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Abstract 
A novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry 

surfaces is presented; the physical model is implemented as a source term in the momentum equation 

of a Navier-Stokes CFD flow solver as an “adhesion-like” force which acts at the triple-phase contact line 

as a result of capillary interactions between the liquid drop and the solid substrate. The advantage of 

this new approach, compared to the majority of existing models, is that the dynamic contact angle 

forming during the surface wetting process is not inserted as a boundary condition, but is derived 

implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-

liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact 

angles. These angles are required in order to define the wetting properties of liquid phases when 

interacting with a solid surface. The numerical simulations capture the liquid-air interface movement by 

considering the Volume of Fluid (VOF) method and utilizing an automatic local grid refinement 

technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously 

minimize numerical diffusion of the interface. The proposed model is validated against previously 

reported experimental data of normal impingement of water droplets on dry surfaces at room 

temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both 

for hydrophilic (θadv=10o-70o) and hydrophobic (θadv=105o-120o) surfaces, has been examined. 

Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact 

angle; the latter is found in reasonable agreement against available experimental measurements. It is 

thus concluded that implementation of this model is an effective approach for overcoming the need of a 

pre-defined dynamic contact angle law, frequently adopted as an approximate boundary condition for 

such simulations. Clearly, this model is mostly influential during the spreading phase for the cases of low 
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We number impacts (We < ~ 80) since for high impact velocities, inertia dominates significantly over 

capillary forces in the initial phase of spreading. 

Keywords: CFD; VOF; dynamic contact angle; droplet impingement; dynamic grid refinement 

Nomenclature 

   

Symbol Quantity units Greek letters   

Ca Capillary Number (-) α Liquid volume 
fraction 

 

Cp Pressure Coeff. (-) γ interfacial 
tension 

N/m 

D Droplet Diameter m Δx cell width m 

fadh/fWFM Adhesion Force N    

v
WFMf  Adhesion Stress 

term (volumetric) 
N/m3 Δθ Contact angle 

hysteresis 
(ο) 

fH Hoffman’s 
function 

 θ contact angle (ο) 

σf  Surface Tension N/m3 κ curvature 1/m 

g  Gravitational 
acceleration 

m/s2 μ dynamic 
viscosity 

kg/ms 

K Proportionality 
constant 

(-) ρ  density kg/m3 

l Length of contact 
line 

m σ    surface tension 
coefficient 

N/m 

L Total Length of 
contact line 

m τ non-
dimensional 
time  

(-) =tu/D 

n̂  Free-surface 
normal 

(-) Subscripts   

bn  Boundary face 
vector looking 
outside 

(-)  corresponds to 
freestream 
conditions 

 

P Pressure Pa adv advancing  

r rim axisymmetric 
distance  

m dyn dynamic  

R Droplet Radius m eq equilibrium  

liq 0 0 liqRe=ρ U D /μ  Reynolds number (-) gas gas  

t time s liq  liquid  

T  Stress tensor kg/ms2 max maximum  

u velocity m/s o initial condition  

Vcell Cell volume m3 rec receding  


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2
liq 0 0We=ρ U D /σ  Weber number (-)    

X x-axis distance m    

Y x-axis distance m    

1. Introduction  
The impact of liquid droplets onto solid surfaces is a very interesting physical process that takes place in 

many engineering applications. For example, cooling of hot surfaces (e.g. electronic circuits) can be 

achieved by impingement of cold liquid droplets onto them [1]; in the work of Kandlikar et al. [2], a 

comprehensive review of jet impingement and spray cooling works is presented, focusing on the 

maximum heat removal value which can be achieved (reaching up to 1000 W/cm2). Another interesting 

application of droplet impingement dynamics is in internal combustion engines, where the interaction of 

the atomized fuel droplets with the piston and liner walls play an important role on combustion 

characteristics and fluid mixing inside the cylinder [3]; the so-called 1st generation direct injection 

gasoline engines [4] utilized this process in order to direct the injected liquid towards the spark plug and 

create the required stratification within the engine cylinder. In a very different sector, that of spray 

coatings, droplets impinge on a solid surface and solidify, to form a coating layer so that the surface can 

acquire specific properties (wear resistant, protection against corrosion, desirable electrical conductivity) 

[5]. In aviation applications, water supercooled droplets formed in clouds can freeze after impact on the 

surface of airfoils, resulting in the formation of an ice layer [6, 7], which can have detrimental effect on 

the functionality of wings, blades and engines during flight. More recently, new superhydrophobic self-

cleaning materials are introduced and applied especially in photovoltaic panels, allowing the raindrops 

to slide down on the glass surfaces carrying the dust, thus promoting the achievement of higher 

absorption rates of radiation [8] of such surfaces.  

Droplet dynamics and their interaction with solid surfaces have fascinated researchers from the time of 

1805 (Thomas Young [9]) and 1867 (Worthington [10]). Since then, a vast number of studies have been 

published that deal with the underlying physics both theoretically and experimentally; various numerical 

models implemented in Computational Fluid Dynamics (CFD) codes are also capable of predicting the 

underlying physical mechanisms. The readers can find a comprehensive review on the phenomenon of 

drop impact onto a solid surface, from the flow dynamics point of view, in the works of Rein [11], Yarin 

[12] and Marengo et al. [13]. In the study of Yarin [12], the expected outcomes of this process are 

identified. More specifically, droplet impingement onto a flat solid surface can lead to “deposition”, 

“rebound” or “splashing”. These studies also suggest that the most crucial dimensionless parameters, 

which govern this phenomenon, are the Reynolds and Weber numbers.  

In the scope of theoretical works, some researchers focus on the complex dynamics governing the three 

phase (liquid-gas-solid) contact line [14, 15], while an issue arise due to the hydrodynamic singularity at 

the three phase line [16]. In other theoretical approaches, the droplet maximum spreading is estimated 

based on an energy conservation approach, in terms of initial kinetic and surface energy before impact 

and surface energy along with viscous dissipation at its maximum spreading. In 1991, Chandra and 

Avedisian [17] using such an approach reached to a derivation of maximum spread for impact of a 
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droplet on a hot flat surface, while afterwards, in 1996, Pasandideh et al. [18] provided an estimation of 

the spreading factor for a cold surface, taking into consideration the existence of a viscous boundary 

layer in which most of the kinetic energy is dissipating. This new energy conservation formula resulted in 

the following equation: 

 ( 1 ) 

which takes into account along with the effect of Reynolds and Weber numbers, the angle the gas-liquid 

interface makes with the solid substrate at the end of the advancing phase, for the estimation of the 

maximum spreading factor. Similar equations can be found in the works of Mao [19], Ukiwe et al. [20], 

Vadillo et al. [21], but all of them follow the same underlying main principles as those initially proposed 

by Pasandideh et al. [18]. Other analytical works assume that the deformed shape of the droplet, when 

it spreads, is the same with that of a truncated sphere [22] or a cylindrical disk [23]. 

Concerning experimental measurements, the results of a vast number of relevant campaigns [19, 21, 22, 

24-37] can be found in literature, where the effect of basic parameters such as droplet basic properties 

(viscosity, density, surface tension), droplet size, impact velocity, solid surface roughness and wettability 

on droplet spreading are investigated explicitly. More recently, the interest has been turned towards 

superhydrophobic and complex surfaces [13, 38], as there is a great challenge in studying the behavior 

of droplets coming in contact with such substrates. One common realisation resulting from the 

aforementioned investigations is the appearance of the wetting contact angle, namely the advancing 

and the receding ones, as one of the most influential parameters during droplet spreading onto solid 

substrates [7]. These have been measured in some cases as a function of substrate manufacture 

properties, i.e. smooth/rough glass in Rioboo et al. [30], or even substrate roughness amplitude [26, 38]. 

However, as it has been proved from very early times (Jiang et al. [39] in 1979), the dynamic contact 

angle of the rim varies considerably, especially during the advancing phase of droplet spreading. 

More recently, due to the great advancements in high–speed photography, the dynamic contact angle 

was investigated more explicitly. In fact, Hung et al. [37], using a “droplet impingement imaging system” 

managed to digitize the shape of the droplet at each time instant during the spreading process  

extrapolating considerable information about its variation as function of the rim velocity. Still, only 

limited experimental works depicting this change of contact angle values during the spreading period 

can be found. To the best of authors’ knowledge only five works can be tracked [18, 21, 36, 40, 41]. For 

example, the work of Bayer et al. [36] reported a significant dynamic contact angle variation during  the 

hysteresis period from a starting value of 125o down to of 40o till the start of the receding phase. It is 

therefore clear that the definition of static angles is not enough to fully define the complex physics at 

the three-phase contact line formed during droplet impact. Indeed, the advancing and receding contact 

angles are usually measured during quasi-steady conditions, whereas the process of droplet 

impingement is highly dynamic and instationary. As a consequence, it is important for CFD simulations 

to account for this dynamic condition; models capable of predicting this instantaneous dynamic contact 

angle seem to be more appealing and, in contrast to most of the current CFD approaches that adopt a 

pre-defined contact angle, inserted as a boundary condition. 






 

max

0

12

3(1 cos ) 4( / Re)
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Focusing to CFD works, a large number of numerical studies dealing with the impingement of a single 

liquid droplet onto a flat solid surface have been reported. Selective (but not limited) studies include 

different models for interface tracking, i.e. Lagrangian (Marker cell [42], deforming grid [43, 44], Front 

tracking [45, 46], LCRM [47]), Eulerian (SOLA-VOF [18, 48, 49], Volume of Fluid Method (VOF) [50-53], 

CLSVOF [54], Level Set [55, 56], VOF+PLIC [57], PLIC, VOF with Young reconstruction [41, 58]), Eulerian-

Lagrangian [59, 60], Lattice-Boltzmann [61, 62], and lately the phase field approach (Cahn-Hillard 

equation) [63]. Other studies also account for the effect of heat transfer mechanisms [44, 48, 49, 52, 53, 

64-67] between the impinging droplet and the substrates but these fall outside the scope of the present 

study.  

Undoubtedly, one of the most challenging tasks of a CFD model is the correct prediction of the gas-liquid 

interaction on a three-phase contact line, while simultaneously trying to avoid numerical diffusion. A 

very interesting review on computational methods used for the prediction/simulation of moving contact 

line phenomena is presented in the work of Sui et al. [68]. The main modeling approach followed in 

literature is to insert the contact angle as a boundary condition at the active boundary cells, lying in 

contact with the wall. Indeed, the only variation among all the methods followed so far is upon how this 

insertion is applied, rather than predicting it from first principles. Fukai et al. [43] were the first to apply 

the contact angle as a boundary condition in cases of water droplet impingement onto a cold flat surface 

following a 2-D axisymmetric Lagrangian approach in a grid, which was deformed according to the shape 

of the droplet free surface. In that approach, the mean curvature of the free surface next to the wall was 

adjusted so that the desired pre-defined contact angle was reached. Other studies follow the basic 

approach proposed by Brackbill et al. [69], i.e. the widely adopted CSF model (selectively [41, 50, 57-59]). 

According to that, the normal to the free surface unit vector on the wall cell is adjusted according to the 

pre-defined contact angle. This influences the surface tension force, which is inserted in the Navier-

Stokes momentum equation, resulting in the “intentional” turning of the rim according to the prescribed 

contact angle value. Pasandideh et al. [18] made the same adjustment for a SOLA-VOF code, so did 

Ganesan and Sashikumaar [60] for a Lagrangian-Eulerian approach. Similar methods were applied in 

subsequent works. Other approaches follow either the extrapolation of the free surface outside of the 

wall, so that the free surface normal to the wall can be adjusted, and used afterwards in the 

reconstruction process [47, 54]. In [61] where the Lattice-Boltzmann method was used, an external force 

field was introduced at the active cells being in contact with the wall. Finally, in the Level Set function, 

utilized in the work of Caveziel et al. [55], a different re-initialization method near the wall was adopted, 

while Griebel et al. [56] used a fixed value Neumann boundary condition at the wall for the free surface 

normal of the Level Set function. Table 1 summarizes the approaches used and the range of conditions 

of the aforementioned representative studies. Only previously simulated cases concerning water 

droplets have been included, as the present work pays attention on low viscosity liquids. Additionally, 

due to the large surface tension coefficient of air/water, the induced surface tension force is quite high 

relevant to viscous ones, and the resulting net of forces at the triple contact line highly dominated by 

surface tension effects. For that reason, the correct simulation of water droplet impingement cases, to 

the authors’ opinion, serves as the most challenging conditions for the validation of the proposed model. 

Additionally, there is a lack of simulated conditions for water droplet impingement, especially onto 

hydrophilic surfaces and for low and medium Weber numbers. 
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Year Simulation Θadv(o) We Re Model Contact angle model Velocity Calc Experiments 

1995 
Fukai et 
al.[43] 

49-92 
112-
733 

5476-
14062 

2-D 
axisymmetric 

Lagrangian 
deforming 

grid 

Constant angle (Adv-Rec) 
Marker 
velocity 

Own 

1996 
Pasandideh 
et al. [18] 

110 27 2000 
axisymmetric 

modified 
SOLA - VOF 

Constant equilibrium 
angle/Dynamic from 

experiment 
N/A Own 

2000 
Bussmann et 

al. [58] 
110 440 8000 

piecewise 
linear volume 

tracking 
method 

Dynamic - linear in relation to 
velocity 

cell center 
velocity 

Own 

2003 
Francois et 

al. [59] 
87.4 30 2772 

immersed 
boundary 
method 
Eulerian-

Lagrangian 

Constant equilibrium angle 
/Dynamic linear in relation to 

velocity 

2nd marker 
point veloc 
(0.8*grid 
spacing) 

Kim and Chun 
[22] 

2005 
Gunjal et al. 

[57] 
35-110 3-567 

924-
10000 

VOF - 
piecewise 

linear 

Stepwise time variation 
according to experiments 

( every 15 steps) 
N/A Own 

2005 
Sikalo et al. 

[50] 
105 92 4018 

VOF-based 
free-surface 

capturing 
method 

Kistler’s law 
differentiation 
of the wetted 

radius 
Own 

2007 
Mukherjee et 

al. [61] 
87.4 30 2772 LBM Kistler’s law 

differentiation 
of the wetted 

radius 

Kim and Chun 
[22] 

2008 
Caviezel et 

al. [55] 
100 53 3245 Level Set Constant equilibrium angle N/A 

Rioboo et al. 
[30] 

2008 
Roisman et 

al. [41] 
120 

0.88-
7.9 

400-
1200 

VOF with 
Youngs 

interface 
tracking 

Kistler’s law 
algebraic 
system of 
equations 

Own 

2009 
Yokoi et al. 

[54] 
107 32 22800 CLSVOF 

Modified Tanner's law/ 
Constant angle (Adv-Rec) 

u parallel to 
wall closest to 

the contact 
point x 

own 

2009 
Shin et al. 

[47] 
92 129 5878 

level contour 
reconstruction 

method 

if θ>θadv, θ=θadv, if θ<θrec, 
θ=θrec, else θ=θ 

shear strain 
rate(du/dn) 

*Δx 

Fukai et al. 
[43] 

2012 
Ganesan et 

al. [60] 
105 92 4018 

Lagrangian–
Eulerian 

approach 
(ALE-FEM) 

Constant equilibrium angle 
/Hocking’s model/Jiang’s 

modle/Bracke’s model 
Lagrangian 

Sikalo et al. 
[50] 

2013 
Griebel et al. 

[56] 
107 32 22800 Level Set 

Yokoi’s model/Shikhmurzaev’s 
model 

u parallel to 
wall closest to 

the contact 
point x 

Yokoi et al. 
[54] 

Table 1. Contact angle models and velocity calculation methods used in simulations from literature for water droplet 
impingement. 

In Table 1, Fukai et al. [43] simulated impingement onto hydrophilic surfaces for a range of We numbers 

between 112 and 733. In other works, Ganesan et al. [60] simulated case #7 of Sikalo et al. (Table 2) 

which concerns the impingement of a water droplet onto a slightly hydrophobic wax surface (θadv = 

105o) and afterwards presented their simulations for a droplet impact characterized by a very low 

contact angle (θadv = 10o), without a comparison against experimental data. Gunjal et al. [57] simulated 

the impingement of a water droplet on a glass surface using stepwise time variation of contact angles 

according to the experimental values, so that they can simulate the temporal evolution observed during 

the experiment, in a validated way. Even if this approach seems to be a promising one, especially for the 

case of droplet impingement onto hydrophilic cases, where the temporal variation of the contact angle 

is quite intensive, the simulation always needs the previous knowledge of the experimental data for 

each impact condition. Bussmann et al. [58] observed this contact angle variation for a stainless steel 
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surface. Vadillo et al. [21] showed that during the first milliseconds of a water droplet impingement onto 

two hydrophilic surfaces with equilibrium contact angles of 5o and 50o respectively, the dynamic contact 

angle can reach values of approximately up to 80o-90o. The dynamic contact angle models presented in 

Table 1 are representative of what has been documented in literature. For a more thorough, interesting 

and recent review of the available dynamic contact angle models, the readers can found information in 

the work by Saha and Mitra [70]. However, the question of how to simulate a priori a non-

experimentally investigated case, for which contact angle data are not available, still remains to be 

answered.  

Efforts towards the development of more complete models that can predict the dynamic change of 

contact angle during the droplet impact have also been reported. Roisman et al. [41] stressed out that 

the use of a dynamic contact angle model is very important in a CFD simulation, so that the temporal 

evolution of the phenomenon can be captured more accurately. Yokoi et al. [54] showed that in order to 

achieve a very good agreement between experimental data and simulation results, especially for the 

recoiling phase, the right use of a contact angle model is a necessity. In all the previously mentioned 

cases, the introduction of the contact angle between the droplet and the solid surface is achieved by 

specifying the contact angle (static or dynamic) as a boundary condition, i.e. as an input for the 

numerical simulation. This implementation has the basic drawback, that the dynamic contact angle is 

not a result of the simulated underlying physical mechanisms, and the induced fluid flow characteristics, 

but is dependent on the previously known values of contact angle temporal variation and the right 

calculation of the rim velocity.  

In CFD simulations, especially using the VOF method, the extrapolation of the contact line velocity, when 

the interface of the droplet covers 2 or 3 cells, is not an easy process. Therefore, a new model needs to 

be developed that can dynamically alter the contact angle based on the induced fluid flow 

characteristics, rather than insert it as a boundary condition.  

That is the basic aim of this study, i.e. to develop a new model that does not prescribe the contact angle 

(or its temporal evolution), but lets the net of forces acting on the free surface of the droplet (capillary, 

surface tension) and the 3-phase contact line to determine the liquid/gas interface interaction with the 

surface. 

2. Wettability 

2.1 Dynamic contact angle models 
Most dynamic contact angle models relate contact line velocity to the dynamic contact angle, which is 

inserted as a boundary condition. The dynamic contact angle models are briefly presented here below. 

2.1.1 Quasi-dynamic contact angle mode (Advancing – Receding) 

In the simplest possible advancing-receding contact angle model, a given fixed value for both the 

advancing and the receding contact angles is imposed as a boundary condition when the contact line 

spreads or recoils. This model has been used widely in literature, and can be found selectively in the 
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works of Pasandideh et al. [49] and Berberovic et al. [71]. The basic approach is simply represented by 

the two equations: 

 if  u 0dyn adv conline    ( 2 ) 

  if  u 0dyn rec conline    ( 3 ) 

2.1.2 Kistler’s law 

In the work of Kistler [72], the dynamic contact angle is given as a function of the contact line velocity 

through the Capillary number and the inverse of Hoffman’s function: 

1( )
Hdyn H eqf Ca f      ( 4 ) 

H

x
f

x

    
    

    

0.706

0.99
arccos 1 2tanh 5.16

1 1.31
,      ( 1( )

H eqx Ca f   ) ( 5 ) 

. liq conlineu
Ca




  ( 6 ) 

2.1.3 Shikhmurzaev’s model 

Shikhmurzaev [73] gave a relation for the dynamic contact angle, as a function of several parameters, 

i.e.: 

 

* *
1 2 0

1/2
*2 *

2 1

2 ( )
cos cos

(1 )
dyn eq

u a a u

a a u u
 


 

   
  

 ( 7 ) 

 , *
0

sin cos

sin cos

dyn dyn dyn

dyn dyn dyn

u
  

  





, 1 2 41 (1 )(cos )eqa a a     ( 8 ) 

where a2=0.54 , a3=12.5 , a4=0.07 are phenomenological constants (values taken from [70]).  

Basically, the dynamic contact angle models of Kistler and Shikhmurzaev try to deal with the difference 

observed in experiments between the dynamic contact angle (at microscopic length scale) and the 

apparent contact angle (at macroscopic length scale) within the inner region near the triple line point. A 

wide range of empirical correlations can be found in literature (a comprehensive review is presented in 

the work of Saha and Mitra [70]), that relate the contact line velocity with the dynamic contact angle in 

order to account for this inner region. This is also addressed in the works of Sikalo et al. [74] and 

Roisman et al. [41]. The differences in dimensionless spreading dynamics parameters (e.g. temporal 

evolution of spreading ratio, maximum spreading) which are observed between the simple quasi-

dynamic model and these models may be related to that blurred distinction (Yokoi et al. [54]). 

*
3

liq conlineu
u a





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2.2 Wetting force model (WFM) 
The idea behind the derivation of the Wetting Force Model comes from the work of Antonini et al. [75]. 

The authors investigated experimentally the adhesion force of a droplet sliding down an inclined surface 

and they derived a methodology for the prediction of this “adhesion” force. The “adhesion force” acts at 

the contact line, and is responsible for drop capillary adhesion to the surface. In their work [75], this 

adhesion force, for a contact line of arbitrary shape, is given by: 

 ( 9 )  

where L is the total length of the contact line, as visualized in  Figure 1 (from [75]). For the validation of 

their methodology, the magnitude of the “adhesion” force was explicitly calculated, from the 

component of gravitational force (Figure 1a) acting on the droplet parallel to the solid surface, at the 

exact moment when it starts moving and for this specific angle of inclination. 

 

 
 

 
a b 

Figure 1. Adhesion force. a) Droplet sliding down an incline. At the moment it starts moving, sin
adhesion

F mg a .  b) 

Projection of the contact area of the droplet on the incline. Both Images taken from Antonini et al. [75] 

Since the exact shape of the contact line and the complete contact angle distribution may be unknown, 

a simplified approach is typically used in many works , e.g. by Extrand and Kumagai [76], to estimate the 

capillary adhesion force. They refer to the adhesion force for solid/liquid/vapor systems, as being 

mathematically described by the following equation, both for static conditions, as well as dynamic 

conditions: 

 cos cos   adh
rec adv

f
K

r
 ( 10 )  

where K is a fitting factor. In fact, the limit of this equation is the presence of the fitting factor K, which 

changes by changing the liquid-solid system. 

Both the previously mentioned cases (Antonini et al. [75] and Extrand and Kumagai [76]) refer to static 

conditions (a droplet at rest onto a solid surface on the verge of starting to move), but a more complete 

model should be as well checked for its validation not only under stationary and/or quasi-steady 

conditions, but as well under dynamic ones. In this light, the scope of this study is to check the modelling 

      0 cos cos
L

adhf l l dl
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of an adhesion force model to the drop impact problem. The new model proposed considers for the 

effect that this additional (except from the standard interfacial tensions) contact line force will have - in 

relation to the “adhesion” force on the inclined surface or the one referred to in eq. 10 - on a spreading 

rate of a liquid droplet impacting onto both hydrophilic or hydrophobic surfaces. This additional term as 

implemented here describes the adhesion type force assumed to be parallel to the wall, as in Figure 2, 

and is expressed as: 

d (cos cos )d (cos cos ) dWFM eq dyn eq dynf l r           ( 11 )  

Where the equivalence d dl r  holds for a circular contact line, which is coherent with assumptions of 

axisymmetric flow for 2-D simulations. The direction of this stress term is presented in Figure 2 and is 

linked to the “adhesion” force reported before (eq. 10).  

 
Figure 2. Direction of the proposed adhesion term at the contact line for dynamic conditions: fWFM points to the left/right 
until θeq is reached. 

More specifically, if one takes a closer look at eq. 11, it is clear that the magnitude of this “adhesion” 

force is dependent on the dynamic contact angle at the three phase contact line, and more precisely its 

difference from the equilibrium contact angle. Therefore, for an advancing contact line, if the dynamic 

contact angle is lower than the equilibrium one, then this force shall have a direction opposite to droplet 

further spreading so that that the rim can reach its equilibrium angle (Figure 2). On the other hand, if 

the dynamic contact angle is larger than the equilibrium one, the force would have the opposite 

direction, tending to accelerate the rim. For the receding phase, the concept is the same, as can be seen 

in Figure 2. In physical terms, the application of this extra “adhesion” force, only at the contact line, 

tends to restore the droplet shape to its static condition, i.e. to form an equilibrium angle, by either 

promoting or counterbalancing droplet further spreading/recoiling. Furthermore, it is clear that as the 

difference between the dynamic contact angle and the equilibrium gets higher, the force magnitude is 
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higher and its effect on droplet motion is stronger. Finally, since an axisymmetric case is considered, the 

force is proportional to the droplet radius (as one can verify from eq. 11). 

The basic differentiation of the proposed model relative to previous works is the incorporation of this 

force into the Navier-Stokes momentum equation instead of imposing a specific equilibrium or dynamic 

contact angle value as a boundary condition; from now on this approach will be referred as Wetting 

Force Model (WFM). In that way the microscopic change of the dynamic contact angle, as well as the 

macroscopic temporal evolution of the phenomenon, will change according to how this force aids or 

counteracts the droplet spreading onto the solid substrate. This stress term, therefore, would 

dynamically affect the formation of the dynamic contact angle in relation to its interaction with the 

standard surface tension force and viscous dissipation near the wall. 

An additional advantage of this approach, when compared to the standard boundary condition (BC) 

approach, based on the work of Brackbill [69], is that by this methodology, one can really measure the 

temporal evolution of the dynamic angle the droplet forms, and compare this with available 

experimental data. This is shedding light on the complicated, not yet fully understood, underlying 

physical mechanisms controlling droplet impingement on any type of either flat or non-flat solid surfaces.  

At this point, it should be mentioned that in their work, Sikalo et al. [50] in 2005 had already presented a 

study in which they impose as boundary condition the wetting force instead of a contact angle. In their 

simulations, however, this was only an alternative way to apply the Hoffmann’s law: the force applied at 

the contact line was calculated as function of the dynamic contact angle, which was derived from using 

the Hoffman’s law, or alternatively by the theoretical solutions based on creeping flow in the 

neighborhood of the contact line. In this study, the force does not depend on any law or empirical 

correlation, but relies on the value of the instantaneous contact angle. 

3. Mathematical modeling 

3.1 Volume of Fluid Method 
For interface tracking, the Volume of Fluid method (VOF), which is appropriate for the simulation of fluid 

flow between two immiscible fluids, is used. VOF was first proposed by Hirt and Nichols [77] and 

considers for the solution of the full Navier-Stokes equations for mass and momentum conservation in 

conjunction with the advection of a scalar quantity, named as colour function or volume fraction (α). 

The Volume Fraction, α, is defined as the percentage of volume covered by the liquid phase within a 

computational cell in respect to the total volume of the cell. In mathematical terms, α takes the value of 

zero if the computational cell is covered only by gas, and the value of one if the cell is completely 

covered by liquid. For in-between values, the cell lies in a region called the “interface” between the two 

fluids. The definition of this region does not apply to a real-life existing quantity, but in numerical terms 

exists, due to the precondition of a continuous solution of the governing numerical equations. These 

equations namely the mass, momentum conservation equations and volume fraction advection, which 

are the standard ones for V.O.F. simulations as can be as well found in [66, 78], with the addition of the 

WFM term,   , are presented in this study: WFMf
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The solution of the aforementioned equations, in axisymmetric form, was performed in the commercial 

package of ANSYS FLUENT. The difference of VOF in comparison to other techniques is that a single 

momentum equation is solved for the two phases (gas – liquid), where the fluid properties are updated 

according to the volume fraction value of the cell: 

(1 )liq gas       ( 14 ) 

(1 )liq gas       ( 15 ) 

Surface tension term f in the momentum equation is taken from the work of Brackbill et al. [69]: 

 ( 16 ) 

where “κ” is the curvature of the free surface and is approximated as the divergence of unit surface 

normal, i.e. 

n  ˆ  ( 17 ) 

n








ˆ  ( 18 ) 

For a more accurate calculation of curvature, the unit surface normal vectors at the computational 

nodes are used. Pressure–velocity coupling is achieved by adopting a coupled approach [79] for which 

momentum and pressure-based continuity equations are solved together, while the Rhie-Chow pressure 

dissipation terms are included in the face mass fluxes [79]. Discretization of the momentum flux term is 

achieved by a second-order upwind scheme, while for the time discretization an first-order implicit 

approach is followed (explicit for volume fraction advection, eq. 13). The time-step of the calculations is 

varying for all simulations, so that the Courant number can be kept at around 0.25. 

The flux term of volume fraction equation (eq. 13) needs special care, so that diffusion can be avoided 

and physical results can be obtained. In literature, there are a lot of different ways of achieving a sharp 

interface, namely [80-82]. However, any special treatment falls out of the aim of the present work, and 

should be addressed in future works (e.g. decrease of spurious velocities [83]). In this study, the CICSAM 

[84] discretization scheme was used, which is highly compressive. CICSAM has been proved to provide a 

reliable way of predicting two-fluid phenomena concerning droplet impingement on a wall film, droplet 
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collisions [78, 85, 86] and impingement onto heated surfaces as reported in the works of researchers 

from the author’s group [52, 53, 65-67] .  

3.2 Implementation of Dynamic contact angle models and Wetting Force 

Model (WFM) 

3.2.1 Dynamic contact angle models 

The dynamic contact angles, associated with the quasi-dynamic Adv-Rec, Kistler and Shikhmurzaev 

models, are implemented in the VOF model using a similar approach to the one presented in Brackbill et 

al. (eq. 53) [69] and Ubbink (eq. 2.22) [84]. The main idea lies on the use of a prescribed value of the 

contact angle θ at the wall as a boundary condition. Then based on this value, the normal to the 

interface unit vector at the wall boundary cells n̂  is rotated, according to the following equation: 

ˆ ˆ ˆcos sinw tn n n     ( 19 ) 

so that the interface can form the prescribed angle θ, when in contact with the wall. Figure 3 is 

presented for better understanding of eq.19 concept and notation. 

 
Figure 3. Unit vectors on the wall face, as well as unit free surface normal vector. 

In particular, the rotation of this vector influences the interface curvature calculation (eq. 17) at the 

spreading droplet rim boundary cell, and in turn the surface tension force (eq. 16) applied at the cells.  

The calculation of the contact line velocity is based on the actual velocity calculated at each 

computational cell, in the close region of the rim (triple-phase contact region), from which the velocity 

component parallel to the wall ( ) is derived, according to eq. 20: 

 ( 20 ) 

Although more accurate methods for contact line velocity have been presented in the literature, based 

on  the time derivative of the radius of the wetted area, as in Sikalo et al. [50] and Roisman et al. [41]  

(ucontline=dxcontline/dt), the simple approximation used here can be easily extended to a three-dimensional 

case. After the contact line velocity is found, the dot product of the velocity vector with the unit free 

surface normal provides the direction of contact line movement, i.e. if it the rim is advancing or recoiling. 

  ( 21 ) 
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If the resulting value is negative, this means that the rim is advancing (  always points inside the liquid 

phase), while if it is positive, the rim is recoiling. 

In ANSYS FLUENT, a User Defined Function for the dynamic angle value is embedded. The function works 

as follows: a) it loops over all wall boundary cells, b) it calculates at each cell the contact line velocity 

(eq.20) along with the contact line direction (eq.21) and c) only at the cells where the volume fraction 

gradient is non-zero, a prescribed contact angle value is provided. In the background, this value changes 

the value of  at the triple –phase contact region (max 3 cells), according to equation 19. 

The choice of the non-zero gradient condition is chosen in accordance with Roisman et al. [41], who 

applied the contact angle boundary condition imposed on cells in the immediate vicinity of the 

transition region, characterized by the gradient of the VOF function. This is because the volume tracking 

algorithm provides a transition region, rather than the exact position of the contact line. 

3.2.2 Wetting Force Model (WFM) 

The proposed force term (eq. 11) is implemented into the Navier-Stokes momentum equation (eq. 12) 

as an extra source term, active only at the boundary cells in contact with the wall, in the vicinity of the 

interface. The theoretical correct way to implement this contact line force is to apply that only at one 

point, i.e. at the triple phase contact line. However, when the contact line is represented by more than 

one cell, especially in the case of droplet impacts on hydrophilic surfaces (low contact angle values), this 

stress term should also be applied in more than one cell, owed to the diffusion of the interface. 

The “default” approach is to add this term at the cells in contact with the wall, where the volume 

fraction gradient is non-zero (as referred in Section 3.2.1). However, when this criterion was used for the 

application of the WFM, an unphysical velocity field was predicted at the contact line region, especially 

at the time instants when the droplet stopped advancing, right before the initiation of the recoiling 

phase. 

To be more precise, at the time instant when the droplet stops advancing, the stress term which is 

applied at the contact line cells is such that the rim turns according to the receding contact angle. This 

results in the introduction of a force pointing towards the interface outward direction in numerous cells 

(max 3), which affects the local flow field and culminates in the unphysical breakup of small secondary 

droplets, Figure 4.  

t=9.2ms t=9.3ms t=9.4ms  

   

 

Figure 4. Unphysical diffusion of volume fraction field, followed by the breakup of small secondary droplet observed when 
the Wetting Force is applied in a wide region around the contact line. Velocity vectors are plotted in the same manner for all 
pictures. The numerical tests have been performed for the conditions of Case 9. 
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n̂
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As the contact angle hysteresis gets higher, this unphysical phenomenon becomes more intense. In 
order to avoid such unphysical behaviour, two alternative strategies can be implemented: 

 calculating the contact line velocity as the mass weighted average of all neighbouring cells to the 
reference cell, so that the contact line velocity can be closer to the liquid phase velocity; 

 considering, as an additional criterion for the application loci of the adhesion force, all the 
interface cells, i.e. the cells with the volume fraction ranging lower than a given small value for 
the gas phase and higher than a threshold value for the liquid phase.  

The first test proved to be unsuccessful, while the second appeared valid for all cases examined (a large 

range of parameters), using the threshold values of 0.05 and 0.95 as the most representative for 

interface tracking. 

The magnitude of which is implemented in the momentum equation is given by the following 

expression: 

 ( 22 ) 

where 

 ( 23 ) 

This stress term is divided by the cell volume in order to be consistent with the momentum equation (eq. 

12). The equilibrium contact angle during the spreading phase is assumed to be equal to the advancing 

contact angle, , whereas during the recoil phase the equilibrium contact angle is equivalent to the 

receding contact angle, .  and  are measured experimentally using the standard sessile drop 

method, i.e. while expanding and retracting a drop quasi-statically on a horizontal surface; their 

difference, , is the contact angle hysteresis. The method, based on which this dynamic 

contact angle is calculated, is crucial as it determines the magnitude of this force, and therefore its 

contribution to the net force. In this work, the dynamic contact angle was calculated from the slope of 

the normal to the free surface ( ) in the region near the contact line, as shown in Figure 5c.  

At this point, the numerical procedure followed for the implementation of the wetting force is described: 

i. The contact line velocity (eq.20) and contact line direction (eq. 21) are found for all cells in 
contact with the wall, where the volume fraction ranges in-between 0.05 and 0.95. For these 
cells, it is identified whether the contact line is advancing or recoiling. 

ii. Subsequently, advancing or receding contact angles are inserted in eq. 22, in the place of θeq. 
iii. The resulting source term is inserted in the momentum equation (eq. 12). For the cases 

examined in this paper, this additional stress term is inserted only in the radial velocity equation, 
since an axisymmetric approach is followed. 

The particular case of a non-axisymmetric drop sticking to the substrate (with uconline = 0 and a non-

uniform distribution of contact angles on the entire contact line) should be treated in a different, 

WFMf
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specific way and it is not considered in the present paper. More specifically, in case of a sticking drop, 

e.g. a drop either under shear flow or on a tilted surface, the drop has a non-axisymmetric shape with a 

non-uniform distribution of contact angles. This causes the generation of a net adhesion force, which 

opposes to the external force (e.g. aerodynamic forces or gravity) and prevents drop motion. Predicting 

the onset of drop motion, when external forces overcome drop capillary adhesion, is not trivial, and can 

be complicated by the presence of surface local heterogeneities, as recently addressed by Varagnolo et 

al. [87] for the case of chemical heterogeneous surfaces with numerical simulations based on the lattice 

Boltzmann models. In the present paper, the main objective was not to evaluate the static adhesion 

force term, but to propose a model for the capillary adhesion force acting at the contact line in non-

stationary and non-equilibrium impact conditions. To further extend the present work to study static 

and close-to-equilibrium conditions, such as the case of drops impacting on high hysteresis or tilted 

surfaces, one possibility could be to implement an adhesion force for the static case, such as: 

, if  conline u  ( 24 ) 

where  should be chosen near to the wetting velocity and generally r is the local curvature radius on 

the surface plane. This “static adhesion force” plays a role when the drop spreading stops and may have 

an influence both for the stick and slip behavior or for the time at the maximum spreading (Antonini et 

al. [38]). It is important to note that this force could also capture specific three-dimensional phenomena 

like the formation of lobes and the wavy rim on the surface. 

3.3 Computational Domain, Boundary conditions, grid refinement 
In Figure 5a, the basic 2-D axisymmetric domain, comprising of 60x60 identical quadrilateral cells is 

shown, where local grid refinement of the region around the droplet has been applied. This adaptive 

local grid refinement technique is selected in order to increase the numerical accuracy as much as 

possible, with the minimum computational cost, as will be discussed further in the following section. The 

initial wall-droplet distance, shown in Figure 5b, is selected to be one droplet diameter (D0) long so the 

gas fluid flow around the droplet can develop in a physical way, just before droplet impact onto the 

surface. The initial droplet velocity and diameter are defined as Uo and Do respectively. Gravitational 

acceleration is directed towards the positive values of x axis. It is very important to note that the initial 

domain for all computations, conducted in this paper, was the same, where the spatial coordinates (x- 

axial coordinate, y-radial coordinate) ranged between:  , 0 0.015mX Y . Therefore, for the wide range 

of simulated cases presented in Table 2, the total length of the domain boundaries range between 

0(4 6.6D ) . 

In Figure 5b, a zoomed area of the applied numerical grid around the moving droplet, along with the 

high resolution of the grid are shown. This figure serves for the better understanding of the dynamic grid 

refinement technique. According to this technique, which is based on the work of Theodorakakos et al. 

[88], the mesh is dynamically refined every twenty time-steps in a prescribed distance from the 

interface. Numerically, this is achieved by a) looping over all cells of the domain once, b) finding the 

isoline of =0.5 and then c) looping over the cells as many times as the isoline cells, in order to mark the 

ones that lie within a specified distance from them. In this study, this distance was selected to be D0/5, 
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which was found to be far enough from the interface, so that the gradients of volume fraction are 

computed in the region with the denser grid cells. In that way, it is guaranteed that the computed 

surface tension term that will be inserted in the momentum equation will always have the highest level 

of accuracy.  

Since such grid treatment is not given as a standard user option in ANSYS/FLUENT software, 

implementation of this technique was achieved through a User Defined Function (UDF). The method of 

refinement was based on the hanging node adaption, available in ANSYS FLUENT. In this work, four 

levels of refinement were used, achieving a minimum cell size of around Δxinitial/24 = 15.6μm. This 

translates to approximately 72-120 cells along droplet radius for all the cases examined, which is in 

accordance to the current state-of-the art maximum grid resolutions applied in such cases. The 

application of this technique allows important computational time to be saved, as a uniform grid would 

require to be comprising of 921,000 cells uniformly distributed over the whole computational domain; 

for comparison, here only 24,672 cells are required for a typical droplet with initial diameter D0=2.75mm, 

for the same grid resolution around the interface to be achieved.  

 
 
 
 
 
 
 
 
 

   
a b 

 
c 

Figure 5. a) Initial Domain + Boundary conditions for all cases, b) Depiction of the local refinement technique, c) calculation 
of θdyn for the WFM. 

3.4 Simulated cases 
Nine cases are used for the validation of the proposed model; the corresponding conditions are 

summarized in Table 2 and concern the impingement of a water droplet onto both hydrophilic and 

hydrophobic surfaces. A wide range of We numbers ranging from as low as 0.2 up to 120 have been 

examined. Cases 1-4 refer to the impingement on hydrophobic surfaces, while Cases 5-9 concern 

X(mm) 

Y(
m

m
) 
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hydrophilic surfaces. Case 6 (We=0.2) has been included in order to compare its results against those of 

Case 5, which also refers to a very low Weber number; it is known that for such very low Weber 

numbers, peculiar post-impingement liquid shapes are forming, as it will be further presented in a 

following section. The properties for liquid water and air that were used in the simulations are ρliq=998.2 

kg/m3, μliq=1.003·10-3 kg/ms, ρgas=1.225 kg/m3, μgas=1.7894·10-5kg/ms. 

  
Uo 

(m/s) 
Do 

(mm) 
θadv 
(o) 

θrec 
(o) 

We Re 

Dmax/D0 % dev  

Ref 
 Cases 

Run Exp Sim 

Pasand 
Theory 

[18] 
WFM-

Exp 
Pas-
Exp 

1. LW-HCA-
HH 

0.48 2.50 120 65 8 1200 1.50 1.71 1.92 14.2 28.0 [41] 

2. MW-HCA-
HH 

1 2.28 
107 

(*90) 
77 32 2280 2.29 2.42 2.59 5.7 12.9 [54] 

3. MW-HCA-
LH 

1.18 2.75 105 95 53 3245 2.62 2.85 2.95 8.8 12.4 [30] 

4. HW-HCA-
LH 

1.64 2.45 105 95 91 4018 3.1 3.30 3.29 6.5 6.2 [50] 

5. VLW-
MCA-LH 

0.22 2.40 70* 70 2 527 2.4 1.69 2.46 -29.6 2.4 [40] 

6. VLW-LCA-
LH 

0.08 2.30 31* 31 0.2 184 1.96 1.86 5.00 -5.1 155.0 [32] 

7. LW-MCA-
LH 

0.76 2.40 70* 70 19 1821 2.8 2.48 2.88 -11.4 2.7 [40] 

8. MW-LCA-
LH 

1.18 3.04 10 6 59 3587 3.31 3.62 4.22 9.4 27.6 [30] 

9. HW-MCA-
HH 

1.50 3.76 
60 

(*34) 
22 117 5640 4.05 4.18 4.09 3.2 0.9 [43] 

Table 2. Test Cases used for the validation of the new model. Initial conditions are presented, together with results from the 
WFM, experiment and the theoretical correlations proposed by Pasandideh [18] (eq. 1). For the simplification of Cases, the 
following abbreviations are used: first the Weber number (W), then the advancing contact angle (CA), and finally the contact 
angle hysteresis (H), while the symbols VL , L , M , H represent the words very low, low, moderate and high. (* equilibrium 
angles (Cases2,9). When only the equilibrium angle is given, the advancing/receding angles take this value, as in Cases5-7.) 

4 Results and discussion 
In this section the results obtained are presented. Initially, a brief grid dependency study will be 

presented together with results for validating the global behavior of the model. Then, detailed 

predictions for the temporal evolution of the relevant phenomena are presented: Initial predictions for 

the evolution of the dynamic contact angle are given followed by the corresponding ones for 

hydrophobic and hydrophilic cases.   

4.1 Grid size verification 
For a thorough validation of the model, and due to the fact that in the present simulations the dynamic 

contact angle is calculated, the effect of grid size on the numerical results should be investigated, so as 

to prove that the magnitude of the force exerted, in relation to the surface tension force, is not mesh-

dependent. For that reason, Cases 1 (LW-HCA-HH) and 7 (LW-MCA-LH) were run using six levels of local 

refinement, achieving a minimum cell size of around Δx/26 = 3.9μm. The results for these cases were 

then compared to the ones obtained with the use of 4 levels of local refinement, which finally have been 
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the default choice for this study. Figure 6 presents the temporal evolution of the calculated dynamic 

contact angle, measured from the volume fraction 0.5 iso-line passing from the reference cell (one cell 

in contact with the wall), after the application of the Wetting Force Model using 4 (default) and 6 levels 

of local refinement respectively, in comparison to the available experimental values. Moreover, for 

Case1 (LW-HCA-HH) the experimental data of Roisman et al. [41] are well fitted. It is clear that the effect of 

grid size is minimal both for hydrophobic (Figure 6a) and hydrophilic (Figure 6b) surfaces, even if in the 

latter case, the results for the dynamic contact angle are slightly improved by the application of 6 levels 

of local refinement. The “noise” observed in Figure 6a can be attributed to the very small cell size, in 

relation to the sign change of the applied wetting force. More precisely, as the reference cell size (where 

contact angle is measured) gets smaller, the interface is more prone to direction changes owed to a) 

velocity field fluctuations and b) the application of an updated stress magnitude at each time instant. 

Additionally, one should not forget that at each time instant the curvature of the interface changes, 

which in turn affects the induced velocity field and therefore the formed contact angle. This in turn 

affects the exerted on that cell stress magnitude. Moreover, one could imagine that this oscillating 

behavior, presented in Fig.4a, may resemble the pinning of droplet during its spreading between two 

values as stated by [89], but this should be further investigated.  

The same behavior is observed for Case7 (LW-MCA-LH), at the time when the dynamic contact angle 

reaches the set equilibrium value (θ=70o, Table 2). On the whole, the numerical results are not 

considered to be highly dependent on the level of local grid refinement and given the fact that 6 levels 

of local refinement is computationally too expensive, the numerous cases presented in this paper are 

run using 4 levels of local refinement.  

Case1. LW-HCA-HH Case7. LW-MCA-LH 

  

a b 
Figure 6. Effect of grid size for Cases 1. LW-HCA-HH and 7. LW-MCA-LH of Table 2 a) θdyn as a result of the WFM simulation 
using 4 and 6 levels of local refinement in comparison with the experimental values and simulation results of Roisman et al. 
[41]. b) θdyn as a result of the WFM simulation using 4 and 6 levels of local refinement in comparison with the experimental 
values of Roux et al. [40]. The symbol “rm” in the graphs stands for remeshing. 

4.2 Global performance of the model 
Figure 7a presents the maximum droplet spreading as calculated from the WFM simulation against the 

corresponding experimental values. It is clear that the new model behaves satisfactorily for all cases, 
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with the exception of Case5 (VLW-MCA-LH). Similarly, Figure 7b presents the maximum dimensionless 

spreading as a function of Weber number; here 3 sets of data have been included:  a) WFM predictions, 

b) experiments and c) the estimates of the Pasandideh’s correlation (eq. 1). The results obtained by 

application of the Pasandideh’s equation overestimate the experimental droplet maximum spreading1, 

while the WFM model predicts accurately the impingement onto dry hydrophobic surfaces, even if it is 

less accurate for the hydrophilic ones, particularly for moderate Weber numbers. Concerning the 

hydrophobic surfaces, results of the WFM slightly overestimate (approx. 10%) the experimental findings. 

On the other hand, for hydrophilic surfaces, not a monotonic overestimation or underestimation of the 

model predictions against experimental data is tracked. 

  
a b 

Figure 7. Summary of simulation results with the use of WFM model. a) Droplet maximum spreading plotted against the 
experimental values, b) Maximum spreading plotted against experimental values and results of eq (1). 

Being able to predict the droplet maximum spreading for a variety of contact angles and Weber 

numbers, it can be claimed that the WFM can be trusted; moreover, a simple grid dependency study 

showed that the results are not mesh affected. After that, a more detailed comparison of the model 

predictions will follow in the forthcoming sections. 

4.3 Dynamic contact angle evolution 
The results of the dynamic contact angle predictions for both hydrophobic and hydrophilic surfaces 

presented in Figure 6 serve as a sign of validity for the new model (WFM), which as noted above can 

shed light in the temporal evolution of the phenomenon by not prescribing a contact angle value, but on 

the other hand predicting it. For hydrophobic surfaces, as stated in the Introduction section, only the 

study of Roisman et al. [41] exhibits dynamic contact angle measurements and thus can be used for 

validation; in Figure 6a the predictions of the WFM and experimental data are shown for Case1 (LW-HCA-

HH), accompanied by the corresponding numerical results presented in the work of Roisman et al. [41], 

who used the Kistler’s dynamic contact angle model (eq. 6). The dynamic contact angle predicted by the 

WFM during the advancing phase is lower than the one measured during the experiments, which is a 

reason for the over-prediction of maximum spreading (Case1 in Figure 7).  
                                                           
1 It should be mentioned that Pasandideh equation is not applicable for very low Weber numbers, because the assumption of a 

viscous boundary layer influencing significantly energy dissipation is not valid for very low Reynolds numbers [17]; that is why 

maximum spread for Case6 (VLW-LCA-LH) is highly overestimated and therefore not included in Figure 7b. 
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During the initial stage of impingement, as soon as the liquid droplet comes in contact with the surface, 

θdyn is approximately 180o. Subsequently, the contact angle reduces rapidly to approximately 110o, 

which is lower than the equilibrium angle accounted for in eq. 22 (i.e. the advancing one, 120o) and 

slowly reduces during the rest of the advancing phase. θdyn then drops suddenly to 80o at approximately 

6.5ms, which can be set as the initiation of the receding phase; this value is higher than the equilibrium 

value of 65o set in Eq. 22. This shows that the application of the wetting force has smaller effect than 

expected. Contact line velocity exhibits similar behavior (presented in Figure 8). At first, a spike is 

observed when the droplet hits the surface, followed by an almost exponential reduction of its 

magnitude with time. The time interval between 5 and 6.5ms is considered to be the “hysteresis” time, 

i.e. the time needed for the contact angle to decrease from values ~θadv to ~θrec. During this stage, the 

contact line velocity fluctuates around zero. At later stages, t > 6.5ms, contact line velocity exhibits 

negative values, i.e. the droplet is recoiing, with substantially smaller magnitude than during the 

advancing phase. 

Case1. LW-HCA-HH 

 
Figure 8. Contact line velocity throughout the impingement for Case1. LW-HCA-HH. 

In Figure 6b, the dynamic contact angle for Case7 (LW-MCA-LH) is compared against the experimental 

values of Roux et al. [40]. During the initial stage of impingement, the contact angle starts with a value 

again of 180° and drops again quite fast down to 80o. This trend is also observed in the experimental 

data; however, the duration of this period is underestimated by the simulation. Afterwards, a constant 

angle of around 80° is predicted by the model, while the experimental values lie between 50° and 80°. 

This harmony between simulation and experiment is also confirmed by the agreement in droplet shapes 

depicted in Figure 17, which will be presented in the following sections. 

4.4 Wetting Force Magnitude 

Concerning the magnitude of the WFM, the following Figure reveals its comparison for two reference 

cases tested (Case 2 and Case 9) against the force exerted by the standard CSF approach, Figure 9.  

The wetting force which is applied is of the same order of magnitude with the surface tension force, 

demonstrating that it can affect in a reasonable manner the interface rim angle of spreading. The main 

difference between this model and the implementation of the contact angle through boundary 

condition, as it is observed in Fig. iii is that in the wall boundary cell the induced surface tension force is 
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much more intense, which however does not exhibit any significant changes in the macroscopic 

simulation of the phenomenon of liquid droplet impact on a solid flat surface. 

WFM Adv-Rec Case2, t=2.7ms 

Wetting Force (N/m3) Surf Tens (N/m3) Surf Tens (N/m3)  

   

 
Ref.vector 
(1.6e+07N/m3) 

 

WFM Kistler Case9, t=3.1ms 

Wetting Force (N/m3) Surf Tens (N/m3) Surf Tens (N/m3)  

   

 
Ref.vector 
(3e+07N/m3) 

 
Figure 9  Magnitude of the Wetting Force, as well as surface tension force predicted by the WFM in a random time instant 
compared to the surface tension force predicted by Kistler’s model. Force vectors are plotted in the same manner for both 
Cases (using the value of 3e-08 cm/magnitude). 

Additionally, if the WFM was simply turned off, the resulting contact angle at the wall boundary would 

be approximately 90o, since the applied BC would have been that of a zero Neumann boundary 

condition ( ).  

4.5 Spreading on hydrophobic surfaces 
In Figure 10, the temporal evolution of the impingement of a water droplet onto solid hydrophobic 

surfaces is depicted for the Cases 1-4 of Table 2. More specifically, results from the application of WFM 

are compared against the corresponding experimental data; in addition, the predictions obtained using 

the dynamic contact angle models of Kistler and Shikhmurzaev, as well as those obtained by assuming 

fixed advancing-receding angles are also indicated. Furthermore, in the same figures, results reported in 

the literature by other researchers for the same cases and referenced in Table 2 have been also included. 

Exception to this is Case3 (MW-HCA-LH), since previous simulation results cannot be found in literature to 

the best of the author’s knowledge; it is noted that the results of Caviezel et al. [55], that also refer to 

this case, present only comparison against corresponding photographs during the impingement process 
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but the temporal evolution of the spreading radius has not been provided in the corresponding 

reference.  

Case1. LW-HCA-HH. We = 8 Case2. MW-HCA-HH. We = 32 

  
Case3. MW-HCA-LH. We = 53 Case4. HW-HCA-LH. We = 91 

  
Figure 10. Comparison of WFM results against experiments and respective simulations for the hydrophobic surfaces of 
Cases1-4 listed in Table 2(where references can be found); corresponding predictions from other dynamic contact angle 
models found in literature are also indicated.  

In general, the Wetting Force Model overestimates slightly the maximum droplet spreading. Given that 

the proposed model calculates the contact angle rather than using it as a boundary condition, a good 

agreement between the results derived from the WFM and the experiments can be claimed. It should be 

noted that contact angle predictions, as provided by the Shikhmurzaev’s and Kistler’s models as function 

of the contact line velocity assuming an arbitrary θeq= 90o can give up to 20% difference. This suggests 

that significant differences when predicting the contact angle can be expected with all the previous 

models.  

In Figure 11 and Figure 12 the droplet shape at characteristic times during the impingement process is 

presented and compared to photographs taken from experiments for the conditions of Cases 3 (MW-HCA-

LH) and 4 (HW-HCA-LH). It is clear that apart from the quantitative validation afore-presented, WFM 

captures also qualitatively the phenomenon of a water droplet impinging on hydrophobic surfaces. In 

Figure 11 the spreading and recoiling of the droplet, as well as the break-up of a large satellite droplet 

for Case 3 (MW-HCA-LH) is predicted. It should be pointed out that at the later stages of the recoiling 

phase, the simulation shows the same qualitative behavior, but with a trend slightly faster than what the 
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experiment suggests (for example at t=20.54ms, in simulation results, the break-up of the satellite 

droplet has occurred, while in the experiment this phenomenon occurs later). Similar results are 

presented by Caviezel et al. [55], indicating a very good agreement between the results of the two codes. 

In Figure 8, the isosurface =0.5 is depicted, where the interior of the droplet is cut in order to present 

both the dynamic grid refinement technique and velocity vectors throughout the impingement process. 

Moreover, the pressure of the liquid phase is shown for the boundary wall cells. For the non-

dimensionalisation of these parameters, velocity magnitude is divided by the initial impact velocity, 

while pressure is divided by the initial kinetic energy of the droplet, thus defining the pressure 

coefficient as: 

2 2
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1 1

2 2
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In this equation, Poo and Uoo are the velocity and pressure on the far field. The pressure difference is 

given by the value of pressure evaluated in the momentum equation. 
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t=10.26 

 
 

t=14.02 

 

 

 

t=20.54 

 

 
 
 
 
 
 

 

Figure 11. Comparison with experiment for Case 3. MW-HCA-LH (Rioboo et al. [30]). Pictures taken from reference. Results 
are represented in 3 dimensions, after the revolving of symmetry axis. Cp contour and velocity vectors colored by velocity 
magnitude are plotted. Cp values below 0.01 are cutoff.  The first Cp contour legend applies to the first two pictures, while 
the second one applies to all the following. Velocity contour is the same for all pictures. 

At the initial stage of impingement, t=0–1.31ms, pressure can reach up to 9.7 times of droplet initial 

kinetic energy, which can be explained by pressure rise due to formation of a dimple upon drop impact 

[90]. During the rest of the spreading phase and the start of the recoiling phase (t=3.14-6.02ms), Cp is 

much lower, while its maximum value is observed on droplet rim. As the retraction of liquid mass 

continues, pressure is building up on droplet center, where the liquid is pressed towards an upward 

movement. The induced flow field is typical for impingement cases, where during the initial stage of the 

process, velocity magnitude can reach up to 6 times the initial impact velocity, while during the rest of 

the advancing and receding phases the maximum velocity magnitude is only 1.5 times the impact 

velocity. Moreover, the vortex that is formed on the top of droplet rim clearly changes direction 

between 3.14ms and 6.02ms marking the initiation of the receding phase. 
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In Figure 12, the comparison between pictures taken from the work of Sikalo et al. [50] (Case4 HW-HCA-LH) 

are compared against the results of the WFM simulation. Again, very good qualitative agreement is 

observed between simulation and experiment. In this figure, the pressure contours, as well as the 

induced flow field during the process are presented.  

 

 
t = 0.05 ms  t = 0.86 ms 

    

   

 t = 1.25 ms  t = 1.95 ms 

   
 

 
 

 t = 3.86 ms  t = 4.67 ms 

  

 
t = 5.7 ms 

 t = 7.8 ms 

  
Figure 12. Comparison with experiment for Case4. HW-HCA-LH (Sikalo et al. [50]). Pictures taken from reference. Cp contour 
and velocity vectors colored by velocity magnitude are plotted. Cp values below 0.01 are cutoff. The first contour legends 
apply to the first picture, while the second one applies to all the other. 
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Typical impingement behavior is again observed in these pictures, where during the initial stage of the 

process, velocity magnitude reaches up to 4 times the initial impact velocity. Moreover, the vortex on 

the top of droplet rim is again visible, while it changes direction between 3.86ms and 4.67ms (receding 

phase). At the moment when the droplet hits the surface, Cp can reach up to 10 times the initial kinetic 

energy of the droplet, while for the rest of the process the maximum one is only 0.85 of the initial 

kinetic energy Finally, in the last picture, at t=7.8ms, the ejection of a small droplet on the symmetry axis 

is predicted, which comes from the quick break-up of the droplet in the symmetry axis, just as the liquid 

mass was retracting. 

In Figure 13, the non-dimensional spreading radius is plotted against time, for all 4 cases concerning the 

impingement of a water droplet onto hydrophobic surfaces. It is clear that at the first stage of 

impingement (τ=t Uo/Do < 0.2) the four lines coincide in one, depicting the uniform character of the 

impingement process, which has been also reported by Rioboo et al. [30]. 

 
Figure 13. Non-dimensional spread factor from WFM simulation plotted against non-dimensional time for hydrophobic 
surfaces.  θadv= 105o-120o. We=8-91, x-axis, logarithmic scale. 

4.6 Spreading on Hydrophilic surfaces 
In Figure 14, the temporal evolution of the impingement of a water droplet onto solid hydrophilic 

surfaces is depicted for cases 5, 7, 8 and 9. Due to the lack of numerical investigations in literature for 

water droplet impingement onto hydrophilic surfaces, as stated in the Introduction section, to the best 

of author’s knowledge, the work of Fukai is the only one which was found for these 4 Cases and thus is 

the only one presented in Figure 14. Moreover, due to this lack of numerical investigations, the results 

that will be presented in this study, for all models used, concerning low and moderate Weber numbers, 

present an additional novel character.  
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Case5. VLW-MCA-LH. We = 2 Case7. LW-MCA-LH. We = 19 

  
Case8. MW-LCA-LH. We = 59 Case9. HW-MCA-HH. We = 117 

  
Figure 14. Comparison of WFM results against experiments and respective simulations for the hydrophilic surfaces of 
Cases5,7-9 listed in Table 2 (where references can be found); corresponding predictions from other dynamic contact angle 
models found in literature are also indicated. 

The first two experimental cases presented in Figure 14 are taken from the work of Roux et al. [40] and 

concern the impingement of a water droplet onto a hydrophilic surface at low Weber numbers (We=2 

and 19). In their work, Roux et al. [40] give experimental measurements for the time evolution of 

droplet radius only for the first 4ms of the impingement, while they present the droplet maximum 

radius in one Figure relating that to the Reynolds number. Therefore, the comparison between model 

and experiments for these cases is limited to this specific time interval (initial 4ms), while the respective 

comparison with the value of maximum spreading is given in Table 2 and presented in Figure 7.  

In Case5 (VLW-MCA-LH) all models overestimate droplet spreading for the initial 4ms. WFM seems to be 

closer to the experimental values, in comparison to the Advancing-receding model, as well as Kistler’s 

model, in contrast to what was seen in hydrophobic surfaces. Using Shikhmurzaev’s model similar 

results to the WFM are taken for this case. Moreover, at 4ms the lines representing the time evolution 

of droplet spreading for all models are steeper than the experimental one, which results in an 

underestimation of maximum spreading, shown in  Table 2. Increasing the Weber number to We=19 

(Case7. LW-MCA-LH), the experimental values are approached better by the WFM simulation, at least for 

the initial 4ms of the phenomenon. Shikhmurzaev’s model gives the best results, perfectly capturing the 

trend of the experimental values, while all other models, as well as the WFM are quite close as well. .  
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For Case8 (MW-LCA-LH), a significant over-prediction of droplet spreading is predicted by the simulation, 

as it is shown in Figure 14. This Case is taken from the work of Rioboo et al. [30] where it is reported that 

the advancing contact angle takes the value of 10 degrees (Table 2). Using this value, none of the 

dynamic contact angle models was able to reach a non-dimensional maximum diameter of 3.31 as 

measured in the experiments. The Wetting Force Model, on the other hand, predicts a non-dimensional 

spreading substantially lower than the other models and significantly closer to the experiments. 

Additionally, the recoiling of the drop is predicted, unlike to what the experiment suggests and this is 

the reason that the results for only the first 15ms are presented. 

Finally, for Case9 (MW-LCA-LH), all models seem to behave better than previously, and the maximum 

spread is well captured. Shikhmurzaev’s dynamic contact angle model gives the best results among all 

the standard used contact angle models. For once more, the Wetting Force Model, seems to behave 

slightly better during the advancing phase, but predicts a quicker recoiling phase. In Figure 15 the 

prediction of “hysteresis” time for Case 9 is depicted for the WFM model in comparison to the 

advancing-receding model. Firstly, it is obvious that the hysteresis time lasts much longer for the 

Advancing-Receding model. This is shown by the “turning” of the rim at time instant t=13.66ms for the 

Advancing-Receding model, in conjunction with the slight “turn” in 9.93ms for the Wetting Force Model. 

Constant values for Advancing/Receding CA WFM 
t=8.09 ms t=7.76 ms 

  
t=13.66 ms t=9.93 ms 

  
t=31.68 ms t=15.62 ms 

  
Figure 15. Prediction of “hysteresis” time for WFM in comparison to Advancing-receding model. Velocity vectors colored by 
velocity magnitude are plotted. Higher receding angle which results in quicker recoiling phase is predicted by the WFM. 

Secondly, it is evident that the receding contact angle that is formed is not the same for the two models. 

The Wetting Force Model predicts a higher receding contact angle, which is the main reason for the 

quicker recoiling phase, as observed in Figure 14. Finally, on the third picture (15.62ms for the WFM) it is 
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obvious that the highest angle that is formed using the WFM results in the prediction of a different flow 

field (vortex over the rim), which additionally has higher receding velocity values. Thus, a quicker 

receding phase is observed. The simulation stopped at 30ms because droplet break-up in the symmetry 

axis was observed, and the present axisymmetric application of the Wetting Force Model cannot be 

considered as valid after that time instant. Finally, the direction turn of the vortex which lies on top of 

droplet rim is obvious in the transition from advancing to receding phase. 

In Figure 16 and Figure 17 the shape of the drop at characteristic times during the impingement of Cases 

5 (VLW-MCA-LH) and 7 (LW-MCA-LH) is presented. In Figure 16 the phenomenon is captured qualitatively.  

Case5. VLW-MCA-LH - Exper (Roux et al.) We=2 

    

   
   

         

        
texp      = 0.089, 1.157, 3.314, 4.272, 8.455, 10.146 ms  
tsim  = 0.089, 0.53,     1.5,      3.4,     5.49,      6.21 ms 
Figure 16. Comparison with experiment for Case5. VLW-MCA-LH. Cp contour and velocity vectors colored by velocity 
magnitude are plotted. Cp values below 0.01 are cutoff.  The first contour legends apply to the first 3 pictures, while the 
second one applies to all the other. 

However, as it was also observed in Figure 14, droplet initial spreading is overestimated, meaning that 

the phenomenon is predicted to be much quicker that in real time. This is evident in Figure 16, where 

the simulation time is much smaller than the real time. Moreover, in the first 4 experimental pictures, 
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the simulated droplet shapes are very similar to the experiment, showing that the model can predict 

such odd shapes (t = 1.157, 3.314) formed by the droplet at very low Weber numbers. In the next 2 

pictures, a larger thickness of the liquid film is predicted, which deviates from the experiment and is the 

main reason for the underestimation of maximum spreading. However, as Roux et al. [40] observe, 

though the contact angle value at the end of the relaxation phase takes a value of approximately 15 

degrees (static contact angle), the dynamic advancing contact angle formed during the advancing phase, 

is approximately 70 degrees. This value was used for the simulation, and as a result the dynamic contact 

angle was around to this value. This makes it very difficult for a simulation to capture this change in 

dynamic contact angle. One would expect, that using Kistler’s or Shikhmurzaev’s model would result in a 

much better representation of the phenomenon, however this was not the case (Figure 14). The 

pressure contours for this Case are rather peculiar. More specifically, Cp inside the droplet is higher than 

expected, and has a lowest value of 3 for all pictures inside the liquid phase, instead of the typical zero 

value in the interface. This problem can be possibly attributed to the spurious velocities which appear in 

the interface region. For higher Weber number, the effect that these velocities have on the evolution of 

the impingement is minimal. On the other hand, at very low Weber numbers, these spurious velocities 

can cause an unrealistic pressure field. Additionally, because impact velocity is very low, P-Poo in the Cp 

approximation may represent the surface tension force (this is evident in very small droplets, while in 

this Case D=2.4mm). 

In Figure 17, the temporal evolution of impingement for Case7 (LW-MCA-LH) is compared against 

experimental photographs from the work of Roux et al. [40]. For this case there is both qualitative and 

quantitative agreement between simulation and experiment.  
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Case7. LW-MCA-LH - Exper (Roux et al.)   We=19 

 
 

   

   
texp/sim = 0, 0.132, 0.484, 1.452, 2.508, 3.608  ms 

Figure 17. Comparison with experiment for Case7 LW-MCA-LH. Cp contour and velocity vectors colored by velocity magnitude 
are plotted. Cp values below 0.01 are cutoff. The first contour legends apply to the first 3 pictures, while the second one 
applies to all the other. 

A general observation is that WFM, in contrast to hydrophobic surfaces (Figure 10) gives results, which 

are closer to the experimental values than the Advancing-Receding or Kistler’s model, while a quicker 

recoiling phase is predicted for Cases8 (MW-LCA-LH) – 9 (HW-MCA-HH) . As for the other models, 

Shikhmurzaev’s model for dynamic contact angle behaves better in all cases presented, while Kistler’s 

model for hydrophilic surfaces exhibits significant improvement in comparison to the advancing-

receding model. In hydrophobic surfaces the results for these models were similar. In Figure 18, the non-

dimensional droplet diameter is plotted against time, which is non-dimensionalised by U0
-1/2, a factor 

proposed by Antonini et al. [38] for a uniform representation of droplet spreading radius on hydrophilic 

surfaces. Again, all lines coincide in one for the initial stage of impingement, while afterwards the effect 

of inertia plays significant role. The values of x-axis do not correspond to a real quantity.  
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Figure 18. Non-dimensional spread factor from WFM simulation plotted against non-dimensional time for hydrophilic 
surfaces.  θadv= 10o-70o. We=0.2-117, x-axis, logarithmic scale. 

4.7 Impact at very low Weber numbers 
Due to the significant under prediction of the maximum spread in Case5 (VLW-MCA-LH) for low Weber 

number (We=2) it was deemed necessary that another Case should be run for justification reasons. This 

case (Case6 VLW-LCA-LH in Table 2), for an extremely low Weber number (We=0.2) was taken from the 

experimental work of Park et al. [32], who do not present photographs, but only the time evolution of 

droplet radius. In Figure 19, results of all models used in this study are presented both for Case5 (VLW-

MCA-LH) and Case6 (VLW-LCA-LH). During the initial 4 ms of the phenomenon, simulation results on one 

case (Case5 VLW-MCA-LH) overestimate droplet initial spreading, while on the other (Case6 VLW-LCA-LH) 

underestimate it. This clearly shows how difficult from a numerical point of view, the simulation at low 

Weber numbers is, and how sensitive to all conditions of the solid surface the real phenomenon is, 

always taking into account the uncertainty of experimental measurements. Concerning the whole 

phenomenon (0 < t < 60ms), it is observed that the model cannot predict a slow deposition as seen 

during the experiments for Case6 (VLW-LCA-LH) (Figure 19). More specifically, the droplet, after it reaches 

its maximum radius, oscillates until it comes to rest, unlike to what the experiment (slow deposition) 

depicts. This behavior is also evident in Case5 (VLW-MCA-LH); however the temporal evolution of Dmax/D0 

is not available in order to compare it. This means that the dissipation of initial kinetic energy is not well 

predicted by the model. 
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Case5. VLW-MCA-LH , We=2 Case6. VLW-LCA-LH , We=0.2 
t < 4ms 

  
0 < t < 60ms 

  
Figure 19. Comparison of simulated results for very low Weber numbers. 

5 Conclusions 
A new numerical model, the Wetting Force Model, for modelling the capillary adhesion forces acting at 

the three-phase contact line of a liquid drop impacting onto a solid surface was for the first time 

presented and applied to numerical simulations. The proposed approach orients to the detailed 

description of low and medium We number impacts, for which capillary forces can be considered to be 

influential in terms of the spreading dynamics, while the novelty of the new model, compared to most of 

the models presented in the literature, is the use of a completely different approach with respect to the 

contact angle calculation computation. Indeed, the dynamic contact angle does not have to be provided 

as a boundary conditions of the wall, i.e. as an input for the simulation, but is derived as a result of the 

acting wetting forces at the droplet rim under dynamic conditions. The model assumes that an adhesion 

force, due to capillary interaction between the liquid and the solid surface, acts at the contact line. This 

force comes into play when the dynamic contact angle differs from the equilibrium contact angle, which 

is the advancing contact angle during spreading and the receding contact angle during recoiling. The 

implementation of this force was achieved by its addition as an extra stress term in the Navier-Stokes 

momentum equation. The derived numerical results were compared not only against experimental data, 

but also against the corresponding simulation results of other researchers and three different contact 
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angle models (namely Advancing-Receding, Kistler’s and Shikhmurzaev’s dynamic contact angle models). 

For all the cases, good agreement with experimental data is observed, with a slight over-prediction 

(<15%) of droplet maximum spreading. The comparison with all other simulation models delivers similar 

results, with the exception of the dynamic contact angle model of Shikhmurzaev, which in most cases 

gives the best results in terms of spreading ratios. In particular, although the recoiling phase, which was 

observed in hydrophilic surfaces at moderate and high Weber numbers, is quicker than the 

experimentally observed, on hydrophilic surfaces and for moderate Weber numbers, the improvement 

in droplet maximum spreading owed to the use of WFM in comparison to Shikhmurzaev’s model is very 

promising. 
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