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In this paper a compressive sensing (CS), sub-Nyquist, non-uniform deterministic sampling 
technique is considered in conjunction with a computationally efficient power spectrum 
estimation approach for frequency domain output-only system identification of linear white 
noise excited structural systems.  The adopted CS sensing spectral estimation approach assumes 
multi-band input random signals/stochastic processes without posing any signal sparsity 
requirements and therefore it is applicable to linear structures with arbitrary number of degrees 
of freedom and level of damping.  Further, it applies directly to the sub-Nyquist (CS) 
measurements and, thus, it by-passes the computationally demanding signal reconstruction step 
from CS measurements.  Numerical results pertaining to the acceleration response of a damped 
structure with closely-spaced natural frequencies are provided to demonstrate the effectiveness 
of the considered approach to provide reliable estimates of natural frequencies by means of the 
standard frequency domain peak-picking algorithm of operational modal analysis using up to 
90% fewer measurements compared to the Nyquist rate sampled data.  It is envisioned that this 
study will further familiarize the structural dynamics community with the potential of CS-based 
techniques for vibration-based structural health monitoring and condition assessment of 
engineering structures. 

Keywords: Compressive Sensing, Power Spectrum Estimation, Output-only System 
Identification, ARMA Filter, Multi-band Stationary Random Processes, Multi-coset sampling. 

 

1 Introduction and Motivation 

Operation modal analysis (OMA), also 
referred to as output-only modal analysis, is a 
widely used vibration-based technique for 
condition assessment, design verification, and 
health monitoring of civil engineering 
structures (e.g., Reynders 2012).  It relies on 
certain concepts and techniques from the 
fields of (linear) structural dynamics, system 
identification, and modal testing (e.g., Ewins 
2000) to derive dynamic properties (e.g. 

natural frequencies, damping ratios, and mode 
shapes) by acquiring and processing low-
amplitude acceleration signals from structures 
excited by ambient (assumed to be white) 
noise.  From a technological viewpoint, the 
use of wireless sensor networks (WSNs) has 
been an important development in OMA of 
civil structures in the past 15 years (e.g., 
Lynch 2007, Spencer and Yun 2010).  
Compared to arrays of wired sensors, WSNs 
allow for more economical and rapid 
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implementation of OMA.  In fact, the current 
consensus is that WSNs will become the 
preferred way to monitor civil structures via 
OMA once the practical constraints of limited 
energy availability of battery operated sensor 
nodes and data transmission bandwidth are 
addressed in a cost-effective and robust 
manner. 

To this aim, it has been recently 
recognized that theoretical and technological 
developments from the emerging field of 
compressive sensing (CS) may offer new 
viable strategies to reduce costs in WSNs for 
OMA (Park et al. 2014, O’Connor et al. 2014, 
Yang and Nagarajaiah 2015).  In a nutshell, 
CS asserts that if an N-length discrete-time 
signal/vector 1N×∈x  (assumed to be 
sampled at the Nyquist rate from an analog 
continuous-time signal) or its linear 
transformation a  on a basis of vectors 
collected in the N×Ν∈Ψ  matrix (i.e., 
=x Ψα ) has only J non-zero entries (“J-

sparse”), then x can be faithfully retrieved 
(with high probability) from only M 
proportional to J·log(N/J) non-uniform 
random measurements =y ΦΨα , where 

1M×∈y  and M N×∈Φ  is an appropriately 
defined random matrix, by solving an 

1 optimization problem (e.g., Baraniuk 
2007).  This result suggests that CS can be 
used to simultaneously acquire and compress 
signals (i.e., reduce their dimensions from N 
to M<<N) by exploiting their potentially 
“sparse” structure in some domain (e.g., the 
Fourier domain).  In fact, although not yet 
commercially available, various sub-Nyquist 
CS-based random sampling devices have been 
theoretically developed and prototyped along 
these lines (e.g., Tropp et al. 2010, Mishali 
and Eldar 2010).  To this end, wireless sensors 
equipped with such sampling devices enable 
slower sampling rates and, therefore, reduced 
energy consumption (and monetary cost) 
compared to the currently used analog-to-
digital converters (ADCs) operating at least at 

the Nyquist rate.  These gains become more 
important in monitoring stiff structures and/or 
higher modes of vibration.  Furthermore, CS-
based sampling reduces data storage 
requirements at the sensor, while the amount 
of (compressively sensed) data to be 
transmitted may be low depending on the 
sparsity of the acquired signals. It is noted, 
however, that, in principle, CS is not as 
effective in reducing the amount of 
transmitted data, which is the most energy 
consuming operation in wireless sensors, as 
off-line lossy or lossless data compression 
algorithms applied to Nyquist sampled signals 
before wireless transmission at on-board 
micro-processors in the currently used non-CS 
sensors (Lynch 2007). Still, efficient CS data 
acquisition may circumvent the off-line 
compression step and therefore reduce the 
size, complexity, and cost of sensors. On the 
antipode, the computational burden is 
transferred to the base station since signal 
reconstruction from compressive sensed 
signals is a computationally demanding 
operation. 

In this context, O’Connor et al. (2014) 
reported significantly reduced energy 
consumption in a long-term field deployment 
of wireless sensors acquiring randomly 
sampled sub-Nyquist measurements compared 
to conventional (Nyquist sampling) sensors. 
In this application, the acquired compressed 
sensed signals were transmitted to a base 
station and reconstructed in the time-domain 
(at Nyquist rate) by means of a commonly 
used reconstruction algorithm in CS. Then, 
the reconstructed signals from each 
channel/sensors are Fourier-transformed to 
obtain frequency response functions (FRFs) 
and the mode shapes were derived using the 
standard frequency domain decomposition 
algorithm of OMA (see e.g., Brincker and 
Zhang 2009). Following a similar CS-based 
strategy, that is, considering reconstructed 
Nyquist sampled signals in the time-domain 
from randomly sampled sub-Nyquist 
measurements, Yang and Nagarajaiah (2015) 
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explored the potential of CS-based OMA in 
conjunction with blind source separation for 
mode shape and natural frequency estimation. 
In a different study, Park et al. (2014) 
recognized that for the purposes of modal 
system identification of linear systems, signal 
reconstruction in time-domain from CS 
measurements is not necessary. In this regard, 
they considered a singular value 
decomposition based algorithm to retrieve 
mode shapes directly from sub-Nyquist non-
uniform random measurements assumed to be 
acquired by means of the “random 
demodulator” device of Tropp et al. (2010). 
Although reasonably accurate results in terms 
of mode shapes were derived from noisy field 
recorded data pertaining to a bridge structure, 
the theoretical development of Park et al. 
(2014) relies on the assumption of undamped 
free vibrating deterministic structural response 
signals (i.e., the analog version of x  is a 
multi-tone signal expressed as a superposition 
of harmonics with unknown amplitudes and 
frequencies), which is not aligned with the 
assumption of white noise excited structures 
of the standard OMA. 

In this study, the potential of a sub-
Nyquist non-uniform deterministic sampling 
technique in conjunction with computationally 
efficient power spectrum estimation directly 
from CS acceleration measurements is 
explored for frequency domain system 
identification of linearly vibrating white noise 
excited structural systems.  In particular, a 
discrete-time implementation of a CS 
sampling device considered in Ariananda and 
Leus (2012), alongside periodic 
(deterministic) sampling strategies proposed 
by Tausiesakul and Gonzalez-Prelcic (2013 
and 2014) are adopted. The considered 
sampling scheme can accommodate multi-
band random signals (stochastic processes) 
and does not require any signal sparsity 
assumption (see also Cohen and Eldar 2014).  
In this regard, the herein considered CS-based 

strategy for output-only system identification 
is theoretically applicable to both lightly and 
heavily damped randomly (white noise) 
excited structures, whereas it by-passes the 
computationally demanding signal 
reconstruction in time-domain from the sub-
Nyquist measurements. 

The remainder of the paper is organized as 
follows. Section 2 introduces the adopted 
device and multi-coset sampling strategy for 
stochastic processes (random signals). Section 
3 reviews the mathematical details to 
accomplish power spectrum estimation 
directly from CS measurements, while section 
4 outlines the optimization problem that needs 
to be solved to design efficient deterministic 
sampling patterns. Section 5 pertinent 
provides numerical results to assess the 
applicability and accuracy of the adopted 
approach by considering simulated 
acceleration data from a white noise excited 
two degree of freedom linear structure with 
closely-spaced natural frequencies. Finally, 
section 6 summarizes conclusions and points 
to directions for future work. 
 
2  Multi-coset Compressive Sampling 

of Stochastic Processes 

2.1 Sampling Strategy and Device 

Let x(t) be a continuous in time t complex-
valued wide-sense-stationary stochastic 
process characterized by the power spectrum 
Px(ω)  in the domain of frequencies ω band-
limited by 2π/T. Broadly speaking, 
compressive sensing (CS) aims to sample 
realizations of this process at a rate lower than 
the Nyquist sampling rate 1/Τ (in Hz), and still 
be able to faithfully estimate the power 
spectrum Px(ω). To this aim, the multi-coset 
sampling strategy is herein adopted (see e.g. 
Misali and Eldar 2009), according to which 
the grid of Nyquist samples x(nT) is divided 
into blocks of N consecutive samples and 
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from each block M (<N) Nyquist-rate samples 
are selected.  The resulting sampling is 
periodic with period N; non-uniform since any 
subset of M samples may be selected from a 
total of N Nyquist-rate samples within each 
block; and deterministic since the position of 
the M samples on the Nyquist grid of samples 
x(nT) is defined a priori once and applies to 
all considered blocks.  The above sampling 
strategy can be implemented by utilizing M 
interleaved analog-to-digital converters 
(ADCs) operating at a sampling rate 1/(NT) as 
discussed in Ariananda and Leus (2012).  A 
discrete-time model of such a sampling device 
is shown in Figure 1 in which the discrete-
time signal x[n]= x(n/T) enters M branches 
and at each m branch (m= 0,1,…,M-1), the 
signal is convolved (filtered) by an N-length 
sequence cm[n] and down-sampled by N.  The 
selection of M samples (sampling pattern) 

within each block is governed by the 
coefficients cm[n] of the filter written as 

1, ,
[ ]

0, ,
m

m
m

n n
c n

n n
= −

=  ≠ −
 (1) 

where there is no repetition in nm , i.e., 

1 2 1 2, .m mn n m m≠ − ∀ ≠  (2) 

The output of the m-th branch is given by 

[ ] [ ],m my k z kN=  (3) 

where [ ]mz ⋅  is expressed as 

0

1
[ ] [ ] [ ].m m

k N
z n c k x n k

= −

= −∑  (4) 

 

 
Figure 1.  Discrete-time model of the considered multi-coset sampling device (Ariananda and Leus 2012). 

 

2.2 Relation of the Input and Output 
Correlation Functions  

Consider the cross-correlation function 
between the output sequences of the different 
branches of the device in Figure 1 and the 

autocorrelation function of the input signal to 
the device given by  

{ }1 21 2, [ ] [ ] [ ] ,
m my y y m mr k E y l y l k∗= −  (5) 

and 
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{ }[ ] [ ] [ ] ,x xr n E x m x m n∗= −  (6) 

respectively, where Ea{·} is the mathematical 
expectation operator with respect to a and the 
“*” superscript denotes complex conjugation.  
Further, consider the pattern cross-correlation 
function between the different sampling 
patterns of each branch of the same device 
expressed as 

1 21 2

0

,
1

[ ] [ ] [ ].
m mc c m m

k N
r n c k c k n∗

= −

= −∑  (7) 

Substituting Eq. (1) into Eq. (6), yields 

2 11 2, [ ] [ ( )].
m mc c m mr n n n nδ= − −  (8) 

where δ[n]=1 for n=0 and δ[n]=0 for n≠0.  
It can be shown that the following 

relationship holds (Ariananda and Leus 2012) 

1

0
[ ] [ ] [ ],

l
k l k l

=

= −∑y c xr R r  (9) 

where yr [k] is the M2-by-1 vector collecting 
the output cross-correlation functions 

1 2,m my yr  

between the M branches of the considered 
sampling device evaluated at index k, that is,  

0 0 0 1

1 1 1

, ,

T

, ,

[ ] [ ] [ ]

[ ] [ ] ,

M

M M

y y y y

y y y y

k r k r k

r k r k

−

−

= 



yr  

 

 (10) 

xr [n] is the N-by-1 vector collecting the input 
autocorrelation function evaluated at certain 
indices as in  

[
]T

[ ] [ ] [ 1]

[( 1) 1] ,
x x

x

n r nN r nN

r n N

= +

+ −

xr  



 (11) 

and Rc[l] is the M2-by-N matrix defined as  

T

[ ] [ ] [ ]

[ ] [ ] ,

l l l

l l

= 



0 0 0 M-1

1 1 M-1 M-1

c c ,c c ,c

c ,c c ,c

R r r

r r

 

 

 (12) 

where  

1 2 1 2 1 2

1 2

, , ,

T

,

[ ] [ ] [ 1]

[( 1) 1] .

m m m m m m

m m

c c c c c c

c c

n r nN r nN

r n N

= −

− + 





r
 (13) 

In all previous equations and hereafter the “T” 
superscript denotes matrix transposition.  By 
assuming that the autocorrelation function of 
the input signal in Eq. (6) takes on negligible 
values outside the range -L≤k≤L (in practice 
this will always hold for some L, depending 
on the level of damping of the structural 
system being monitored),  Eq.(9) can be cast 
in the form of (Ariananda and Leus 2012) 

,y c xr = R r  (14) 

in which yr  is the M2(2L+1)-by-1 vector 
defined as 

[0] [ ] [ ] [ 1] ,L L
Τ

 = − − 
T T T T

y y y y yr r r r r  

 (15) 

xr  is the N(2L+1)-by-1 vector defined as 

[0] [ ] [ ] [ 1] ,L L
Τ

 = − − 
T T T T

x x x x xr r r r r  

 (16) 

and cR  is the M2(2L+1)-by-N(2L+1) matrix 
given as 

[0] [1]
[1] [0]

[1] [0] ,

[1] [0]

 
 
 
 =
 
 
  

c c

c c

c c c

c c

R O O R
R R O O

R O R R
O

O O R R





 

   



 
(17) 

where O  is the zero matrix.  
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In the next section, an estimator of the 
power spectrum of the input signal x[n] is 
considered (and therefore of the process x(t)) 
derived from the cross-correlation functions 
between the output sequences of the M 
branches of the sampling device in Figure 1 
upon solving Eq. (10) for xr .  These cross-
correlation functions are, in turn, estimated 
directly from the output sequences from each 
branch in Eq. (3) (i.e., CS measurements). For 
a Q-long Nyquist sampled input signal x[n] 
the total number of the output measurements 
are only MQ/N (M<N) with M/N being the 
compression ratio. 

 
3 Power Spectrum Estimation Directly from 
CS Measurements 

Under the assumption that x[n] (the input 
discrete-time random signal/process in Figure 
1) is sampled at the Nyquist rate from a band-
limited continuous-time process x(t), the 
power spectrum of the latter process can be 
expressed by means of the Wiener-Khintchine 
theorem within the 0≤ω≤2π range as 

( ) i[ ] e ,n
x x

n
P r n ωω

∞
−

=−∞

= ∑  (18) 

where 1i = − .  The above equation can be 
discretized using a Nyquist grid and cast in 
matrix-vector form as  

,=x (2L+1)N xs F r  (19) 

where nF  is the N(2L+1)-by-N(2L+1) standard 
discrete Fourier transform (DFT) matrix and 

xs  is a N (2L+1)-by-1 vector given as 

T

1(0) 2
(2 1)

1 2 ((2 1) 1) .
(2 1)

x x

x

P P
L N

P L N
L N

π

π

  
=   + 

 
+ −  + 

xs 

 (20) 

 Consider the unbiased estimator of the 
cross-correlation function in Eq. (5) defined as 

{ }

{ }

1 21 2

1 min 0,

,
max 0,

1ˆ [ ] [ ] [ ]
m m

K k

y y m m
l k

r k y l y l k
K k

− +
∗

=

= −
− ∑ , (21) 

where K is the number of measurements.  An 
estimate of the vector spectrum sx of Eq.(19) 
can be reached by inverting Eq. (14) as 

1ˆ ˆ( ) ,−= H H
x (2L+1)N c c c ys F R R R r  (22) 

where the “-1” superscript denotes matrix 
inversion and a “H” denotes Hermitian 
transposition. In the last equation, the 
(2L+1)M2-by-1 vector ˆyr is defined in a 
similar way as the vector yr  in Eq. (15), 
where the cross-correlation of Eq.(5) is 
replaced by the estimator in Eq.(21).  To 
ensure that the pseudo-inverse matrix 

1( )−H H
c c cR R R  exists, the sampling patterns 

cm[n] has to be designed such that cR  has full 
column rank. It turns out that this design task 
is equivalent to the selection of M different 
rows from the identity matrix IN of size N.  
Importantly, although the sampling pattern 
correlation matrix cR  is large (i.e., of size 
M2(2L+1)-by-N(2L+1)), the fact that it has a 
sparse structure as shown in Eq. (17) can be 
exploited to reduce the required computational 
effort to obtain its pseudo-inverse as   
(Tausiesakul and Gonzalez-Prelcic 2013)  

,




=












-1 H -1 H
c c

-1 H
c

H -1 H
c c c

-1 H
c

-1 H
c

-1 H
c

Λ (α)R [0] Λ (α)R [1]
O Λ (α)R [0]

(R R ) R O O

Λ (α)R [1]

O O
O

Λ (α)R [1]
O Λ (α)R [0]

 





 



 
(23) 
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where Λ(α)  is the N-by-N diagonal matrix 
with the diagonal  

[ ]1 2 ,Nα α α Τ=α   (24) 

in which ( )pα n  for p= 1,2,…N is given by  

2 1
1 2

2 1

1 1

0 0
( ) 1 ( )

1 ( ) ,

r

M M

n r m m
m m

r m m

n n n

N n n n

α δ

δ

− −

= =

 = − + − − + 

 + − + − − 

∑ ∑n  (25) 

and n is the sequence of M positive integer 
numbers expressed as 

[ ]T0 1 1 ,Mn n n −=n   (26) 

which defines the sampling pattern in Eq. (1). 
Substituting Eqs. (15) and (23) into Eq. (22) 
yields 

ˆ

ˆ0 0

ˆ0 -1
ˆ0
ˆ0 -

ˆ0 -2
ˆ0 -1

ˆ1 1

ˆ1

L
L
L

=

  
  
  
  
  
   +  
  
  
  
  
   

+

x (2L+1)N

-1 H
c y

-1 H
c y

-1 H
c y

-1 H
c y

-1 H
c y

-1 H
c y

-1 H
c y

-1 H
c

s F

Λ (α)R [ ]r [ ]

Λ (α)R [ ]r [ ]
Λ (α)R [ ]r [ ]
Λ (α)R [ ]r [ ]

Λ (α)R [ ]r [ ]
Λ (α)R [ ]r [ ]

Λ (α)R [ ]r [ ]

Λ (α)R [ ]







ˆ1 -
,

ˆ1 - 1

ˆ1 -1
ˆ1 0

L
L

L

 
 
 
 
 
 
 +  
 
 
 
   

y
-1 H

c y
-1 H

c y

-1 H
c y

-1 H
c y

r [ ]
Λ (α)R [ ]r [ ]

Λ (α)R [ ]r [ ]

Λ (α)R [ ]r [ ]
Λ (α)R [ ]r [ ]



 

(27) 

in which  

1 2 1 2
1 2

1 1

, ,
0 0

ˆ[ ] [ ]

ˆ[ ] [ ].
m m m m

M M

c c y y
m m

k l

k r l
− −

∗

= =

= ∑ ∑

-1 H
c y

-1

Λ (α)R r

Λ (α) r
 (28) 

In the next section, a constraint 
optimization problem is formulated to define 
the n sequence in Eq. (26) or, equivalently, 
the sampling pattern in Eq. (1) such that the 
sampling matrix cR  in Eq. (17) attains a 
pseudo-inverse and therefore the spectrum 

xs can be estimated directly from the CS 
measurements using Eq. (27). 

4 Design of the Multi-coset Sampling Pattern 

Consider the M2(2L+1)-by-M2(2L+1) 
covariance matrix of the estimator of ry 
defined as  

{ }H
ˆ ˆ ˆ ˆ ˆ( { })( { }) ,x x xE E E= − −
yr y y y yC r r r r  (29) 

and assume that the number of branches M is 
known.  Further, assume that the input signal 
x[n] is zero-mean circularly-symmetric 
complex-valued Gaussian i.i.d. noise (note 
that although this assumption is unrealistic for 
x[n] being acceleration response of white 
noise excited linear structural systems, it is 
only considered herein to facilitate the 
derivation of the sampling pattern of the 
device in Figure 1 and is not restrictive to the 
class of simulated or recorded signals that can 
be treated by this device). Then, it can be 
shown that ˆyrC  possesses the block-diagonal 
structure (Ariananda and Leus 2012) 

{ }

ˆ ˆ ˆ [ ] ,

for 0,1, , , 1 ,

k

k L L

 
 

=  
 
 
∈ − −

y y yr r r

0
C C

0

 

 

 

 

 (30) 
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where ˆ ˆ [ ]k
y yr rC is the M2-by-M2 covariance 

matrix given by 

0 0 0 0 0, 0 0 1

0 0 1 0 0 0 1 1

1 0 0 1 0 11 1

0 1 0 1

0 1 1 1

4
ˆ ˆ x

, , ,

, , , ,

, , , ,

, ,

, ,

1[ ]

[0] [0] [0] [0]

[0] [0] [0] [0]

[0] [0] [0] [0]

[0] [0]

[0] [0]

M MM M

M M

M M

c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c

c c c c

k
K k

r r r r

r r r r

r r r r

r r

r r

σ

− −− −

− −

− −

∗ ∗

∗ ∗

∗ ∗

∗

∗

=
−









y yr rC

 





 



1 1 11, ,

.

[0] [0]
M M MMc c c cr r
− − −−

∗









 

(31) 

By observing that 

ˆ ˆ ˆ ˆ
1[ ] [0],k K

K k
=

−y y y yr r r rC C  (32) 

the matrix in Eq.(29) can be concisely written 
(and efficiently computed using any higher 
level programming language) as  

( )ˆ ˆ ˆ [0] ,K= ⊗
y y yr r rC Λ(β) C  (33) 

where ⊗ is the Kronecker product and β is the 
(2L+1)-length sequence 

T

1 1 1
1

1 1 .
1

K K K L

K L K

=  − −


− − 





β
 (34) 

Let MSE ( )f n  be the normalized mean 
square error (MSE) of the power spectrum 
estimator in Eq. (22), given by 

{ }2
x E

MSE
4
x

1

ˆE
( )

1 1(2 1) 2
L

l

f
N L

K K l
σ

=

−
=

 + + − 
∑

x xs s
n , (35) 

where 
E
⋅  is the Euclidean norm.  Setting 

n0=0 in Eq.(26), the optimum design of the 
sampling sequence n can be achieved by 
solving the optimization problem (Tausiesakul  
and Gonzalez-Prelcic 2014) 

MSE MSE

0

1

1

ˆ arg min ( )

( ) 1,

1{2,3, , 1},
2

0,
1s.t. ,
2

{ 1, ,
1 1},
2

{1,2, , 2},

rn

r

M

m m

f n

n N

n

n N

n n

N M m

m M

α

−

−

=

≥

∀ ∈ +

=

=

∈ +

− + +

∀ ∈ −









n
n

n

 (36) 

where MSE MSE
1( ) ( )
2

f f=n n  is given by 

1 2 12

1 1

MSE 2
0 0 1 ( )

1( ) .
( )

m m

M M

m m n n

f
α

−

− −

= = −

= ∑ ∑n
n

  (37) 

The above sampling pattern design approach 
for power spectrum estimation directly from 
the CS measurements using the multi-coset 
sampling device of Figure 1 can be further 
improved in terms of MSE by using a 
weighted least square error criterion 
(Tausiesakul and Gonzalez-Prelcic 2013). The 
following section provides selected numerical 
results for both the above approaches of multi-
coset sampling pattern design. 
 
5  Numerical Example 

In this section, the applicability and 
effectiveness of the CS device of Figure 1 in 
conjunction with the herein considered power 
spectrum estimation approach is numerically 
assessed for output-only structural system 
identification purposes.  To this aim, the 
continuous-time acceleration response process 
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of a white noise excited two degree-of-
freedom (DOF) structural system with closely 
spaced natural frequencies is considered. 
Specifically, the system has natural 
frequencies ω1=20rad/s and ω2=25rad/s, and a 
common ratio of critical damping of 5% for 
both modes of vibration.  The amplitude of the 
frequency response function (FRF)  squared 
of the system (transfer function) for 
acceleration output, sometimes called 
accelerance in the field of modal testing 
(Ewins 2000), is plotted in logarithmic dB 
scale and normalized to its peak value in 
Figure 2 (thick solid gray curve).  The ratio of 
the two peak values attained by this transfer 
function at the two natural frequencies is 2.84.  
Under the assumption of ideal white noise 
input, which is in alignment with OMA, this 
transfer function becomes the “target” 
(known) power spectral density (PSD) 
function that is sought to be captured by the 
CS sampling device of Figure 1.  Since the 
device considered assumes Nyquist sampled 
discrete-time input signals, the considered 
analog structural system is replaced by a 
surrogate digital auto-regressive moving 
average (ARMA) filter whose transfer 
function traces closely (is practically identical 
within the frequency range of interest), with 

the PSD of the analog system (broken curve in 
Figure 2).  The coefficients of this ARMA 
filter are derived by the auto/cross correlation 
matching method (see e.g., Spanos and Zeldin 
1998), commonly used for spectrum 
compatible simulation (see e.g., Giaralis and 
Spanos 2009).   

For illustration purposes, a multi-coset 
sampling device with a large number of 
channels, M=14, and low sampling rate at the 
ADCs, N=128, is considered which achieves a 
compression ratio of / 11%M N   (i.e., only 
11% of the Nyquist sampled input data are 
acquired by the device). The sampling pattern 
shown in the legend of Figure 2 is utilized 
derived by solving the least squares 
optimization problem in Eq. (36) assuming 
K=1768 and L=5. The analytically obtained 
normalized power spectrum estimate from this 
device is further plotted in Figure 2.  It is 
shown to capture well the salient attributes of 
the system transfer function such as the 
location of the two prominent peaks (natural 
frequencies) and their amplitude.  This PSD 
has been derived by using Eqs. (9) and (19), 
along with the autocorrelation function of the 
ARMA filter in Eq. (6). 

 
Figure 2.  Acceleration transfer function of a two degree of freedom structural system (target PSD) with 
damping ratio 5% for all modes and natural frequencies ω1=20rad/s and ω2=25rad/s, and theoretical PSD 

obtained from a multi-coset sampling device in Figure 1 with M=14 and N=128. 
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Table 1.  Estimated properties of the two degree of freedom structural system with transfer 
function shown in Figure 2 from frequency domain peak-picking technique applied to average 

PSDs estimated directly from CS measurements for different number of realizations. 

 

 
Figure 3.  Estimated PSDs from Nyquist sampled and CS sampled simulated data (K=1768, M=14 and 

N=128) vis-a-vis the target PSD (transfer function of considered two degree of freedom structural system). 

Furthermore, the consideration of the 
ARMA filter compatible with the considered 
structural system allows for the efficient 
generation of simulated x[n] random signals 
compatible with the target PSD by filtering 
discrete-time clipped Gaussian white noise 
sequences.  In this regard, 10 such sequences 
of 228608 length each are generated and 

colored (filtered) through the ARMA model. 
Next, the thus generated x[n] signals enter the 
sampling device with M=14 and N=128.  In 
Figure 3, a PSD estimated directly from CS 
measurements for a single x[n] input 
realization is plotted against the target PSD.  
This PSD has been derived by using Eqs. (21), 
(27) and (28).  The considered CS 

 
Number of 
realizations 

ω1 
(rad/s) 

ω2 
(rad/s) 

z1 

(%) 
z2 

(%) 
Peak value 

ratio 
Structural system 

properties - 20 25 5.00 5.00 2.55 

Estimated properties 
from peak picking to 

PSD estimated directly 
from CS 

measurements 

10 20 25 6.67 7.83 2.47 

9 20 25 7.78 7.96 2.68 

8 20 25 6.74 7.89 2.58 

7 20 25 6.67 7.02 2.49 

6 20 25 7.78 7.89 2.74 

5 20 25 6.74 7.89 2.82 

4 20 25 6.82 7.89 2.68 

3 20 25 7.78 6.14 2.97 

2 20 25 5.62 4.39 3.20 

1 20 25 8.79 8.77 2.45 
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measurements are taken from a number of 
K=1786 blocks of N=128 length, and for each 
block one sample is acquired at each of the 
M=14 branches.  Therefore, a total number of 
1786·14= 25004 non-uniform sampled CS 
measurements are acquired according to the 
sampling pattern shown in Figure 2.  For 
comparison, the PSDs estimated from 10 
Nyquist sampled realizations x[n] (case of 
N=M=1) where each realization comprises 
1786·128= 228608 uniformly Nyquist 
sampled measurements, are also superposed in 
Figure 3 derived by means of the standard 
periodogram for spectral estimation.  The 
considered estimated PSD from simulated CS 
measurements follows closely the target PSD 
and confirms the good quality of matching 
achieved by the PSD derived from the auto-
correlation function of the ARMA filter in 
Figure 2.        

Importantly, for the purpose of system 
identification, error quantification between the 
estimated CS PSDs from simulated data and 
the theoretical PSD (e.g., in the mean square 
sense) may not be an appropriate metric to 
assess the potential of the herein considered 
CS-based approach.  Rather, the aim is to 
ensure that reasonable estimates of the 
structural system properties can be derived 
from the estimated PSDs.  In this respect, the 
standard peak-picking (PP) in frequency 
domain algorithm of operational modal 
analysis (e.g., Reynders 2012) is herein 
considered to derive natural frequencies, 
damping ratios and peak value ratios from the 
CS estimated PSDs.  Table 1 summarizes the 
thus estimated structural properties from 
averaged PSDs derived from a different 
number of CS sampled realizations.  
Remarkably, natural frequencies are 
accurately retrieved even in the case of 
considering a single CS sampled realization 
(i.e., 25004 non-uniform sampled 
measurements following the multi-coset 
sampling pattern of Figure 2).  Furthermore, 

the accuracy of the estimated values of the 
damping ratios derived fall roughly within the 
expected range of the PP algorithm.  Lastly, 
the ratio of the estimated peak values attained 
by the CS PSDs compare relatively well with 
the value attained by the “target” PSD which 
is a promising indication of the applicability 
of the considered approach for mode shape 
estimation. 

 
6  Concluding Remarks 

A multi-coset, sub-Nyquist, non-uniform 
deterministic sampling strategy to acquire 
compressive sensed (CS) acceleration 
measurements of linear white noise excited 
structural systems has been considered in 
conjunction with a computationally efficient 
power spectrum estimation approach for 
frequency domain output-only system 
identification.  The adopted CS spectral 
estimation approach assumes multi-band 
random signals (i.e., realizations of wide 
sense stationary stochastic processes) without 
posing any signal sparsity requirements and 
therefore it is applicable to linear structures 
with arbitrary number of degrees of freedom 
and level of damping.  Further, it applies 
directly to the sub-Nyquist CS measurements 
and, thus, it by-passes the computationally 
demanding signal reconstruction step from 
CS measurements as is the case with recent 
work considering random CS sampling for 
operational modal analysis.  The applicability 
and effectiveness of the considered approach 
in undertaking output-only system 
identification using a reduced number of 
measurements compared to the Nyquist rate 
has been demonstrated by a numerical 
example involving a linear damped two 
degree-of-freedom white noise excited 
structure with closely spaced natural 
frequencies.  Further on-going work by the 
authors addresses the issues of assessing the 
sensitivity of the approach to additive noise 
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to the acquired CS signals and of extending 
the presented approach to the multi-channel 
case for mode shape extraction directly from 
CS measurements. 
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