in Equation (4.16) and Equation (4.17), respectively.

13As discussed earlier, CoVaR under this definition is a dependent consistent measure of systemic
risk, which is an essential property for a well-specified model. Another attractive characteristic of it
is that CoVaR estimates generated under this framework can be statistically evaluated, providing a
distinctive opportunity to assess the statistical adequacy of systemic risk models. In Appendix 4.E,
we present a graphical comparison between CoVaR and CoES measures under both definitions
conditional on HSBC returns. Similar results are also obtained for the rest of the pairs analysed.
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tail dependence between the variables. For example, the Clayton copula only allows
for negative tail dependence and would hence fit best if negative changes in financial
system and institution returns are more highly correlated than positive changes.
In contrast, the Gumbel copula only allows for positive tail dependence, while the
Frank copula does not allow for tail dependence. Finally, the BB7 copula allows for
asymmetric upper and lower tail dependence. In practice, CoVaR focuses on the
joint tail distribution of the financial system-institution pair returns and thus tail
dependence is a rather important concept for CoVaR computation.

We estimate dynamic CoV aRα,β,t and CoESα,β,t measures for each institution i. We
employ two alternative distributional assumptions for the marginal series: Gaus-
sian and Skewed-t. The selection of the best-fitting copula model for each system-
institution pair is based on the Akaike Information Criterion (AIC) (Akaike, 1974).14

All risk measures (V aRiα,t, CoV aRα,β,t, CoESα,β,t) are computed at the same confi-
dence level, i.e., α = β = 5%. We also evaluate CoV aRα,β,t estimates for statistical
accuracy and independence using modified versions of the standard Kupiec (1995)
and Christoffersen (1998) tests (see Girardi and Ergün (2013), for further details on
the implementation of the modified tests). Figure 4.6.1 shows time-series average
V aRiα,t, CoV aRα,β,t and CoESα,β,t measures, while Figure 4.6.2 shows time-varying
average Kendall’s τ correlations implied by the estimated bivariate copula families,
across all financial system-institution pairs with Skewed-t marginals. The light blue
shaded area in the graphs corresponds to Q3 2007 - Q4 2012 crisis period. It is clear
that CoV aRα,β,t and CoESα,β,t estimates are higher in absolute value during this
period. This is partly due to the increasing correlation between financial system and
institution returns as shown in Figure 4.6.2.

14The Bayesian Information Criterion (BIC) of Schwarz (1978) was also employed in the selection
procedure for the best-fitting copula model; however, the results remained unaffected.
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Figure 4.6.1: This figure shows time-series average values of weekly V aRiα,t,
CoV aRα,β,t and CoESα,β,t measures across all financial system-institution pairs. All
risk measures are generated under the assumption of Skewed-t margins and computed
at α = β = 5% level. The light blue shaded area corresponds to Q3 2007 - Q4 2012
crisis period.
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Figure 4.6.2: This figure shows time-series average Kendall’s τ correlation estimates
implied by estimated copula families across all financial system-institution pairs. All
risk measures are generated under the assumption of Skewed-t margins and computed
at α = β = 5% level. The light blue shaded area corresponds to Q3 2007 - Q4 2012
crisis period.

Nevertheless, the time-varying correlation results cannot fully support the empirical
findings in Longin and Solnik (2001) and Ang and Chen (2002), indicating that con-
ditional correlations between financial asset returns are much stronger in downturns
than in upturns. The time-varying Kendall’s τ correlations are slightly more pro-
nounced during the crisis period than in the pre-crisis period for most of the pairs;
the average value is 0.44 in the pre-crisis period and 0.47 in the crisis period for all
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pairs under consideration. Figures 4.6.1 and 4.6.2 also indicate the importance of
consistency of systemic risk measures with respect to dependence. It is clear from
the two graphs that high values of Kendall’s τ correlations are associated with high
in absolute value systemic risk estimates. Therefore, a systemic risk measure that
provides an inconsistent response to dependence may fail to detect systemic risk
when it is more pronounced, i.e., during periods of financial distress, and thus lead
financial system regulators to make inappropriate policy decisions. Therefore, the
notion of consistency of systemic risk measures with respect to dependence becomes
rather significant during crisis periods.

Figure 4.6.3 displays a cross-section plot of an institution’s average V aRiα,t and its
contribution to systemic risk, measured by average ∆CoV aRα,β,t. It is clear that
there is a weak relationship between an institution’s V aRiα,t and its ∆CoV aRα,β,t
in the cross-section. Similar findings are also reported in Adrian and Brunnermeier
(2011) and Girardi and Ergün (2013) leading to the conclusion that regulating the
risk of financial institutions in isolation, through institutions’ VaR, might not be the
optimal policy for protecting the financial sector against systemic risk. In contrast,
Figure 4.6.4 plots the time-series average of V aRiα,t and ∆CoV aRα,β,t over time.
It is evident that V aRiα,t and ∆CoV aRα,β,t measures have a strong relationship in
the time series. Adrian and Brunnermeier (2011) report the same strong relation-
ship, while Girardi and Ergün (2013) confirm a weak relationship between these
two risk measures in the time series. Given our findings, we can conclude that the
association between these two measures over time is primarily determined by the
alternative definitions of ∆CoVaR and not by the alternative CoVaR definitions.15

15This conclusion results from estimating CoVaR under both stress scenarios Ri,t = V aRiα,t
and Ri,t ≤ V aRiα,t and employing alternative ∆CoVaR definitions for three copula models: Clayton,
Gumbel and Frank. Numerical integration is used to estimate CoVaR when explicit expressions
are not available in our Copula CoVaR framework (see also footnote 6). The weak relationship
between ∆CoVaR and VaR in the time series is supported only when the definition of ∆CoVaR
employed is that of Girardi and Ergün (2013) is used, regardless of alternative CoVaR definitions.
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Figure 4.6.3: This scatter plot shows the cross-sectional link between the time-series
average of each financial institution’s risk in isolation, measured by V aRiα,t, and the
time-series average contribution to systemic risk, measured by ∆CoV aRα,β,t. All risk
measures are generated under the assumption of Skewed-t margins and computed at
α = β = 5% level.
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Figure 4.6.4: This figure shows the time-series average of weekly ∆CoV aRα,β,t and
V aRiα,t measures. All risk measures are generated under the assumption of Skewed-t
margins and computed at α = β = 5% level. The light blue shaded area corresponds
to Q3 2007 - Q4 2012 crisis period.

4.6.2 Systemic risk contribution

Table 4.6.1 ranks the contribution of each individual bank to overall systemic risk,
as measured by the time-series average of ∆CoV aRα,β,t and ∆CoESα,t estimates,
under the assumption of Gaussian and Skewed-t margins, respectively. Table 4.6.1
also displays the selected copula functions and the average value of Kendall’s τ cor-
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relation coefficients implied by the estimated copula parameters of each financial
system-institution pair. The Frank copula is the most preferred functional form for
describing the dependence between financial system and institution returns and the
Gumbel copula is the second most popular choice under the assumption of Gaus-
sian marginals. In contrast, the BB7 copula is the most popular functional form
for modelling the dependence under the Skewed-t marginals assumption, while the
Frank copula is the second most favoured choice. The Clayton copula has not been
selected for any of the pairs analysed under both marginal assumptions. It is clear
from Table 4.6.1 that the distribution assumptions in the marginals affect the se-
lection of the best-fitting copula and hence the overall CoV aRα,β,t and CoESα,β,t

results. Therefore, particular attention should be paid when specifying marginals
since the use of inappropriate marginals not only introduces biases directly but also
affects systemic risk measures indirectly, through copula parameter estimation or
copula misspecification.16

The average ∆CoV aRα,β,t and ∆CoESα,β,t estimates with Skewed-t margins are
much higher in absolute value than those generated under the assumption of Gaus-
sian margins. The size differences in systemic risk measures, however, result not
only from the alternative marginal assumptions but also from the characteristics
of the copula functions that model the dependence for each pair. The dominant
copula function when assuming Gaussian margins is Frank, while BB7 is the most
popular copula family under Skewed-t marginals. As explained, the Frank cop-
ula does not imply tail dependence, while the BB7 copula allows for asymmetric tail
dependence. In this regard, the general dependence structure, and especially the de-
pendence structure in extremes, affects substantially the computation of CoV aRα,β,t
and CoESα,β,t. This is also confirmed by the implied Kendall’s τ estimates reported
in Table 4.6.1. It is clear from Table 4.6.1 that for those copula families that do not
imply lower tail dependence, such as the Frank or the Gumbel copula family, the
average ∆CoV aRα,β,t and ∆CoESα,β,t estimates are primarily driven by the degree
of dependence.

The stronger the dependence between financial system and institution returns the
higher the average values of ∆CoV aRα,β,t and ∆CoESα,β,t. In contrast, when the
dependence between the financial system and an institution’s returns is modelled
by an asymmetric BB7 copula, the average ∆CoV aRα,β,t and ∆CoESα,β,t estimates
are not monotonic functions of Kendall’s τ correlation estimates but their values
are also affected by the degree of tail dependence. Figure 4.6.5 shows the aver-
age time-varying upper (λU) and lower (λL) tail dependence indices estimated from

16The effects on the computation of the VaR when there is a misspecification in the marginals
and in the copulas has been investigated by Fantazzini (2009).
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those pairs modelled by a BB7 copula under the assumption of Skewed-t marginals.
There is clear evidence of asymmetric tail dependence.

The average value of upper and lower tail dependence indices is 0.45 and 0.50, re-
spectively, leading to the conclusion that joint negative extremes occur more often
than joint positive extremes. To investigate further the impact of asymmetries in the
tails on the computation of systemic risk metrics, we compute non-parametric (N-
P) estimates (an average of non-parametric estimates in Dobrić and Schmid (2005))
for upper (λU) and lower (λL) tail dependence coefficients and sample Kendall’s
τ correlation coefficients for each financial system-institution pair of standardised
residuals, obtained from the fit of the univariate time-series models in Section 4.5.
Table 4.6.3 reports average ∆CoV aRα,β,t, sample Kendall’s τ and non-parametric
tail dependence indices for each pair. It is not surprising that banks having high
coefficients of lower tail dependence appear among the most systemic financial in-
stitutions, indicating in this way the importance of asymmetries in systemic risk
modelling.
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Figure 4.6.5: This figure shows time-varying average values of upper (λU ) and lower
(λL) tail dependence coefficients implied by BB7 copulas under the assumption of
Skewed-t margins. All risk measures are computed at α = β = 5% level. The light
blue shaded area corresponds to Q3 2007 - Q4 2012 crisis period.

The ranking of the systemically important financial institutions in Table 4.6.1 varies
significantly across different marginal distributional assumptions but is more con-
sistent across alternative systemic risk measures within the same marginal distribu-
tional assumptions. For example, Santander bank is ranked as the 2nd most systemic
financial institution according to its average contribution to systemic risk, measured
by ∆CoV aRα,β,t, under the assumption of Gaussian margins, while it is ranked in
the 7th place when Skewed-t margins are assumed instead. Moreover, BNP Paribas
is ranked as the 3rd most systemic bank based on its average ∆CoESα,β,t measure
under normality, but under the assumption of Skewed-t margins it is ranked in
the 26th place. Nevertheless, the hierarchy of systemic banks across ∆CoV aRα,β,t
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and ∆CoESα,β,t does not differ significantly under the same marginal distribution
assumptions, implying that qualitative results depend more on the underlying dis-
tribution assumptions in the margins and dependence structure and less on the
systemic risk measures per se.

From the ranking results in Table 4.6.1 and the market capitalisation values of finan-
cial institutions reported in Table 4.D.1 in the Appendix 4.D, it can also be shown
that banks which are large in size with strong cross-country exposure and interna-
tional activity appear among the most systemic financial institutions under both
distribution assumptions. For instance, banks such as BBVA, UBS, Deutsche Bank,
Credit Suisse or BNP Paribas, are placed among these institutions. Table 4.6.2 dis-
plays a cross-country comparison of systemic risk contribution measured by the aver-
age ∆CoV aRα,β,t and ∆CoESα,β,t of financial firms belonging to the same country.
Financial institutions from France and Spain appear to be the most systemic ones
according to their average ∆CoV aRα,β,t and ∆CoESα,β,t estimates under Gaussian
and Skewed-t marginal distribution assumptions, respectively. In contrast, banks
from Portugal, Ireland or Greece are classified among the least systemic financial
institutions in our sample.

One may regard this classification as an economic paradox since banks that belong
to those national economies that have suffered the most from the European sovereign
debt crisis - and the market value of whose corresponding share prices has declined
significantly during the crisis - appear among the least systemic financial institutions
in the cross-country comparison. However, banks from these particular countries are
typical commercial banks with substantial presence in the local market but limited
international activity and cross-country exposure. Therefore, the implied correlation
and more importantly the dependence in extreme events between these banks and
the financial system is typically reduced generating in this way lower in absolute
value systemic risk estimates. This is also confirmed by the fact that the Frank
copula which does not allow for tail dependence is the preferred copula functional
form for most of these particular pairs.

These findings should not be regarded as a weakness of the CoVaR model but rather
as a merit. According to Brunnermeier et al. (2009), a systemic risk measure should
be able to identify the risk to the system by individually “systemically important”
institutions, which are highly interconnected and large enough to cause negative
spill over effects on others, as well as by small institutions that are “systemic” when
acting as parts of a herd. In this respect, the relative size and the interconnected-
ness of each particular financial institution are factors that should be considered in
systemic risk measurement. The CoVaR methodology implicitly incorporates insti-
tution size and interconnectedness into systemic risk estimation through correlation
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and dependence on extreme events. In our study, the financial system is represented
by components of the STOXX Europe 600 Banks Index, which includes the largest
banks in terms of market capitalisation in Europe. It is a portfolio of 42 financial
institutions from 15 different European countries.

The majority of and the largest in size among these financial institutions come from
countries such as Germany, France, Spain, Italy and Great Britain. Therefore, the
implied dependence between each of these particular institutions and the financial
system is, by construction, stronger due to within-country dependence (e.g increased
commonalities for institution returns from same country) and the dependence that
arises from their large size and dominant position in the European market. This
may partly explain why banks from these particular countries are listed among the
most systemic financial institutions in our study. The results in Table 4.6.4 support
this argument. Table 4.6.4 reports average sample Kendall’s τ and non-parametric
upper (λU) and lower (λL) tail dependence estimates for each country. It is evident
that Kendall’s τ correlations and non-parametric tail dependence coefficients are
much stronger for these particular countries, implying a stronger dependence and
dependence in the tails of the joint distribution and consequently higher, on average,
systemic risk estimates.
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Table 4.6.1: This table ranks the average contribution to systemic risk for each individual institution.

∆CoVaR results
Normal Margins Skewed-t Margins

Bank Copula ∆CoVaR τ Bank Copula ∆CoVaR τ

BBVA Gumbel -2.741 0.62 POP BB7 -5.127 0.46
SCH Gumbel -2.709 0.61 DBK BB7 -5.122 0.55
BNP Gumbel -2.691 0.60 UBSN BB7 -5.114 0.53
CRDA Gumbel -2.585 0.57 CSGN BB7 -5.086 0.51
UCG Gumbel -2.524 0.55 CRDA BB7 -5.078 0.53
SEA Gumbel -2.488 0.54 SEA BB7 -5.073 0.50
NDA Gumbel -2.476 0.54 SCH BB7 -5.049 0.56
BARC Gumbel -2.450 0.54 BBVA BB7 -5.041 0.57
LLOY Gumbel -2.334 0.50 LLOY BB7 -5.039 0.46
SGE Frank -1.934 0.64 UCG BB7 -5.033 0.50
DBK Frank -1.883 0.63 BSAB BB7 -5.031 0.38
KB Frank -1.802 0.60 NDA BB7 -5.027 0.50
UBSN Frank -1.798 0.60 SVK BB7 -5.011 0.41
CSGN Frank -1.798 0.59 BP BB7 -5.009 0.47
CBK Frank -1.713 0.57 KB BB7 -5.000 0.52
ISP Frank -1.704 0.56 CBK BB7 -4.999 0.49
BMPS Frank -1.664 0.55 DNB BB7 -4.971 0.38
KNF Frank -1.660 0.53 DAB BB7 -4.956 0.38
MB Frank -1.652 0.56 BARC BB7 -4.951 0.48
RBS Frank -1.645 0.54 SYD BB7 -4.932 0.33
POP Frank -1.594 0.53 JYS BB7 -4.832 0.34
PMI Frank -1.587 0.53 ETE BB7 -4.766 0.35
HSBA Frank -1.580 0.52 BPSO BB7 -4.624 0.29
BP Frank -1.575 0.53 BCV BB7 -4.244 0.27
SWED Frank -1.526 0.50 SGE Frank -2.862 0.62
STAN Frank -1.492 0.50 BNP Frank -2.728 0.61
ERS Frank -1.464 0.50 ISP Frank -2.474 0.53
SVK Frank -1.455 0.48 BMPS Frank -2.420 0.53
DAB Frank -1.383 0.46 MB Frank -2.382 0.54
BSAB Frank -1.357 0.45 KNF Frank -2.368 0.50
POH Frank -1.321 0.45 RBS Frank -2.330 0.51
BKIR Frank -1.315 0.44 PMI Frank -2.300 0.51
DNB Frank -1.305 0.44 HSBA Frank -2.249 0.51
BES Frank -1.274 0.42 SWED Frank -2.187 0.48
JYS Frank -1.260 0.39 STAN Frank -2.115 0.48
SYD Frank -1.227 0.41 ERS Frank -2.084 0.47
ETE Frank -1.217 0.40 BKIR Frank -1.821 0.41
BCP Frank -1.212 0.40 POH Frank -1.820 0.42
BPE Frank -1.081 0.37 BES Frank -1.725 0.39
BPSO Frank -1.016 0.34 BCP Frank -1.646 0.37
BCV Frank -1.011 0.33 BPE Frank -1.386 0.33
VATN Frank -0.813 0.28 VATN Frank -0.953 0.23

∆CoES results
Normal Margins Skewed-t Margins

Bank Copula ∆CoES τ Bank Copula ∆CoES τ

BBVA Gumbel -2.549 0.62 POP BB7 -5.236 0.46
SCH Gumbel -2.522 0.61 DBK BB7 -5.227 0.55
BNP Gumbel -2.507 0.60 UBSN BB7 -5.226 0.53
CRDA Gumbel -2.417 0.57 CSGN BB7 -5.186 0.51
UCG Gumbel -2.365 0.55 CRDA BB7 -5.181 0.53
SEA Gumbel -2.336 0.54 LLOY BB7 -5.178 0.46
NDA Gumbel -2.326 0.54 BSAB BB7 -5.168 0.38
BARC Gumbel -2.302 0.54 SEA BB7 -5.160 0.50
LLOY Gumbel -2.203 0.50 SVK BB7 -5.155 0.41
SGE Frank -1.746 0.64 SCH BB7 -5.125 0.56
DBK Frank -1.700 0.63 UCG BB7 -5.124 0.50
KB Frank -1.626 0.60 BP BB7 -5.123 0.47
UBSN Frank -1.623 0.60 DNB BB7 -5.121 0.38
CSGN Frank -1.622 0.59 NDA BB7 -5.118 0.50
CBK Frank -1.545 0.57 DAB BB7 -5.111 0.38
ISP Frank -1.537 0.56 BBVA BB7 -5.110 0.57
BMPS Frank -1.500 0.55 BARC BB7 -5.085 0.48
KNF Frank -1.497 0.53 CBK BB7 -5.078 0.49
MB Frank -1.490 0.56 KB BB7 -5.075 0.52
RBS Frank -1.483 0.54 SYD BB7 -5.073 0.33
POP Frank -1.437 0.53 JYS BB7 -5.033 0.34
PMI Frank -1.430 0.53 BPSO BB7 -4.888 0.29
HSBA Frank -1.424 0.52 ETE BB7 -4.887 0.35
BP Frank -1.419 0.53 BCV BB7 -4.582 0.27
SWED Frank -1.374 0.50 SGE Frank -2.910 0.62
STAN Frank -1.343 0.50 BNP Frank -2.769 0.61
ERS Frank -1.318 0.50 ISP Frank -2.507 0.53
SVK Frank -1.310 0.48 BMPS Frank -2.460 0.53
DAB Frank -1.244 0.46 MB Frank -2.422 0.54
BSAB Frank -1.220 0.45 KNF Frank -2.405 0.50
POH Frank -1.188 0.45 RBS Frank -2.354 0.51
BKIR Frank -1.183 0.44 PMI Frank -2.335 0.51
DNB Frank -1.173 0.44 HSBA Frank -2.285 0.51
BES Frank -1.145 0.42 SWED Frank -2.216 0.48
JYS Frank -1.132 0.39 STAN Frank -2.144 0.48
SYD Frank -1.102 0.41 ERS Frank -2.118 0.47
ETE Frank -1.093 0.40 BKIR Frank -1.845 0.41
BCP Frank -1.088 0.40 POH Frank -1.840 0.42
BPE Frank -0.969 0.37 BES Frank -1.744 0.39
BPSO Frank -0.910 0.34 BCP Frank -1.659 0.37
BCV Frank -0.905 0.33 BPE Frank -1.399 0.33
VATN Frank -0.726 0.28 VATN Frank -0.953 0.23

This table reports average ∆CoV aRα,β,t, ∆CoESα,β,t and implied Kendall’s τ estimates along with the selected copula families of each
financial system-institution pair in our sample under two marginals specifications: Normal and Skewed-t. All risk measures are computed
at α = β = 5% level.

Table 4.6.2: This table ranks the average contribution to systemic risk by country.

∆CoVaR results
Normal Margins Skewed-t Margins

Country ∆CoVaR Country ∆CoVaR
France -0.0222 Spain -0.0506
Spain -0.0210 Germany -0.0505
Sweden -0.0199 Belgium -0.0499
Great Britain -0.0190 Norway -0.0497
Belgium -0.0180 Denmark -0.0490
Germany -0.0180 Greece -0.0476
Italy -0.0160 Sweden -0.0432
Austria -0.0146 Swiss -0.0384
Swiss -0.0136 Great Britain -0.0333
Finland -0.0132 France -0.0326
Ireland -0.0132 Italy -0.0320
Norway -0.0131 Austria -0.0208
Denmark -0.0129 Ireland -0.0182
Portugal -0.0124 Finland -0.0182
Greece -0.0122 Portugal -0.0168

∆CoES results
Normal Margins Skewed-t Margins

Country ∆CoES Country ∆CoES
France -0.0204 Spain -0.0516
Spain -0.0193 Germany -0.0515
Sweden -0.0184 Norway -0.0512
Great Britain -0.0175 Belgium -0.0507
Belgium -0.0163 Denmark -0.0507
Germany -0.0162 Greece -0.0489
Italy -0.0145 Sweden -0.0441
Austria -0.0132 Swiss -0.0399
Swiss -0.0122 Great Britain -0.0341
Finland -0.0119 France -0.0332
Ireland -0.0118 Italy -0.0328
Norway -0.0117 Austria -0.0212
Denmark -0.0116 Ireland -0.0185
Portugal -0.0112 Finland -0.0184
Greece -0.0109 Portugal -0.0170

This table reports average ∆CoV aRα,β,t and ∆CoESα,β,t estimates for each country in our sample under two marginal
specifications: Normal and Skewed-t. All risk measures are computed at α = β = 5% level.
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Table 4.6.3: Dependence and tail dependence estimates.

Bank Copula ∆CoVaR τ λL λU

POP BB7 -5.127 0.51 0.46 0.24
DBK BB7 -5.122 0.62 0.65 0.42
UBSN BB7 -5.114 0.57 0.59 0.44
CSGN BB7 -5.086 0.56 0.49 0.41
CRDA BB7 -5.078 0.57 0.46 0.54
SEA BB7 -5.073 0.54 0.62 0.40
SCH BB7 -5.049 0.61 0.59 0.44
BBVA BB7 -5.041 0.63 0.62 0.53
LLOY BB7 -5.039 0.50 0.41 0.42
UCG BB7 -5.033 0.56 0.48 0.28
BSAB BB7 -5.031 0.43 0.42 0.24
NDA BB7 -5.027 0.54 0.48 0.51
SVK BB7 -5.011 0.47 0.30 0.34
BP BB7 -5.009 0.51 0.55 0.29
KB BB7 -5.000 0.57 0.56 0.33
CBK BB7 -4.999 0.55 0.57 0.24
DNB BB7 -4.971 0.42 0.45 0.21
DAB BB7 -4.956 0.43 0.38 0.26
BARC BB7 -4.951 0.54 0.54 0.43
SYD BB7 -4.932 0.37 0.34 0.16
JYS BB7 -4.832 0.37 0.31 0.27
ETE BB7 -4.766 0.38 0.34 0.23
BPSO BB7 -4.624 0.31 0.30 0.11
BCV BB7 -4.244 0.28 0.19 0.21
SGE Frank -2.862 0.63 0.60 0.50
BNP Frank -2.728 0.61 0.44 0.52
ISP Frank -2.474 0.53 0.42 0.33
BMPS Frank -2.420 0.54 0.50 0.24
MB Frank -2.382 0.53 0.36 0.19
KNF Frank -2.368 0.50 0.37 0.26
RBS Frank -2.330 0.51 0.47 0.41
PMI Frank -2.300 0.51 0.50 0.24
HSBA Frank -2.249 0.51 0.33 0.32
SWED Frank -2.187 0.48 0.46 0.31
STAN Frank -2.115 0.48 0.36 0.23
ERS Frank -2.084 0.47 0.38 0.26
BKIR Frank -1.821 0.41 0.29 0.15
POH Frank -1.820 0.42 0.20 0.22
BES Frank -1.725 0.38 0.25 0.18
BCP Frank -1.646 0.37 0.41 0.00
BPE Frank -1.386 0.33 0.13 0.17
VATN Frank -0.953 0.24 0.17 0.12

This table reports average ∆CoV aRα,β,t, sample Kendall’s τ correlations
and non-parametric upper (λU ) and lower (λL) tail dependence estimates (
an average of non-parametric estimates in Dobrić and Schmid (2005)) of each
financial system-institution pair in our sample. ∆CoV aRα,β,t estimates are
obtained under the assumption of Skewed-t margins. All risk measures are
computed at α = β = 5% level.

Table 4.6.4: Dependence and tail dependence estimates by country.

Country τ λL λU

Germany 0.58 0.61 0.33
Belgium 0.57 0.56 0.33
Spain 0.54 0.52 0.37
France 0.58 0.47 0.46
Sweden 0.51 0.46 0.39
Norway 0.42 0.45 0.21
Great Britain 0.51 0.42 0.36
Italy 0.48 0.41 0.23
Austria 0.47 0.38 0.26
Swiss 0.41 0.36 0.30
Greece 0.38 0.34 0.23
Denmark 0.39 0.34 0.23
Portugal 0.38 0.33 0.09
Ireland 0.41 0.29 0.15
Finland 0.42 0.20 0.22

This table reports average sample Kendall’s τ correlations and non-
parametric upper (λU ) and lower (λL) tail dependence estimates (an
average of non-parametric estimates in Dobrić and Schmid (2005))
for each country in our sample.
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4.6.3 Backtesting and stress testing CoVaR

A well-specified risk model should satisfy the appropriate theoretical statistical prop-
erties. Therefore, the proportion of violations should approximately equal the confi-
dence level, while the violations should not occur in clusters but independently. Ta-
ble 4.6.5 reports the average p-values from the modified Kupiec (1995) and Christof-
fersen (1998) statistical tests for the unconditional coverage, independence and con-
ditional coverage of CoV aRα,β,t estimates under both Gaussian and Skewed-t dis-
tribution assumptions computed at α = β = 5% level.

The null hypotheses of unconditional and conditional coverage are rejected at the
5% level of significance under the Gaussian assumption. On the other hand, the
average p-values from statistical tests under the assumption of Skewed-t margins are
pretty high and hence the null hypotheses cannot be rejected at any conventional
level of significance. Thus, it seems that a combination of copula functions - with
asymmetric marginals - that allow for asymmetries in the tails is a better candidate
for systemic risk modelling. Our test results are in line with the CoVaR backtest
results in Girardi and Ergün (2013) and the VaR test results in the vast literature
that reject the underlying normality assumption of risk models suggesting alterna-
tive distribution assumptions that allow for asymmetries.

Table 4.6.5: Statistical test results

Test Normal Margins Skewed-t Margins

Unconditional coverage 0.0206 0.3633
Independence 0.5649 0.8802
Conditional coverage 0.0286 0.5410

This table reports average p-values of statistical tests for unconditional cov-
erage, independence and conditional coverage properties for CoV aRα,β,t es-
timates. All risk estimates are computed at α = β = 5% level.

On the other hand, stress testing exercises are useful in order financial regulators to
gauge the potential implications of extreme market conditions for the stability of the
financial system as a whole. Before the outset of the financial crisis, financial stability
stress tests were largely focused on the implications of system-wide macroeconomic
shocks and rarely considered idiosyncratic shocks such as the failure of a single large
firm. Recently, there has been a growing interest in such systemic stress testing
exercises by central banks and financial regulators. Our modelling framework can
be easily employed as part of the tool-kit for financial stability assessment. Stress
testing exercises under this framework can simulate scenarios that are absent from
historical data or are more likely to occur than historical observation suggests, as well
as simulate shocks that reflect permanent structural breaks or temporal dependence
breakdowns.
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Figure 4.6.6 displays a scenario analysis example for HSBC and demonstrates its
influence on systemic risk as measured by CoV aRα,β,t under certain scenarios. In
particular, Figure 4.6.6 plots the implied CoV aRα,β,t measures generated by the
Clayton, Gumbel, Frank and BB7 copulas for β = 0.01 to 0.80, α = 0.05 and
the dependence parameter(s) estimated for each particular copula family assuming
Skewed-t margins.17 Thus, the discrepancies in CoV aRα,β,t measures are due to the
employment of different copula models and do not arise from margin specifications.
The implied CoV aRα,β,t results in Figure 4.6.6 have an appealing interpretation. For
instance, we are 99% confident, given that HSBC is at most at its 95% VaR level,
that the financial system will not experience a distress event worse than −16.84%
according to the Clayton copula. For the same confidence level, CoV aRα,β,t esti-
mates implied by the Gumbel, Frank and BB7 copulas are −15.08%, −13.56% and
−16.74%, respectively.18

Given the unique ability of copula functions to enable the separation of dependence
from marginal distributions, we are able to quantify the potential effects on the
stability of the financial system of risks associated with marginal distribution as-
sumptions or risks related to the dependence structure. For example, a scenario
that implies a structural break in the correlation between the financial system and
an institution’s returns can be analysed by modifying the level of Kendall’s τ param-
eter, while a change in the dependence structure can be studied through alternative
copula functional forms. Similarly, a scenario that implies high volatility or severe
equity price declines can be examined through alternative marginal specifications.
Complex stress test exercises that combine all the above scenarios can also be anal-
ysed simultaneously, thus providing a powerful tool for systemic risk assessment.

17We could also set the parameters for the Clayton, Gumbel and Frank copulas to a pre-specified
value such as the Kendall’s τ sample correlation coefficient because there is a one-to-one relation-
ship between these particular one-parameter copula families and Kendall’s τ . Such a relationship,
however, does not exist for the two-parameter BB7 copula. To maintain the consistency of the im-
plied systemic risk estimates, we use the estimated parameter(s) for each particular copula family
instead.

18Similar stress testing exercises can also be obtained using CoESα,β,t as a measure of systemic
risk.
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Figure 4.6.6: This figure shows the implied CoV aRα,β,t estimates of the financial
system conditional on HSBC returns generated by the Clayton, Gumbel, Frank and
BB7 copulas with Skewed-t marginals across different quantile levels (β = 0.01 to 0.8
and α = 0.05). The Kendall’s τ sample correlation parameter is equal to 0.51, i.e.,
τ = 0.51.

Figure 4.6.6 also provides a distinct graphical way to illustrate the importance of
tail dependence in systemic risk computation and facilitate the interpretation of the
results in Tables 4.6.1 and 4.6.2. It is clear from Figure 4.6.6 that the Clayton and
BB7 copulas which allow for lower tail dependence produce much larger in absolute
value CoV aRα,β,t measures compared to the corresponding measures generated by
the Frank or Gumbel copulas, which do not allow for lower tail dependence. As
already explained, the average ∆CoV aRα,β,t or ∆CoESα,β,t measures reported in
Tables 4.6.1 and 4.6.2 do not differ in size only due to alternative distribution as-
sumptions in margins but also due to the different characteristics of the alternative
copula functional forms employed. Therefore, copula misspecification may critically
affect the systemic risk estimates and therefore dependence modelling should pro-
ceed with caution.

4.6.4 Systemic risk determinants

In this Section, we investigate the main drivers of systemic risk in the European
banking system. The analysis is split into two main parts. In the first part, we
investigate whether there are common market factors explaining an institution’s
contribution to systemic risk and seek to understand how this relationship is altered
in the face of changes in the market environment. We also investigate how and
in which direction these factors affect systemic risk. As explained, systemic risk
measures can be decomposed within the Copula CoVaR framework due to the unique
ability of copula functions to enable the separation of dependence from marginal
distributions. Thus, CoVaR is an increasing non-linear function of the correlation
between the financial system and institution i and of the financial system’s volatility.
This separation allows us to assess the impact of market factors on these variables
and analyse their importance for the stability of the financial system.

125



Chapter 4 : Measuring systemic risk in the European banking sector

Therefore, the dependent variables in our formal empirical work are ∆CoV aRα,β,t,
Kendall’s τ correlations and the financial system’s volatility σs estimates, obtained
in Section 4.6.2.19 In particular, we run the following panel regression model:

yi,t = β0 + β1 V ix t−1 + β2 Liquidity t−1 + β3 ∆Euribor t−1 + β4 ∆Slope t−1 + β5 ∆Credit t−1

+ β6 S&P t−1 + β7 Icrisis V ix t−1 + β8 Icrisis Liquidity t−1 + β9 Icrisis ∆Euribor t−1

+ β10 Icrisis ∆Slope t−1 + β11 Icrisis ∆Credit t−1 + β12 Icrisis S&P t−1 + εi,t , (4.22)

where yi,t are the ∆CoV aRiα,β,t, Kendall’s τ it and financial system’s volatility σis,t

estimates, for each financial institution i and week t. The Icrisis represents a dummy
variable that takes the value of zero in the pre-crisis period and the value of one
in the period we designate as the crisis period. In addition, the right-hand side
of Equation (4.22) includes the following market variables:

(i) Vix, which is a proxy for the implied volatility in the stock market reported by
the Chicago Board Options Exchange (CBOE).

(ii) Liquidity, which is a short term “liquidity spread” defined as the difference be-
tween the three-month interbank offered rate and the three-month repo rate.
This spread is a common proxy for short-term funding liquidity risk. We use
the three-month Euribor rate and the three-month Eurepo rate, both reported
by the European Banking Federation (EBF).

(iii) ∆Euribor, which is the change in the three-month Euribor rate.
(iv) ∆Slope, which is the change in the slope of the yield curve, measured by the

spread between the German ten-year government bond yield and the German
three-month Bubill rate.

(v) ∆Credit, which is the change in the credit spread between the ten-year Moody’s
seasoned BAA-rated corporate bond and the German ten-year government
bond.

(vi) S&P, which is the S&P 500 Composite Index returns and used as a proxy for
equity market returns.

The data have been obtained from Bloomberg and are sampled weekly. Table 4.6.6
reports the summary statistics of market variables. Almost all extreme values of
these variables occur during stress periods. It is also evident that the distributions
of the variables are highly skewed.

19All results are based on Skewed-t marginal distribution assumptions. We also analysed the same
relationships based on the results from Gaussian margins. Moreover, we employed ∆CoESα,β,t as
an alternative measure of an institution’s contribution to systemic risk. The qualitative results,
however, remained unchanged.
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Table 4.6.6: Market variables summary statistics

Vix Liquidity ∆Euribor ∆Slope ∆Credit S&P

Mean 21.834 35.642 −0.706 −0.085 0.086 0.070
Median 19.090 20.000 0.000 −0.700 0.000 0.138
Std. dev 10.219 34.721 6.198 14.261 11.892 3.125
Min 9.970 7.300 −51.100 −50.200 −41.100 −15.723
Max 80.060 188.800 21.100 119.500 126.200 13.604
Skewness 1.973 1.700 −2.555 1.560 2.498 −0.318
Kurtosis 5.246 2.995 15.362 11.278 27.012 4.834

This table reports summary statistics for the weekly market variables. Vix denotes the CBOE
implied volatility. Liquidity represents the difference between the 3-month Euribor rate and
the 3-month Eurepo rate. ∆Euribor denotes the change in the 3-month Euribor rate. ∆Slope
denotes the change in the yield slope between the 10-year and the 3-month German government
bond rates. ∆Credit represents the change in the yield spread between the ten-year Moody’s
seasoned BAA-rated corporate bond and the German ten-year government bond. S&P is the
market equity returns. The spreads and spread changes are expressed in basis points, while
returns and the Vix in percentage points.

Table 4.6.7 reports bank fixed-effect panel regression estimates for ∆CoV aRα,β,t,
Kendall’s τ and the financial system’s volatility σs estimates on the above lagged
market variables. Across both sub-periods, the lagged values of the Vix, Liquid-
ity and ∆Euribor variables appear highly significant in explaining the variation
in ∆CoV aRα,β,t at conventional significance levels. In particular, higher lagged val-
ues of implied market volatility are associated with more negative ∆CoV aRα,β,t mea-
sures in the pre-crisis period. In contrast, the impact of lagged S&P Return, ∆Spread
and ∆Slope variables on ∆CoV aRα,β,t does not appear statistically significant in this
period (∆Slope is significant only at 10% level).

The results in Table 4.6.7 also highlight the importance of funding liquidity in sys-
temic risk contribution. Banks typically raise short-term funding in the unsecured
interbank market or through over-the-counter collateralised repurchase agreements
(repos). In times of uncertainty, banks charge higher rates for unsecured loans and
thus interbank offered rates increase. The spread between the Euribor and the Eu-
repo rates measures the difference in interest rates between short-term fundings of
different risks. As Figure 4.6.7 shows, this spread had shrunk to historical low levels
during the pre-crisis period but it began to surge upward during the crisis period.
The positive impact of funding liquidity on ∆CoV aRα,β,t in the pre-crisis period is
confirmed by the results in Table 4.6.7. The coefficient of Liquidity in this period
is negative and rather significant in magnitude. On average, a 1% increase in Liq-
uidity, which indicates a worsening of funding liquidity, contributes almost 13.7% to
systemic risk as measured by ∆CoV aRα,β,t.
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Table 4.6.7: Panel regression results.

Variables ∆CoVaR Kendall’s τ Volatility σs

Vix t−1 −0.149∗∗∗ 0.004∗∗∗ 0.140∗∗∗

Liquidity t−1 −13.739∗∗∗ −0.313∗∗∗ 13.997∗∗∗

∆Euribor t−1 −3.691∗∗∗ 0.057 3.453∗∗∗

∆Slope t−1 0.658∗ −0.024 −0.607∗

∆Credit t−1 −0.089 −0.027∗∗∗ 0.101
S&P t−1 −0.021 0.001 0.019
Vix t−1 · Icrisis 0.044∗∗∗ −0.003∗∗∗ −0.044∗∗∗

Liquidity t−1 · Icrisis 11.866∗∗∗ 0.337∗∗∗ −12.234∗∗∗

∆Euribor t−1 · Icrisis 5.951∗∗∗ −0.035 −5.494∗∗

∆Slope t−1 · Icrisis −0.301 0.017 0.276
∆Credit t−1 · Icrisis −0.932∗∗∗ −0.014∗∗∗ 0.947∗∗∗

S&P t−1 · Icrisis 0.032 −0.002 −0.029

Adj. R2 0.770 0.219 0.876

This table displays results from bank fixed-effects panel data methodology (within
estimator). The columns ∆CoVaR, Kendall’s τ and Volatility report estimated co-
efficients from regressions of weekly ∆CoV aRα,β,t measures, Kendall’s τ estimates
and the financial system’s volatility σs estimates on the same lagged values of mar-
ket variables: Vix, Liquidity, ∆Euribor, ∆Slope, ∆Credit and S&P. The Icrisis is a
crisis dummy that takes the value of 0 for the Q2 2002 - Q2 2007 pre-crisis period
and 1 for the Q3 2007 - Q4 2012 crisis period. Estimated coefficients for spreads,
yield changes, Vix and market returns correspond to percent changes. The results
are based on weekly data from Q2 2002 - Q4 2012. All ∆CoV aRα,β,t measures are
estimated at 5% level. Kendall’s τ correlations are obtained after transforming the
time-varying copula parameters for each financial system-institution i pair to theo-
retical Kendall’s τ values. The financial system’s volatility σs estimates are obtained
by a univariate asymmetric AR(1)-GJR-GARCH(1,1) model for each financial sys-
tem portfolio. Following Thompson (2011), we compute standard errors that cluster
by both firm and time. ∗∗∗ denotes significant at 1%, ∗∗ denotes significant at 5%
and ∗ denotes significant at 10%.

The results are in line with a large number of theoretical and empirical research pa-
pers that associate market declines with liquidity dry-ups to explain the triggering
of systemic episodes (see e.g., Brunnermeier 2009; Adrian and Shin 2010; Brunner-
meier and Pedersen 2009; Hameed et al. 2010, and references therein). The burst
of the crisis in summer 2007, caused two “liquidity spirals”. Financial institutions’
capital eroded due to the initial decline in asset prices and the increase in wholesale
funding cost. Consequently, both events triggered fire-sales, pushing asset prices
further down, and increased the uncertainty in the interbank lending market. As a
result, European banks that relied excessively on short-term funding were particu-
larly exposed to a dry-up in liquidity. In this respect, the large size of the pre-crisis
liquidity spread coefficient estimate partly explains why the sudden dry-up in liq-
uidity had such a severe impact on the stability of the financial system.
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Figure 4.6.7: This figure shows the short-term Liquidity Spread between the 3-month
Euribor rate and the 3-month Eurepo rate measured in basis points. The light blue
shaded area corresponds to Q3 2007 - Q4 2012 crisis period.

The regression results in Table 4.6.7 for the ∆Euribor variable are also of great in-
terest. As explained, the Euribor rate represents the unsecured rate at which a large
panel of European banks borrow funds from one another. An increase in short-term
rates implies a higher borrowing cost for banks. In this respect, banks relying on
short-term funding are more vulnerable to liquidity risk. The pre-crisis coefficient
estimate of the change in the three-month Euribor rate variable indicates the posi-
tive relation between changes in the short-term rates and systemic risk contribution.
On average, an increase by 1% in the change of the three-month Euribor rate adds
an additional 3.7% to ∆CoV aRα,β,t.

In contrast, the signs of almost all estimated coefficients have switched in the crisis
period indicating an asymmetric response of market factors to systemic risk in these
sub-periods. In particular, the coefficient estimates of the Liquidity and ∆Euribor
variables have switched from negative in the pre-crisis period to positive in the
crisis period. One of the main reasons behind this behaviour is the coordinated
intervention of central banks in both the United States and Europe in response to the
freezing up of the interbank market. To alleviate the liquidity crunch, the European
Central Bank (ECB) and the Federal Reserve (Fed) reduced the interest rates at
which financial institutions borrow from them; they also expanded their balance
sheets by broadening the type of collateral that banks could use, and increased
the maturity of their loans to the banks (see Giannone et al. (2012), for further
details). Figure 4.6.8 shows average CoV aRα,β,t estimates and a timeline of key
events and measures taken by the European Central Bank (ECB) to provide liquidity
and restore financial stability over the recent financial crisis. We note in Figure 4.6.8
that the highest CoV aRα,β,t measures (in absolute value) are reported after the
Lehman Brothers collapse in September 2008. Figure 4.6.8 also depicts the measures
taken by the European Central Bank (ECB) in response to the liquidity crunch and
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the overall financial market turmoil. It can be shown that the systemic risk measures
returned to lower levels (in absolute value) while the initial liquidity dry-up in the
interbank market calmed down and the short-term interbank rates returned to lower
levels, as Figure 4.6.7 and Figure 4.6.9 display, respectively.
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Figure 4.6.8: This figure shows time-series average CoV aRα,β,t estimates, key events
(in red) and measures taken by the European Central Bank (ECB) to provide liquidity
to the interbank market and restore financial stability. The light blue shaded area
corresponds to Q3 2007 - Q4 2012 crisis period. Source of timeline events: European
Central Bank (ECB), www.ecb.europa.eu.

The overall increase in systemic risk during the crisis period, however, is not only
driven by the solvency problems of several Euro-area financial institutions, but also
by the sovereign debt crisis of a large number of Eurozone member countries. As
Figure 4.6.8 suggests, systemic risk estimates reached their highest levels after the
collapse of Lehman Brothers in September 2008; however, high values are also asso-
ciated with the inability of several countries in the Eurozone to repay or refinance
their government debt without the assistance of third parties. As Shambaugh (2012)
points out, the euro area faced three interdependent crises, that is, a sovereign debt
crisis, a banking crisis and a growth and competitiveness crisis. In this respect, the
problems of undercapitalised banks and high sovereign debt are mutually reinforc-
ing, and both are amplified by slow and unequally distributed - among Eurozone
member countries - growth. Therefore, our regression results and the asymmetric
response of market factors to systemic risk should be viewed in conjunction with the
overall characteristics of the crisis in the Eurozone.
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Figure 4.6.9: This figure shows the 3-month euro interbank offered rate (Euribor), the
interest rate at which euro interbank 3-month deposits are offered by one prime bank
to another prime bank within the euro area. The light blue shaded area corresponds
to Q3 2007 - Q4 2012 crisis period.

It is also of great interest to investigate the effect of market factors on Kendall’s τ
correlation estimates and the financial system’s volatility σs estimates. Kendall’s τ
correlation estimates are asymmetrically related to lagged values of the Vix and Liq-
uidity variables, although the magnitude of the asymmetries is not large. Interest-
ingly, liquidity shocks (the widening of liquidity spread) reduce Kendall’s τ corre-
lation in the pre-crisis period, while having a positive impact on it in the crisis
period. A widening in ∆Credit also suggests a decrease in Kendall’s τ correlation
in both periods. The above market factors also appear significant in explaining the
financial system’s volatility and demonstrate the same asymmetric behaviour. In
the pre-crisis period, an increase in the Vix, Liquidity or ∆Credit variables increases
the financial system’s volatility and as a consequence the level of systemic risk, while
the impact of these factors on the financial system’s volatility is the opposite in the
post-crisis period. The ∆Euribor variable is also asymmetrically related to the fi-
nancial system’s volatility; however, the degree of asymmetry is pretty high between
these sub-periods, with the regression coefficients changing from 3.453 to -5.494.
This substantial asymmetric response also highlights the impact of the European
Central Bank’s (ECB) intervention in the interbank market.

In the post-crisis period, an increase in the change of the three-month Euribor rate,
counterintuitively suggests a reduction in the financial system’s volatility. Neverthe-
less, as shown in Figures 4.6.8 and 4.6.9, the action taken by the European Central
Bank (ECB) during the crisis period eventually reduced the level of short-term
interest rates and, thus, distorted the positive pre-crisis relationship between the
change in short-term rates and the financial system’s volatility. From the results
in Table 4.6.7, it can also be seen that the impact of funding liquidity is primar-
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ily transmitted on ∆CoV aRα,β,t through the financial system’s volatility and not
through Kendall’s τ correlation. In other words, the sudden dry-up of liquidity in
the pre-crisis period reduced the level of correlation among financial institutions
but considerably increased the volatility of the financial system. This can also be
confirmed by comparing the estimated coefficients of the Liquidity variable with the
estimated coefficients of the ∆CoV aRα,β,t and volatility variables, which are almost
identical in absolute value.

In the second part of our analysis, we investigate how individual characteristics
of financial institutions contribute to systemic risk. In this regard, we employ
panel regressions and regress quarterly-aggregated ∆CoV aRα,β,t measures on a set
of institution-specific variables. In particular, we consider the following panel re-
gression model with fixed effects:

∆CoV aRiα,β,t = β0 + β1 V aR
i
α,t−k + β2 MtBi,t−k + β3 Sizei,t−k + β4 Leveragei,t−k

+ β5 Betai,t−1 + β6 V oli,t−k + εi,t . (4.23)

where ∆CoV aRii,t represents the quarterly-aggregated ∆CoV aR measures for insti-
tution i computed from the first stage as described in Section 4.6.2. In addition, we
use the following set of quarterly bank-specific characteristics:

(i) V aRiα,t−k defined as the quarterly-aggregated VaR measures for bank i at
quarter t−k, calculated by averaging the corresponding weekly measures within
each quarter.

(ii) MtBi,t−k defined as the ratio of the market to book value of total equity for
bank i at quarter t− k and used as a proxy for growth opportunities.

(iii) Sizei,t−k defined as the log of total book value of equity for bank i at quarter
t− k.

(iv) Leveragei,t−k defined as the ratio of the total assets to total book value of
equity for bank i at quarter t− k and used as a proxy for the solvency of the
bank.

(v) Betai,t−k is the equity market beta for bank i at quarter t−k, calculated from
weekly equity return data within each quarter.

(vi) V oli,t−k is the equity return volatility for bank i at quarter t − k, calculated
from weekly equity return data within each quarter.

The balance-sheet data for each individual bank are obtained from Worldscope
database. Table 4.6.8 below provides the summary statistics for ∆CoV aRiα,β,t and
V aRiα,t measures and the bank-specific characteristics at quarterly frequency.
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Table 4.6.8: Bank-specific variables summary statistics

Variable Mean Median Std. dev.

∆CoVaR −0.0469 −0.0353 0.0334
VaR −0.0798 −0.0649 0.0552
MtB 1.2684 1.2406 0.8558
Size 8.4790 8.5084 0.6605
Leverage 21.6602 19.7551 14.7454
Beta 0.7232 0.6433 0.5415
Vol 0.0214 0.0172 0.0151

This table reports summary statistics of quarterly-aggregated
bank-specific variables. VaR estimates are obtained by averaging
the corresponding weekly measures within each quarter. All risk
measures are estimated at 5% level of significance under the
assumption of Skewed-t marginals.

Table 4.6.9 reports results from panel regressions, after controlling for bank fixed-
effects and, additionally, allowing for bank and time clustered errors. We report
results from three different specifications based on the forecast horizon of explana-
tory variables: one quarter, one year and two years. Across forecast periods, Size
and Leverage appear to be the most robust determinants of systemic risk. The es-
timated coefficient of the Size variable is negative and highly significant, suggesting
that bigger institutions contribute more to systemic risk than smaller institutions.

Table 4.6.9: Determinants of systemic risk - Individual institution characteristics.

Variable 1-Quarter 1-Year 2-Year

VaR t−k −0.213 49∗∗ 0.128 39∗ 0.004 43
MtB t−k 0.000 03 −0.010 95∗ −0.015 09∗∗

Size t−k −0.015 66∗∗∗ −0.040 46∗∗∗ −0.038 94∗∗∗

Leverage t−k −0.000 74∗∗∗ −0.001 28∗∗∗ −0.000 76∗∗∗

Beta t−k 0.008 47 −0.004 08 −0.015 95∗∗∗

Volatility t−k −1.834 96∗∗∗ 0.436 13∗ 0.341 99
Adj. R2 0.440 0.288 0.325

This table displays results from the bank fixed-effects panel regression methodology
(within estimator). The columns report estimated coefficients from regressions of
lagged quarterly bank-specific data on quarterly aggregated ∆CoV aRα,β,t mea-
sures. The column 1-Quarter corresponds to results based on lagged variables
equal to one-quarter, while columns 1-Year and 2-Year correspond to results based
on lagged variables equal to one year and two years, respectively. The results are
based on quarterly data from Q2 2002 - Q4 2012.All ∆CoV aRα,β,t measures are es-
timated at 5% level. Following Thompson (2011), we compute standard errors that
cluster by both firm and time. ∗∗∗ denotes significant at 1%, ∗∗ denotes significant
at 5% and ∗ denotes significant at 10%.

These findings support the empirical results in Section 4.6.2. Several of the largest
banks in our sample are placed among the most systemic financial institutions based
on their average ∆CoVaR or ∆CoES measures as reported in Table 4.6.1. Fur-
thermore, Leverage is negative and significant across all forecasting horizons. As
explained, Leverage is used as a proxy for the solvency of the financial institution.
The negative coefficient estimates of Leverage across all forecasting horizons imply
that highly leveraged banks contribute more to systemic risk than low leveraged
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banks. In addition, the VaR of each financial institution and equity return volatility
are statistically significant at the one quarter horizon, whereas equity beta is statis-
tically significant at the two year horizon. Overall, our results in Table 4.6.9 are in
line with other studies. Similar to Acharya et al. (2012), Adrian and Brunnermeier
(2011) and Girardi and Ergün (2013), we find that size, leverage and equity beta are
important determinants of systemic risk. However, we found no statistical support
for the hypothesis that the market to book value of total equity ratio is important
in explaining institutions’ contribution to systemic risk.

4.7 Conclusions

In this study we propose a new method for estimating the Conditional Value-at-
Risk (CoVaR), a method based on copula functions. The proposed Copula CoVaR
methodology provides simple, explicit expressions for a broad range of copula fam-
ilies, while allowing the CoVaR of an institution to have time-varying exposure to
its VaR. In this respect, we avoid the burden of numerical integration in CoVaR
computation and offer a dynamic and more flexible approach to systemic risk mod-
elling, while eliminating potential biases that may arise from misspecification in
the marginals or the joint distribution. This approach is also extended to other
systemic risk measures, such as the Conditional Expected Shortfall (CoES). The
systemic risk measures generated from our framework share the main properties re-
ported in Mainik and Schaanning (2014) for each particular CoVaR specification.
Furthermore, we illustrate how the Copula CoVaR methodology can facilitate stress
testing exercises employed by financial regulators to measure the impact of extreme
market scenarios on the stability of the financial system.

We focus on a portfolio of large European banks and estimate CoVaR and CoES
measures using alternative distribution assumptions in the margins and the depen-
dence structure. We illustrate the importance of taking asymmetries into account
and highlight the threats to accurate systemic risk measurement posed by misspecifi-
cation biases in the margins or the dependence model. We measure an institution’s
contribution to systemic risk using both ∆CoVaR and ∆CoES measures. Banks
such as BBVA, UBS, Deutsche Bank, Credit Suisse and BNP Paribas appear among
the most systemic European banks, whereas French and Spanish banks generate the
highest average ∆CoVaR and ∆CoES estimates. We also investigate whether there
are common market factors explaining an institution’s contribution to systemic risk.
In principle, lagged values of the implied market volatility, of funding liquidity, of the
credit spread and of the change in the three month Euribor rate are significant in ex-
plaining ∆CoVaR. They also appear important in explaining the correlation between
the financial system and each institution, as well as the financial system’s volatility.
The asymmetric behaviour of market factors in the pre-crisis and the crisis period is
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partly attributed to the coordinated intervention of central banks in response to the
financial crisis. Finally, we investigate the impact of bank-specific characteristics
on systemic risk and regress ∆CoVaR measures on a set of balance-sheet variables.
Across all alternative model specifications considered, size and leverage appear to
be the most robust determinants of systemic risk, implying that bigger and highly
leveraged financial institutions can generate large systemic risk externalities.
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Appendices

4.A CoVaR derivation for Normal and Student-t copu-
las

4.A.1 Normal copula

The Normal copula does not have a closed form distribution. Its distribution is
given by

C(u, v) = Φ2(Φ−1(u),Φ−1(v); ρ) ,

where Φ2 is the bivariate distribution of two standard normal distributed random
variables with correlation ρ, Φ is the N(0, 1) cdf and Φ−1 is the inverse of Φ. Nev-
ertheless, the CoVaR in Adrian and Brunnermeier (2011) can be given in explicit
form, that is

CoV aR=
α,β,t = F−1

s,t

(
Φ
(
ρΦ−1(v) +

√
1− ρ2 Φ−1(β)

))
.

Unfortunately, the CoVaR can not be given in explicit form under the definition
in Girardi and Ergün (2013) . In this respect, CoVaR is obtained numerically by
first solving the Normal copula density for the conditional quantile u , that is∫ u

0

∫ v

0

1√
1− ρ2 exp

(
− ρ2(s2 + t2)− 2 ρ s t

2(1− ρ2)

)
ds dt = α2 .

Note that from theVaR definition it holds that v = FRi,t(V aRiα,t) = FRi,t
(
F−1
Ri,t

(α)
)

=
α. Since we work on a common significance level for VaR and CoVaR measures it
also holds that α = β. In this regard, CoVaR is given by applying the probability
integral transform to the conditional quantile u, i.e., CoV aRα,β,t = F−1

s,t

(
u
)
. In prac-

tice, this method for CoVaR computation is similar to that proposed by Girardi and
Ergün (2013), the only difference being that we work with a copula density function
instead of a probability density function (pdf ).

4.A.2 The Student-t copula

Similar to the Norman copula, the Student-t copula does not have a closed-form
density. However, the CoVaR definition based on Adrian and Brunnermeier (2011)
can be given in explicit form as

CoV aRα,β,t = F−1
s,t

(
tν
(
ρ t−1

ν (v) +
√

(1− ρ2)(ν + 1)−1
(
ν + t−1

ν (v)2
)
t−1
ν+1(β)

))
.
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In contrast, the CoVaR definition given by Girardi and Ergün (2013) can be obtained
numerically by solving the following numerical integral

∫ u

0

∫ v

0

1√
1− ρ2

Γ
(
ν+2

2

)
Γ
(
ν
2

)
Γ
(
ν+2

2

)2

(
1 + s2−2 s t ρ+t2

ν(1−ρ2)

)− ν+1
2

(1 + s2
ν

)− ν+1
2 (1 + t2

ν
)− ν+1

2
ds dt = α · β .

After solving for u and applying the probability integral transform, the CoVaR
is given by CoV aRα,β,t = F−1

s,t

(
u
)
. As in the case with the Normal copula, we

work on a common significance level for both risk metrics, i.e., α = β, while v =
FRi,t(V aRiα,t) = FRi,t

(
F−1
Ri,t

(α)
)

= α, which it holds from the definition of VaR.

4.B CoVaR derivation for Archimedean copulas

4.B.1 Clayton copula

The Clayton copula is a member of the Archimedean copula family with dependence
parameter θ ∈ (0,∞) and generator function ϕ = (u−θ−1)

θ
. The perfect dependence is

observed as θ →∞ whereas θ → 0 implies independence. The Clayton copula allows
for the modelling of positive dependence and asymmetric (lower) tail dependence.
The distribution function is given by

C(u, v ; θ) = (u−θ + v−θ − 1)− 1
θ .

Following the notation introduced in Section 4.3.2, an explicit expression for CoV aR=
α,β,t

for the Clayton copula can be derived, that is

∂C(u, v)
∂v

=
(
1 + uθ

(
v−θ − 1

))−(1+θ)
θ = β . (4.24)

Solving for u and applying the probability integral transform, CoV aR=
α,β,t is obtained

as follows

u= ≡ u =
(
1 + v−θ ·

(
β−

θ
1+θ − 1

))− 1
θ
,

CoV aR=
α,β,t = F−1

s,t

((
1 + α−θ ·

(
β−

θ
1+θ − 1

))− 1
θ
)
. (4.25)

Alternatively, using the general expression in Equation (4.12) an explicit expression
for CoV aRα,β,t for the Clayton copula can be given as follows

C(u, v)
v

= β,

(
u−θ + v−θ − 1

)− 1
θ = v · β .
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Thus, solving for u and applying the probability integral transform, CoV aRα,β,t can
be obtained in a closed-form expression, that is

u≤ ≡ u =
(
1 +

(
v · β

)−θ − v−θ)− 1
θ
,

CoV aRα,β,t = F−1
s,t

((
1 + (α · β)−θ − α−θ

)− 1
θ
)
. (4.26)

4.B.2 Frank copula

This copula is also a member of the Archimedean copula family with dependence
parameter θ ∈ (−∞,∞)\{0} and generator function ϕ = − ln

(
e−δu−1
e−δ−1

)
. The Frank

copula allows for both positive and negative dependence structures; however, it does
not imply tail dependence. The distribution function is given by

C(u, v ; δ) = −1
δ

ln
( 1

1− e−δ
[
(1− e−δ)− (1− e−δu)(1− e−δv)

] )
.

An analytical expression for CoV aR=
α,β,t for this copula family can be derived as

CoV aR=
α,β,t = F−1

s,t

(
− 1
δ

ln
(
1− (1− e−δ) ·

[
1 + e−δα ·

(
β−1 − 1

)]−1 ))
. (4.27)

In contrast, an explicit expression for CoV aRα,β,t for the Frank copula is given as
follows

CoV aRα,β,t = F−1
s,t

(
− 1
δ

ln
[
1− (1− e−δ)− (1− e−δ)(e−δβα)

(1− e−δα)

])
. (4.28)

4.B.3 Gumbel copula

The Gumbel copula with dependence parameter θ ∈ [1,∞] and generator function
ϕ(t) = (−log t)θ belongs to the Archimedean copula family, too. The Gumbel copula
only captures positive dependence and it allows for asymmetric (upper) tail depen-
dence. For θ = 1, the Gumbel copula implies independence while the perfect positive
dependence is observed as θ →∞. The distribution function is given by

C(u, v ; θ) = exp
(
−
(
(−log u)θ + (−log v)θ

) 1
θ
)
.

Unfortunately, the ∂/∂v C(u, v) of the Gumbel copula is not partially invertible in its
first argument u and hence we cannot derive an analytical expression for CoV aR=

α,β,t.
However, an analytical expression for CoV aRα,β,t can be given as follows

CoV aRα,β,t = F−1
s,t

(
exp

(
−
[(
− log(α · β)

)θ − (− log α
)θ] 1

θ
))

. (4.29)
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4.B.4 BB7 copula

The BB7 copula, known as the Joe-Clayton copula, is a two-parametric Archimedean
copula family with θ ≥ 1 and δ > 0. This copula family captures positive dependence
while also allowing for asymmetric upper and lower tail dependence. In particular,
the δ parameter measures lower tail dependence and the θ parameter measures upper
tail dependence. Moreover, the Joe copula is the limiting case of BB7 for δ → 0
whereas for θ = 0 one obtains the Clayton copula. The distribution function for this
copula family is given by

C(u, v ; θ, δ) = 1−
(
1−

[(
1− (1− u)θ

)−δ +
(
1− (1− v)θ

)−δ − 1
]− 1

δ
) 1
θ
.

Analytical expressions for CoV aR=
α,β,t and CoV aRα,β,t can be obtained from the

general solutions in Equation (4.11) and Equation (4.15), respectively, with

ϕ(v ; θ, δ) = [1− (1− v)−θ]−δ − 1 ,

ϕ−1(v ; θ, δ) = 1− [1− (1 + v)−1/δ]1/θ ,

ϕ
′(v ; θ, δ) = −[1− (1− v)θ]−δ−1δ[−(1− v)θθ/(−1 + v)] .

4.C Dynamic Copula CoVaR

For the Clayton and Gumbel copulas the following parametric representation is
proposed

θt = Λ1

(
ω + β · θt−1 + α · 1

10

10∑
j=1
|ut−j · vt−j|

)
,

where Λ1(x) is an appropriate transformation to ensure the parameter always re-
mains in its domain: exp(x) for the Clayton copula and (exp(x) + 1) for the Gum-
bel one. On the other hand, the parameter δ of the Frank copula is defined in
[−∞,∞]\{0} at all times. Thus, we employ the following evolution equation for
this particular copula family

δt = ω + β · δt−1 + α · 1
10

10∑
j=1
|ut−j · vt−j| ,

where the evolution of δt is constrained to ensure that the parameter remains in
its domain. For the two-parametric Archimedean BB7 copula a similar parametric
representation for each tail dependence coefficient is considered. The BB7 copula
is constructed by taking a particular Laplace transformation of the Clayton copula.
The BB7 copula distribution is given by

C(u, v ; θ, δ) = 1−
(
1−

[(
1− (1− u)θ

)−δ +
(
1− (1− v)θ

)−δ − 1
]− 1

δ
) 1
θ
,
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where θ = 1/ log2(2 − τU), δ = −1/ log2(τL) and τU , τL ∈ (0, 1). Therefore, the
following evolution equations can be considered for the BB7 copula

τUt = Λ2

(
ωU + βU · τUt−1 + αU ·

1
10

10∑
j=1
|ut−j · vt−j|

)
,

τLt = Λ2

(
ωL + βL · τLt−1 + αL ·

1
10

10∑
j=1
|ut−j · vt−j|

)
,

where Λ2(x) ≡ (1 + exp(−x))−1 is the logistic transformation, used to keep τU and
τL in (0, 1) at all times.
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4.D List of European financial institutions

Table 4.D.1: List of European financial institutions

Bank Datastream
tickers

Country Weight (%) MCap (e Bil.)

HSBC HSBA Great Britain 20.44 142.65
BCO SANTANDER SCH Spain 7.33 51.17
UBS UBSN Swiss 6.60 46.08
BNP PARIBAS BNP France 6.17 43.09
BARCLAYS BARC Great Britain 5.37 37.50
BCO BILBAO VIZCAYA ARGENTARIA BBVA Spain 4.95 34.56
STANDARD CHARTERED STAN Great Britain 4.64 32.38
DEUTSCHE BANK DBK Germany 4.43 30.92
LLOYDS BANKING GRP LLOY Great Britain 4.34 30.28
CREDIT SUISSE GRP CSGN Swiss 4.32 30.12
NORDEA BANK NDA Sweden 3.14 21.89
GRP SOCIETE GENERALE SGE France 3.00 20.92
UNICREDIT UCG Italy 2.82 19.69
INTESA SANPAOLO ISP Italy 2.44 17.00
SWEDBANK SWED Sweden 2.28 15.88
SVENSKA HANDELSBANKEN A SVK Sweden 2.11 14.69
SKANDINAVISKA ENSKILDA BK A SEA Sweden 1.59 11.07
DNB DNB Norway 1.49 10.38
DANSKE BANK DAB Denmark 1.21 8.41
CREDIT AGRICOLE CRDA France 1.02 7.15
ROYAL BANK OF SCOTLAND GRP RBS Great Britain 1.00 6.95
COMMERZBANK CBK Germany 0.89 6.21
KBC GRP KB Belgium 0.88 6.13
ERSTE GROUP BANK ERS Austria 0.86 6.00
BCO POPULAR ESPANOL POP Spain 0.56 3.93
BCO SABADELL BSAB Spain 0.55 3.85
NATIXIS KNF France 0.40 2.77
BANK OF IRELAND BKIR Ireland 0.37 2.55
POHJOLA BANK POH Finland 0.33 2.27
MEDIOBANCA MB Italy 0.32 2.23
JYSKE BANK JYS Denmark 0.29 2.03
BCO POPOLARE BP Italy 0.24 1.65
BCA POPOLARE EMILIA ROMAGNA BPE Italy 0.23 1.63
BCA MONTE DEI PASCHI DI SIENA BMPS Italy 0.20 1.43
BCO ESPIRITO SANTO BES Portugal 0.20 1.38
BCO COMERCIAL PORTUGUES BCP Portugal 0.19 1.31
NATIONAL BANK OF GREECE ETE Greece 0.18 1.29
BCA POPOLARE DI SONDRIO BPSO Italy 0.17 1.21
SYDBANK SYD Denmark 0.17 1.17
BCA POPOLARE DI MILANO PMI Italy 0.15 1.07
BANQUE CANTONALE VAUDOISE BCV Swiss 0.15 1.05
VALIANT VATN Swiss 0.15 1.03

This table lists 42 out of the 46 banks (from 15 European countries) that belong to the to STOXX 600
Banks Index and their corresponding Datastream tickers, Market Capitalisation values and relative STOXX
600 Banks Index weights as of June, 2013. Source: STOXX Limited (www.stoxx.com).
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4.E Systemic risk measure comparisons

This Appendix presents a graphical comparison of CoVaR and CoES measures,
based on the CoVaR definitions in Adrian and Brunnermeier (2011) and Girardi
and Ergün (2013). Figure 4.E.1 shows dynamic CoV aR=

α,β,t and CoV aRα,β,t esti-
mates, while Figure 4.E.2 displays dynamic CoES=

α,β,t and CoESα,β,t estimates. All
measures are generated by a Frank copula function with Skewed-t margins condi-
tional on HSBC returns. It is clear that the systemic risk estimates do not differ
significantly from each other. Similar patterns are also observed for the rest of the
pairs in our study.
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Figure 4.E.1: This figure shows financial system returns (grey points), dy-
namic CoV aR=

α,β,t (black line) and CoV aRα,β,t (red line) estimates conditional on
HSBC returns. Both systemic risk measure estimates are generated by a Frank copula
function with Skewed-t marginals. The light blue shaded area corresponds to Q3 2007
- Q4 2012 crisis period.
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Figure 4.E.2: This figure shows financial system returns (grey points), dy-
namic CoES=

α,β,t (black line) and CoESα,β,t (red line) estimates conditional on HSBC
returns. Both systemic risk measure estimates are generated by a Frank copula func-
tion with Skewed-t marginals. The light blue shaded area corresponds to Q3 2007 -
Q4 2012 crisis period.
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Chapter 5

Modelling the dependence of Eu-
ropean sovereign yield curves

5.1 Introduction

How do investors react in the light of market-wide and country-specific liquidity and
credit quality shocks in the sovereign fixed-income markets ? Does their behaviour
change when equity markets become more volatile ? Can we quantify the effects
of these shocks on the sovereign yield curves and cross-country spreads ? Under-
standing the implications of market-wide and country-specific liquidity and credit
risks for sovereign yield curves and their dependence structure is of key importance
for understanding the sources of risk premia and cross-market dynamics and conse-
quently for monetary policy, investment decisions and prudent risk management.

It is well-documented in the finance literature that liquidity and credit concerns
are important components of the yield spreads (see for example, Duffie et al., 2003;
Longstaff et al., 2005; Beber et al., 2009, among others). Nevertheless, so far, most
studies have related liquidity and credit concerns to the yields or yield spreads fo-
cusing on certain maturities or markets in isolation without taking into account
the dynamic interaction of these risks with the term structure of interest rates and
the cross-markets dependence. In this study, we focus on the yield curve of several
Euro-area countries and model jointly their temporal and dependence structure as a
function of market-wide and country-specific liquidity and credit quality measures.
Said differently, we study the dynamic interaction between sovereign yield curves
and European measures of liquidity and credit quality, while relating the dynamic
dependence between sovereign yield curves to country-specific liquidity and credit
quality measures. We also investigate the interaction of these measures with the
sovereign yield curves unconditionally, as well as conditional on periods of height-
ened equity market volatility.

The present analysis is split into two main parts. In the first part, we model the
evolution of the yield curve for each particular country using the macro-finance
Nelson-Siegel model of Diebold et al. (2006) augmented with key macroeconomic
and financial variables, as well as European measures of liquidity and credit quality.
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The inclusion of market-wide liquidity and credit quality measures in the latent fac-
tor specification of the model enables the study of the dynamic interaction between
these risks and the yield curve for each particular country. The correlation and
principal component analysis (PCA) results of the estimated latent factors support
the view that markets separate Eurozone countries according to their correspond-
ing credit quality into two distinct groups: the peripheral and the core Eurozone
countries. The analysis also supports the view that investors tend to differentiate
between Eurozone countries and non-Euro countries, such as the UK. The large con-
tribution of Germany to the construction of the first principal component (PC1) for
the level, slope and curvature factors reveals the country’s leading role in explaining
the variation of the European sovereign yields.

The statistical significance of the estimated European liquidity and credit quality
measures in the latent factor specification is also rather pronounced for Germany,
while the statistical significance of the corresponding measures is less pronounced
and varies across Italy, Spain, France and the UK. In addition, the sensitivity anal-
ysis results suggest significant effects on the European sovereign yield curves and
cross-country spreads after shocks to market-wide measures of liquidity and credit
quality, while the impact of liquidity and credit quality shocks differs across countries
and term structure maturities. Specifically, the German yields tend to be negatively
related to market-wide liquidity and credit quality shocks, while being, on aver-
age, the most sensitive ones, implying a significant reduction in the German yields
after a shock in the European liquidity and credit quality measures. In addition,
the spreads between the German yields and the yields of the peripheral Eurozone
countries increase in response to market-wide liquidity and credit shocks, while the
impact of these shocks on the remaining cross-country spreads varies across shock
types (i.e. shock to market-wide liquidity or credit quality measures) and term
structure maturities.

In the second part, we model the covariance structure of European sovereign yields
employing the covariance regression model of Hoff and Niu (2012). In this respect,
we parametrise the covariance matrix of sovereign yields as a function of country-
specific liquidity and credit quality measures and explore the effects of liquidity
and credit concerns on the heteroscedasticity of European sovereign yields uncon-
ditionally, as well as conditional on times of heightened equity market volatility.
The unconditional statistical significance results and likelihood-ratio tests indicate
that country-specific liquidity and credit quality measures are jointly important in
explaining the covariation of European sovereign yields, while their importance is
robust across different investment horizons. The German bid-ask spreads appear to
be the most significant country-specific liquidity measures, whereas the Italian and
Spanish credit default swap (CDS) spreads are the most significant country-specific
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credit quality measures across maturities. The time-series average correlation esti-
mates, derived from the fitted models, tend to be positively signed for the majority
of the country pairs and are more pronounced for the medium and longer-term ma-
turity bonds.

In addition, the conditional analysis covariance regression results reveal significant
changes in the behaviour of country-specific liquidity and credit quality variables
during periods of low and high-equity market volatility. The significance of credit
quality variables is slightly more pronounced than the significance of liquidity mea-
sures in the low-equity market volatility period. In contrast, the significance of
credit quality measures is considerably more pronounced than the significance of
liquidity measures in the high-equity market volatility period. Specifically, the sig-
nificance of liquidity measures is reduced in the high-equity market volatility period,
while the significance of credit quality measures is more pronounced in this period.
The majority of time-series average correlation estimates differ significantly from
each other, reflecting the change in the behaviour of country-specific liquidity and
credit quality measures and consequently the change in the dependence structure of
sovereign yields across these sub-periods.

The impact of country-specific liquidity and credit quality shocks on European
sovereign curves and the corresponding cross-country spreads is rather significant
and varies across countries, shock types and maturities. In particular, credit shocks
have, on average, a greater impact on cross-country spreads than liquidity shocks of
the same magnitude. In addition, shocks tend to have a greater impact on medium
and longer-term bonds, such as 60, 120 and 240-month maturities. The uncon-
ditional sensitivity analysis results also suggest that shocks to Spanish liquidity
and credit quality measures have, on average, the greatest impact on cross-country
spreads. Moreover, the short-term liquidity and credit quality shocks appear to
have more persistent effects on the sovereign yield curves than shocks in medium
and longer-term maturities. The conditional sensitivity analysis results suggest that
European sovereign yield changes are more pronounced in high-equity than low-
equity market volatility periods; however, the cross-country spread changes do not
show significant evidence of asymmetries over either sub-period for the majority of
the cross-country spreads under study.

To sum up, our empirical findings suggest that both market-wide and country-
specific liquidity and credit measures are important in explaining the dynamic be-
haviour of European sovereign yield curves and their dependence structure uncon-
ditionally, as well as conditional on periods of heightened equity market volatility.
Nevertheless, the importance of these measures varies across time, shock types and
investment horizons. Investors appear to be more concerned with credit quality over
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periods of high-equity market volatility, while investors’ liquidity concerns cannot
be disregarded. The German yields tend to be the most sensitive to market-wide
liquidity and credit shocks, while shocks to Spanish liquidity and credit quality mea-
sures have the greatest impact on the cross-country spreads suggesting significant
spillover effects among European economies.

The rest of the Chapter is organised as follows: Section 5.2 discusses the relevant
literature, while Section 5.3 describes in detail the data we use in the empirical part
of this study. Section 5.4 presents the macro-finance Nelson-Siegel model of Diebold
et al. (2006) and discusses the associated state-space representation, whereas Sec-
tion 5.5 reports the empirical results from the fit of the European sovereign yield
curve models. Significance testing, a principal component analysis of the extracted
latent factors and a sensitivity analysis are also presented in this Section. Sec-
tion 5.6 presents the covariance regression model of Hoff and Niu (2012) and de-
scribes in detail the model’s estimation procedure. Section 5.7 presents the empiri-
cal results obtained from the covariance regression model. The significance testing
of country-specific liquidity and credit quality variables and the correlation esti-
mates are also presented in this Section. Moreover, Section 5.7 describes in detail
a sensitivity analysis procedure aimed at quantifying the impact of country-specific
liquidity and credit quality shocks on the European sovereign yield curves and cross-
country spreads, respectively. Section 5.8 concludes with discussion and suggestions
for further work.

5.2 Related literature

Our study is related to multiple segments of the econometrics and finance literature.
Firstly, our analysis is related to studies focused on modelling the dynamic futures
of the term structure of interest rates. There are two main strands of term structure
models in finance literature, each with its particular focus; the no-arbitrage models
and the equilibrium models. The non-arbitrage models (Ho and Lee, 1986; Hull,
1990; Heath, Jarrow, and Morton, 1992) focus on fitting the term structure at a
given point in time to ensure that no arbitrage possibilities exist. In contrast, the
affine equilibrium models (Vasicek, 1977; Cox, Ingersoll, and Ross, 1985; Duffie and
Kan, 1996; Dai and Singleton, 2000) focus on modelling the instantaneous short
rates, and thus the yields of longer maturities are derived under certain assumptions
for the risk premium. Duffee (2002) shows that the affine equilibrium models result
in poor out-of-sample yield curve forecasts.

In this study we use neither the no-arbitrage approach nor the equilibrium ap-
proach. Our modelling strategy builds primarily on the yield curve models pro-
posed by Diebold and Li (2006) and Diebold et al. (2006), respectively. Diebold and
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Li (2006) extended the parsimonious three-factor (exponential components) yield
curve model of Nelson and Siegel (1987) to a dynamic model. They employ a two-
step approach, in which they first estimate autoregressive models for the latent
level, slope and curvature factors, and then use models to produce term struc-
ture forecasts. Diebold et al. (2006) proposed a latent factor model for the yield
curve that explicitly incorporates observable macroeconomic factors to study the
dynamic interactions between the macroeconomy and the yield curve. In this re-
spect, their model’s state-space representation enables estimations, the extraction of
latent factors, and hypothesis testing concerning the dynamic interactions between
the macroeconomy and the yield curve. After fitting the model on a set of US Trea-
sury securities, Diebold et al. (2006) extract three latent factors (specifically, level,
slope and curvature) and relate these factors to three observable macroeconomic
variables (essentially measures for real economic activity, monetary policy and in-
flation). Diebold et al. (2006) conclude that the level and slope factors are highly
correlated with inflation and real economic activity respectively, while the curvature
factor appears uncorrelated with key macroeconomic variables. Consequently, their
work is more closely connected to research that relates macroeconomic variables to
the yield curve, including, for example, Kozicki and Tinsley (2001), Ang and Pi-
azzesi (2003), Hördahl et al. (2006), Ang et al. (2006), Dewachter and Lyrio (2006),
Balfoussia and Wickens (2007) and Rudebusch and Wu (2008), among others.

There are a number of papers that have further extended the work of Diebold and Li
(2006) and Diebold et al. (2006) on the Nelson-Siegel model. For example, Yu and
Zivot (2011) extended the Nelson-Siegel model by providing a forecasting evaluation
of the two-step and one-step procedures of Diebold and Li (2006) and Diebold et al.
(2006), respectively, using corporate bonds of different credit ratings. Yu and Sal-
yards (2009) investigate the sensitivity of the out-of-sample forecasting performance
of the dynamic Nelson-Siegel model concluding that the ad hoc selection of the λ
parameter, which determines the rate of exponential decay, is not optimal. Bianchi
et al. (2009) extended the framework of Diebold et al. (2006) proposing a VAR
model with time-varying coefficients and stochastic volatility for the latent level,
slope and curvature factors. In addition, Koopman et al. (2010) extended the dy-
namic Nelson-Siegel model by allowing time-varying factor loadings and time-varying
volatility in the observation disturbances. Moreover, Diebold et al. (2008) extended
the Diebold et al. (2006) model to a global context, modelling a large set of country
yields in a framework that allows both global and country-specific factors. More
recently, Christensen et al. (2011) modified the Nelson-Siegel framework to impose
the arbitrage-free condition.

Secondly, our analysis is naturally related to the literature studying the determi-
nants of sovereign yield changes or sovereign yield spreads and the extent to which
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credit and liquidity determine yields in the bond markets. Early work by Duffie et al.
(2003) and Longstaff et al. (2005) suggests that both liquidity and credit risks are
important components of yield spreads. In particular, Longstaff et al. (2005) work
with corporate yield spreads of various credit ratings and investigate the extent to
which corporate yields are directly attributed to corporate default risk and factors
such as liquidity and taxes. They find that the majority of the corporate spreads
are due to the default risk across all bond ratings. They also find a significant non-
default component that is strongly related to bond-specific and market-wide mea-
sures of liquidity indicating that there are significant individual and market-wide
liquidity dimensions in spreads. Furthermore, Covitz and Downing (2007) study the
determinants of very short-term corporate yield spreads. They find that liquidity is
significant in the determination of yield spreads, but credit quality is the dominant
determinant of spreads, even at horizons of less than 1 month.

More recently, Beber et al. (2009) have used intraday Euro-area government bond
spreads and order flow data to explore the association of sovereign yield spreads
with measures of liquidity and credit quality unconditionally, as well as conditional
on periods of heightened market uncertainty. Beber et al. (2009) show that the ma-
jority of European sovereign yield spreads can be explained by differences in credit
quality, though liquidity is also significant, especially for low credit risk countries
and during times of increased market uncertainty. Beber et al. (2009) also show
that flights (large flows into and out of the bond market) are significantly deter-
mined by liquidity and that liquidity also explains the majority of sovereign yield
spreads conditional on periods of large flows into or out of the bond markets. In
addition, Monfort and Renne (2014) develop a multi-issuer no-arbitrage affine term
structure framework to model the dynamics of Euro-area sovereign yield spreads
and identify the part of liquidity and credit spreads corresponding to the risk pre-
mium. Monfort and Renne (2014) provide evidence of causal relationships between
credit- and liquidity-stress periods. Liquidity effects are also found to account for a
sizeable share of spreads’ fluctuations.

There is strong empirical and theoretical evidence that yields and yield spreads
are affected by liquidity concerns (for a survey, see Amihud et al., 2005).1 For
example, Longstaff (2004) investigates whether there are flight-to-liquidity premia
in the U.S Treasury bond prices, comparing Treasury bond prices with prices of
bonds issued by Refcorp, a U.S government agency whose bonds are fully col-
lateralised by Treasury bonds and essentially have the same credit risk as Trea-

1Studies on bond liquidity also include Balduzzi et al. (2001), Krishnamurthy (2002), Goldreich
et al. (2005), Chordia et al. (2005), Liu et al. (2006), Dick-Nielsen et al. (2012), de Jong and Driessen
(2012), Kempf et al. (2012) among others.
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sury bonds. Longstaff (2004) finds significant liquidity premia in Treasury bond
prices. Longstaff (2004) also finds that the liquidity premia are related to a vari-
ety of market sentiment measures such as changes in consumer confidence, in the
amount of Treasury debt available to investors, and in the amount of funds flowing
into equity and money market mutual funds. Furthermore, Chen et al. (2007) assess
bond-specific liquidity for a broad range of investment and speculative grade cor-
porate bonds and examine the association between bond-specific liquidity estimates
and corporate bond yield spreads. They find, employing three different liquidity
measures, that liquidity is priced in both levels and changes of the yield spread.
For all three liquidity measures, they show that an increase in illiquidity is signif-
icantly and positively associated with an increase in yield spreads after controlling
for changes in credit rating, macroeconomic effects, or firm-specific factors. They
also find that the explanatory power of liquidity persists across both types of bonds,
but is more pronounced for speculative grade bonds.

Recently, Goyenko et al. (2011) have studied the time series of illiquidity for different
bond maturities, over an extended period of time that spans over 35 years, in order
to explore whether illiquidities are differentially affected by macroeconomic condi-
tions, and to analyse variations in the illiquidity premium across bonds. They find
that illiquidity increases in recessions across all maturities, but the increase is more
pronounced for short-term bonds. In addition, they find that off-the-run illiquidity
is affected by a larger set of economic variables - such as inflation, monetary policy
surprises, bond returns, and volatility - than its on-the-run counterpart. They also
show that bond returns across maturities are forecastable by off-the-run but not on-
the-run bond illiquidity, concluding that off-the-run illiquidity is the primary source
of the liquidity premium in the Treasury market.

In addition to the empirical papers, there are a number of theoretical papers that
highlight the role of liquidity in asset pricing. For example, Vayanos (2004) pro-
poses a dynamic equilibrium model with multiple assets, stochastic volatility and
transaction costs. The empirical implication of the model is that the preference
for liquidity is time-varying and increases with volatility. Moreover, assets’ pair-
wise correlation and illiquid assets’ market beta increase during more volatile times.
Similarly, Acharya and Pedersen (2005) propose an equilibrium model with liquidity
risk. The model can explain the empirical findings that return sensitivity to mar-
ket liquidity is priced, that average liquidity is priced, and that liquidity co-moves
with returns and predicts expected returns. Moreover, Ericsson and Renault (2006)
develop a structural bond pricing model with liquidity and credit risk to study the
interaction between these two sources of risk and their relative contributions to the
yield spreads on corporate bonds. Their main findings suggest that the levels of
liquidity spreads are positively correlated with credit risk and decrease with time to
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maturity. More recently, Brunnermeier and Pedersen (2009) have developed a model
that links an asset’s market liquidity with traders’ funding liquidity. The model is
capable of explaining the main empirical features of market liquidity and also implies
that speculators’ capital is a driver of market liquidity and risk premiums.

5.3 Data

The data, which will be described in detail below, consists of end-of-day sovereign
bond yields, sovereign bid-ask spreads, credit default swap (CDS) spreads, and
macroeconomic and financial variables. The data spans security trading in 5 major
economies in the European Union: two “peripheral” Eurozone countries (Italy and
Spain), two “core” Eurozone countries (Germany and France) and one non-euro Eu-
ropean country (United Kingdom).2 We consider daily end-of-day sovereign yields
(midpoints of the quoted daily closing bid and ask yields) with maturities of 12,
24, 36, 48, 60, 72, 84, 96, 108, 120, 180, 240 and 360 months for each country over
the period from November 11, 2008 to February 28, 2014. In this respect, the full
sample consists of 1372 daily yield observations for each maturity and each country,
respectively. This period is of great interest as it includes a significant number of
events, for example the sovereign debt crisis faced by several Eurozone countries
such as Greece, Ireland, Portugal, Spain and Cyprus as well as a range of policy
interventions including the Securities Market Programme (SMP) and the Outright
Monetary Transactions (OMT) programme launched by the European Central Bank
(ECB) in response to the financial crisis and the liquidity dry-ups in the interbank
lending markets. We argue that it therefore constitutes a rich period in which to
study a variety of effects on the behaviour of the European fixed-income markets
and the relative importance of credit quality and liquidity during both calm and
distress periods.

In our analysis we quantify liquidity in the European sovereign bonds via the
quoted bid-ask spreads. This is a standard measure of liquidity in the bond mar-
kets. Goyenko et al. (2011) argue that the quoted bid-ask spread is a reasonable
liquidity proxy and is highly correlated with other liquidity measures in the bond
market.3 The daily end-of-day bid and ask quotes are obtained from Bloomberg for

2The exclusion of several “peripheral” Eurozone countries, such as Greece, Portugal, and Ireland,
and “core” Eurozone countries, such as Austria, Belgium, Finland, and the Netherlands, from the
analysis is mainly driven by the lack of sovereign yields, liquidity and credit quality data for the
time period and time-to-maturity contracts we want to analyse. However, González-Hermosillo
and Johnson (2014) show that Spain and Italy played a more pivotal role in the transmission of
financial shocks after 2009. In addition, Alter and Beyer (2014) show that the systemic contributions
of Greece, Portugal, and Ireland decreased markedly after the implementation of IMF/EU bailout
programs.

3For example, Chordia et al. (2001), show that the daily correlations between quoted and effective
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each maturity studied, using the Bloomberg Generic Quote (BGN) pricing source,
which reflects consensus quotes among market participants regarding the value of the
bond. The measures based on quoted bid-ask spreads from Bloomberg are among
the most widely used daily liquidity measures in fixed-income markets (see, e.g., Bao
et al. (2011); Longstaff et al. (2005); Chen et al. (2007) amongst others). Schestag
et al. (2013) also show that the daily bid-ask quotes from Bloomberg can capture
effective transaction costs.

In addition to the sovereign yield data, we use sovereign credit default swap (CDS)
spreads to obtain a market estimate of the credit quality for each of the countries in
our sample. A credit default swap is an over-the-counter (OTC) derivative contract
that provides protection against the risk of a credit event by a particular company
or country. The sovereign CDS data used for the analysis are midpoints of the daily
closing spreads with maturities of 6, 12, 24, 36, 48, 60, 84, 120, 240 and 360 months
from the Thomson Reuters Eikon database, which also consists of market consensus
CDS quotes that are published by Thomson Reuters using a highly standardised
quality assurance data process.

The macroeconomic and financial variables consist of inflation data, major exchange
rates and proxies for short-term liquidity and credit quality. In particular, the
Harmonised Index of Consumer Prices (HICP) is used as a measure of inflation
and price stability. The HICP monthly time series for each individual country are
obtained from the statistics database of the European Central Bank (ECB) and are
subsequently interpolated to daily series using cubic spline techniques. The daily
US Dollar (USD), Great Britain Pound (GBP) and Japanese Yen (JPN) exchange
rates against the Euro are also obtained from the ECB’s database. The spread
between the 3-month Euribor rate and the 3-month Eurepo rate, both reported by
the European Banking Federation (EBF), is used as a proxy for short-term liquidity
risk. In addition, the 5-year Markit iTraxx Europe index is employed as a credit
proxy for the overall credit quality in the European bond market. The Markit iTraxx
Europe is a benchmark index comprising 125 equally weighted CDS on investment
grade European corporate entities. The contract with 5 years to maturity is the
most actively traded contract. The daily 3-month Euribor and Eurepo rates are
obtained from Bloomberg, while the daily 5-year Markit iTraxx Europe index is
obtained from the Thomson Reuters Eikon database.

spread changes are 0.68 in the bond market over their 9-year sample period, while Chordia et al.
(2005) show that the correlation between daily quoted spreads and depth is -0.49.
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Table 5.3.1 presents descriptive statistics for the sovereign bond yields, while Ta-
ble 5.3.2 and Table 5.3.3 present descriptive statistics for the quoted sovereign bid-
ask and CDS spreads for each country and maturity, respectively. We note that the
typical yield curve for each country is upward sloping, and that the short-term rates
are generally more volatile than the long-term rates, especially for Italy and Spain.
The German yields are the lowest, on average, across all maturities, followed by the
UK and French bond yields.4 The Spanish and Italian bond yields are the highest
across all countries and maturities in our sample highlighting investors’ increased
credit and liquidity concerns. Table 5.3.2 and 5.3.3 also show that average bid-ask
and CDS spreads are much greater in size when compared with the corresponding
German, French and UK spreads. The evolution of the 5-year bid-ask and CDS
spreads, plotted in Figures 5.3.1 and 5.3.2, also confirms investors’ risk aversion and
negative sentiment toward the sovereign debts of the “peripheral” Eurozone coun-
tries. As can be seen in Figures 5.3.1 and 5.3.2, both bid-ask and CDS spreads for
Italy and Spain peaked between end-2011 and mid-2012. This period corresponds
to the peak of the Spanish crisis and the official request of the Spanish government
for financial support from Eurozone members.5

The turning point of the Eurozone sovereign debt crisis was the July 26, 2012 pol-
icy statement by Mario Draghi, president of the European Central Bank (ECB),
that “the ECB is ready to do whatever it takes to preserve the euro.”6 This policy
statement was followed on September 6, 2012, by the announcement of the Out-
right Monetary Transactions (OMT) programme.7 This change in the policy stance
triggered a lasting scaling-down in the bond yields of Eurozone countries. The bench-
mark Spanish 10-year bond yield stayed below 6%, having reached 5% by year’s end.
Saka et al. (2014) provided empirical evidence regarding the contagion-mitigating
effects of the new ECB policy embodied in the OMT programme.

4Germany’s 12, 24 and 36 month bond yields turned negative between end-2011 and mid-2012
since investors sought refuge in Europe’s safest assets over concerns about the solvency of several
European economies.

5On June 9, 2012, the Eurogroup granted to Spain a financial support package of up to e 100
billion in order for the country’s financial institutions to be recapitalised. In addition, on June
25, 2012, the Cypriot Government requested financial aid from the euro area members and the
International Monetary Fund (IMF) in order to tackle the distress in the country’s banking sector
and the macroeconomic imbalances.

6Mario Draghi, 26 July 2012. See www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html

7The Outright Monetary Transactions (OMT) programme is a programme of the European Cen-
tral Bank (ECB) under which the bank makes purchases of sovereign bonds of Eurozone countries
having difficulty issuing debt.
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Figure 5.3.1: Sovereign 5-year bid-ask spreads for Italy, Germany, Spain, France and
the United Kingdom.

2009 2010 2011 2012 2013 2014

0
10

0
20

0
30

0
40

0
50

0

5Y CDS spreads

IT
DE
ES
FR
GB

Figure 5.3.2: Sovereign 5-year credit default swap (CDS) spreads for Italy, Germany,
Spain, France and the United Kingdom.

153



Table 5.3.1: Descriptive Statistics: Sovereign yields

Italy Germany Spain France UK
Maturity N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max
12 1368 1.66 1.00 0.57 7.67 1349 0.50 0.49 -0.11 2.19 665 2.06 1.14 0.55 5.47 1356 0.58 0.47 -0.01 2.32 1372 0.52 0.25 0.07 2.29
24 1372 2.34 1.10 0.75 7.58 1366 0.72 0.61 -0.09 2.35 1372 2.51 0.99 0.76 6.57 1372 0.92 0.59 0.02 2.60 1372 0.75 0.44 0.05 2.55
36 1372 2.87 1.10 1.25 7.63 1372 0.91 0.71 -0.05 2.55 1372 3.04 0.98 1.36 7.37 1372 1.19 0.67 0.10 2.82 1372 1.12 0.67 0.08 3.02
48 1372 3.27 1.00 1.71 7.68 1372 1.18 0.80 0.05 2.82 1372 3.35 0.95 1.58 7.40 1372 1.54 0.71 0.29 3.07 1372 1.48 0.77 0.23 3.32
60 1372 3.62 0.99 2.04 7.70 1372 1.45 0.81 0.24 2.90 1372 3.73 0.94 1.99 7.50 1372 1.88 0.71 0.60 3.28 1372 1.78 0.77 0.45 3.49
72 1372 3.81 0.95 2.28 7.66 1372 1.68 0.84 0.41 3.19 1372 3.96 0.95 2.19 7.56 1372 2.10 0.73 0.70 3.45 1241 1.94 0.82 0.62 3.68
84 1372 4.04 0.91 2.59 7.67 1372 1.90 0.84 0.56 3.40 1372 4.21 0.91 2.50 7.53 1372 2.34 0.70 0.91 3.65 1372 2.28 0.82 0.80 3.98
96 1372 4.23 0.83 2.89 7.55 1372 2.09 0.82 0.77 3.60 1372 4.40 0.87 2.84 7.42 1372 2.58 0.68 1.16 3.88 1372 2.52 0.79 1.05 4.06
108 1372 4.43 0.74 3.21 7.28 1371 2.25 0.78 0.98 3.65 1372 4.56 0.87 3.07 7.54 1372 2.77 0.64 1.40 3.94 1249 2.62 0.74 1.35 3.85
120 1372 4.65 0.75 3.46 7.24 1371 2.38 0.75 1.16 3.72 1372 4.77 0.83 3.49 7.57 1372 2.95 0.60 1.66 4.05 1372 2.88 0.77 1.44 4.23
180 1372 5.04 0.70 3.95 7.72 1372 2.82 0.74 1.61 4.27 1329 5.23 0.83 3.94 7.70 1370 3.39 0.54 2.29 4.42 1372 3.40 0.75 2.10 4.85
240 1372 5.32 0.71 4.18 8.04 1372 3.08 0.74 1.75 4.48 1372 5.34 0.79 3.97 7.71 1371 3.56 0.53 2.48 4.64 1372 3.65 0.67 2.46 4.86
360 1372 5.40 0.61 4.45 7.63 1371 3.10 0.70 1.67 4.47 1372 5.43 0.75 3.85 7.54 1371 3.69 0.43 2.77 4.62 1372 3.81 0.53 2.84 4.69
This table reports summary statistics for our sample daily sovereign yields (end-of-day midpoints of the quoted bid and ask yields), expressed in percentages,
for various maturities, measured in months, for Italy, Germany, Spain, France and the UK. N is the number of daily observations for each maturity/country.

Table 5.3.2: Descriptive Statistics: Bid-Ask spreads

Italy Germany Spain France UK
Maturity N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max
12 1368 10.72 14.84 1.10 176.70 1349 2.14 2.13 0.80 25.30 665 29.36 28.56 2.40 148.30 1356 4.08 2.13 0.80 17.00 1372 3.33 1.88 0.70 19.80
24 1372 4.78 3.58 0.50 35.90 1366 0.57 0.21 0.20 2.20 1372 7.29 6.10 1.00 40.70 1372 3.04 2.37 0.50 15.90 1372 1.79 0.95 0.50 4.90
36 1372 3.92 3.60 0.30 26.60 1372 0.47 0.24 0.10 1.90 1372 5.65 5.40 0.60 41.00 1372 2.38 1.87 0.50 12.50 1372 1.17 0.60 0.30 2.60
48 1372 3.10 2.59 0.40 20.30 1372 0.36 0.18 0.10 1.70 1372 4.87 4.63 0.70 33.60 1372 2.05 1.83 0.40 11.70 1372 0.90 0.44 0.20 2.00
60 1372 2.58 2.21 0.20 18.10 1372 0.31 0.16 0.10 1.10 1372 4.15 3.97 0.40 27.60 1372 1.72 1.73 0.20 12.30 1372 0.73 0.35 0.20 5.10
72 1372 2.41 1.87 0.30 19.40 1372 0.31 0.15 0.10 1.10 1372 3.81 3.38 0.50 24.50 1372 1.23 1.01 0.20 8.80 1241 0.60 0.25 0.10 1.70
84 1372 2.12 1.56 0.20 16.50 1372 0.37 0.14 0.10 1.60 1372 3.35 2.96 0.30 17.10 1372 1.00 0.70 0.20 6.60 1372 0.55 0.20 0.10 1.60
96 1372 1.89 1.32 0.20 12.40 1372 0.33 0.13 0.10 1.70 1372 3.06 2.84 0.20 16.30 1372 0.96 0.71 0.20 5.40 1372 0.51 0.18 0.10 1.70
108 1372 1.75 1.30 0.30 18.40 1371 0.27 0.12 0.00 0.60 1372 2.73 2.34 0.30 11.60 1372 0.86 0.63 0.20 4.50 1249 0.45 0.19 0.10 1.60
120 1372 1.72 1.28 0.20 15.80 1371 0.34 0.18 0.10 0.80 1372 2.48 2.22 0.20 12.60 1372 0.83 0.59 0.20 5.90 1372 0.46 0.18 0.10 1.80
180 1372 2.06 1.78 0.20 19.10 1372 0.82 0.39 0.40 3.00 1329 2.86 2.41 0.40 16.80 1370 0.94 0.77 0.20 7.00 1372 0.52 0.14 0.20 1.50
240 1372 2.24 2.22 0.50 21.80 1372 0.76 0.40 0.30 2.60 1372 2.93 2.82 0.10 13.30 1371 0.96 0.81 0.20 6.50 1372 0.47 0.11 0.20 1.50
360 1372 1.70 1.56 0.30 14.00 1371 0.59 0.34 0.20 6.00 1372 2.57 2.65 0.00 12.90 1371 0.77 0.62 0.10 5.00 1372 0.43 0.10 0.20 1.40
This table reports summary statistics for our sample sovereign bid-ask spreads (end-of-day quoted bid-ask spreads), expressed in basis points, for various maturities,
measured in months, for Italy, Germany, Spain, France and the UK. N is the number of daily observations for each maturity/country.

Table 5.3.3: Descriptive Statistics: Credit Default Swap (CDS) spreads

Italy Germany Spain France UK
Maturity N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max N Mean Sd Min Max
12 1367 128.93 113.04 6.00 550.85 1357 12.48 11.43 0.28 50.48 1366 139.18 94.61 14.00 426.63 1343 27.31 24.99 2.02 128.78 1372 27.65 25.53 1.92 140.00
24 1367 155.67 116.55 20.00 542.02 1357 16.26 12.79 1.09 59.23 1366 162.89 101.88 24.00 476.87 1343 35.25 28.16 3.86 142.49 1372 35.40 26.03 4.02 147.50
36 1367 176.13 116.53 34.00 530.17 1357 20.15 14.07 2.53 69.70 1366 180.27 102.82 34.00 494.40 1343 43.80 31.72 6.39 156.98 1372 42.29 26.61 6.11 155.00
48 1367 187.40 111.85 41.00 513.91 1357 25.58 15.14 5.19 81.10 1366 190.23 100.76 40.50 493.25 1343 52.33 32.77 12.01 161.37 1372 51.22 25.94 15.59 160.00
60 1367 196.88 107.76 48.00 498.66 1357 31.47 16.25 9.16 92.50 1370 197.94 98.44 47.00 492.07 1343 61.14 34.23 14.01 171.56 1372 60.25 25.65 22.09 165.00
84 1367 201.46 103.86 49.20 480.66 1356 36.92 15.33 16.95 92.24 1366 202.18 94.28 47.80 468.87 1343 68.84 34.02 15.60 176.03 1372 67.78 21.82 34.58 165.00
120 1367 201.63 98.53 51.00 468.19 1357 41.92 15.01 21.48 91.98 1366 201.27 89.31 49.00 444.51 1343 75.15 34.79 17.00 181.36 1372 74.94 19.80 45.50 165.00
240 1365 195.82 94.21 46.00 463.11 1357 41.85 15.15 20.71 96.02 1364 196.83 83.46 49.00 419.07 1343 75.17 33.69 19.00 182.37 1372 82.54 18.63 45.50 165.00
360 1367 192.90 92.86 41.00 460.04 1357 41.90 15.44 18.18 96.34 1366 194.93 81.12 49.00 408.36 1343 75.83 32.88 25.00 183.86 1372 84.44 18.53 45.50 165.00
This table reports summary statistics for our sample credit default swap (CDS) spreads, expressed in basis points, for various maturities, measured in months, for Italy, Germany,
Spain, France and the UK. N is the number of daily observations for each maturity/country.
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In addition, Table 5.3.4 presents descriptive statistics for the macroeconomic and
financial variables employed in the analysis. The inflation rates for all four Eu-
rozone countries in our sample collectively turned negative over the third quarter
of 2009. This period is characterised by severe liquidity dry-ups in the interbank
lending markets. The 3-month Euribor-Eurepo spread that measures the difference
in interest rates between short-term unsecured and collateralised funding skyrock-
eted to almost 172 basis points, while the iTraxx Europe index that provides an
exogenous credit quality estimate on investment grade European entities, soared to
approximately 216 basis points at the end of 2008 illustrating the widespread mar-
ket concerns about the solvency of several European financial institutions over this
period. The volatility for all major exchange rates is also fairly large in our sample
period.

Table 5.3.4: Summary Statistics: Macroeconomic and Financial variables

Variable Mean Sd Min Max

HICP.IT 1.97 1.08 −0.14 3.84
HICP.DE 1.39 0.69 −0.50 2.41
HICP.ES 1.69 1.35 −1.40 3.80
HICP.FR 1.30 0.80 −0.72 2.54
HICP.UK 3.07 0.90 1.10 5.23
GBP 0.86 0.03 0.78 0.98
JPY 118.78 12.57 94.63 145.02
USD 1.34 0.06 1.19 1.51
Liquidity 44.22 31.55 12.70 171.70
iTraxx 119.93 33.73 65.30 215.92

This table reports summary statistics for our sample macroeconomic and
financial variables. The Harmonised Index of Consumer Prices (HICP),
measured in percentages, is used as an inflation proxy for Italy (HCIP.IT),
Germany (HCIP.DE), Spain (HCIP.ES), France (HCIP.FR) and the UK
(HCIP.UK). GBP, JPY and USD represent the Great Britain Pound,
Japanese Yen and US Dollar exchange rates against the Euro. Liquidity
and iTraxx represent liquidity and credit quality variables expressed in ba-
sis points.

Figure 5.3.3 presents average cross-country correlation coefficient estimates for liq-
uidity and credit quality variables. We note that the variability of liquidity cor-
relation estimates is more pronounced when compared with that of credit quality
correlation estimates. It can also be noted that there is a strong positive correla-
tion between bond liquidity measures across all Eurozone countries and a negative
correlation between all Eurozone countries and the UK. The correlations between
credit quality measures are also of great interest. As expected, the correlation be-
tween Spanish and Italian credit default swap (CDS) spreads is very strong and
positive indicating the widespread market concerns about the sovereign credit de-
fault risk of the two “peripheral” Eurozone countries. Interestingly, Spanish and
Italian CDS spreads are also strongly and positively correlated with French CDS
spreads. Although we lack the statistical power to make more qualitative state-
ments, the increased correlation of the French credit quality measures with those
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of the “peripheral” Eurozone countries can be partly attributed to the increased
concerns over the country’s economy and public finances.8 We also note the weak
correlation between the UK credit default swap (CDS) spreads and those of the
Eurozone countries, with the exception of the correlation coefficient for Germany,
which is strong and positive, and reflects the country’s superior credit quality.
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Figure 5.3.3: This figure presents average cross-country bond liquidity correlation es-
timates, calculated using the average quoted bid-ask spreads across maturities for each
country, and average cross-country credit quality correlation estimates, calculated using the
average credit default swap (CDS) spreads across maturities for each country.

Table 5.3.5 presents cross-sectional correlation coefficients between our average liq-
uidity and credit quality measures for several maturities. It reports the correlation
coefficients of the above measures for all countries in our sample (All countries
column) as well as for Eurozone only countries (Eurozone column) to assess the
impact of the exclusion of the UK, a non-Eurozone EU country, on the correlation
estimates. The correlation estimates between average liquidity and credit quality
measures across all maturities in both columns (All countries and Eurozone) are
strong and positive suggesting that as liquidity in the sovereign bonds decreases,
via the widening of the bid-ask spreads, credit quality also decreases. The qualita-
tive results in Table 5.3.5 differ from the qualitative findings of Beber et al. (2009)
and, more specifically, from the corresponding correlation estimates reported in Ta-
ble 2 of their paper. Beber et al. (2009), using intraday European government bond
quotes and credit default swap (CDS) data, report a negative relation between credit
quality and liquidity measures. The discrepancy in the correlation estimates can be
attributed to differences in the sample size and in the proxies for measuring liquidity

8France lost its Standard & Poor’s top-grade AAA rating in January 2012. In November 2013,
Standard & Poor’s cut France’s credit rating from AA+ to AA, the third tier of credit quality, for the
second time in less than two years due to the country’s weak economic growth, high unemployment
and government spending constraints.
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in the European bond markets.9

Table 5.3.5: Correlation between credit quality and liquidity

Maturity All countries Eurozone

12 0.65 0.67
24 0.77 0.78
36 0.74 0.75
48 0.79 0.81
60 0.79 0.80
84 0.79 0.80
120 0.76 0.77
240 0.78 0.79
360 0.80 0.81

This table reports the correlation between the average country
credit risk, measured by credit default swap (CDS) spreads
quoted for each country/maturity, and the average country
bond liquidity, measured by the quoted bid-ask spread for each
country/maturity. Column All countries reports the correla-
tion for all countries in the sample, namely Italy, Germany,
Spain, France and the UK, while column Eurozone, reports
the correlation for all countries in the sample excluding the
United Kingdom, which is the only non-euro EU country in
our sample.

5.4 The dynamic Nelson-Siegel model

In this Section we introduce the latent factor model for the yield curve, initially
proposed by Nelson and Siegel (1987), and subsequently extended, by Diebold and
Li (2006), to a dynamic latent factor model to allow for time-varying parameters.
We also discuss the state-space representation of the model as introduced in Diebold
et al. (2006). Denote the set of yields as yt(τi), where τi denotes the maturity of a
zero-coupon bond for a set of N different maturities τ1 ≤ . . . ≤ τN available at time
t. The term structure of yields for i = 1, . . . , N at any point in time t is modelled
by the three factor model of Nelson and Siegel (1987) as follows10

yt(τi) = β1 + β2

(
1− e−λτi
λτi

)
+ β3

(
1− e−λτi
λτi

− e−λτi
)

+ ε(τi) , (5.1)

9Beber et al. (2009) use intraday inter-dealer European government bond quotes for the period
from April 2003 to December 2004. They also consider four alternative measures to capture the
liquidity of sovereign bonds: the effective bid-ask spread, the average quoted depth, the cumulative
limit-order book depth and the average quoted depth divided by the percentage bid-ask spreads.
In contrast, our sample period is more extensive since it includes securities trading from November
11, 2008 to February 28, 2014; however, we are limited to the use of the quoted bid-ask spread for
measuring the liquidity of the European sovereign bonds due to lack of limit-order book data.

10The original Nelson-Siegel model representation is slightly different from Equation (5.1), which
has been modified by Diebold and Li (2006) to improve estimation tractability and to facilitate an
intuitive interpretation of the factors.
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where β1, β2, β3 and λ are parameters. The disturbances ε(τi), . . . , εt(τN) are as-
sumed to be independent with zero mean and constant variance. The Nelson-Siegel
model in Equation (5.1) was extended by Diebold and Li (2006) to a dynamic latent
factor model where β1, β2 and β3 are interpreted as dynamic latent level, slope and
curvature factors; the terms multiplied by these factors are factor loadings. In this
respect, the dynamic Nelson-Siegel (DNS) model of Diebold and Li (2006) can be
rewritten as follows

yt(τi) = Lt + St

(
1− e−λτi
λτi

)
+ Ct

(
1− e−λτi
λτi

− e−λτi
)

+ εt(τi) , (5.2)

where t = 1, . . . , T , i = 1, . . . , N while Lt, St and Ct are the time-varying β1, β2 and
β3 parameters. The λ parameter determines the exponential decay rate of the slope
and curvature factors. The shape and the form of the yield curve are governed by
the three latent factors and their corresponding factor loadings. The loading on the
first factor takes the value 1 and is interpreted as level factor because it affects all
yields equally and, hence, changes the level of the yield curve. The loading on the
second factor is (1− e−λτi)/(λτi), a function that starts at 1 and converges quickly
and monotonically to 0 as τ increases. This factor is interpreted as slope factor
because it affects short rates more heavily than long rates; consequently, it changes
the slope of the yield curve. The loading on the third factor is ((1−e−λτi)/λτi)−e−λτi ,
which is a function that starts at 0, increases, and then decays to 0. This factor
is interpreted as curvature factor because it loads medium rates more heavily and,
therefore, changes the yield curve curvature.11 Figure 5.4.1 plots the Nelson-Siegel
factor loadings with fixed λ = 0.0609 as in Diebold and Li (2006).
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Figure 5.4.1: Factor loadings of the Nelson-Siegel model with fixed λ = 0.0609.

11The level, slope and curvature factors are also known as long-term, short-term and medium-
term factors respectively because, given their corresponding factor loadings, they affect more heavily
long-term, short-term and medium-term interest rates, respectively (see for example, Yu and Zivot
(2011), among others).

158



Chapter 5 : Modelling the dependence of European sovereign yield curves

Diebold and Li (2006) estimate the parameters, θt = {Lt, St, Ct, λ}, of the dynamic
Nelson-Siegel (DNS) model in Equation (5.2) by nonlinear least squares for each
time period t after fixing λ at a pre-specified value (i.e. λ = 0.0609). Diebold
et al. (2006) go a step further by recognising that the dynamic Nelson-Siegel (DNS)
model naturally forms a state-space system when treating βt = [Lt, St, Ct]′ as a
latent vector. The measurement equation that relates a set of N yields to the three
unobserved factors can be written as


yt(τ1)
yt(τ2)

...
yt(τN)

 =


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2

...
1 1−e−λτN

λτN

1−e−λτN
λτN

− e−λτN


LtSt
Ct

+


εt(τ1)
εt(τ2)

...
εt(τN)

 , (5.3)

In a matrix notation, Equation (5.3) can be written as

yt = Λ(λ)βt + εt , (5.4)

with observation vector yt = [yt(τ1), . . . , yt(τN)]′, latent vector βt = [Lt, St, Ct]′,
disturbance vector εt = [εt(τ1), . . . , εt(τN)]′ and the N × 3 factor loadings matrix
Λ(λ), whose (i, l) element is given by

Λil(λ) =


1 , for l = 1 ,

(1− e−λ·τi)/λ · τi , for l = 2 ,

(1− e−λ·τi − λ · τi e−λ·τi)/λ · τi , for l = 3 .

(5.5)

The dynamics of Lt, St and Ct in Diebold et al. (2006) follow a vector autoregressive
process of first order, VAR(1).12 In general, the time-series dynamics for the 3 × 1
latent vector βt are modelled as a VAR(p)-process, that is

βt = µ+
p∑
j=1

Φjβt−j + ηt , (5.6)

for t = 1, . . . , T , where µ = [µs, µl, µc]′ is a vector of constants, Φj is a 3 × 3
coefficient matrix for j = 1 . . . p and ηt = [ηlt, ηst, ηct]′ is the disturbance vector. The
system is complete once the covariance structure of the transition errors Q and the
covariance of measurement errors H are specified. Diebold et al. (2006) make the
standard assumption that the white noise errors in the measurement and transition

12Diebold and Li (2006) employ the VAR(1) assumption only for the sake of transparency and
parsimony; however, ARMA state vector dynamics of any order can be easily accommodated in
state-space form.
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equations are orthogonal to each other and to the initial state, such that(
ηt
εt

)
= WN

((
0
0

)
,

(
Q 0
0 H

))
, E(β0η

′
t) = 0 and E(β0ε

′
t) = 0 .

In Diebold et al. (2006) the H matrix is assumed to be diagonal whereas the Q
matrix is non-diagonal. The assumption of a diagonal H matrix, which implies
mutually uncorrelated deviations of yields of various maturities from the yield curve,
is quite common. It is also used for computational tractability. On the other hand,
the assumption of an unrestricted Q (non-diagonal) matrix allows the shocks of the
three factors to be correlated. Diebold et al. (2006) extended the dynamic Nelson-
Siegel (DNS) model by including observable macroeconomic variables (specifically,
real activity, inflation, and the monetary policy instrument) to study the interaction
between the macroeconomy and the yield curve. Therefore, the macroeconomic
variables are added to the set of space variables, and Equation (5.6) is replaced with

βt = µ+
p∑
j=1

Φjβt−j +BXt + ηt , (5.7)

where vector Xt is a r× 1 vector of exogenous macroeconomic variables observable
at time t and B is a 3 × r matrix of regression coefficients with r representing the
number of observable variables.

5.4.1 Estimation based on the Kalman filter

The dynamic Nelson-Siegel (DNS) model of Diebold et al. (2006) is a linear Gaus-
sian state-space model. The vector of latent factors βt is therefore optimally es-
timated using the Kalman filter given past and current observations up to time t,
i.e. Y t = {y1, . . . ,yt}. The initial state vector is assumed to be normally dis-
tributed with initial conditions β0 ∼ N(α0,Σ0), where α0,Σ0 are assumed to be
known. Define bt|t−1 as the minimum mean square linear estimator of βt given
Y t−1 = {y1, . . . ,yt−1} with mean square error matrix P t|t−1. For given values of
bt|t−1 and Pt|t−1, the Kalman filter computes bt|t and P t|t, when observation yt is
available, using the following filtering step

bt|t = bt|t−1 +Ktεt ,

P t|t = [I −KtΛ(λ)]P t|t−1 ,

where εt = yt − E(yt|Y t−1) = yt − Λ(λ)bt|t−1 is the error prediction vector,
F t = Var(εt) = Λ(λ)P t|t−1Λ(λ)′ + H is the prediction error covariance matrix
and Kt = P t|t−1Λ(λ)′F t

−1 is called the Kalman gain. The minimum mean square
linear estimator of the state vector for the next period t+1, given Y t = {y1, . . . ,yt},
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can be obtained by the following prediction step

bt+1|t = (I −Φ)µ+ Φbt|t +BXt+1 ,

P t+1|t = ΦP t|tΦ′ +Q ,

For a given time series, y1, . . . ,yT , and initial values b1|0 = α0 and P1|0 = Σ0, the
parameters that specify the state-space model, θ = {µ,Φ,A,Λ(λ),Q,H}, can be
estimated recursively for t = 1, . . . , T via the Kalman filter by maximising the log-
likelihood function constructed via the prediction error decomposition, and is given
by

l(θ) = −NT2 log 2π − 1
2

T∑
t=1

log |F t| −
1
2

T∑
t=1
εt
′F t
−1εt . (5.8)

5.4.2 Handling missing data

In our sample there are missing observations related to maturities or time periods.
An attractive feature of the state-space framework is its ability to treat time series
that have been observed irregularly over time. Suppose, at a given time t, we observe
some, but not all, values of observation vector yt = [yt(τ1), . . . , yt(τN)]′. We define
the partition of the N × 1 observation vector yt = [y(1)

t

′
,y

(2)
t

′
]′, where the first

N
(1)
t × 1 vector y(1)

t is observed and the second N (2)
t × 1 vector y(2)

t is unobserved,
where N (1)

t +N
(2)
t = N . The partitioned observation equation can be given as(

y
(1)
t

y
(2)
t

)
=
(

Λ(1)(λ)
Λ(2)(λ)

)
βt +

(
ε

(1)
t

ε
(2)
t

)
, (5.9)

where Λ(1)(λ) and Λ(2)(λ) are partitioned N
(1)
t × 3 and N

(2)
t × 3 factor loading

matrices respectively, while ε(1)
t and ε(2)

t are partitioned N (1)
t × 1 and N (2)

t × 1 error
vectors, respectively, with the measurement covariance matrix between the observed
and unobserved parts being written as follows

Cov
(
ε

(1)
t

ε
(2)
t

)
=
(
H

(1)
t H

(12)
t

H
(21)
t H

(2)
t

)
.

Consequently, at the times of the missing observations, where y(2)
t is not observed, Equa-

tion (5.4) is replaced by

y
(1)
t = Λ(1)(λ)βt + ε(1)

t , ε
(1)
t ∼ N(0,H(1)) , (5.10)

where now the observation equation isN (1)
t - dimensional at time t. The Kalman filter

proceeds exactly as in the standard case, provided that yt, Λ(λ) andH are replaced
by y(1)

t , Λ(1)(λ) and H(1)
t respectively at relevant time points. It is clear that the

dimensionality of the observation equation evolves over time, but this does not affect
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the validity of the filtering recursion. Once the state-space model parameters are
estimated, θ̂ = {µ̂, Φ̂, Â,Λ(λ̂), Q̂, Ĥ}, we can obtain the missing observations in
the vector of missing data y(2)

t at any point in time t = 1, . . . , T . In this respect,
each element j in the vector of missing yields y(2)

t can be optimally predicted as
follows

y
(2,j)
t = Λ(2,j)(λ̂)b̂t|t + k

√(
Λ(2,j)(λ̂) P̂ t|t Λ(2,j)(λ̂)

′)
, (5.11)

where Λ(2,j)(λ̂) is the j row of the factor loading coefficient matrix and k is a scale
parameter, which is set to a pre-specified value, and controls the deviation of the
missing observation from its expected value.

5.5 Estimation of marginal yield curves for each country

We want to relate the evolution of the European sovereign yield curves under study
to movements in European measures of liquidity and credit quality, study the rela-
tionships between the latent factors and these measures, and analyse their implica-
tions for monetary policy and portfolio risk management. There have been several
attempts in the literature to explore the linkages between various macroeconomic
factors such as inflation, measures for real economic activity, monetary policy instru-
ments etc. and the yield curve (see for example, Ang and Piazzesi (2003), Piazzesi
(2005), Diebold et al. (2006), Balfoussia and Wickens (2007), Rudebusch and Wu
(2008), Wright (2011), among others). Nevertheless, to the best of our knowledge,
so far, there have not been many studies in the literature that directly incorporate
observable liquidity and credit quality variables into the state-space specification
of the dynamic Nelson-Siegel (DNS) model as regression covariates. Several stud-
ies have shown that yield spreads can be explained by differences in credit quality
and liquidity (see for example, Duffie et al. (2003), Longstaff et al. (2005), Ericsson
and Renault (2006), Beber et al. (2009), among others). Therefore, the inclusion
of credit quality and liquidity measures into the yield curve modelling specification
can provide useful insight into the evolution of the yield curve and yield term premia.

Within this framework, we fit for each country in our sample, the dynamic Nelson-
Siegel (DNS) model, augmented with common and country-specific macroeconomic
and financial variables. Specifically, we employ the following variables: inflation for
each country (INFt), a liquidity measure for the European bond markets (LIQt),
a credit quality measure for the European bond markets (CRt), and major ex-
change rates against the Euro such as the US Dollar/Euro exchange rate (USDt),
the British Pound/Euro exchange rate (GBPt) and the Japanese Yen/Euro exchange
rate (JPYt). The inclusion of observable variables in the state vector specification,
however, does not only enable the study of the interaction between the macroe-
conomy and the yield curve but also removes the effect of these variables from the
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errors of the fitted models, which will be used in the second stage of our cross-country
analysis. We model the dynamic movements of Lt, St, Ct employing four alternative
autoregressive specifications: AR(1), AR(2), VAR(1) and VAR(2). The best fitting
model for each country is selected on the basis of information criteria. We assume
that the transition error covariance matrix Q is a diagonal matrix, whereas the
measurement error covariance matrix H is a non-diagonal first-order autoregressive
covariance structure with heterogenous variances.

Table 5.5.1 reports results from Akaike’s information criterion (AIC) (Akaike, 1974)
and Schwarz’s Bayesian information criterion (BIC) (Schwarz, 1978). We note that,
with the exception of Italy, both information criteria agree on the selection of the
best fitting model for each country. For the sake of parsimony, we follow the BIC
criterion in the selection process. Therefore, an autoregressive model of order one,
AR(1), is selected for the majority of the countries in our sample (more specifically,
Italy, France and the UK). On the other hand, a vector autoregressive model of
order one, VAR(1), is selected for Germany and a vector autoregressive model of
order two, VAR(2), for Spain.

Table 5.5.1: Information Criteria results

AIC Criterion BIC Criterion

Country AR(1) AR(2) VAR(1) VAR(2) AR(1) AR(2) VAR(1) VAR(2)

IT −32 191.81 −24 013.91 -32207.70 −23 268.28 -31972.40 −23 778.83 −31 956.95 −22 970.51
DE −47 887.49 −47 314.10 -47978.91 −35 758.84 −47 668.08 −47 079.02 -47728.15 −35 461.07
ES −31 567.73 −29 254.50 −30 296.98 -31966.09 −31 348.32 −29 019.42 −30 046.23 -31668.32
FR -46823.89 −39 690.03 −39 950.16 −43 592.55 -46604.48 −39 454.95 −39 699.40 −43 294.78
UK -37823.17 −34 484.70 −35 710.73 −27 263.17 -37603.76 −34 249.62 −35 459.98 −26 965.40

This table reports results from the Akaike Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) for each country in four different model specifications: AR(1), AR(2), VAR(1), VAR(2). Bold
values indicate minimum AIC and BIC estimates for each country across alternative model specifications.

After selecting the best fitting model for each country, we use the Kalman smoother
to obtain optimal extractions of the latent level, slope and curvature factors. Fig-
ure 5.5.1 plots the estimated factors for each country together for the purpose of a
comparative analysis. As expected, the level factor for all countries is positive rang-
ing between 2.06 and 7.64. Consistent with the cross-sectional average of the raw
yields, the level factor estimates of the peripheral countries have the highest average
values, followed by those of France, the UK and Germany. The Spanish level factor
also appears to be the most volatile. In contrast, the slope and curvature estimates
assume both positive and negative values. The standard deviations of the slope
factors for Italy, Spain and Germany are roughly the same but larger than those
for France and the UK, while the standard deviations of the curvature factors differ
considerably in size. The UK curvature factor volatility is 3.36 and almost double
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in size when compared with the French curvature factor, which is the second most
volatile among the curvature factor estimates.
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Figure 5.5.1: Estimates of the latent level (upper graph), slope (middle graph) and
curvature (bottom graph) factors extracted using the Kalman smoother for Italy, Ger-
many, Spain, France and the United Kingdom.

Figure 5.5.2 reports the cross-country correlation estimates for each factor. Interest-
ingly, the correlation estimates of the level, slope and curvature for both the periph-
eral and the core Eurozone countries are large in size and positive. In contrast, the
factor correlation estimates between any pair of a peripheral and a core Eurozone
country are either positive and less pronounced or negative. The UK level factor
is positively correlated with the Spanish and Italian level factors and negatively
correlated with the German and French level factors. Additionally, the UK slope
factor is negatively correlated with the slope factors of all of the Eurozone countries,
while the curvature factor is negatively correlated with the curvature factors of the
peripheral Eurozone countries and positively correlated with the curvature factors
of the core Eurozone countries. As expected, the correlation estimates between the
latent factors of the UK and those of the core Eurozone countries are much larger in
size than the correlation estimates between the latent factors of the UK and those
of the peripheral Eurozone countries possibly reflecting the common credit quality
characteristics among these economies.
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Figure 5.5.2: This figure presents cross-country correlation estimates for the latent level, slope
and curvature factors extracted from the Kalman smoother.

To further investigate the linear dependence between the latent factor estimates of
the countries under study, we perform a principal component analysis (PCA). Ta-
ble 5.5.2 reports the principal component decomposition of the latent level, slope and
curvature factor estimates. The proportion of the variation explained by the first
principal component (PC1) for each of the latent factors is relatively small. Specif-
ically, the first principal component (PC1) explains 58.50%, 48.36% and 54.18%
of the variation of the level, slope and curvature factors, respectively. The total
variation explained by the first two principal components (PC1 and PC2) is approx-
imately 80% for each set of factors.

Table 5.5.2: Principal component analysis of the latent level, slope and curvature factors.

Panel A: Variation explained by each principal component (eigenvalues).

Level Slope Curvature

PCA
Variation

explained (%)
Total variation
explained (%)

Variation
explained (%)

Total variation
explained (%)

Variation
explained (%)

Total variation
explained (%)

PC1 58.50 58.50 48.36 48.36 54.18 54.18
PC2 24.38 82.88 29.09 77.45 27.84 82.02
PC3 10.05 92.93 13.26 90.71 10.61 92.63
PC4 5.58 98.51 6.29 97.00 4.31 96.94
PC5 1.49 100.00 3.00 100.00 3.06 100.00

Panel B: Country loadings (eigenvectors).

Level Slope Curvature
Country PC1 PC2 PC1 PC2 PC1 PC2

IT 0.30 0.73 −0.36 0.59 −0.31 0.59
DE −0.53 0.23 −0.56 −0.26 0.55 0.20
ES 0.45 0.29 −0.27 0.67 −0.20 0.67
FR −0.44 0.58 −0.54 −0.25 0.49 0.40
UK 0.48 0.05 0.43 0.27 0.57 0.02

This table reports the principal component decomposition of the latent level, slope and curvature factor
estimates. Panel A reports eigenvalues and the proportion of the total variation, expressed in percentages, in
the latent factors explained by each principal component. Panel B reports the first and second eigenvectors
or country loadings (denoted by PC1 and PC2) which correspond to the first and second eigenvalues,
respectively.
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The country loadings in the construction of the first and second principal compo-
nents (the eigenvectors corresponding to the ranked eigenvalues), reported in Panel
B of Table 5.5.2, are also of great interest because their corresponding signs and
relative size can reveal important characteristics of the latent factor estimates and
consequently of the yield curves of the countries in the sample. The loadings of PC1
for the level factors tend to be negatively signed for the core Eurozone countries
and positively signed for the peripheral Eurozone countries and the UK, whereas
those of PC2 are all positive. An increase in the PC1 of the level factors (keeping
everything else constant) implies an increase in the level factors of the peripheral Eu-
rozone countries and the UK and a decline in the level factors of the core Eurozone
countries. This translates into a parallel upward shift in the yield curves of Italy,
Spain and the UK and a parallel downward shift in the yield curves of Germany
and France. In contrast, the loadings of PC1 for the slope factors are all negative,
except for the UK, while the PC2 loadings show a sign pattern similar to that of
the level PC1 loadings.

In addition, the PC1 loadings for the curvature factors appear positively signed
for the core Eurozone countries and the UK and negatively signed for the periph-
eral Eurozone countries, whereas those of PC2 are all positive. We also note that
Germany has the largest contribution to the construction of the first principal com-
ponent (PC1) for the level and slope factors and the second largest contribution
for the curvature factors as suggested by the respective loadings of -0.53, -0.56 and
0.55. This illustrates the country’s leading role in explaining the variation of the
latent level, slope and curvature factor estimates. The correlation analysis and the
principal component analysis provide clear qualitative evidence that the sovereign
yield curves of the peripheral and core Eurozone countries are negatively correlated,
supporting the view that markets separate Eurozone members into two distinct
groups of countries: the peripheral and the core Eurozone countries.13 The positive
PC1 and PC2 country loadings for the UK also highlight the investors’ tendency to
differentiate between Eurozone and non-Eurozone countries.

5.5.1 Significance of coefficients

As explained, the dynamic interaction of the European sovereign yield curves with
macroeconomic and financial variables, and in particular with liquidity and credit
quality measures is one of the main concerns of this study. In this regard, signif-
icance testing and sensitivity analysis can provide useful insight into the response

13Saka et al. (2014), working with European sovereign credit default swap (CDS) data, also
support the argument that investors separate Eurozone members into two district groups of countries
(periphery versus core). They also argue that this discrimination was more intense before the
implicit Outright Monetary Transactions (OMT) programme announcement on 26 July 2012.
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of the yield curves to abrupt changes in the macroeconomic and financial environ-
ment. Table 5.5.3 reports the estimated coefficients and the corresponding p-values
of macroeconomic and financial variables in the state specification of the dynamic
Nelson-Siegel (DNS) model for each country.

Table 5.5.3: Estimates of macroeconomic and financial variables

Italy Germany Spain France United Kingdom

Variables estimate p-value estimate p-value estimate p-value estimate p-value estimate p-value

Level : Inflation 0.0033 0.3884 0.1832 0.0000 −0.0018 0.4539 −0.0019 0.5586 0.0110 0.3115
Level : GBP 0.1409 0.1212 −1.4292 0.0007 0.0666 0.4633 0.1670 0.0098 −0.5275 0.1160
Level : JPY 0.0000 0.9674 0.0518 0.0000 −0.0004 0.2412 −0.0001 0.5935 −0.0028 0.0053
Level : USD 0.0078 0.8660 −2.3414 0.0000 0.0749 0.1441 −0.0464 0.1543 −0.4769 0.0031
Level : Liquidity −0.0203 0.0637 0.3516 0.0000 −0.0280 0.0120 −0.0189 0.0205 0.0203 0.6223
Level : iTraxx 0.0003 0.0300 0.0045 0.0000 0.0004 0.0113 0.0001 0.3519 0.0007 0.1134

Slope : Inflation −0.0020 0.7811 −0.0942 0.0000 0.0069 0.0608 0.0066 0.0721 −0.0177 0.1073
Slope : GBP −0.1767 0.3033 0.6870 0.0049 −0.1879 0.1940 −0.1011 0.1749 −0.3627 0.2856
Slope : JPY −0.0001 0.8257 −0.0285 0.0000 −0.0002 0.7088 −0.0001 0.6802 0.0010 0.3171
Slope : USD 0.1318 0.1306 1.2250 0.0000 0.1764 0.0300 0.0596 0.1128 0.1345 0.4070
Slope : Liquidity −0.0398 0.0545 −0.1719 0.0000 −0.0054 0.7627 0.0143 0.1306 −0.0926 0.0264
Slope : iTraxx 0.0003 0.2726 −0.0028 0.0000 0.0003 0.1659 0.0000 0.8780 −0.0003 0.5022

Curvature : Inflation 0.0151 0.2889 −0.0280 0.0000 −0.0071 0.3083 −0.0197 0.0345 0.0340 0.1710
Curvature : GBP 0.6810 0.0444 −0.0560 0.5602 0.4766 0.0786 −0.1247 0.5104 1.4403 0.0652
Curvature : JPY 0.0007 0.5813 −0.0002 0.4450 −0.0014 0.1414 −0.0008 0.2827 0.0045 0.0486
Curvature : USD 0.1356 0.4271 −0.0293 0.5307 −0.1425 0.3483 0.1085 0.2480 0.1928 0.6039
Curvature : Liquidity−0.0897 0.0291 −0.0323 0.0046 0.0181 0.5814 0.0492 0.0380 0.2674 0.0046
Curvature : iTraxx 0.0016 0.0008 0.0002 0.1084 0.0001 0.8249 −0.0002 0.4771 −0.0031 0.0024

This table reports the estimated coefficients of macroeconomic and financial variables and the corresponding
p-values for each country in the sample.

At first glance we note that the macroeconomic and financial variables appear highly
significant at 5% level for Germany, especially in the latent level and slope specifi-
cation. In contrast, the significance of these variables for the peripheral Eurozone
countries, France and the UK is less pronounced at the same confidence level. The
liquidity and credit quality measures appear sporadically significant in the latent fac-
tor specification of these countries. In particular, the liquidity variable is negative
and significant for the curvature factor, while the iTraxx index is positive and signif-
icant in both the level and the curvature factor for Italy. In this respect, an increase
in the liquidity proxy (widening of the 3m Eurepo-Euribor spread) results in a de-
cline in the curvature factor, which primarily affects the medium-term interest rates.

In contrast, an increase in the iTraxx index, which implies greater credit risk in
the European bond markets, tilts the yield curve upward. In addition, the liquidity
coefficient is negatively signed whereas the credit coefficient is positively signed
and both are significant at 5% in the Spanish level factor specification. Therefore,
a decline in liquidity in the European bond markets induces a parallel downward
shift, while an increase of the iTraxx index tends to cause a parallel upward shift in
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the Spanish yield curve. The liquidity and credit proxies are also significant at 5%
in the specification of almost all latent factors for Germany. Moreover, the liquidity
proxy appears significant for the French level and curvature factors as well as the
UK slope and curvature factors, while the credit proxy is significant only for the UK
curvature factor.

5.5.2 Sensitivity analysis

The impact of a change in the liquidity (3-month Euribor-Eurepo spread) and credit
(iTraxx index) quality measures on the term structure of sovereign yields can be as-
sessed through a sensitivity analysis. Table 5.5.4 reports the change, measured in
basis points, in the term structure of average interest rates for each country in re-
sponse to a two standard deviation increase in the average value of liquidity and
credit measures, respectively. As shown in Table 5.5.4, a two standard deviation
increase in the liquidity proxy reduces the yields across all maturities for Italy, Ger-
many and Spain, while having a positive effect on the short-term and medium-term
French yields and a negative effect on the long-term yields, thus reducing the slope
of the French yield curve.

On the other hand, a liquidity shock has a negative effect on the short-term UK
rates and a positive effect on the medium-term and long-term UK rates, thus in-
creasing the slope of the yield curve. In addition, the German yield curve is the
most sensitive to liquidity changes. On average, a two standard deviation liquidity
shock reduces the German yields by 4.34 basis points, while the impact on Italian
and Spanish yields is 3.58 and 1.92 basis points, respectively. It can also be seen
that a liquidity shock affects more heavily the short-end part of the Italian and
Spanish yield curves, whereas the German medium-term yields are more sensitive
to a shock in liquidity than corresponding short-term and long-term yields. On the
other hand, the French and UK yield curves seem to be less sensitive to liquidity
shocks. On average, French and UK yields are expected to increase by 0.22 and 0.94
basis points, respectively.

In contrast, a two standard deviation shock in the credit quality measure is expected
to have a positive impact on the average Spanish, Italian and French yields and a
negative impact on the German and UK yields. Italian and Spanish short-term
yields are more sensitive to credit measure shocks than longer-term yields. The
French yields are less sensitive to a two standard deviation change in the average
value of the credit quality measure. On the other hand, the German yields are ex-
pected to decline on average by 1.68 basis points. However, a credit shock tends to
have a negative impact on the short and medium-term yields and a positive impact
on the longer-term yields. The UK yields are also expected to decline on average by
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1.1 basis points in response to a two standard deviation change in the credit quality
measure.

The third column in Table 5.5.4 reports the changes in the term structure of average
sovereign yields that are caused by a simultaneous two standard deviation increase
in both liquidity and credit quality measures. It essentially combines the first two
columns of Table 5.5.4. As expected, the German yields are the most sensitive to si-
multaneous changes in liquidity and credit quality measures, which yield an average
decline of approximately 6 basis points in the term structure of interest rates. The
medium-term German rates respond to these changes more than the short-term and
long-term rates.

The Spanish and Italian yields are also sensitive to abrupt changes in liquidity and
credit quality measures. However, a simultaneous two standard deviation increase in
these measures raises the average yields by 2.76 and 1.68 basis points, respectively.
In contrast, French and UK yields are less sensitive to these changes. French yields
are expected to increase on average by 0.29 basis points whereas UK yields to decline
by 0.17 basis points.

Table 5.5.4: Sensitivity analysis

Liquidity shock Credit shock Combined shock

Maturity IT DE ES FR UK IT DE ES FR UK IT DE ES FR UK

12 −4.28−0.20−2.63 0.30−4.52 5.04−0.426.23 0.36 2.41 0.76−0.623.60 0.65−2.12
24 −4.62−3.43−2.42 0.84−3.10 6.30−2.735.86−0.03 1.00 1.68−6.163.44 0.81−2.10
36 −4.63−5.10−2.24 0.99−1.87 6.73−3.705.54−0.18−0.13 2.10−8.803.30 0.81−2.00
48 −4.48−5.85−2.10 0.94−0.82 6.73−3.915.26−0.22−1.02 2.25−9.763.16 0.72−1.84
60 −4.25−6.07−1.98 0.79 0.08 6.50−3.715.01−0.19−1.70 2.25−9.783.03 0.60−1.63
72 −4.00−6.00−1.88 0.61 0.84 6.17−3.304.80−0.14−2.22 2.17−9.302.91 0.48−1.37
84 −3.76−5.77−1.81 0.43 1.50 5.82−2.814.61−0.07−2.58 2.06−8.582.81 0.36−1.09
96 −3.53−5.48−1.74 0.26 2.05 5.47−2.304.45−0.01−2.82 1.93−7.772.70 0.25−0.77
108 −3.33−5.16−1.69 0.10 2.52 5.15−1.804.30 0.05−2.96 1.81−6.962.61 0.15−0.44
120 −3.15−4.84−1.65−0.04 2.91 4.85−1.344.18 0.11−3.00 1.70−6.182.52 0.07−0.09
180 −2.53−3.59−1.56−0.52 4.06 3.81 0.383.74 0.30−2.35 1.28−3.202.18−0.21 1.71
240 −2.19−2.83−1.57−0.78 4.39 3.23 1.373.50 0.41−0.97 1.05−1.461.93−0.37 3.42
360 −1.84−2.06−1.64−1.04 4.17 2.64 2.393.27 0.52 1.99 0.80 0.341.63−0.52 6.17

Mean −3.58−4.34−1.92 0.22 0.94 5.26−1.684.67 0.07−1.10 1.68−6.022.76 0.29−0.17

This table reports the change, measured in basis points, in the term structure of average sovereign
yields for each country in our sample that is caused by a positive shock (2 standard deviation increase)
in the liquidity (Liquidity shock column) and credit quality measures (Credit shock column) as well as
by a shock in both liquidity and credit quality measures simultaneously (Combined shock column).

It is also of great interest to investigate the impact of liquidity and credit quality
shocks on the yield spreads of European sovereign bonds and their relative impor-
tance across the term structure. Within this framework, we can directly relate
changes in the European liquidity and credit quality measures to changes in the
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sovereign yield spreads and quantify their effects. Table 5.5.5 reports the changes
in the spreads, at selected maturities, of the European sovereign yields that result
from a two standard deviation increase in the liquidity and credit quality measures
as well as from a shock in both measures simultaneously. A negative sign indicates a
narrowing in the yield spread of the corresponding sovereign bonds, while a widening
in the yield spread is accompanied by a positive sign.

Table 5.5.5: Cross-country sensitivity analysis

Panel A: Liquidity shock

Maturity IT-DE IT-ES IT-FR IT-UK DE-ES DE-FR DE-UK ES-FR ES-UK FR-UK

12 −4.08 1.65 −4.57 0.25 −2.43 0.50 −4.32 −2.92 1.90 4.82
36 0.47 2.39 −5.62 −2.76 2.86 6.09 3.23 −3.23 −0.37 −2.86
60 1.82 2.27 −5.04 −4.32 4.09 6.86 6.15 −2.77 −2.06 −0.72
120 1.69 1.50 −3.11 −6.06 3.19 4.80 7.75 −1.61 −4.56 2.95
240 0.65 0.62 −1.41 −6.58 1.27 2.06 7.23 −0.79 −5.96 5.17
360 0.22 0.20 −0.80 −6.02 0.41 1.01 6.23 −0.60 −5.82 5.22

Panel B: Credit shock

Maturity IT-DE IT-ES IT-FR IT-UK DE-ES DE-FR DE-UK ES-FR ES-UK FR-UK

12 5.46 1.19 4.68 2.63 6.65 0.77 2.82 5.87 3.82 1.29
36 10.43 −1.20 6.92 6.86 9.24 3.52 3.57 5.72 5.67 0.05
60 10.21 −1.48 6.69 8.20 8.72 3.52 2.01 5.20 6.72 −1.51
120 6.19 −0.67 4.74 7.86 5.52 1.45 −1.67 4.07 7.18 −3.11
240 1.86 0.27 2.82 4.21 2.13 −0.96 −2.35 3.09 4.47 −1.39
360 0.25 0.63 2.12 0.65 0.88 −1.87 −0.40 2.75 1.28 1.47

Panel C: Combined shock

Maturity IT-DE IT-ES IT-FR IT-UK DE-ES DE-FR DE-UK ES-FR ES-UK FR-UK

12 1.38 2.84 0.11 2.88 4.22 1.27 −1.50 2.95 5.72 2.77
36 10.91 1.19 1.30 4.11 12.10 9.61 6.80 2.49 5.30 −2.81
60 12.03 0.78 1.65 3.88 12.82 10.38 8.16 2.43 4.66 −2.23
120 7.88 0.82 1.63 1.79 8.70 6.25 6.08 2.46 2.62 −0.16
240 2.51 0.89 1.41 −2.37 3.39 1.09 4.88 2.30 −1.48 3.78
360 0.46 0.83 1.32 −5.37 1.29 −0.86 5.83 2.15 −4.54 6.69

This table reports the change, measured in basis points, in the spreads of the European sovereign
yields, at selected maturities, which results from a positive shock (2 standard deviation increase)
in the liquidity (Panel A) and credit quality measures (Panel B) as well as from a shock in both
measures simultaneously (Panel C).

We note that the yield spreads between the German bonds and the bonds of the
peripheral countries rise in response to a two standard deviation increase in the
liquidity or credit quality measures (with the exception of a liquidity shock in the 12-
month spread). The 36-month and 60-month yield spreads are the most sensitive to
these changes. A liquidity shock positively affects the German-French and German-
UK spreads (with the exception of a liquidity shock in the 12-month German-UK
spread), while a credit shock raises the spreads of the short-term and medium-
term bonds and reduces the spreads of the long-term bonds. Moreover, the spread
of the Italian-Spanish yields widens because Italian yields are more sensitive and
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exhibit a greater decline in response to a two standard deviation increase in the
liquidity measure than Spanish yields. The impact of a credit shock on the Italian-
Spanish yield spreads varies across maturities. Short-term and long-term spreads are
positively related to changes in the credit quality measure, whereas medium-term
spreads are negatively related to it. Moreover, the spreads between the yields of the
peripheral Eurozone countries and those of France and the UK are also negatively
related to a liquidity shock and positively related to a credit shock, possibly reflecting
the fact that the credit quality of the French and the UK economy is superior to that
of the peripheral Eurozone countries. The behaviour of French-UK yield spreads is
also mixed. Short-term and long-term spreads tend to rise, while medium-term
spreads tend to decline in response to an increase in the liquidity or credit quality
measures.

5.6 Covariance regression

In this Section, we employ the covariance regression model of Hoff and Niu (2012),
which parametrises the covariance matrix of a multivariate response vector as a par-
simonious quadratic function of explanatory variables, to model the cross-country
covariance structure of sovereign yields, at selected maturities, using country-specific
liquidity (bid-ask yield spreads) and credit quality (credit default swap (CDS) spreads)
measures as explanatory variables in the regression structure. The proposed analy-
sis provides a simple and flexible way of relating the heteroscedasticity of European
sovereign yields, at certain maturities, to country-specific liquidity and credit qual-
ity measures and assessing their impact and relative importance in explaining the
behaviour of the covariance structure over-time. It also provides a distinct way
to quantify the effects of country-specific liquidity and credit shocks on the linear
dependence between European sovereign yields and analyse their implications for
policy and portfolio management.

5.6.1 Covariance regression model

The covariance regression model of Hoff and Niu (2012) proposes a parsimonious
way to parametrise the covariance structure of a multivariate response vector as a
function of explanatory variables. Let y ∈ Rp be a random multivariate response
vector and x ∈ Rq be a vector of explanatory variables. Hoff and Niu (2012) propose
a simple and flexible method for modelling and estimating the covariance matrix
Σx = Cov

[
y|x

]
, the conditional covariance of y given x. In its simplest form, Σx

can be expressed as
Σx = Ψ +BxxTBT , (5.12)

where Ψ is a p × p positive-definite matrix and B is a p × q matrix of coefficients.
Therefore, the resulting covariance function is positive-definite for all values of x
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because the covariance is equal to a “baseline” covariance matrix Ψ plus a p × p

positive-definite rank-1 matrix that depends on x. Hoff and Niu (2012) also show
that the covariance regression model has a random-effects model representation.
The random-effects representation for a rank-1 covariance regression model, given
observed data y1, . . . ,yt, can be written as

yt = µxt + γt ×Bxt + εt , (5.13)

where E
[
εt
]

= 0,Cov
[
εt
]

= Ψ,E
[
γt
]

= 0,Var
[
γt
]

= 1 and E
[
γt × εt

]
= 0. The

covariance matrix for yt given xt can then be derived as

E
[
(yt − µxt)(yt − µxt)

T
]

= E
[
γ2
tBxtx

T
t B

T + γt(BxtεTt + εTt xTt B
T ) + εtεTt

]
(5.14)

= Bxtx
T
t B

T + Ψ

= Σxt .

The model in Equation (5.13) can also be represented as a factor analysis model and
expressed as 

y1,t − µx1,t
...

yp,t − µxp,t

 = γt ×


bT1 xt
...

bTp xt

+


ε1,t
...
εp,t

 , (5.15)

where {b1, . . . , bp} denote the rows of B. The latent factor γt essentially describes
the additional unit-level variability beyond that represented by the error term εt,
while the vectors {b1, . . . , bp} describe how this additional variability is shared across
the p different response vectors. For example, large values of bj indicate large
heteroscedasticity in yj as a function of x. Additionally, the direction of vectors bj
and bk determines the direction of the linear dependence between yj and yk , i.e.
whether yj and yk are positively or negatively correlated.

5.6.2 Parameter estimation via the EM-algorithm

Given the random-effects representation of the model, described in the previous Sec-
tion, Hoff and Niu (2012) show that parameter estimation can be executed using
maximum likelihood estimation via the EM-algorithm.14 The maximum likelihood
estimation via the EM-algorithm relies on the conditional distribution of {γ1, . . . , γT}

14Hoff and Niu (2012) also show that model parameters can be estimated using a Bayesian setting
via the Gibbs sampler. In this study, we present only the maximum likelihood estimation procedure
via the EM-algorithm, which is also employed to estimate model parameters in the empirical part
of this study.
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given {Y ,X,Ψ,B}. Consider response data Y = (yT1 , . . . ,yTT ) observed under con-
ditions X = (xT1 , . . . ,xTT ). Under the assumption that all error terms are normally
distributed, that is

γ1, . . . , γT
i.i.d∼ normal(0, 1) ,

ε1, . . . , εT
i.i.d∼ multivariate normal(0,Ψ) ,

yt = µxt + γt ×Bxt + εt ,

the conditional distribution of {γt, . . . , γn} given {Y ,X,Ψ,B} can be derived as

{γt|Y ,X,Ψ,B} ∼ normal(mt, vt) , where

vt = (1 + xTt B
TΨ−1Bxt)−1 ,

mt = vt(yt − µxt)
TΨ−1Bxt .

The EM-algorithm maximises the expected value of the complete data log-likelihood,
l(A,B,Ψ) = log p(Y |A,B,Ψ,X,x), iteratively.15 The log-likelihood, derived from
the multivariate normal density, is

l(A,B,Ψ) = −1
2
[
Tp log(2π)+T log |Ψ|+

T∑
t=1

(yt−[A+γtB]xt)T Ψ−1 (yt−[A+γtB]xt)
]
.

(5.16)
The EM-algorithm proceeds as follows. Given current estimates (Â, B̂, Ψ̂) of (A,B,Ψ),
the first step of the EM-algorithm computes, mt = E[γt|Â, B̂, Ψ̂,yt] and vt =
Var[γt|Â, B̂, Ψ̂,yt], which are then plugged into the likelihood in Equation (5.16),
yielding

E
[
l(A,B,Ψ)|Â, B̂, Ψ̂

]
= −1

2
[
Tp log(2π) + T log |Ψ|+

T∑
t=1

E
[
(êt − γtBxt)T A−1 (êt − γtBxt)|Â, B̂, Ψ̂

]]
,

(5.17)

15The matrix A denotes the coefficient matrix of the mean function. Hoff and Niu (2012) assume
that the mean function is linear, i.e. µx = Ax, using the same regressors as in the covariance
function. For ease of presentation, we follow the notation of Hoff and Niu (2012) in the rest of this
Section. Note, that the heteroscedasticity in the response vector is modelled separately from the
mean in the empirical part of this Section.
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where êt = yt − Âxt and

E
[
(êt − γtBxt)T Ψ−1 (êt − γtBxt)|Â, B̂, Ψ̂

]
= (êt −mtBxt)T Ψ−1 (êt −mtBxt) + vtx

T
t B

TΨ−1Bxt

= (êt −mtBxt)T Ψ−1 (êt −mtBxt) + stx
T
t B

TΨ−1Bxtst ,

with st = v
1/2
t . The second step of the EM-algorithm is to maximise the expected

log-likelihood. Following Hoff and Niu (2012), we construct the 2T × 2q matrix X̃
whose t-th row is (xTt ,mtx

T
t ) and whose (T + t)-th row is (0Tq , stxTt ) and the 2T × p

matrix Ỹ given by (Y T ,0TT×p)T . In this respect, the expected value of the complete
data log-likelihood can be re-written as

E
[
l(A,B,Ψ)|Â, B̂, Ψ̂

]
= −1

2
[
Tp log(2π)+T log |Ψ|+tr

([
(Ỹ −X̃C̃T ][(Ỹ −X̃C̃T ]TΨ−1)] ,

(5.18)
with C = (A,B). The EM-algorithm obtains the new values (Ǎ, B̌, Ψ̌) by max-
imising the expected log-likelihood. Given the fact that the expected log-likelihood
has the same form as the log-likelihood for normal multivariate regression, the new
values (Ǎ, B̌, Ψ̌) are given by

(Ǎ, B̌) = Č = Ỹ
T
X̃(X̃T

X̃)−1 ,

Ψ̌ = 1
T

(Ỹ − X̃Č
T

)T (Ỹ − X̃Č
T

) .

The procedure is repeated until convergence.

5.7 Covariance regression results

We work with the one-step ahead prediction errors obtained by applying the Kalman
Filter to the state-space model defined in Section 5.4.1. Specifically, for each country
j = {Italy (IT), Germany (DE), Spain (ES), France (FR), United Kingdom (UK)}
in our sample, the one-step ahead prediction errors εj,t can be obtained as follows

εj,t = yj,t − E(yj,t|Y j,t−1) = yj,t −Λ(λ̂j)b̂j,t|t−1 , (5.19)

where yj,t is the vector of the observed yields, yj,t = [yj,t(τ1), . . . , yj,t(τN)]′, Λ(λ̂j) is
the estimated factor loading coefficient matrix and b̂j,t|t−1 is the predicted mean of
latent vector βt for country j.

As explained, the focus in the second part of the empirical analysis is on relating
the heteroscedasticity of European sovereign yields to country-specific liquidity and
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credit quality measures. We work with the errors obtained from the estimated dy-
namic Nelson-Siegel (DNS) model for each country, and not with the raw yields for
two main reasons. Firstly, we want to remove the temporal dependence from the
observed yields and, hence, remove the effects of autocorrelation from the covari-
ance regression results. Secondly, we want to remove the effects of country-specific
macroeconomic and financial variables, as well as of broader measures of liquidity
and credit quality, from the covariance regression results. Thus, the first part of the
empirical analysis can also be viewed as a filtering stage for the second part of the
covariance regression analysis.

After obtaining the errors for each country j, we rearrange them by maturity. There-
fore, the response vector yt in Equation (5.13) represents a 5×1 vector where each el-
ement is a prediction error for each country j, maturity τi and time period t, i.e., yt =
[y1,t(τi), . . . , y5,t(τi)]′. On the other hand, the vector of explanatory variables xt is a
10× 1 vector that includes liquidity measures (bid-ask spreads), xsj,t(τi), and credit
quality measures (credit default swap (CDS) spreads), xcj,t(τi), for each country j,
maturity τi and time period t, i.e. xt =

[
xs1,t(τi), . . . , xs5,t(τi), xc1,t(τi), . . . , xc5,t(τi)

]′
.

In this respect, the matrix B in Equation (5.13) is a 5 × 10 matrix that describes
how additional variability is manifested across the 5 different response variables.

Figure 5.7.1 highlights the statistical significance results, at 5% level, of the esti-
mated coefficients of matrix B in the covariance regression model in Equation (5.12)
at 24, 60, 120, 240 and 360-month maturities.16 The selection of these maturities
enables the study of the interaction between country-specific liquidity and credit
quality measures and the covariation in the sovereign yields across the entire matu-
rity spectrum (specifically, at short-term, medium-term and long-term maturities).
The white cells in Figure 5.7.1 indicate significance of the corresponding coefficients
at 5% level, while the black cells indicate insignificance at the same confidence level.
Each country pair, displayed in Figure 5.7.1, corresponds to 1 of the 15 unique ele-
ments of the 5× 5 covariance matrix Σx. For example, the IT-DE pair denotes the
covariance between Italy and Germany, whereas pairs of the same country index,
such as IT-IT, denote the variance of this particular country - in this particular case,
the variance of prediction errors for Italy at the selected maturity. In addition, the
second country index indicates the origin of the liquidity and credit quality explana-
tory variables. For example, the IT-DE cell that corresponds to the country-specific

16Ideally, we would have preferred to also include covariance regression results corresponding
to the 12-month maturity, which is the shortest maturity period in our dataset. However, as
shown in Section 5.3, more than half of the 12-month Spanish bid-ask spreads are missing and
thus interpolated spreads could have significantly affected the covariance regression results at this
specific maturity. As a result, in order to avoid incorrect inference and to maintain data consistency,
we decided not to report covariance results for the 12-month maturity data.
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liquidity measures (bid-ask spreads) in Figure 5.7.1a, denotes the statistical signifi-
cance of the German bid-ask spreads on the covariation between Italian and German
prediction errors.
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(b) CDS spreads

Figure 5.7.1: This figure demonstrates the significance of the estimated coefficients,
at selected maturities, from the covariance regression model. White cells indicate
significance at 5% level, while black cells indicate insignificance of the estimated co-
efficients at 5% level. Figure 5.7.1a presents the significance of country-specific liq-
uidity measures (bid-ask spreads), whereas Figure 5.7.1b presents the significance of
country-specific credit measures (credit default swap (CDS) spreads) in explaining the
covariation for each individual pair. The first country of each pair represents the row,
while the second country represents the column of matrix B in Equation (5.12). In
addition, the second country indicates the origin of the country-specific explanatory
variable in the covariance regression model.

At first glance, country-specific liquidity and credit quality measures appear highly
significant in explaining the heteroscedasticity of the prediction errors across matu-
rities. It seems that credit quality measures are slightly more significant than the
corresponding liquidity measures. In total, the liquidity and credit quality coefficient
estimates appear significant in the covariance regression specification 88 and 96 out
of 125 times, respectively. The liquidity measures are slightly less significant at the
360-month maturity, whereas the credit quality measures are less significant at the
120-month maturity. Nevertheless, we cannot identify any distinct pattern between
these measures across term structure maturities.

Furthermore, the German bid-ask spreads are significant in explaining the covariance
for Italian-German, German-UK and French-German prediction errors, whereas the
UK bid-ask spreads are significant in explaining the covariation for German-UK and
French-UK prediction errors across all maturities. In general, the German bid-ask
spreads tend to be the most significant liquidity measures followed by the UK bid-
ask spreads. In contrast, the Italian and Spanish credit default swap (CDS) spreads
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are the most significant country-specific credit variables. In particular, the Italian
credit measures are important in explaining the covariation in the German-Italian
errors, whereas the Spanish credit variables are significant in explaining the covari-
ance of German-Spanish errors across term structure maturities.

Figure 5.7.2 plots the direction of the estimated coefficients in the covariance re-
gression model. The white cells indicate negatively-signed coefficients, whereas the
black cells indicate positively-signed coefficients. We note that the majority of the
liquidity coefficients are negatively-signed, whereas the signs of the credit coeffi-
cients are almost equally split. Specifically, there are 75 coefficients corresponding
to liquidity measures and 62 coefficients corresponding to credit measures that are
negatively-signed (out of 125 in total for each set of variables) across all maturities,
respectively. Nevertheless, the direction of the estimated coefficients cannot provide
a clear view of the level and direction of the correlation as implied by the covariance
regression model. To facilitate the analysis, we calculate time-series correlations for
each country-pair across all maturities. Table 5.7.1 reports the time-series average
correlation estimates.
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Figure 5.7.2: This figure demonstrates the direction of the estimated coefficients,
at selected maturities, from the covariance regression model. The white cells indicate
negatively-signed estimated coefficients, while the black cells indicate positively-signed
estimated coefficients. Figure 5.7.2a presents the signs of the country-specific liquidity
measures (bid-ask spreads) whereas Figure 5.7.2b presents the signs of the country-
specific credit measures (credit default swap (CDS) spreads). The first country in each
pair represents the row, while the second country represents the column of matrix B
in Equation (5.12). In addition, the second country indicates the origin of the country-
specific explanatory variable in the covariance regression model.
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Table 5.7.1: Time-series average correlation estimates

Maturity

Country 24 60 120 240 360

IT-DE −0.10 −0.17 0.39 0.75 0.25
IT-ES 0.35 0.46 0.64 0.28 0.63
DE-ES −0.05 −0.16 0.07 0.01 −0.01
IT-FR 0.11 0.33 0.57 0.68 0.30
DE-FR 0.03 0.04 0.75 0.84 0.46
ES-FR 0.11 0.27 0.19 0.12 0.31
IT-UK −0.01 −0.11 0.26 0.25 0.14
DE-UK 0.43 0.57 0.28 0.42 0.08
ES-UK −0.16 −0.10 0.14 0.02 0.07
FR-UK −0.39 −0.23 0.18 0.31 −0.01

This table reports the time-series average correlation es-
timates, at selected maturities, for each pair of countries
as implied by the covariance regression model estimates.

We notice that the majority of time-series average correlation estimates are positive.
The negative correlation estimates mainly correspond to 24 and 60-month maturi-
ties; however, these estimates turn positive for the majority of the pairs at 120, 240
and 360-month maturities. The correlation estimates between the peripheral Euro-
zone countries are all positive across the maturity spectrum. France is also positively
correlated with the peripheral Eurozone countries and Germany across all maturi-
ties. In contrast, Germany is weakly correlated with Spain, while the German-Italian
correlation is more pronounced across all maturities. In particular, the correlation
between German and Italian prediction errors is negative at the 24 and 60-month
maturities and positive at the 120, 240 and 360-month maturities, with the positive
estimates being much more pronounced than the negative correlation estimates. The
correlation estimates for the UK are mixed. The UK-German correlation is positive
across all maturities reaching its highest level, 0.57, at 60-month maturity. On the
other hand, the UK is negatively correlated with Italy, Spain and France at shorter
maturities, i.e. at 24 and 60-month maturities, and positively correlated for longer
maturities, i.e. at 120, 240 and 360-month maturities (with the exception of the
UK-France correlation at 360-month maturity, which is negative and quite small).

To investigate the impact of country-specific liquidity and credit quality measures
on the correlation structure of prediction errors, we re-estimate the covariance re-
gression model in Equation (5.13) using either liquidity or credit quality measures
as explanatory variables. Table 5.7.2 reports the time-series average correlation es-
timates at 24, 60, 120, 240 and 360-month maturities, respectively. The direction of
the correlation coefficients implied by either liquidity or credit quality measures is
almost identical across maturities. Similar to the regression results of the complete
set in Table 5.7.1, the correlation estimates tend to be positively-signed across matu-
rities for most of the country pairs under study. Moreover, the correlation estimates
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in Table 5.7.2 do not differ significantly in magnitude indicating that country-specific
liquidity and credit quality measures contribute to the covariation of the prediction
errors to a similar extent.

Table 5.7.2: Time-series average correlation estimates

Liquidity measures Credit measures

Country 24 60 120 240 360 24 60 120 240 360

IT-DE −0.15 −0.16 0.44 0.80 0.22 −0.11 −0.13 0.44 0.71 0.25
IT-ES 0.36 0.50 0.68 0.25 0.61 0.37 0.41 0.63 0.26 0.61
DE-ES −0.10 −0.18 0.16 0.01 −0.05 −0.05 −0.15 0.14 −0.02 −0.01
IT-FR 0.11 0.35 0.58 0.60 0.28 0.10 0.36 0.58 0.72 0.29
DE-FR 0.02 0.01 0.76 0.76 0.48 0.03 0.06 0.77 0.84 0.46
ES-FR 0.19 0.30 0.21 0.11 0.29 0.11 0.19 0.18 0.10 0.33
IT-UK −0.03 −0.09 0.22 0.28 0.08 −0.01 −0.06 0.25 0.21 0.10
DE-UK 0.42 0.58 0.18 0.31 0.05 0.42 0.56 0.23 0.43 0.06
ES-UK −0.31 −0.18 0.20 0.00 0.00 −0.14 −0.10 0.18 0.01 0.04
FR-UK −0.50 −0.23 0.08 0.16 −0.04 −0.41 −0.20 0.18 0.31 −0.03

This table reports the time-series average correlation estimates, at selected maturities,
for each pair of countries as implied by the covariance regression model estimates.
The Liquidity measures column reports correlation estimates employing only country-
specific liquidity measures (bid-ask spreads) as explanatory variables. The Credit
measures column reports correlation estimates using only country-specific credit quality
measures (cds spreads) as explanatory variables

Furthermore, the likelihood ratio test statistics and the corresponding p-values, re-
ported in Table 5.7.3, clearly reject the restricted covariance regression models in
favour of the unrestricted model where both country-specific credit quality and liq-
uidity variables are employed in the covariance regression specification.

Table 5.7.3: Likelihood ratio test results

Liquidity measures Credit measures

Maturity LR-statistic p-value LR-statistic p-value

24 1113.33 0.00 275.12 0.00
60 1307.23 0.00 657.37 0.00
120 1146.33 0.00 637.22 0.00
240 1190.20 0.00 905.90 0.00
360 456.90 0.00 292.02 0.00

This table reports likelihood ratio test results from the fit of al-
ternative covariance regression models. The Liquidity measures
column reports likelihood ratio statistics and the correspond-
ing p-values from the fit of covariance regression models using
country-specific liquidity measures as explanatory variables (re-
stricted model) at 24, 60, 120, 240 and 360-month maturities.
The Credit measures column reports likelihood ratio statistics
and the corresponding p-values from the fit of covariance re-
gression models using country-specific credit measures as ex-
planatory variables (restricted model) at 24, 60, 120, 240 and
360-month maturities. The unrestricted covariance model uses
both country-specific liquidity and credit quality measures as
explanatory variables. All test statistics are Chi-square with 25
degrees of freedom.
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5.7.1 Conditional covariance results: low and high-equity market
volatility

So far the analysis has been concentrated on the unconditional behaviour of liquid-
ity, credit quality and sovereign yields. In this Section, we attempt to understand
how this relation is altered in the face of changes to the market environment. In
particular, we analyse the behaviour of liquidity, credit quality and sovereign yields
when equity markets are perceived to be volatile. The flight of capital out of eq-
uity markets and into fixed-income markets, especially during periods of elevated
market volatility, is well-documented in the literature (see for example, Connolly
et al., 2005; Underwood, 2009, among others). Following Beber et al. (2009), we use
the VSTOXX index as a measure of perceived European equity market volatility.
The VSTOXX index is constructed using implied option prices written on the Euro
Stoxx 50 index and thus reflects market expectations of European equity market
volatility. The VSTOXX index data are downloaded from Bloomberg. We proxy
for equity market volatility by conditioning on periods where the VSTOXX index is
above its time-series median.

Therefore, our conditional analysis entails estimating the covariance regression model
in Equation (5.13) having conditioned the sample on periods of low-equity mar-
ket volatility (calm period) and high-equity market volatility (stress period). Fig-
ure 5.7.1 plots the significance of country-specific liquidity and credit quality mea-
sures across both sub-periods. The credit default swap (CDS) variables appear
slightly more significant than bid-ask spread variables in the calm period. In to-
tal, the credit quality measures appear significant at 5% level 79 out of 125 times,
whereas the liquidity proxies are significant at 5% level 72 out of 125 times. The
significance of explanatory variables in the covariance regression specification has
altered in the crisis period. The significance of credit quality measures increased
over this period. In particular, credit quality measures appear significant in explain-
ing the covariation of the prediction errors 89 out of 125 times across maturities.
In contrast, the significance of liquidity measures has lessened in the crisis period.
In total, liquidity measures appear significant in the covariance regression model 65
out of 125 times across term structure maturities.

Moreover, the German bid-ask spreads are the most significant country-specific liq-
uidity measures, whereas the Spanish credit default swap (CDS) spreads are the
most significant country-specific credit quality measures in the calm period. In con-
trast, the Spanish bid-ask spreads and the UK credit default swap (CDS) data are
the least significant liquidity and credit quality measures in this period, respectively.
The Italian bid-ask spreads appear to be the most significant country-specific liq-
uidity measures in the crisis period, while the French liquidity variables are the least
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significant in the same period. Furthermore, the credit default swap (CDS) spreads
of the peripheral Eurozone countries and Germany are the most significant country-
specific credit proxies, while the French credit default swap (CDS) data are the least
significant country-specific credit measures in the crisis period. In Figure 5.7.2, we
also note that liquidity and credit quality measures tend to be more significant for
the shorter-term yields than for the longer-term yields in the calm period. In con-
trast, the bid-ask spread variables are less significant for the shorter-term yields
than for the longer-term yields in the crisis period, whereas the credit default swap
(CDS) data appear less significant for the 360-month maturity and almost equally
significant for the remaining maturities in the same period.

181



Chapter 5 : Modelling the dependence of European sovereign yield curves

Maturity

GB−IT

GB−DE

GB−ES

GB−FR

GB−GB

FR−IT

FR−DE

FR−ES

FR−FR

FR−GB

ES−IT

ES−DE

ES−ES

ES−FR

ES−GB

DE−IT

DE−DE

DE−ES

DE−FR

DE−GB

IT−IT

IT−DE

IT−ES

IT−FR

IT−GB

24 60 120 240 360

(a) Bid-Ask spreads
(calm period)

Maturity

GB−IT

GB−DE

GB−ES

GB−FR

GB−GB

FR−IT

FR−DE

FR−ES

FR−FR

FR−GB

ES−IT

ES−DE

ES−ES

ES−FR

ES−GB

DE−IT

DE−DE

DE−ES

DE−FR

DE−GB

IT−IT

IT−DE

IT−ES

IT−FR

IT−GB

24 60 120 240 360

(b) CDS spreads
(calm period)

Maturity

GB−IT

GB−DE

GB−ES

GB−FR

GB−GB

FR−IT

FR−DE

FR−ES

FR−FR

FR−GB

ES−IT

ES−DE

ES−ES

ES−FR

ES−GB

DE−IT

DE−DE

DE−ES

DE−FR

DE−GB

IT−IT

IT−DE

IT−ES

IT−FR

IT−GB

24 60 120 240 360

(c) Bid-Ask spreads
(stress period)

Maturity

GB−IT

GB−DE

GB−ES

GB−FR

GB−GB

FR−IT

FR−DE

FR−ES

FR−FR

FR−GB

ES−IT

ES−DE

ES−ES

ES−FR

ES−GB

DE−IT

DE−DE

DE−ES

DE−FR

DE−GB

IT−IT

IT−DE

IT−ES

IT−FR

IT−GB

24 60 120 240 360

(d) CDS spreads
(stress period)

Figure 5.7.3: This figure demonstrates the significance of the estimated coefficients,
at selected maturities, from the covariance regression model in calm and stress periods.
White cells indicate significance at 5% level, while Black cells indicate insignificance
of the estimated coefficient at 5% level. Figure 5.7.3a presents the significance of
country-specific liquidity measures (bid-ask spreads), whereas Figure 5.7.3b presents
the significance of country-specific credit measures (credit default swap (CDS) spreads)
in explaining the covariation for each individual pair of countries in the calm period.
Figure 5.7.3c presents the significance of country-specific liquidity measures (bid-ask
spreads), whereas Figure 5.7.3d presents the significance of country-specific credit mea-
sures (credit default swap (CDS) spreads) in explaining the covariation for each individ-
ual pair of countries in the stress period. The first country of each pair represents the
row, while the second country represents the column of matrix B in Equation (5.12).
In addition, the second country indicates the origin of the country-specific explanatory
variable in the covariance regression model.
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Table 5.7.4 reports the time-series average correlation estimates implied by the co-
variance regression model in both sub-periods. At first glance, we notice that the
time-series average correlation estimates differ significantly in magnitude and direc-
tion for the majority of country pairs across both sub-periods. In particular, almost
all correlation coefficients tend to be positively-signed and rather pronounced for
the 120 and 240-month maturities in the low-equity volatility period. The largest
positively-signed correlation coefficient in the calm period is 0.80 for the Italy-Spain
and Italy-Germany country pairs at 120 and 240-month maturities, respectively.
Most of the negatively-signed correlation estimates reported in the calm period cor-
respond to the 24 and 60-month maturities with the France-UK pair at the 24-month
maturity being the largest negative correlation coefficient. The correlation structure
across maturities has altered in the high-equity volatility period. We notice that
several of the correlation estimates have changed direction. In particular, 14 out
of 50 correlation coefficients changed direction between the calm and the stress
sub-period. Of these 14 correlation changes, 9 coefficients turned from positive to
negative whereas 5 coefficients turned from negative to positive.

The 240-month maturity correlation coefficient for the Germany-France country pair,
which is equal to 0.93, is the largest positively-signed correlation estimate in the
stress period. In contrast, the correlation coefficient for the France-UK country
pair is -0.25, which is the largest negatively-signed correlation estimate in the stress
period. The correlation estimates for the peripheral Eurozone countries are posi-
tive across all maturities and sub-periods; however, the correlation estimates tend
to be more pronounced in the calm period than in the stress period. The correla-
tion between Germany and France is also positive and significant for most of the
pairs analysed, especially for the medium and long-term maturities. The correlation
between Germany and the peripheral Eurozone countries varies across maturities
and sub-periods. Short-term correlations tend to be negative whereas medium and
long-term correlations tend to be positive across both sub-periods. The majority of
German-UK correlation coefficients tend to be positively signed and rather signifi-
cant, while the correlations between the UK and the peripheral Eurozone countries
as well as France vary across maturities and sub-periods.
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Table 5.7.4: Time-series average correlation estimates

Calm period Stress period

Country 24 60 120 240 360 24 60 120 240 360

IT-DE 0.00 −0.24 0.57 0.80 0.30 −0.16 −0.07 0.32 0.76 0.18
IT-ES 0.29 0.63 0.80 0.23 0.67 0.42 0.32 0.43 0.33 0.60
DE-ES −0.15 −0.14 0.47 −0.03 −0.09 −0.02 −0.12 −0.16 0.02 0.00
IT-FR −0.06 0.35 0.76 0.41 0.09 0.18 0.28 0.47 0.77 0.37
DE-FR −0.20 0.02 0.73 0.50 0.28 0.18 0.06 0.75 0.93 0.53
ES-FR 0.10 0.43 0.53 0.10 0.14 0.17 0.06 −0.05 0.12 0.40
IT-UK 0.15 −0.27 0.35 0.43 0.25 −0.12 0.01 0.18 0.08 −0.03
DE-UK 0.45 0.62 0.48 0.60 0.25 0.42 0.49 −0.02 0.19 −0.11
ES-UK −0.23 −0.26 0.29 0.06 0.08 −0.04 0.10 0.11 −0.01 0.03
FR-UK −0.67 −0.22 0.40 0.21 −0.02 −0.24 −0.25 −0.01 0.24 −0.03

This table reports the time-series average correlation estimates, at selected maturities, for each pair
of countries as implied by the covariance regression model estimates for calm and stress periods.

5.7.2 Covariance regression sensitivity analysis

The advantage of our modelling strategy is that we can quantify the effects on the
sovereign yields from a shock in any of the country-specific liquidity and credit
measures. In other words, we can assess the impact of country-specific liquidity and
credit quality shocks not only on the yield curve of the country which experiences
the shock but also on the yield curves of the remaining countries and, therefore,
study the linkages between European sovereign yields and potential spillover effects.
In this Section, we describe in detail the sensitivity analysis procedure, which is
essentially based on the full state-space model representation. Denote the complete
set of all country and maturity yields as Y t, where each element yj,t(τi) represents
a zero-coupon bond yield at maturity τi (i = 1, . . . , N) for country j (j = 1, . . . , d)
at time t (t = 1, . . . , T ):

Y t =


y1,t(τ1) . . . yd,t(τ1)

...
...

...
y1,t(τN) . . . yd,t(τN)

 .

Denote byM t the set of the Nelson-Siegel term structure regression model of Diebold
et al. (2008), where each element f(τi;βj,t, θj) is a 1×3 vector of the i-th row of the
Λ(λj) βj,t matrix, with βj,t representing the vector of latent factors, Λ(λj) is the
N×3 factor loadings matrix and θj denotes the set of parameters for each country j.
Also denote by Λ the set of all factor loading matrices Λ(λj). The resulting N × 3d
M t and Λ matrices are given by:

M t =


f(τ1;β1,t, θ1) . . . f(τ1;βd,t, θd)

...
...

...
f(τN ;β1,t, θ1) . . . f(τN ;βd,t, θd)

 and Λ =
(
Λ(λ1), . . . ,Λ(λd)

)
.
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As explained in Section 5.4, the time-series dynamics of latent factors βj,t = [Lj,t, Sj,t, Cj,t]′

for each country j are modelled as autoregressive processes augmented with observ-
able variables. The total observation model with all countries and maturities can
be written as follows

y1,t(τ1)
...

y1,t(τN)
...

yd,t(τ1)
...

yd,t(τN)


=



f(τ1;β1,t, θ1)
...

f(τN ;β1,t, θ1)
...

f(τ1;βd,t, θd)
...

f(τN ;βd,t, θd)


+



ε1,t(τ1)
...

ε1,t(τN)
...

εd,t(τ1)
...

εd,t(τN)


+



ζ1,t(τ1)
...

ζ1,t(τN)
...

ζd,t(τ1)
...

ζd,t(τN)


, (5.20)

where εj,t = [εj,t(τ1), . . . , εj,t(τN)]′ and ζi,t = [ζ1,t(τi), . . . , ζd,t(τi)]′ .

We assume that E[εj,t ε′l,t] = 0 ∀j, l s.t. j 6= l, E[ζi,t ζ
′
l,t] = 0 ∀i, l s.t. i 6= l and

E[εj,t(τi) ζj,t(τi)] = 0 ∀j, i. We also assume that
εj,t(τ1)

...
εj,t(τN)

 ∼NN (0,Hj) and


ζ1,t(τi)

...
ζd,t(τi)

 ∼Nd(0,Σi,t) ,

where Hj is the covariance matrix of the transition errors in the dynamic Nelson-
Siegel model of Diebold et al. (2008), which is modelled as a non-diagonal first-order
autoregressive covariance structure with heterogenous variances for each country j.
In contrast, Σi,t denotes the cross-country covariance structure of ζi,t errors at
maturity τi. As shown above, Σi,t is modelled as a parsimonious quadratic function
of explanatory variables xi,t, that is

Σi,t = Ψi +Bixi,tx
T
i,tB

T
i .

Therefore, the distribution of εj,t and ζi,t for all countries j = 1, . . . , d, maturities
τi = τ1 . . . , τN , and time periods t = 1, . . . , T can be written as

ε1,t(τ1)
...

ε1,t(τN)
...

εd,t(τ1)
...

εd,t(τN)


∼NN×d(0,Hε) and



ζ1,t(τ1)
...

ζd,t(τ1)
...

ζ1,t(τN)
...

ζd,t(τN)


∼Nd×N (0,Σζt

) ,
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where Hε =
d⊕
j=1
Hj and Σζ,t =

N⊕
i=1

Σi,t =
N⊕
i=1

(Ψi +Bixi,tx
T
i,tB

T
i ). To quantify the

effects on the sovereign yields from a shock to any of the country-specific liquidity
and credit quality measures in vector xi,t, we proceed as follows. Let ỹt be the
vector of observable sovereign yields sorted by country at each particular maturity
τi at time t, that is

ỹt =



y1,t(τ1)
...

yd,t(τ1)
...

y1,t(τN)
...

yd,t(τN)


= R vec(Y t) = R



y1,t(τ1)
...

y1,t(τN)
...

yd,t(τ1)
...

yd,t(τN)


, (5.21)

where R is a permutation matrix that premultiplies and re-orders the vector of ob-
served yields vec(Y t) into the new ỹt vector. We then proceed as follows:

Stage 1: Premultiply ỹt by Σ−1/2
ζ,t to obtain the new vector of transformed yields y̌t

in order to account for the cross-country dependence across the maturity spectrum:

y̌t = Σ−1/2
ζ,t ỹt = Σ−1/2

ζ,t R vec(Y t) .

Stage 2: Given the estimated parameters θ̂1, . . . , θ̂d, obtained from the Kalman-
filter for each particular country j in Section 5.4, premultiply, using the permutation
matrix R, the matrix of factor loadings vec(Λ) and the covariance matrix Hε by
Σ−1/2
ζ,t to obtain the corresponding transformed Λ̌t and Ȟε, respectively:

Λ̌t = Σ−1/2
ζ,t Λ̃ = Σ−1/2

ζ,t R


Λ(λ̂1)

...
Λ(λ̂d)

 and Ȟε = RT Σ−1/2
ζ,t R Hε R

T (Σ−1/2
ζ,t )T R .

Stage 3: Separate the transformed set of y̌t, Λ̌t and Ȟε into country specific
components y̌j,t, Λ̌t(λj) and Ȟj for each of the j = 1, . . . , d countries:

y̌j,t =


y̌j,t(τ1)

...
y̌j,t(τN)

 ,


Λ̌t(λ1)
...

Λ̌t(λd)

 = RT Λ̌t and Ȟε =


Ȟ1

. . .
Ȟd

 ,

where Ȟj is the subset of the Ȟε matrix corresponding to country j.
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Stage 4: Given the set of transformed y̌j,t, Λ̌t(λj) and Ȟj we run, separately for
each case, the Kalman-filter keeping all static parameters fixed to obtain the new
set of latent factors β̌j,t =

[
Ľj,t, Šj,t, Čj,t

]′
for each country j.

State 5: Given the new set of latent factors β̌j,t =
[
Ľj,t, Šj,t, Čj,t

]′
and static

parameter estimates θ̂j we can obtain the predicted y̌t yields for each country j as
follows:

y∗j,t = E(y̌j,t|y̌j,t−1) = Λ̌(λj)β̌j,t .

State 6: After obtaining the predicted yields y∗j,t for each country j we re-arrange
them by maturity and pre-multiply by Σ−1/2

ζ,t to transform them to their initial scale:

ỹ∗t =



ỹ∗1,t(τ1)
...

ỹ∗d,t(τ1)
...

ỹ∗1,t(τN)
...

ỹ∗d,t(τN)


= Σ1/2

ζ,t R



y∗1,t(τ1)
...

y∗1,t(τN)
...

y∗d,t(τ1)
...

y∗d,t(τN)


(5.22)

Stage 7: To assess the impact of a shock in any of the xt variables we repeat the
above procedure twice. Given the estimated parameters from the dynamic Nelson-
Siegel and covariance regression models we follow the above procedure and obtain
the set of predicted yields ỹ∗(1)

t . We then repeat the Stage 1 - Stage 6 procedure
allowing for a shock to any of the xt variables of our interest and obtain the new
set of predicted yields ỹ∗(2)

t . The difference of the two sets of predicted yields, i.e.
ỹ∗(2)
t − ỹ∗(1)

t , indicates the impact of a shock in the xt variables on the yield curves
of the countries under study and consequently on their corresponding spreads.

5.7.3 Covariance regression sensitivity analysis results

Table 5.8.1 reports the time-series average change in the cross-country spreads, at
selected maturities, after inducing a one standard deviation shock in the country-
specific liquidity (Spreads columns) and credit quality variables (CDS columns),
as well as a shock of the same magnitude in both variables simultaneously (Both
columns). In addition, each panel in Table 5.8.1 reports the sensitivity analysis
results from the shocks in liquidity and credit quality variables corresponding to
each particular country. For example, the panel Italian shock reports the changes in
all possible cross-country spreads after stress-testing the Italian liquidity and credit
proxies at 24, 60, 120, 240 and 360-month maturities.
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The sensitivity analysis results in Table 5.8.1 show that shocks to country-specific
liquidity and credit variables have a significant impact on cross-country spreads.
Nevertheless, the impact of these shocks differs across country-pairs and maturi-
ties. In general, it seems that credit shocks have, on average, a greater impact on
cross-country spreads than liquidity shocks of the same magnitude. In addition,
shocks to country-specific liquidity and credit quality variables appear to have a
greater impact on 60, 120 and 240-month than on 24 and 360-month yields. The
results are also in line with the time-series average correlation estimates reported
in Table 5.7.1 indicating that the correlation estimates are much stronger for most
of the country-pairs at these particular maturities. We also note that shocks in
the country-specific liquidity and credit quality variables may have opposite effects
on cross-country spreads. For example, the Italian-UK spread at 24-month matu-
rity shrinks by approximately 12 basis points after a shock to the Italian bid-ask
spreads. In contrast, a shock in the Italian CDS spreads suggests an increase of
approximately 81.5 basis points in the Italian-UK spread indicating that investors
react to country-specific liquidity and credit quality shocks in different ways.

As shown in the Italian shock panel of Table 5.8.1, the shocks in the Italian liquidity
and credit quality variables have significant effects on cross-country spreads, which
reach their maximum values at the 120-month maturity for most of the country-
pairs. It can also be seen that the effects on the cross-country spreads differ across
maturities. For example, a shock in the Italian CDS spreads suggests a reduction in
the Italian-UK spread by approximately 28 basis points at the 120-month maturity,
while the same shock suggests a widening of the Italian-UK spread by approximately
24 basis points at the 240-month maturity. The results confirm that investors’ per-
ceptions differ not only conditional on the shock type but also conditional on the
investment horizon. The results also reveal significant spillover effects between Euro-
pean countries. For example, an Italian bid-ask shock at 120-month maturity widens
the Spanish-French spread by approximately 27 basis points, while a shock of the
same magnitude in the Italian CDS spreads suggests an increase of approximately
33 basis points in the Spanish-French spread.

The shocks to the Spanish liquidity and credit quality proxies have similar effects on
the cross-country spreads. The greatest change in the cross-country spreads from
a shock to the Spanish bid-ask spreads is an increase by approximately 77 basis
points in the Italian-UK spread, while a shock in the Spanish CDS spreads has its
greatest impact on the Spanish-UK spread, which increases by approximately 212
basis points at the 60-month maturity. The impact of the Spanish shocks is more
pronounced in the 60, 120 and 240-month maturity cross-country spreads. We also
note that Spanish shocks at 60-month maturity bring about a significant increase in
the majority of cross-country spreads. On average, it seems that the shocks in the
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Spanish liquidity and credit quality variables are the ones with the greatest impact
on cross-country spreads, highlighting the strong dependence between the Spanish
economy and the other European economies under study.

The shocks in the German and French variables also have a great impact on cross-
country spreads. Nevertheless, their effects are, on average, less intense than those of
the shocks corresponding to the peripheral Eurozone countries. It can be seen in Ta-
ble 5.8.1 that shocks in the German CDS spreads have a positive impact on almost
all cross-country spreads at 60, 120, 240 and 360-month maturities. On average,
the impact of German credit shocks is more pronounced at the 60 and 120-month
maturities, while the corresponding liquidity shocks appear more profound at 120
and 240-month maturities. On the other hand, the shocks in the French variables
have a greater impact on cross-country spreads at 60 and 240-month maturities. In
addition, the shocks in the UK liquidity and credit quality variables tend to have,
on average, the least significant impact on cross-country spreads across term struc-
ture maturities. The greatest effect from a shock in the UK bid-ask spreads is a
decline in the Spanish-UK spread by approximately 49 basis points at 360-month
maturity, whereas the greatest impact from a shock in the UK CDS spreads is a fall
by approximately 32 basis points in the French-UK spread at 60-month maturity.

In addition, Figures 5.8.1 and 5.8.2 visualise the time-series average change in the
term structure of European sovereign yields after a shock in the country-specific
liquidity and credit variables at 24, 60, 120 and 240-month maturities. We note
that shocks in the short-term liquidity and credit quality variables, especially at 24-
month maturity, are the most persistent ones across the maturity spectrum. It seems
that the effects of the shocks in the short-term country-specific liquidity and credit
quality variables are transmitted from the short-term yields to the medium-term and
long-term maturity yields. For example, it can be seen in Figure 5.8.1a that a shock
in the Spanish bid-ask spreads at 24-month maturity has a significant impact on up
to at least 240-month maturity European sovereign yields. In contrast, the shocks
in the medium-term and longer-term variables appear to affect the yields only at
those maturities where the shock has taken place. It can be seen, for instance, that
shocks at 120 and 240-month maturities bring about a significant shift in the yields
at these particular tenors, whereas yields corresponding to different tenors remain
relatively unaffected.

Tables 5.8.2 and 5.8.3 report sensitivity analysis results, with the sample having been
conditioned on periods of low-equity market volatility (calm period) and high-equity
market volatility (stress period), respectively. Similar to the unconditional sensitiv-
ity analysis results, shocks in country-specific variables appear to have a different
impact on cross-country spreads across the term structure. The results correspond-
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ing to the low-equity market volatility in Table 5.8.2 indicate that country-specific
shocks in liquidity and credit quality variables have a greater impact on 60, 120 and
240-month maturities. In general, it is the shocks in the Spanish bid-ask spreads and
credit quality variables that have, on average, the greatest impact on cross-country
spreads over this period. In addition, shocks in the Italian, German and French
liquidity and credit quality measures affect considerably the cross-country spreads,
while shocks in the UK proxies seem to have, on average, the least significant impact
on spreads in the low-equity market volatility period.

The behaviour of cross-country spread changes in the high-equity market volatility
period is not remarkably different from the behaviour of the corresponding spread
changes in the low-equity market volatility period for the majority of country pairs.
As shown in Table 5.8.3, the impact of country-specific shocks on time-series average
cross-country spread changes varies across maturities and shock types. Shocks tend
to have a stronger impact on spreads at 60, 120 and 240-month tenors. In agreement
with the unconditional and low-equity market volatility results, the Spanish shocks
are the ones that have, on average, the greatest impact on cross-country spreads in
the high-equity market volatility period. The Italian, German and French shocks
also appear to have a great impact on cross-country spreads, while shocks in the
UK liquidity and credit proxies tend to have the least significant impact on cross-
country spread changes in the high-equity market volatility period. Furthermore,
Figures 5.8.3 and 5.8.4 show the behaviour of the European sovereign yield changes
over time after a shock in the liquidity and credit quality variables at 24, 60, 120
and 240-month maturities. The grey shaded areas correspond to the high-equity
market volatility period. In general, we note that the changes in the yields due to
shocks in country-specific liquidity and credit quality measures are more pronounced
for all European sovereign yields in the high-equity market volatility period than in
the low-equity market volatility period highlighting the dynamic interplay between
equity and fixed income markets.

To sum up, the covariance regression results suggest that country-specific liquidity
and credit quality measures are important in explaining the covariation of Euro-
pean sovereign yields unconditionally, as well as conditional on periods of low and
high-equity market volatility. The explanatory power of credit quality measures
appears to be slightly more significant than that of the corresponding liquidity mea-
sures in the low-equity market volatility period, whereas their explanatory power is
relatively more profound over the high-equity market volatility period. The credit
and liquidity measures of the peripheral European countries also appear rather sig-
nificant over these sub-periods. The implied correlation estimates are, on average,
more pronounced at the 120 and 240-month maturities, for most of the country-pairs
under consideration. Nevertheless, the correlation estimates vary across tenors and

190



Chapter 5 : Modelling the dependence of European sovereign yield curves

time periods.

The covariance regression sensitivity analysis results also reveal important linkages
and spillover effects among European economies. The country-specific liquidity and
credit quality shocks have a remarkable impact on European sovereign yields, while
their effects vary significantly across maturities and time periods. Specifically, Eu-
ropean sovereign yields tend to react more to shocks in country-specific measures
at 60, 120 and 240-month maturities and over periods of heightened equity market
volatility. Moreover, Spanish shocks entail, on average, the greatest changes in the
cross-country spreads both unconditionally and conditionally on time. In addition,
the European sovereign yield changes appear more pronounced in periods of high-
equity market volatility, while the cross-country spread changes vary across both
sub-periods.

5.8 Conclusions

We jointly model the dynamic evolution of Euro-area sovereign yield curves and their
dependence structure using market-wide and country-specific measures of liquidity
and credit quality. We investigate the significance of liquidity and credit concerns
in explaining sovereign yield changes and sovereign yield heteroscedasticity uncon-
ditionally, as well as conditional on times of heightened equity market volatility,
and we quantify the effects of market-wide and country-specific liquidity and credit
shocks on sovereign yield curves and cross-country spreads.

Our main empirical findings are that both market-wide and country-specific liquid-
ity and credit quality measures are significant in explaining the dynamic behaviour
of sovereign yield curves and their dependence structure; however, their importance
varies across countries with different credit qualities and investment horizons. The
conditional covariance analysis results also suggest that country-specific credit qual-
ity measures are remarkably more significant in explaining the heteroscedasticity
of sovereign yields than the corresponding liquidity measures in periods of high-
equity market volatility, highlighting investors’ heightened concerns regarding the
credit quality of Euro-area economies during stress periods. The sensitivity analy-
sis results also reveal significant spillover effects highlighting the strong dependence
among Euro-area economies.
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Table 5.8.1: Sensitivity analysis: Cross-country spreads

Maturity 24 Maturity 60 Maturity 120 Maturity 240 Maturity 360
Countries Spreads CDS Both Spreads CDS Both Spreads CDS Both Spreads CDS Both Spreads CDS Both

Italian shock
IT-DE -1.28 -21.65 -20.06 -4.82 -3.75 -8.20 -23.28 17.60 -38.11 -21.72 45.66 16.84 1.22 4.76 5.51
IT-ES -3.24 25.95 25.94 2.85 21.36 21.81 33.17 -22.84 -13.18 27.66 -5.31 2.67 0.84 2.26 3.22
IT-FR 3.75 -37.23 -29.50 1.89 -0.92 1.73 -6.00 55.85 -2.45 -45.82 80.96 1.17 0.35 -4.76 -3.08
IT-UK -11.91 81.55 73.79 1.37 -15.29 -21.31 -51.03 -27.66 -38.78 -30.90 23.99 3.62 14.91 2.70 16.22
DE-ES -4.51 4.30 5.89 -7.67 -25.11 -30.00 9.89 -5.24 -78.73 5.94 31.22 19.51 2.06 7.02 8.73
DE-FR -5.03 15.58 9.45 -6.71 -2.83 -9.93 -17.28 -38.25 -35.66 -10.39 35.29 -15.67 0.87 9.53 8.60
DE-UK -10.63 103.20 93.84 6.19 -11.54 -13.11 27.75 45.26 0.67 -9.18 -21.68 -13.22 -13.69 2.06 -10.71
ES-FR 0.52 -11.28 -3.56 -0.96 -22.28 -20.08 27.18 33.01 -43.06 -18.16 66.51 3.83 1.20 -2.50 0.14
ES-UK -15.14 107.50 99.73 -1.48 -36.65 -43.12 -17.86 -50.50 -79.40 -3.24 9.55 6.29 15.76 4.96 19.44
FR-UK -15.66 118.78 103.29 -0.52 -14.37 -23.04 14.76 53.24 6.06 14.92 35.50 2.45 14.56 7.47 19.30

German shock
IT-DE -1.71 -12.89 -15.28 -2.61 30.29 36.50 -3.19 31.45 27.25 -4.65 59.59 56.88 -0.30 7.12 6.28
IT-ES -1.59 -3.57 -5.94 -0.94 6.40 5.22 -1.86 42.90 27.75 2.33 19.45 33.29 1.50 2.11 -0.57
IT-FR -1.30 -9.61 -9.31 4.69 11.29 21.17 -15.73 51.05 26.70 29.23 3.24 22.18 1.17 -2.15 -3.03
IT-UK -6.33 -3.90 -14.05 4.40 63.71 81.84 -22.23 12.51 -6.62 -16.09 8.99 -17.19 -44.40 22.51 -15.20
DE-ES -3.31 -16.45 -21.22 -1.67 23.89 31.28 -5.04 74.35 55.00 -2.33 79.04 90.17 -3.12 9.22 5.71
DE-FR -0.41 -3.28 -5.97 -7.30 19.00 15.33 12.55 -19.59 0.55 33.89 21.86 0.21 -1.47 9.27 9.31
DE-UK -4.62 8.99 1.23 7.01 33.42 45.34 19.04 18.95 33.87 -11.43 -5.36 18.11 44.10 -15.40 21.48
ES-FR -2.90 -13.18 -15.25 5.63 4.89 15.96 -17.59 93.95 54.45 31.56 22.69 55.47 -1.64 -0.05 -3.60
ES-UK -7.93 -7.46 -19.99 5.34 57.31 76.62 -24.08 55.41 21.12 -13.76 28.44 16.10 -47.22 24.62 -15.77
FR-UK -5.03 5.71 -4.74 -0.28 52.42 60.66 -6.49 8.27 3.05 23.85 5.75 17.90 13.11 24.67 -12.18

Spanish shock
IT-DE -3.29 -3.11 -13.69 26.20 85.35 156.55 53.21 -11.39 -1.82 50.12 -25.26 -17.37 0.34 0.72 0.10
IT-ES -1.94 -11.69 -3.64 0.95 69.14 134.26 -1.74 6.49 29.84 2.78 19.72 27.13 0.62 2.35 4.34
IT-FR -2.67 20.22 16.34 23.18 7.32 71.60 52.69 -32.61 24.24 31.54 -47.39 -44.62 3.27 3.49 5.39
IT-UK -5.34 -23.17 -38.23 76.58 113.93 211.00 39.94 17.34 -12.36 36.50 -21.88 -22.39 -22.17 66.89 81.83
DE-ES -5.23 -14.80 -33.73 25.26 183.18 319.50 51.47 -4.90 28.03 27.59 -5.55 9.76 0.96 3.07 4.44
DE-FR -0.62 -23.33 -30.03 3.02 78.03 84.95 0.52 21.22 -26.06 -15.90 -12.36 -7.24 -2.94 -2.77 -5.29
DE-UK -2.05 -20.06 -24.54 50.37 28.58 54.45 13.27 -28.73 10.54 -13.62 3.39 -5.02 22.51 8.16 23.71
ES-FR -4.61 8.53 -3.70 22.24 105.15 234.55 50.95 -26.12 54.09 9.00 -27.67 -17.49 3.90 5.84 9.73
ES-UK -7.28 -34.86 -58.27 75.63 211.76 373.95 38.20 23.83 17.49 13.97 -2.16 4.74 -21.55 69.24 86.17
FR-UK -2.67 -43.39 -54.57 53.40 106.61 139.39 -12.75 49.95 6.33 4.96 25.51 22.23 -7.02 63.40 76.44

French shock
IT-DE 2.70 6.37 11.42 -12.46 -26.56 25.10 -11.76 -11.25 -20.20 -47.46 -55.51 -107.79 0.15 -6.37 -4.81
IT-ES -0.56 -0.78 -5.87 1.24 25.70 72.83 -0.68 14.73 13.71 5.34 32.53 27.10 0.31 2.58 3.23
IT-FR 2.27 -1.36 0.75 6.44 67.77 136.61 -3.63 9.52 6.21 -30.71 17.72 -15.84 0.66 3.85 4.45
IT-UK 6.76 3.60 19.21 -77.79 -96.41 -124.07 -0.58 -3.18 -1.33 -11.28 16.92 16.82 15.57 -15.78 7.65
DE-ES 2.14 5.60 5.55 -13.70 27.82 126.61 -12.45 3.48 -6.49 -42.11 -107.79 -96.09 0.46 -10.27 -9.36
DE-FR 0.43 7.74 10.68 -18.91 -33.05 -15.87 -8.13 -20.77 -26.41 16.75 73.23 91.95 -0.50 -10.21 -9.26
DE-UK 4.05 -2.78 7.79 -65.32 -63.59 15.73 -11.18 -8.06 -18.87 36.17 72.42 124.61 -15.41 9.41 -12.46
ES-FR 1.71 -2.14 -5.13 5.20 122.15 238.12 -4.32 24.25 19.92 -25.36 -34.56 -62.69 0.97 -0.05 -0.10
ES-UK 6.20 2.82 13.34 -79.03 -42.03 -22.56 -1.27 11.54 12.38 -5.94 -35.36 -30.03 15.88 -19.68 3.10
FR-UK 4.48 4.96 18.47 -84.23 -96.64 -0.14 3.05 -12.71 -7.54 19.42 -0.80 32.66 14.91 -12.84 3.20

UK shock
IT-DE -3.49 5.65 2.07 -2.87 -10.14 -15.08 1.06 10.82 13.58 -16.70 8.87 -7.77 -1.66 -1.89 -3.90
IT-ES -2.35 5.55 0.52 2.25 -12.95 -12.56 -8.76 -0.01 -8.20 -5.02 3.46 0.03 1.53 -0.58 1.71
IT-FR -1.26 12.10 8.18 0.18 3.59 0.27 -12.29 11.57 0.78 -15.36 8.31 -7.05 3.32 0.70 3.53
IT-UK -11.13 1.80 -10.13 5.02 -28.23 -23.85 -10.69 -1.98 -12.64 -6.07 -2.58 -9.71 -46.15 -10.55 -55.77
DE-ES -5.84 11.20 2.59 -5.12 5.59 -2.52 -7.71 10.81 5.38 -21.72 12.33 -7.74 -4.51 -2.63 -6.93
DE-FR -2.23 -6.45 -6.11 -3.05 -13.73 -15.35 13.35 -0.75 12.80 1.35 -0.56 0.72 -4.98 -2.59 -7.44
DE-UK -7.64 -3.85 -12.20 7.89 -18.09 -8.77 11.75 12.80 26.22 10.63 -11.45 -1.94 44.48 8.66 51.86
ES-FR -3.61 17.65 8.70 -2.07 19.32 12.83 -21.05 11.56 -7.42 -20.37 11.77 -7.02 0.47 -0.04 0.51
ES-UK -13.48 7.35 -9.61 2.77 -12.50 -11.29 -19.45 -1.99 -20.84 -11.09 0.88 -9.68 -48.99 -11.28 -58.79
FR-UK -9.87 -10.30 -18.31 4.84 -31.82 -24.12 1.60 -13.54 -13.43 9.28 -10.58 -2.67 17.00 -11.24 26.84
The table reports the time-series average cross-country spread changes after a shock (1 standard deviation increase) in country-specific liquidity
(Spreads columns) and credit quality variables (CDS columns) as well as a shock of the same magnitude to both country-specific liquidity and credit
quality variables simultaneously (Both columns).



Table 5.8.2: Sensitivity analysis: Cross-country spreads (calm period)

Maturity 24 Maturity 60 Maturity 120 Maturity 240 Maturity 360
Countries Spreads CDS Both Spreads CDS Both Spreads CDS Both Spreads CDS Both Spreads CDS Both

Italian shock
IT-DE -3.11 -23.15 -22.03 -6.21 -6.31 -10.56 -26.72 27.00 -36.30 -16.10 49.54 19.58 1.12 6.78 7.02
IT-ES -0.26 34.14 33.56 3.68 33.77 32.91 38.32 -26.65 -14.83 43.79 -9.11 22.41 1.25 3.88 4.58
IT-FR 1.24 -38.27 -30.62 2.24 0.79 3.85 -6.03 64.65 2.17 -62.80 81.29 -24.15 0.03 -5.43 -4.00
IT-UK -14.60 84.07 76.85 4.30 -3.74 -6.66 -57.64 -19.09 -30.66 -44.61 13.76 -16.64 18.68 7.69 20.30
DE-ES -7.67 10.99 11.53 -9.89 -40.07 -43.48 11.59 0.35 -78.92 27.69 40.43 41.99 2.37 10.67 11.60
DE-FR -4.35 15.12 8.60 -8.45 -7.10 -14.41 -20.69 -37.65 -38.46 -29.04 31.75 -32.02 1.09 12.21 11.02
DE-UK -11.49 107.23 98.88 10.51 2.57 3.90 30.91 46.09 -5.64 -28.51 -33.77 -33.34 -17.56 -0.91 -13.28
ES-FR -3.32 -4.14 2.93 -1.44 -32.98 -29.07 32.29 38.00 -40.46 -19.02 72.18 -1.74 1.28 -1.55 0.58
ES-UK -19.16 118.21 110.41 0.62 -37.51 -39.58 -19.32 -45.74 -73.28 -0.82 4.65 5.77 19.93 11.58 24.88
FR-UK -15.84 122.35 107.47 2.06 -4.53 -10.51 -31.29 0.84 -32.82 12.00 67.53 1.32 18.65 13.12 24.30

German shock
IT-DE -1.79 -7.70 -10.13 1.64 42.26 52.69 -0.94 42.28 38.80 -5.21 71.71 72.65 0.05 7.01 8.77
IT-ES 0.01 2.46 0.86 1.24 2.11 5.38 -3.12 49.36 30.17 -3.92 24.18 34.97 -3.86 2.48 0.07
IT-FR -1.28 8.26 9.54 9.02 23.57 37.21 -15.62 59.69 32.22 39.56 2.94 25.80 3.31 -3.99 -2.22
IT-UK -4.01 -37.44 -47.53 6.05 62.05 81.60 -23.72 8.32 -13.14 -20.49 14.81 -2.44 -61.77 24.86 -19.03
DE-ES -1.78 -14.99 -15.81 4.48 45.97 59.67 -4.06 91.64 68.97 -9.13 95.89 107.62 -3.81 9.49 8.85
DE-FR -0.51 -15.96 -19.66 -7.38 18.69 15.48 14.69 -17.41 6.58 44.76 -6.97 -28.90 -3.26 11.00 11.00
DE-UK -2.23 -29.73 -37.40 4.41 19.79 28.91 22.79 33.96 51.94 -15.29 -12.65 5.54 61.82 -17.85 27.80
ES-FR -1.27 0.97 3.85 11.86 27.28 44.20 -18.75 109.05 62.39 35.63 27.12 60.77 -0.56 -1.51 -2.15
ES-UK -4.00 -44.73 -53.22 8.90 65.76 88.58 -26.85 57.68 17.03 -24.42 38.99 32.53 -65.64 27.34 -18.96
FR-UK -2.74 -45.70 -57.06 -2.97 38.48 44.39 -8.10 -31.53 -37.55 60.05 5.68 28.24 58.36 28.85 10.08

Spanish shock
IT-DE -0.61 -34.61 -44.60 42.00 124.82 224.58 61.26 -6.25 8.81 51.08 -17.17 -14.71 -1.08 -3.05 -4.98
IT-ES 0.39 17.33 34.68 12.35 154.80 242.50 10.58 13.87 38.31 -19.52 29.64 44.17 0.46 1.12 2.22
IT-FR 3.48 5.03 6.02 41.43 32.76 124.25 57.07 -31.04 23.01 31.36 -58.87 -61.84 3.02 1.74 3.72
IT-UK -13.11 -65.68 -83.97 77.42 123.66 242.05 37.63 22.67 -16.87 34.12 -31.72 -38.37 -13.65 96.98 113.48
DE-ES -5.83 -56.77 -84.11 55.96 281.22 468.69 71.84 7.62 47.12 31.56 12.47 29.46 -0.62 -1.93 -2.76
DE-FR -4.09 -14.96 -3.96 0.58 92.06 100.33 4.19 24.79 -14.19 -19.72 -34.05 -28.62 -4.10 -4.80 -8.71
DE-UK -12.50 -31.08 -35.90 35.42 -1.16 17.47 23.62 2.30 25.68 -16.96 -14.55 -23.66 12.58 17.70 36.14
ES-FR -1.74 -17.13 -33.48 55.38 189.16 368.35 67.65 -17.18 61.31 11.84 -29.23 -17.66 3.48 2.86 5.94
ES-UK -18.32 -87.84 -123.48 91.38 280.06 486.16 48.21 36.54 21.44 14.60 -2.08 5.80 -13.19 98.10 115.70
FR-UK -16.59 -59.15 -39.87 36.00 90.90 117.80 -19.43 53.72 -39.88 -2.76 20.96 17.28 9.95 95.23 109.76

French shock
IT-DE 4.91 11.62 18.99 -36.38 -40.75 -9.91 -12.76 -12.49 -21.76 -49.47 -67.71 -74.79 0.08 -7.33 -5.48
IT-ES -0.87 14.31 6.11 17.60 7.57 51.62 -1.19 16.69 15.57 2.82 6.65 1.06 1.40 -3.67 -3.16
IT-FR 3.21 9.38 11.07 -4.01 32.19 100.28 -3.73 11.00 7.81 -33.54 24.92 -13.98 0.00 4.91 4.74
IT-UK 9.43 -7.47 12.44 -77.26 -102.64 -130.57 -0.07 -5.27 -1.62 -12.27 22.91 21.59 25.17 -9.25 23.17
DE-ES 4.04 25.94 25.10 -53.98 -31.58 43.32 -13.95 4.20 -6.19 -46.64 -126.64 -73.72 1.48 -11.00 -8.63
DE-FR 1.70 2.25 7.92 -32.37 -52.74 -15.50 -9.04 -23.49 -29.57 15.93 92.63 112.24 0.07 -12.25 -10.22
DE-UK 4.52 -19.10 -6.55 -40.88 -61.88 -40.91 -12.70 -7.22 -6.48 37.20 90.62 147.81 -25.09 1.92 -28.65
ES-FR 2.34 23.69 17.17 -21.61 41.37 153.50 -4.91 27.69 23.39 -30.71 -42.09 -75.41 1.41 1.25 1.58
ES-UK 8.56 6.84 18.55 -94.86 -93.46 -77.35 -1.25 11.42 13.96 -9.45 -44.10 -39.84 26.57 -12.92 20.01
FR-UK 6.21 -16.85 1.37 -73.25 -134.83 -56.41 3.66 -16.27 -9.43 15.08 2.01 29.38 25.16 7.45 18.43

UK shock
IT-DE -2.67 5.14 0.03 -0.56 -17.91 -20.96 3.53 11.77 17.76 -19.29 10.40 -8.76 -1.31 -2.07 -4.38
IT-ES -1.17 6.81 -0.17 2.64 13.97 10.93 -10.73 0.61 -9.75 -7.89 4.29 -2.25 -3.26 -1.22 -3.42
IT-FR 1.87 8.06 3.76 -1.85 6.02 -1.94 -12.48 12.17 1.55 -14.88 8.49 -5.85 5.48 1.64 5.62
IT-UK -13.68 3.39 -11.02 11.07 -28.57 -19.85 -8.77 -3.19 -10.93 -7.06 -1.65 -10.45 -53.11 -18.04 -67.63
DE-ES -6.32 11.95 -0.14 -3.20 -2.34 -8.43 -7.20 12.39 8.01 -27.18 14.70 -11.01 -4.57 -3.29 -7.80
DE-FR -4.54 -2.92 -3.73 1.29 -23.94 -19.02 16.01 -0.40 16.21 4.40 -1.92 2.90 -6.79 -3.71 -10.00
DE-UK -11.01 -1.74 -11.05 11.63 -10.65 1.11 12.30 14.96 28.69 12.22 -12.05 -1.69 51.80 15.97 63.26
ES-FR -1.78 14.87 3.58 -4.49 21.60 10.59 -23.21 12.79 -8.20 -22.78 12.78 -8.10 2.22 0.42 2.20
ES-UK -17.33 10.21 -11.19 8.43 -12.99 -7.32 -19.50 -2.58 -20.69 -14.96 2.65 -12.70 -56.37 -19.26 -71.05
FR-UK -15.55 -4.66 -14.78 12.92 -34.59 -17.91 3.71 -15.36 -12.49 1.63 10.13 4.59 51.87 12.96 66.53
The table reports the time-series average cross-country spread changes corresponding to the low-equity market volatility period (Calm period) after
a shock (1 standard deviation increase) in country-specific liquidity (Spreads columns) and credit quality variables (CDS columns) as well as a shock
of the same magnitude to both country-specific liquidity and credit quality variables simultaneously (Both columns).



Table 5.8.3: Sensitivity analysis: Cross-country spreads (stress period)

Maturity 24 Maturity 60 Maturity 120 Maturity 240 Maturity 360
Countries Spreads CDS Both Spreads CDS Both Spreads CDS Both Spreads CDS Both Spreads CDS Both

Italian shock
IT-DE 0.56 -20.16 -18.08 -3.44 -1.19 -5.83 -19.83 8.20 -39.93 -27.34 41.79 14.10 1.32 2.75 4.01
IT-ES -1.91 17.76 18.33 2.01 8.96 10.70 28.03 -19.03 -11.52 -9.34 19.77 17.07 -0.43 -0.63 -1.86
IT-FR 6.27 -36.19 -28.38 1.53 -2.62 -0.38 -5.96 47.05 -7.06 -28.84 80.62 26.48 0.68 -4.10 -2.16
IT-UK -9.22 79.02 70.73 -1.56 -26.83 -35.96 -44.42 -36.23 -46.91 -17.19 34.21 23.87 11.15 -2.28 12.14
DE-ES -1.35 -2.39 0.24 -5.45 -10.15 -16.53 8.19 -10.83 -78.54 -15.81 22.02 -2.97 1.75 3.38 5.87
DE-FR -5.71 16.03 10.30 -4.97 1.43 -5.45 -13.87 -38.85 -32.87 1.50 32.06 5.61 0.64 6.84 6.17
DE-UK -9.77 99.18 88.81 1.87 -25.64 -30.13 24.58 44.43 6.98 10.14 -7.58 9.77 -9.83 5.03 -8.13
ES-FR 4.35 -18.43 -10.06 -0.48 -11.58 -11.08 22.06 28.02 -45.67 -17.31 60.85 9.40 1.11 -3.46 -0.31
ES-UK -11.13 96.78 89.06 -3.58 -35.79 -46.66 -16.39 -55.26 -85.52 -5.67 14.44 6.80 11.58 -1.65 14.00
FR-UK -15.48 115.21 99.11 -3.10 -24.21 -35.58 38.45 83.28 39.85 11.64 -2.73 -2.61 10.47 1.81 14.31

German shock
IT-DE -1.64 -18.07 -20.43 -6.85 18.31 20.31 -5.44 20.63 15.70 -4.10 47.48 41.11 -0.66 7.22 3.79
IT-ES -3.20 0.16 -6.19 0.97 16.50 17.42 -0.59 36.44 25.33 -8.58 -6.16 10.74 1.77 -1.73 1.21
IT-FR -1.33 -27.48 -28.15 0.36 -0.99 5.13 -15.84 42.41 21.18 18.91 3.54 18.57 -0.96 -0.32 -3.83
IT-UK -8.65 29.65 19.43 2.76 65.36 82.07 -20.73 16.70 -0.11 -11.69 3.18 -31.95 -27.03 20.17 -11.38
DE-ES -4.84 -17.91 -26.63 -7.83 1.81 2.89 -6.03 57.07 41.03 4.48 62.18 72.72 -2.42 8.95 2.58
DE-FR -0.31 9.40 7.72 -7.21 19.30 15.18 10.41 -21.78 -5.48 16.25 43.93 22.55 0.31 7.54 7.62
DE-UK -7.01 47.72 39.87 9.61 47.05 61.76 15.29 3.93 15.81 -7.58 1.93 30.69 26.38 -12.94 15.17
ES-FR -4.53 -27.32 -34.35 -0.61 -17.49 -12.28 -16.43 78.85 46.50 27.49 18.25 50.18 -2.73 1.41 -5.04
ES-UK -11.85 29.80 13.24 1.79 48.86 64.65 -21.32 53.14 25.22 -3.11 17.88 -0.34 -28.80 21.90 -12.59
FR-UK -7.32 57.12 47.58 2.40 66.35 76.94 4.89 25.71 21.29 -18.54 -0.37 1.38 -26.07 20.48 -7.55

Spanish shock
IT-DE -5.96 28.39 90.46 10.41 45.89 22.16 45.16 -16.53 -76.46 49.16 -33.35 -104.65 1.75 4.49 -150.08
IT-ES 1.33 -1.21 31.28 15.84 -16.51 92.39 -14.06 -0.89 85.39 25.55 -9.79 125.48 -0.78 -3.58 118.93
IT-FR -8.82 35.41 99.90 4.93 -18.12 -47.40 48.32 -34.18 -38.53 31.71 -35.90 -90.52 3.53 5.24 -148.21
IT-UK 2.43 19.34 80.75 75.74 104.20 113.59 42.25 12.01 -71.86 38.88 -12.03 -142.67 -30.69 36.81 -105.10
DE-ES -4.63 27.17 -132.92 -5.44 85.14 36.54 31.10 -17.42 -21.40 23.62 -23.56 131.72 2.53 8.07 72.14
DE-FR 2.86 -7.02 53.79 5.47 64.00 -64.21 -3.16 17.64 -21.68 17.45 2.55 149.02 -1.78 -0.74 58.62
DE-UK 8.39 -9.05 139.85 65.33 58.31 225.19 2.91 -28.54 -34.94 -10.28 21.32 85.66 32.43 -1.39 15.51
ES-FR -7.49 34.19 34.03 -10.91 21.13 -43.04 34.26 -35.07 -108.49 6.17 -26.11 -48.27 4.31 8.81 -132.80
ES-UK 3.76 18.12 14.88 59.89 143.45 117.94 28.18 11.12 -141.82 13.34 -2.24 -118.39 -29.90 40.39 -128.99
FR-UK 11.25 -16.07 94.68 70.80 122.32 174.59 6.07 23.83 -11.18 7.17 23.87 56.08 -23.99 31.57 -22.31

French shock
IT-DE 0.49 1.13 3.85 11.46 -12.36 60.11 -10.76 -10.00 -18.64 -45.44 -43.30 -89.36 0.23 -5.40 -4.14
IT-ES -0.24 -15.87 -17.85 -15.12 43.82 94.04 -0.18 12.76 11.84 -7.87 37.55 32.27 0.78 4.13 5.94
IT-FR 1.33 -12.10 -9.57 16.90 103.35 172.94 -3.54 8.04 4.61 -27.88 10.53 -17.69 1.31 2.78 4.16
IT-UK 4.08 14.67 25.99 -78.31 -90.18 -117.56 -1.10 -1.10 -1.04 -10.30 10.93 12.06 5.97 -22.30 -7.86
DE-ES 0.24 -14.74 -14.00 26.57 87.22 209.91 -10.94 2.76 -6.80 -37.58 -80.85 -118.45 -0.55 -9.53 -10.08
DE-FR -0.84 13.22 13.43 -5.44 -13.36 -16.25 -7.22 -18.05 -23.24 10.80 47.06 64.89 -1.08 -8.18 -8.31
DE-UK 3.59 13.54 22.13 -15.53 -27.48 72.37 -9.66 -8.91 -17.60 35.15 54.22 101.41 -5.74 16.90 3.72
ES-FR 1.09 -27.97 -27.42 32.02 202.93 322.74 -3.72 20.80 16.44 -20.01 -27.02 -49.97 0.53 -1.35 -1.78
ES-UK 3.84 -1.20 8.13 -63.19 9.41 32.24 -1.28 11.66 10.80 -2.43 -26.62 -20.22 5.19 -26.43 -13.81
FR-UK 2.75 26.77 35.56 -95.21 -40.85 56.12 -2.44 9.14 5.64 17.58 0.40 29.75 4.66 -25.08 -12.03

UK shock
IT-DE -4.32 6.17 4.11 -5.18 -2.38 -9.20 -1.42 9.87 9.40 -14.12 7.34 -6.78 -2.02 -1.72 -3.43
IT-ES -1.05 4.28 1.21 1.85 -15.89 -12.58 -6.79 -0.64 -6.64 2.14 -2.63 -2.30 2.43 0.25 2.63
IT-FR -4.39 16.14 12.60 2.21 1.15 2.48 -12.11 10.96 0.01 -15.83 8.13 -8.24 1.15 -0.25 1.44
IT-UK -8.59 0.21 -9.24 -1.03 -27.90 -27.84 -12.61 -0.76 -14.36 -5.08 -3.52 -8.98 -39.18 -3.05 -43.90
DE-ES -5.37 10.45 5.33 -7.03 13.52 3.38 -8.21 9.23 2.76 -16.26 9.97 -4.48 -4.45 -1.96 -6.06
DE-FR 0.07 -9.97 -8.49 -7.38 -3.52 -11.69 10.69 -1.09 9.39 1.71 -0.79 1.46 -3.16 -1.46 -4.87
DE-UK -4.27 -5.96 -13.35 4.15 -25.53 -18.64 11.19 10.63 23.75 9.04 -10.86 -2.19 37.17 1.34 40.47
ES-FR -5.44 20.42 13.82 0.35 17.04 15.07 -18.90 10.33 -6.63 -17.97 10.76 -5.93 -1.28 -0.50 -1.19
ES-UK -9.64 4.49 -8.02 -2.89 -12.01 -15.26 -19.40 -1.40 -21.00 -7.22 -0.89 -6.67 -41.61 -3.30 -46.54
FR-UK -4.20 -15.93 -21.84 -3.24 -29.05 -30.33 0.51 11.72 14.37 10.75 -11.65 -0.74 -17.88 -2.80 -12.86
The table reports the time-series average cross-country spread changes corresponding to the high-equity market volatility period (Stress period) after
a shock (1 standard deviation increase) in country-specific liquidity (Spreads columns) and credit quality variables (CDS columns) as well as a shock
of the same magnitude to both country-specific liquidity and credit quality variables simultaneously (Both columns).
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(a) Spread changes after liquidity and credit shocks at 24-month maturity
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(b) Spread changes after liquidity and credit shocks at 60-month maturity

Figure 5.8.1: This figure shows the time-series average change in the European bond yields at 24,
36, 60, 120, 240 and 360-month maturities after a shock in the liquidity and credit quality variables
at 24 and 60-month maturities. The left-sided graphs show the time-series average change in the
European bond yields that results from a shock of one standard deviation in the bid-ask spreads
(liquidity shock) for each particular country. The right-sided graphs show the time-series average
change in the European bond yields that results from a shock of one standard deviation in the credit
default swap (CDS) spreads (credit shock) for each particular country.
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(a) Spread changes after liquidity and credit shocks at 120-month maturity
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(b) Spread changes after liquidity and credit shocks at 240-month maturity

Figure 5.8.2: This figure shows the time-series change in the European bond yields at 24, 36,
60, 120, 240 and 360-month maturities after a shock in the liquidity and credit quality variables at
120 and 240-month maturities. The left-sided graphs show the time-series average change in the
European bond yields that results from a shock of one standard deviation in the bid-ask spreads
(liquidity shock) for each particular country. The right-sided graphs show the time-series average
change in the European bond yields that results from a shock of one standard deviation in the credit
default swap (CDS) spreads (credit shock) for each particular country.
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(a) Spread changes at 24-month maturity
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(b) Spread changes at 60-month maturity

Figure 5.8.3: This figure shows the time-series change in the European bond yields after a shock in
the liquidity and credit quality variables at 24 and 60-month maturities. The left-sided graphs show
the change in the European bond yields that results from a shock of one standard deviation in the
bid-ask spreads (liquidity shock) for each particular country. The right-sided graphs show the change
in the European bond yields that results from a shock of one standard deviation in the credit default
swap (CDS) spreads (credit shock) for each particular country. The grey shaded area corresponds to
the high-equity market volatility period.
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(a) Spread changes at 120-month maturity
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(b) Spread changes at 240-month maturity

Figure 5.8.4: This figure shows the time-series change in the European bond yields after a shock
in the liquidity and credit quality variables at 120 and 240-month maturities. The left-sided graphs
show the change in the European bond yields that results from a shock of one standard deviation
in the bid-ask spreads (liquidity shock) for each particular country. The right-sided graphs show
the change in the European bond yields that results from a shock of one standard deviation in the
credit default swap (CDS) spreads (credit shock) for each particular country. The grey shaded area
corresponds to the high-equity market volatility period.
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Chapter 6

Conclusions and further research

6.1 Conclusions

This PhD thesis deals primarily with the modelling of multivariate distributions of
financial data and introduces distinct methodologies to address significant finan-
cial modelling challenges in the risk and interest rate modelling literature. In this
respect, each Chapter of the current PhD thesis explores alternative research ques-
tions, concentrates on multiple segments of the financial markets and employs dif-
ferent modelling techniques that take into account the stylised features and complex
dependence dynamics of financial data. In particular, Chapter 3 relates to the risk
modelling of energy portfolios and employs a semi-parametric approach to model
the marginal series and a pair-copula construction principle (PCC) to model the de-
pendence structure of portfolios’ constituents, while Chapter 4 focuses on systemic
risk measurement in the European banking sector introducing a new approach for
calculating systemic risk, which uses copula distribution functions. Finally, Chap-
ter 5 centers on the joint modelling of European sovereign yield curves and associates
their dynamic interaction with market-wide and country-specific measures of liquid-
ity and credit quality.

More specifically, Chapter 3 introduces a combination of extreme value theory (EVT)
methods and the pair-copula construction principle (PCC) to model the joint dis-
tribution of energy portfolios and forecast portfolios’ risk exposures. Within this
framework, a two-step estimation procedure is followed, where standard univariate
time series models are fitted in the series in the first stage and the resulting standard-
ised residuals are used in the second stage for modelling the dependence structure.
In contrast to the traditional parametric modelling approaches, our approach com-
bines pseudo maximum likelihood fitting of time series models and extreme value
theory to model the tails of the resulting innovations distribution. The dependence
structure of the portfolio is modelled using a canonical vine copula modelling ap-
proach. The vine factorisation is specified according to the empirical rule of Czado
et al. (2012) and the copula family selection is based on Akaike’s information crite-
rion (AIC). An alternative asymmetric vine specification, based on the theoretical
and empirical results of Joe et al. (2010) and Nikoloulopoulos et al. (2012), is also
proposed. In particular, the selected Student-t copula families in level 1 of the vine
are replaced by copula families that imply asymmetric tail dependence, whereas the
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Independence copula is employed for those pairs that cannot reject the assumption
of independence. We show how the proposed modelling approach can be used for
forecasting portfolios’ Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR).
In this context, portfolio VaR and CVaR forecasts are computed by five alterna-
tive modelling specifications, while the evaluation of their forecasting performance
is performed using standard statistical and loss function techniques. In general, the
statistical tests for all models show good unconditional and conditional coverage.
Nevertheless, the asymmetric vine model shows superior performance according to
its VaR and CVaR results over alternative model specifications at extreme quantiles.

The empirical results provide new insight into the study of multivariate extremes
and also support the findings of Joe et al. (2010) and Nikoloulopoulos et al. (2012).
It seems that the asymmetric vine model combined with semi-parametric marginals
provides a better fit in the tails of the joint distribution and hence better risk es-
timates when compared to the entirely AIC selected vine model and alternative
competitive risk models. Although the data sample does not show significant evi-
dence of tail asymmetries, it seems that the use of asymmetric copulas instead of the
likelihood-selected Student-t copulas in level 1 of the vine structure, as well as the
employment of Independence copulas for those pairs that do not reject the assump-
tion of independence, may improve the fit in the tails of the joint density and as a
consequence the accuracy of risk estimates. It is believed that the employment of
asymmetric vine models in portfolios that exhibit more pronounced asymmetric tail
dependences can further highlight the superior performance of the model at extreme
quantiles.

In addition, Chapter 4 introduces a new methodology to estimate the systemic risk in
the European banking sector building upon the Conditional Value-at-Risk (CoVaR)
methodology, which was originally proposed by Adrian and Brunnermeier (2011)
and subsequently modified by Girardi and Ergün (2013) to address the inefficiencies
in dependence modelling arising from the original CoVaR definition. In this Chap-
ter, we show that CoVaR can be estimated using analytical expressions for a broad
range of copula families for both alternative definitions. The new Copula CoVaR
methodology is also extended to a dynamic framework. In this context, systemic
risk estimates derived from this approach reflect the time-varying dependence of the
financial series involved in the estimation procedure. Furthermore, we extend the
Copula CoVaR methodology to alternative “co-risk” measures such as the Condi-
tional Expected Shortfall (CoES) and also show how the new framework can facilitate
the implementation of stress-testing exercises, which are useful for analysing the im-
pact of extreme market conditions on systemic risk.
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The Copula CoVaR methodology is subsequently applied to measure the contri-
bution of a large set of European financial institutions to systemic risk. In the
empirical analysis, the assessment of systemically important financial institutions
is performed following the CoVaR definition of Girardi and Ergün (2013) due to
the favourable dependence modelling properties of this definition and the fact that
systemic risk estimates generated from this framework can be statistically evaluated
for unconditional and conditional coverage. The empirical analysis is also performed
using alternative distribution assumptions in the marginal series and the dependence
structure, as well as alternative risk metrics such as CoVaR and CoES. The empirical
analysis also includes a number of panel regressions to assess the impact of several
macroeconomic and financial variables as well as of institution-specific variables on
systemic risk contribution.

The main empirical results highlight the importance of taking into account the
asymmetries in the marginal series and the dependence structure. The selection of
inappropriate marginals may cause significant bias in the selection of dependence
models and provide erroneous results. In addition, the statistical backtesting results
favour the employment of Skewed-t over Gaussian marginals for systemic risk mod-
elling. The average systemic risk estimates deviate significantly across alternative
marginal specifications but are robust across different risk metrics within the same
marginal specifications. Several large European institutions such as BBVA, UBS,
Deutsche Bank, Credit Suisse and BNP Paribas appear to be among the most sys-
temic European financial institutions. In addition, the Spanish and French banks
appear to be the most systemic banking sectors in Europe according to their average
contribution to systemic risk. Finally, the effects of the implied market volatility, of
funding liquidity and of the change in the credit spread and the short-term interest
rates are significant in explaining systemic risk estimates and show an asymmetric re-
sponse between the pre-crisis and crisis periods. This behaviour is partly attributed
to the coordinated intervention of central banks in response to the financial crisis.
With respect to bank-specific characteristics, the size and leverage variables appear
to be the most robust determinants of systemic risk, implying that bigger and highly
leveraged financial institutions may contribute more to systemic risk.

Finally, Chapter 5 introduces an approach for modelling jointly the dynamic depen-
dence between several European sovereign yield curves and relating it to broader
European and country-specific measures of liquidity and credit quality both uncon-
ditionally and conditional on periods of heightened uncertainty in equity markets.
To model the multiple forms of dependence found in the European sovereign yield
curves, we follow a two-step procedure that entails modelling the yield curve dy-
namics for each individual country using the macro-finance Nelson-Siegel model
of Diebold et al. (2006) and modelling the heteroskedasticity of the prediction errors
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obtained from the fit of the yield curve models employing the covariance regres-
sion model of Hoff and Niu (2012). In this regard, the latent factor dynamics in
the macro-finance Nelson-Siegel model of Diebold et al. (2006) are modelled as au-
toregressive processes augmented with observable macroeconomic and financial vari-
ables. In addition, market-wide liquidity and credit quality measures are included in
the latent factor specification to assess the interaction between the European liquid-
ity and credit measures and the sovereign yield curves. Subsequently, the covariance
matrix of the European sovereign yield prediction errors is modelled as a function
of country-specific liquidity and credit quality measures to assess the impact of id-
iosyncratic country risks on the yield curves and cross-country European spreads.

In the empirical analysis, we model the yield curve dynamics for Germany, France,
Spain, Italy and the United Kingdom and relate them to market-wide and country-
specific liquidity and credit measures. The main empirical results suggest that in-
vestors separate European countries into distinct groups, based on their overall credit
quality, as well as on whether they are Eurozone members or not. The statistical
analysis results also highlight the importance of market-wide liquidity and credit
quality measures in explaining the dynamics of sovereign yield curves. Moreover,
the sensitivity analysis results highlight a unique negative relationship between the
German yields and shocks to European liquidity and credit quality measures sup-
porting the view that investors in the fixed income markets regard the German bonds
as a safe haven in periods of increased illiquidity and credit uncertainty. In addition,
the results highlight the importance of country-specific liquidity and credit quality
measures in explaining the covariation of sovereign yields both unconditionally and
conditional on periods of increased volatility in equity markets. It is shown that
investors are more concerned with the credit quality than the liquidity of sovereign
debt instruments and that European sovereign yields are more sensitive to shocks in
liquidity and credit quality variables in times when equity markets are perceived as
more volatile. Finally, it is shown that shocks to Spanish liquidity and credit quality
measures have the greatest impact on the cross-country spreads indicating investors’
increased concerns over the country’s financial stability and suggesting significant
spillover effects among European economies.

6.2 Further research

Undoubtedly, the research ideas and methodologies presented in each Chapter of
this PhD thesis can be further improved and extended in multiple directions. Pos-
sible improvements may include exploration of alternative parametric distribution
assumptions for marginal and dependence modelling, consideration of different es-
timation techniques that exhibit alternative optimality properties, exploration of
non-standard model selection procedures, consideration of alternative dynamics in
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the specification of dependence parameters, employment of additional observed fac-
tors that affect the dependence of the financial variables analysed and exploration
of alternative data sets that correspond to diverse market conditions and reflect al-
ternative distribution characteristics. In addition, the proposed research ideas and
methodologies are non-exclusive and non-limited to the applications presented in
this PhD thesis but can be easily extended to alternative financial applications such
as portfolio selection, portfolio hedging or asset pricing and shed light on additional
research questions that have not been addressed in the present PhD thesis.

In particular, in Chapter 3, the selection of asymmetric copula families in level 1 of
the vine need not be entirely based on empirical and theoretical scatter and func-
tion plots comparisons but can also be based, as proposed by Nikoloulopoulos et al.
(2012), on the comparison between the empirical tail dependence of the data being
modelled and the theoretical tail dependence of the corresponding asymmetric cop-
ula families. Moreover, the fit of the semi-parametric marginals and the canonical
vine copula model can be improved by re-estimating the models at fixed periods
of time, i.e., every month, when considering forecasting applications. All risk mea-
sure forecasts presented in this study are obtained using a static multivariate model.
The marginals and the vine model are estimated using a fixed estimation sample and
portfolio VaR and CVaR forecasts are obtained conditional on the estimated model
parameters. This approach is clearly faster, especially when considering large-scale
portfolio forecasting evaluations, and it also eliminates the possibility of over-fitting
the data. However, the portfolio dependence structure may not be constant over
time but rather time-varying and hence a static model may be insufficient to de-
scribe it and lead to incorrect inference.

A potentially interesting and, at the same time, challenging topic for further research
is to develop multivariate models in the context of pair-copula construction (PCC)
that will allow time-varying dependence, while being computationally tractable for
large dimensional problems. In general, various time-varying copula models have
been proposed in the literature where the copula functional form is fixed and its
parameter is allowed to vary over time as a function of lagged information (see for
example, Patton 2004, 2006; Jondeau and Rockinger 2006; Christoffersen et al. 2012,
among others) or where the functional form of the copula varies over time (see for
example, Rodriguez 2007; Chollete et al. 2009; Garcia and Tsafack 2011; Markwat
et al. 2012, among others). Nevertheless, the majority of these models are limited to
relatively small dimensions and cannot comfortably accommodate larger-scale de-
pendence modelling problems.
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In addition, the modelling approach presented in Chapter 3 can be employed not
only for passive but also for active portfolio risk management. There is abundant
room for further research on the use of vine copulas for conditional asset allocation.
In principle, the aim of conditional asset allocation is to find the optimal portfolio
allocation for the next time period. In general, the optimal asset allocation follows
the mean-variance approach of Markowitz (1952). It is clear that the next period’s
returns and covariance matrix are not known ex-ante but can be estimated using
the forecasted returns derived from the vine model. The conditional asset allocation
can also be extended beyond the standard mean-variance approach - to alternative
approaches where the optimal portfolio is obtained after incorporating the downside
risk into the asset allocation model. For example, an alternative approach could be
to construct portfolios by maximising expected returns subject to a VaR or CVaR
constraint. It is therefore possible to obtain optimal portfolio weights and thus re-
balance portfolios according to the selected risk measure and the resulting weights.
Furthermore, this approach could also be employed to build a trading strategy that
fits the risk profile of an investor.

A natural extension of the Copula CoVaR methodology presented in Chapter 4
would be to increase the number of conditioning events and consider the scenario
where more than one institution is in distress. Currently, the general CoVaR repre-
sentation depends on the conditional distribution of returns representing the entire
financial system given that a single institution is in financial distress. Several studies
in the finance literature, however, find that there is more extremal dependence in
periods of heightened market uncertainty (see for example, Longin and Solnik 2001;
Ang and Chen 2002; Jondeau and Rockinger 2006; Chollete et al. 2009, among oth-
ers). It is possible therefore that more than one financial institution may find itself
in distress at the same time. This scenario is not unrealistic given the extensive
business ties between financial institutions, many of which have emerged in the last
decade. In this regard, further research should be undertaken to investigate the im-
pact of several financial institutions being in distress simultaneously on the stability
of the financial system and the economy as a whole. The pair-copula construction
methodology can be directly associated with this study and provide further flexibil-
ity to the modelling of the dependence structure between the returns of the financial
system and those of financial institutions.

In future investigations, it might be possible to study the spillover effects of systemic
risk on individual financial institutions. As described in Chapter 4, the CoVaR mea-
sures an institution’s contribution to systemic risk. Nevertheless, the adverse effects
of systemic risk on the financial stability of an individual institution can also be
measured by reversing the conditioning event in the original CoVaR definition. An-
other area for future research would be to explore whether systemic risk can be
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successfully forecasted. Unquestionably, this is a significant area for further inves-
tigation, with important practical implications for the regulatory community and
the financial system. So far, most studies have focused on developing alternative
quantitative systemic risk models. To the best of our knowledge, the number of
studies that focus on systemic risk forecasting is rather limited. In this regard, we
believe that our methodology can contribute to this segment of the literature and
provide further insight into systemic risk forecasting.

Certainly, the proposed Copula CoVaR framework can be further improved in many
ways. A great challenge would be to provide analytical expressions for both CoVaR
definitions beyond the class of Archimedean copulas.1 Furthermore, alternative
marginals and time-varying specifications can also be used to assess the model’s
performance under different assumptions in the marginal series and the dependence
structure. The methodology can also be extended to take into account changing mar-
ket conditions by assuming a varying copula functional form or introducing multiple
regimes through time. Moreover, there is a large number of observable macroeco-
nomic and financial variables that can be directly incorporated in the marginal series
and copula dependence dynamics and assess their effects on the conditional depen-
dence between the returns of the financial system and those of financial institutions.
Finally, more efficient methods can be employed to estimate the models (e.g. full
maximum likelihood methods) and to reduce misspecification in the marginal series
(e.g. semi-parametric methods).

A great challenge with reference to Chapter 5 would be to extend the model of Hoff
and Niu (2012) to elliptical copula families that allow for asymmetric dependence
in the tails. This is an important issue for further research since the multivariate
Gaussian distribution implied in the model of Hoff and Niu (2012) does not allow
for tail dependence. However, it is possible that the yield prediction errors may
exhibit strong dependence among extreme values and therefore the assumption of
normality might be inappropriate for capturing the distribution characteristics of
the data being modelled. Further work is also required in the estimation procedure
of the proposed methodology. The current estimation approach is characterised
by two main steps; in the first step, the yield curve for each individual country
is estimated separately and the covariance of the prediction errors obtained from
this process is modelled as a function of country-specific liquidity and credit quality
measures in the second step. In this respect, it may be possible to build a procedure
that performs the estimation of the entire model in one step and thus improve the
model’s relative efficiency.

1General solutions have also been proposed for elliptical copula families, i.e., Gaussian and
Student-t copulas for the CoVaR definition in Girardi and Ergün (2013).
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There are also multiple ways to improve the present study and apply this framework
to alternative financial applications. For example, the three-factor macro-finance
Nelson-Siegel model of Diebold et al. (2006), employed to model the yield curve
dynamics for each individual country, can be easily extended to incorporate more
factors in the spirit of the Svensson (1994) model. In addition, the macro-finance
Nelson-Siegel model of Diebold et al. (2006) can be extended by treating the load-
ing parameter λ as a stochastically time-varying latent factor and by introducing
time-varying volatility into the variance specification of the disturbances as shown
in Koopman et al. (2010). Furthermore, the dynamics of the latent factors as well
as the transition error covariance matrices can be modelled assuming more complex
specifications. It is also important to note that additional observable macroeconomic
and financial variables can be used in the latent factor specification, which may act
as additional control variables, and alternative proxies for market-wide liquidity and
credit measures. Additionally, the quality of country-specific liquidity and credit
measures is very important in the covariance regression models and thus alternative
proxies, especially for country-specific liquidity measures, should be considered.

Finally, the proposed methodology can find useful applications in various areas of fi-
nancial modelling. For example, the stress testing procedure described in Chapter 5
may be used as a risk management tool for portfolio managers and investors in the
fixed-income markets to assess the impact of particular shocks in the liquidity and
credit quality measures on relevant debt instruments and to relate them directly to
the corresponding yield spreads and fixed-income portfolios analysed. The method-
ology may also be useful for the study of the sources of risk premia and cross-market
dynamics, which may have important implications for monetary policy and finan-
cial stability. It can also have significant practical implications for the pricing of
underlying instruments and the hedging strategy of relevant contracts.
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