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Abstract. This paper evaluates the solution effects of different Rayleigh-Plesset models (R-P) 
for simulating the growth/collapse dynamics and thermal behaviour of homogeneous gas 
bubbles. The flow inputs used for the discrete cavitation bubble calculations are obtained from 
Reynolds-averaged Navier-Stokes simulations (RANS), performed in high-pressure nozzle 
holes. Parametric 1-D results are presented for the classical thermal R-P equation [1] as well as 
for refined models which incorporated compressibility corrections and thermal effects [2, 3]. 
The thermal bubble model is coupled with the energy equation, which provides the temperature 
of the bubble as a function of conduction/convection and radiation heat-transfer mechanisms. 
For approximating gas pressure variations a high-order virial equation of state (EOS) was used, 
based on Helmholtz free energy principle [4]. The coded thermal R-P model was validated 
against experimental measurements [5] and model predictions [6] reported in single-bubble 
sonoluminescence (SBSL). 

1.  Introduction 
Based on potential flow theory, Rayleigh and Plesset [7, 8] derived and tested the so-called Rayleigh-
Plesset model for predicting the growth/collapse dynamics of cavitation bubbles. Since its inception, 
the R-P model has been further developed in order to compensate for the inherited assumptions of the 
method, which prohibit the physical realization of the violent bubble collapse phase. Inhomogeneous 
pressure effects developing upon the collapse of bubbles were addressed by Moss et al. [2]. To treat 
this model limitation, Moss introduced a time-derivative term of the gas-pressure in the classical R-P 
model, which effectively reproduced the rapid damping of the bubble collapse rebounds, as observed 
in SBSL experiments. Compressibility correction terms were formulated in the work of Keller and 
Miksis [3], and Lohse and Hilgenfeldt [5], as a function of the bubble's Mach number. The solution 
effects of the aforementioned compressible R-P models were examined by Prosperetti and Hao [9], 
assuming homogeneous bubbles and perfect-gas behavior. The Keller-Miksis R-P model was further 
extended in the work of Yasui [6], in order to also account for evaporation/condensation mass-transfer 
effects and chemical kinetics. For the calculation of the internal bubble gas-pressure, most of the 
aforementioned studies relied on idealized equations of state (EOS) or improved equations designed 
for real-gases, such as the second-order van der Waals model. Model limitations associated with the 
development of high gas-pressures, precursors of shock-waves in bubble sonoluminescence, were 
raised in the paper of Lӧfstedt et al. [10]. 

The thermal-bubble model proposed in this paper combines in an explicit way a multiparameter 
Helmholtz-type EOS, the energy equation and the R-P models presented in the reviewed studies. 
Details regarding the formulation of the implemented models are available in the following section. 
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2.  Thermal bubble-dynamic R-P model 
In the following analysis the Keller-Kiksis R-P equation (K-M) is presented, alongside to the 
suggested supplementary energy model for coupling the dynamic and thermal behavior of bubbles. 
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where R is the radius of the spherical bubble and the overdot symbol denotes time-derivative terms, 
i.e. bubble-wall velocity and acceleration. The bubble pressure pB, the ambient static-pressure p∞ and 
the imposed acoustic pressure-field ps are collected inside the square brackets. Closure of equation (1) 
requires an additional expression for the dynamic boundary condition at the bubble-wall: 
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equation (2) provides a relationship between the internal bubble gas-pressure pg and the pressure 
acting on the external side of the bubble-wall. The remaining variables participating in equations (1) 
and (2) refer to the properties of the surrounding liquid-fluid, i.e. density ρL, speed of sound cL, 
viscosity νL, and surface tension σ. These parameters are extrapolated from available correlations [11], 
for fixed pressure and temperature conditions. 

The gas temperature of cavitating bubbles TB is approximated by solving the energy equation: 
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equation (3) encapsulates variations of the internal energy ΔU of bubbles due to the growth/collapse 
pressure-volume work and the modeled heat-transfer mechanisms, i.e. convection, conduction and 
radiation. The variables mB, VB and AB stand for the mass, volume and surface area of the bubble. The 
thermal conductivity k and heat-transfer coefficient h of the internal gas are calculated as functions of 
the Nusselt number [12]. In the thermal radiation term, σ corresponds to the Stefan-Boltzman constant 
and ε is the emissivity of the bubble, which is modeled as a black-body. 

The gas pressure and temperature variables are coupled by integrating a Helmholtz virial EOS: 
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the left-hand side in equation (4) is the ideal gas law, where Rg is the gas constant and ρg is the density. 
The right-hand side includes the residual Helmholtz energy αr contribution to the ideal part, also 
known as compressibility coefficient Z, which is expressed as a multiparameter function of the 
reduced density δ and temperature τ. Similar virial expansion models are also used for estimating the 
heat-capacity Cv in equation (3). 

Numerical integration of the formulated system of equations is performed iteratively, using the 
embedded fifth-order Runge-Kutta-Fehlberg algorithm and an adaptive step-size control with a 
minimum step of 1.0e-15 s. The bubble gas pressure and density unknowns in equation (4) are 
calculated by integrating successive Newton-Raphson iterations. The solution performance of the 
described thermal R-P models is examined in the forthcoming discussion, for sonoluminescence and 
cavitation bubble-dynamics. 

3.  Sonoluminescence and cavitation bubble-dynamics 
Validation results of the implemented thermal R-P model are plotted in figure 1. The scatter dots in 
these graphs correspond to a) light-scattering measurements of the bubble-radius [5] and b) 
calculations of the gas temperature [6], while the solid lines are the equivalent predictions of the coded 
K-M bubble model. The reproduced SBSL case assumed a gas nucleus with initial size R0 = 4.5 μm, 
which is perturbed from its equilibrium (T∞ = 20 C and pB,0 = p∞ = 1 bar) by a pressure-wave (dashed 
line). The amplitude and frequency of the acoustic-wave are 1.35 bar and 20 kHz, respectively. As 
shown in these results, the gas bubble grows asymptotically during the rarefaction phase of the wave, 
driven by the low ambient pressure. Gradually, the pressure-field recovers to positive values causing 
the bubble to collapse. The bubble collapse-rate is decelerated by the internal gas, which is 

9th International Symposium on Cavitation (CAV2015) IOP Publishing
Journal of Physics: Conference Series 656 (2015) 012098 doi:10.1088/1742-6596/656/1/012098

2



 
 
 
 
 
 

compressed to high pressures and temperatures. Eventually, inertial effects force the bubble into 
repeatable growth/collapse rebound oscillations. Model predictions seem to be aligned with this 
sequence of dynamic events, both in terms of the measured bubble-radius and the corresponding 
prediction for the gas temperature. Lӧfstedt [5] calculated the peak temperature of this SBSL event to 
be ≈ 8500 K. Differences in the comparison of these results are noticed at the bubble's rebounds, 
mainly due to neglected physical mechanisms, e.g. mass-transfer and shock-waves effects [10]. 
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Figure 1. Validation of the thermal K-M model against reported a) experiments and b) predictions. 

Additional single-bubble calculations are performed using the K-M and the classical thermal R-P 
equations as well as the compressible adiabatic model proposed by Moss. In these tests, the prescribed 
pressure boundary at the bubble-wall is extracted from incompressible single-phase RANS flow 
simulations inside a micro-sized nozzle (D = 200 μm). The pressure-drop applied to the water-liquid 
(T∞ = 353 K) across the hole varied from 200 MPa at the inlet to 5 MPa at the outlet. The simulated 
cavitation nucleus is considered to be in equilibrium with the upstream flow, i.e. pB,0 = 200 MPa and 
TB,0 = 353 K, at an initial size equal to R0 = 1 μm. Model predictions of the growth/collapse bubble-
radius are plotted in figure 2 (a), as a function of the normalized spatial location x/L inside the hole 
where L is the length of the channel. In figure 2 (b) velocity and pressure contours of the internal flow 
are shown. 
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Figure 2. a) Cavitation growth/collapse dynamics calculated inside b) a high-pressure sharp nozzle. 

Starting its journey from the upstream inlet, the gas nucleus arrives at the sharp hole step (x/L≈0.4) 
where it begins to grow due to the formed flow tension-site. The inception of the cavitation bubble is 
followed by a slow-rate asymptotic growth, which as it appears is equivalently predicted by the tested 
R-P models. This similarity implies that compressibility and thermal effects are insignificant during 
the initial growth phase. Further downstream (x/L≈ 0.55), the pressure is recovered (5 MPa) and the 
bubble is forced to implode. The bubble-dynamics ensuing after the termination of the growth phase 
are interpreted differently, depending on the utilized R-P equation. The compressible Moss and K-M 
models indicated a rapid decay of the cavitation oscillations, shortly after the collapse episode. On the 
contrary, the incompressible thermal R-P equation predicted repeatable rebounds with equally large 
amplitudes and consistent frequency. Damping in this case arises only from the viscous diffusion term. 
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Differences are also noticed in the predicted minimum bubble-radius, attained upon the initial collapse 
event. The thermodynamic behaviour of the cavitating bubble is depicted in figure 3. 
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Figure 3. Homogeneous gas a) temperature and b) pressure predictions of the cavitation bubble. 

Temperature and pressure variations of the cavitating gas-bubble are plotted for the thermal R-P 
models, i.e. the classical and K-M R-P equations. As seen in these graphs, during the initial asymptotic 
bubble-growth the internal gas is expanded to subatmospheric pressures and low temperatures. These 
conditions are promoted due to the absence of a mass-transfer model, i.e. evaporation effects. The 
development of hot-spots and high gas-pressures coincided with the locations where the bubble 
collapsed. The duration of these instances lasted only a few picoseconds, while their frequency of 
occurrence is a function of the damping terms integrated in each model. In absolute numbers, the 
classical thermal R-P model predicted temperatures and pressures in the order of 10000 K and 100 
GPa, respectively. These values are considerably lower when the thermal K-M equation is used, 
ranging close to 3500 K and 0.5GPa. 

4.  Conclusions 
In this paper a high-order Helmholtz EOS was coupled with different thermal R-P models. The 
method was validated against SBSL experiments and equivalent model predictions. Single-bubble 
cavitation dynamics were also calculated in high-pressure nozzle channels. The presented results 
indicated that during the violent implosion of bubbles the internal gas is elevated to high temperatures 
followed by pressures of the order of GPa. To proceed with the integration of bubble-dynamics within 
these physical limits, high-fidelity models are required for the characterization of the thermodynamic 
state variables and gas properties, as well as for addressing the role of shock-waves [13]. 
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