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Abstract. This paper discusses the implementation of an explicit density-based solver, based 
on the central-upwind schemes originally suggested by Kurganov, for the simulation of 
cavitating bubble dynamic flows. Explicit density based solvers are suited for highly dynamic, 
violent flows, involving large density ratios, as is rather common in cavitating flows. 
Moreover, the central-upwind schemes have the advantage of avoiding direct evaluation of the 
Jacobian matrix or estimation of the wave pattern emerging from Euler equations. Second 
order accuracy can be achieved with TVD MUSCL schemes. Basic comparison with the 
predicted wave pattern of the central-upwind schemes is performed with the exact solution of 
the Riemann problem showing an excellent agreement. Then several different bubble 
configurations were tested, similar to the work of Lauer et al. (2012). The central-upwind 
schemes prove to be able to handle the large pressure and density ratios appearing in cavitating 
flows, giving similar predictions in the evolution of the bubble shape.  

1.  Introduction  
The subject of cavitation bubble dynamics has been studied traditionally using the Rayleigh-Plesset 
equation [1, 2]. However, either the original Rayleigh-Plesset equation, or its more complex variants, 
assume that the bubble shape is perfectly spherical. In practice this is not the case, since many works, 
both experimental [3] and numerical [4-6], suggest that the bubble shape may be strongly deformed in 
the presence of pressure fields (e.g. due to gravity, due to passing sound waves), or due to the presence 
of boundaries (walls, free surfaces, etc.).  
Thus, if one wishes to predict the asymmetric bubble collapse near a wall, then it is necessary to do so 
by properly integrating the Navier Stokes equations. The complexity of the involved flow pattern is 
significant, since the flow is multiphase, involving a strongly deforming liquid/gas interface and very 
high velocities. In the past, there have been efforts to perform such simulations; one of the first was 
the pioneering work of Plesset and Chapman [4].  
In the present investigation, a method similar to the one used by Adams et al. [7] and Pohl et al. [8] is 
employed; the cavitation bubble is described as a density difference of a single fluid, governed by a 
complex equation of state which represents the isentropic phase change due to cavitation. As it will be 
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explained in the next section, a central-upwind scheme is applied, since it has some attractive features. 
The aim is to predict the outcome of several bubble collapse events near wall configurations, in order 
to determine the performance of the scheme employed.    

2.  Numerical method 
The Euler equations are resolved with an in-house code in conservation form, considering the 
influence of cylindrical symmetry, see Toro [9], to reduce the computational cost. A piecewise 
barotropic equation of state is used, which is a combination of the Tait equation of state above 
saturation and a formula that resembles the isentropic transformation within the saturation dome [10]:  
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The values used for the equation of state are: density of saturated liquid ρsat,L=998.2kg/m3, speed of 
sound of the saturated liquid Csat,L=1450m/s, saturation pressure psat=2339Pa, bulk modulus 
B=294MPa and the exponent n=7.15, commonly used for weakly compressible liquids.  
In order to evaluate the flux at the interface of the finite volumes, the central-upwind scheme of 
Kurganov is used [11]. Linear interpolations are utilized at the cell interfaces, handled with the 
MUSCL scheme with a SuperBee limiter [9]. This scheme has the advantage of being universal, in the 
sense that it does not need the tuning of the AUSM+up scheme coefficients, while it does not require 
the identification of the wave structure of the solution of the Riemann problem, as e.g. the HLLC or 
Roe solvers do. On the other hand, the 2nd (or higher) order extension ensures low numerical 
diffusion. Boundaries are handled either as transmissive or as slip walls, depending on the 
configuration (see Toro [9]).      
Time integration is performed in an explicit manner, with a splitting scheme [9], i.e. initially for the 
homogenous part of eq. 1 and then for the source term. In this preliminary work, 1st order Euler 
integration is used, with a CFL of 0.5, whereas in the future higher order Runge Kutta integration will 
be implemented.   

3.  Validation of the numerical method 
In Fig. 1a the solution of the Kurganov scheme for the Riemann problem with initial conditions 
ρL=1002.88kg/m3 and ρR=9.99kg/m3, u=0m/s everywhere is shown; also the Lax-Friedrichs and exact 
solution are shown for reference. It is of interest that the central-upwind scheme is successfully 
capturing the correct wave pattern, with the same spatial resolution as the Lax-Friedrichs scheme 
without smearing of the shock, due to the inherent numerical dissipation of the latter. It should be 
highlighted here that obtaining the exact solution of the Riemann problem is not trivial for an arbitrary 
EOS, such as the one in eq. 1, due to the nature of the Riemann invariants in the rarefaction zones.  
In order to validate the 2D axis-symmetric solver, which will be used later, a comparison with the 1D 
solver with spherical symmetry was performed. The initial conditions for this comparison are similar 
to the above, ρ=9.99kg/m3 for R<1m and ρ=1002.88kg/m3 for R>1m, resembling an implosion 
configuration. In Fig.  1b the comparison between the 2D axis-symmetric and the 1D spherical 
symmetric case is shown, showing a perfect agreement.  
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Fig. 1. (a) Shock tube test; comparison with exact, Lax-Friedrichs (LF) and Kurganov schemes for 
cavitating case at 0.5ms (b) Cavitation implosion simulation with 2D axis-symmetric and 1D with 

spherical symmetry at 0.4ms. 

4.  Results 
The case of interest is the collapse of a water vapor bubble in the vicinity of a wall, in the same 
arrangement as used in Lauer et al. work [5], using the framework analyzed in section 2. The bubble 
has a radius of 400µm and its center is placed 416, 140 and -140 µm from a wall. The surrounding 
fluid has a pressure of 100bar, whereas the pressure within the bubble is equal to the saturation i.e. 
2340Pa. In Fig.  2 indicative instances of the bubble deformation during the collapse are shown for the 
three configurations. The influence of the wall distance is apparent: when the initial bubble centre is 
above the wall, then the jet effect is formed on the axis of symmetry, causing the bubble to take a heart 
like shape or a torus in the cases of 416µm and 140µm respectively. On the other hand, in the case 
where the initial bubble centre is positioned below the wall, the jet forms in the x direction at the wall, 
deforming the bubble in a pin-like shape.  
In all cases, the formation of the jet, either on the symmetry axis, or in the x-direction causes the 
development of very high pressures due to momentum focusing, see Fig.  2. At the late stages of the 
bubble collapse, the jet will eventually impact on the wall, causing pressures of the order of 10000bar; 
such pressures are well beyond the yield stress of many common materials (e.g. SS316L has a yield 
stress of the order of 2-4.103bar), implying that such bubble collapse configurations will contribute to 
the erosion damage of the underlying solid material. From a numerical point of view, the employed 
scheme performed well, in the sense that it is able to handle pressure ratios of almost 5.105 and density 
ratios of 1000, without serious problems. High accuracy enabled a clear capturing of the interface 
within 1-2 cells, without oscillations, thanks to the TVD properties of the MUSCL scheme.  

5.  Conclusion 
This paper outlines the development of an explicit density based solver for cavitating flows, based on 
the central upwind schemes of Kurganov et al. and the application on bubble collapse using 2D axis-
symmetry conditions. The schemes have been tested in comparison with the exact solver of the 
Riemann problem, showing excellent accuracy and robustness. Application of the schemes on the 
bubble collapse cases showed a similar collapse pattern with the one that has been reported by Laeur 
et al. and similar pressure levels on the wall, even though a Homogenous Equilibrium assumption is 
used for the thermodynamic model. Overall, the performance of the central-upwind scheme was very 
good, considering the violent nature of the collapse and the involved pressure and density ratios. One 
of the main targets in the future is the implementation of higher accuracy in the time marching and 
possibly inclusion of thermal effects, with a potential application the simulation of bubble clusters.  
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Fig. 2. Indicative instance from the collapse of a bubble placed (a) 416µm (b) 140µm and (c) -140µm 

from a wall; y-axis is axis of symmetry, x-axis is wall. 
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