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Abstract. Predictive capability of RANS and LES models to calculate incipient cavitation of 

water in a step nozzle is assessed. The RANS models namely, Realizable k-ɛ, SST k-ω and 

Reynolds Stress Model did not predict any cavitation, due to the limitation of RANS models to 

predict the low pressure vortex cores. LES WALE model was able to predict the cavitation by 

capturing the shear layer instability and vortex shedding. The performance of a barotropic 

cavitation model and Rayleigh-Plesset-based cavitation models was compared using WALE 

model. Although the phase change formulation is different in these models, the predicted 

cavitation and flow field were not significantly different.    

1. Introduction 

Formation of vapour due to cavitation affects the fluid flow and a two-way interaction exists between 

the bubbles and the turbulent oscillations. Chahine [1] has developed a cavitation model to account for 

the two-way interaction of bubbles and the flow field. Okabayashi and Kajishima [2] investigated the 

two-way interaction between cavitation and turbulence using Direct Numerical Simulation (DNS). 

They reported the modulation of turbulence by cavitation which can form a basis for a Sub Grid Scale 

(SGS) model for cavitation in Large Eddy Simulation (LES). Iyer and Ceccio [3] used Fluorescent 

Particle Image Velocimetry (PIV) to assess the effect of cavitation on shear layer instabilities and flow 

turbulence downstream the shear layer, using a sharp edged plate in a cavitation channel. The 

importance of accurately capturing the turbulence pressure fluctuations in cavitating flows is 

highlighted in Wilfried et al. [4]. They have compared Reynolds Averaged Navier-Stokes (RANS) and 

LES simulations of a cavitating throttle flow and show the situational applicability of the RANS 

model. They conclude that RANS can predict cavitation with a reasonably acceptable accuracy in an 

operating condition with high pressure difference, whereas it fails to predict the cavitation at a low 

pressure difference. Grid requirements and therefore the computational cost of RANS simulations is 

lower than LES, and in some studies [5] they proved to predict cavitation accurately, however their 

applicability varies from case to case. 

Cavitation can be modelled using the Rayleigh-Plesset equation for bubble dynamics [6], which has 

been implemented in cavitation models of Singhal et al. [7], Schnerr and Sauer [8] and Zwart et al. 

[9]. Another approach to model cavitation is based on the assumption of thermodynamic equilibrium 

using an equation of state, such as the cavitation model of Schmidt et al. [10]. 
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In the current study CFD solver FLUENT V15.0 is used to compare the performance of a number of 

turbulence models and cavitation models for modelling incipient cavitation in a step nozzle geometry, 

based on the experimental study of Sou et al. [11]. 

2. Test Cases and Simulation Setup  

The experimental setup is extensively reported in the reference study [11], so in the present report the 

operating conditions and geometry are only briefly presented. Water is discharged into a rectangular 

nozzle with 4.8 ml/s flow rate and the outlet is subjected to atmospheric pressure. Schematic of the 

nozzle is shown in figure 1.  

A coarse mesh is systematically refined to perform a grid independency test. Simulations are done 

using Shear Stress Transport (SST) k-ω model. Inlet pressure of 2.42 bar and atmospheric outlet 

pressure is set as boundary conditions. After the grid independency test, performance of three RANS 

models, namely the Realizable k-ɛ, SST k-ω and Reynolds Stress Model (RSM) is assessed and 

compared to Wall Adaptive Local Eddy Viscosity (WALE) LES simulation for incipient cavitation. 

WALE is used to compare three different cavitation models, namely a barotropic model (see 

Koukouvinis et al. paper [12]), Zwart-Gerber-Belamri (ZGB) and Schnerr-Sauer (SS) cavitation 

models, and one simulation is set-up using ZGB model with modification. The ZGB model is 

modified by increasing the evaporation and condensation rate equation constants. Table 1 reports the 

summary of CFD test cases. 

 

Table 1. Summary of Test Cases. 

 Test Case Run 1 Run 2 Run 3 Run 4 

1 Grid Independency Coarse Medium Fine - 

2 RANS Models Realizable k-ɛ SST k-ω RSM - 

3 Cavitation Models Barotropic ZGB Modified ZGB SS 

 

 

3. Results and Discussion  

Grid independency test results are reported in table 2 along with effect of grids on the flow rate. A 

consistent trend is achieved in the predicted velocities and it can be concluded that no significant 

improvement is reached by further refinement of the grid.   

 

Table 2. Grid parameters and their effect on flowrate. 

Grid Cells Max y+ 

 

Min y+ 

 

Flowrate 

(ml/s) 

Coarse  1M 55 1 4.7 

Medium 2.3M 45 0.5 4.7 

Fine 6.8M 37 0.2 4.8 

 

Mean streamwise velocities calculated by Realizable k-ɛ, SST k-ω and RSM model and the LES 

WALE model at z = 1.5 mm are presented in figure 2. The minimum y+ for the RANS models is ~1 

and for the LES it is ~ 0.2. The Realizable k-ɛ and SST k-ω have less than 1% difference in the 

majority of the flow section. The most significant disparity between this two models is at the region 

between the recirculating flow and the bulk flow moving above it, where the SST k-ω over-predicts 

the velocity by ~24% and Realizable k-ɛ by ~20%. On average the two-equation models have ~30% 

discrepancy with experiment in mean streamwise velocity at z = 1.5 mm. The RSM results over-

predicts the velocity at the recirculation region and on average RSM results have ~20% more 

discrepancy with experiment velocities compared to two-equation models. 



 

 

 

 

 

 

 

 

 

Figure 1. Nozzle geometry [11]  Figure 2. Mean streamwise velocity at z = 1.5 mm 

calculated by different turbulence models 

No cavitation is predicted by the RANS models and using higher order discretization schemes does 

not improve this result. RANS models are not designed to capture the shedding of small vortices, 

instead the effect of these vortices is modelled by artificially increasing the local viscosity. LES can 

predict vortex shedding and pressure fluctuations in the shear layer. LES can predict the cavitation and 

the results significantly improve in the near wall and the recirculation region. On average the LES 

velocity profile was ~10% closer to experiment result compared to two-equation models predictions.  

 

 

 

Figure 3. Mean streamwise velocity at z = 1.5 

mm calculated using different cavitation models 

 Figure 4. Cavitation in experiment [(a) and 

CFD (b)  

It is evident from figure 3 that changing the cavitation model, only affects the streamwise velocity in 

the region of cavitation and the bulk flow remains unaffected. This result has also been observed at 

positions z = 3 mm and z = 6 mm. Furthermore the velocity predictions by the barotropic and the ZGB 

model are nearly identical, and have the best match with experiment velocity measurements. The 

minimum mean pressure in the flow field for the barotropic and the modified ZGB model are ~10,000 

Pa and for the default SS and ZGB models it is ~8,000 Pa. Negative pressures indicates regions of 

mechanical tension. The lower minimum mean pressure predicted by default models can be because 

these models predict regions of negative pressure as low as -13,000 pa. The minimum pressure 

calculated with modified ZGB is close to zero, and the barotropic model does not predict any region of 



 

 

 

 

 

 

negative pressure. Figure 4 shows instantaneous isosurface of 50% vapour volume fraction predicted 

by the default ZGB model and the experiment images.  

4. Conclusion 

This paper evaluates the predictive capability of two-equation and 7-equation RANS models to 

simulate incipient cavitation in a rectangular step nozzle, and compares the results with WALE model 

predictions. The LES model is then used to further investigate the performance of barotropic and non-

equilibrium cavitation models.  

This test case shows the situational applicability of RANS model for predicting cavitation. All the 

RANS models used for this study, i.e. the Realizable k-ɛ, SST k-ω and RSM model failed to predict 

pressures below the saturation pressure. RANS is a useful tool for many cavitation problems as seen in 

the literature [5], but its limited capability has also been reported for cases with small amounts of 

cavitation [4]. For problems such as incipient cavitation in a nozzle where the pressure drop from inlet 

to outlet is low, small vortices are formed that act as nucleation cites for bubbles. In order to capture 

these flow structures, more rigorous turbulence models such as LES are required. 

The average minimum pressure predicted by the barotropic and the non-equilibrium cavitation models 

is above the saturation pressure of water. This result further justifies the minimum pressure predicted 

by RANS models, which is above saturation pressure. Furthermore, changing the cavitation model did 

not significantly affect the streamwise velocity outside the cavitation region. The predicted shape of 

the cavity was in agreement with experimental images, however quantitative measurements inside the 

vapour volume is required to judge the accuracy of the calculated cavitation.  
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