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ABSTRACT   

Motivated by a need to reduce energy consumption in wireless sensors for vibration-based structural health monitoring 
(SHM) associated with data acquisition and transmission, this paper puts forth a novel approach for undertaking 
operational modal analysis (OMA) and damage localization relying on compressed vibrations measurements sampled at 
rates well below the Nyquist rate. Specifically, non-uniform deterministic sub-Nyquist multi-coset sampling of response 
acceleration signals in white noise excited linear structures is considered in conjunction with a power spectrum blind 
sampling/estimation technique which retrieves/samples the power spectral density matrix from arrays of sensors directly 
from the sub-Nyquist measurements (i.e., in the compressed domain) without signal reconstruction in the time-domain 
and without posing any signal sparsity conditions. The frequency domain decomposition algorithm is then applied to the 
power spectral density matrix to extract natural frequencies and mode shapes as a standard OMA step. Further, the modal 
strain energy index (MSEI) is considered for damage localization based on the mode shapes extracted directly from the 
compressed measurements. The effectiveness and accuracy of the proposed approach is numerically assessed by 
considering simulated vibration data pertaining to a white-noise excited simply supported beam in healthy and in 3 
damaged states, contaminated with Gaussian white noise. Good accuracy is achieved in estimating mode shapes 
(quantified in terms of the modal assurance criterion) and natural frequencies from an array of 15 multi-coset devices 
sampling at a 70% slower than the Nyquist frequency rate for SNRs as low as 10db. Damage localization of equal 
level/quality is also achieved by the MSEI applied to mode shapes derived from noisy sub-Nyquist (70% compression) 
and Nyquist measurements for all damaged states considered. Overall, the furnished numerical results demonstrate that 
the herein considered sub-Nyquist sampling and multi-sensor power spectral density estimation techniques coupled with 
standard OMA and damage detection approaches can achieve effective SHM from significantly fewer noisy acceleration 
measurements.  

Keywords: compressive sensing, multi-coset sampling, power spectrum estimation, operational modal analysis, mode 
shapes, damage detection, modal strain energy. 
 

1. INTRODUCTION  
Over the past several decades, numerous algorithms for vibration-based monitoring of civil (i.e., large-scale) engineering 
structures and structural members have been proposed in the literature1,2, focusing mostly on (i) estimating the 
dynamic/modal properties of linearly vibrating structures under operational conditions, and (ii) on detecting potential 
structural damage from vibration measurements. The first task is addressed by the so-called operational modal analysis 
(OMA) or output-only modal analysis algorithms3 used to extract natural frequencies and mode shapes by relying on the 
acquisition and processing of arrays of low-amplitude acceleration response signals of structures subjected to ambient 
dynamic excitation (e.g., due to wind and traffic loads) not measured but modelled as broadband (white) noise. The 
second task involves tracing in time changes to damage sensitive indices whose definition may or may not involve 
physically meaningful quantities (i.e., modal and structural properties). 

From the technology viewpoint, the consideration of wireless sensor networks (WSNs) attracted the attention of the 
research community as it is recognized that they offer less obtrusive, and more economical and rapid deployment for 
OMA and damage detection compared to arrays of tethered sensors4,5, especially for the case of large scale and 
geometrically complex structures. However, despite the above advantages of WSNs, there are still practical issues to be 
overcome related to a need for local power supply at the sensors and restrictions to the amount of wireless data 
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transmission due to bandwidth limitations. To address the above issues, some recent research effort6–10 was devoted in 
exploring compressive sensing (CS)-based techniques which achieve simultaneous signal acquisition and compression 
before transmission. In a nutshell, these techniques consider non-uniform random sampling schemes to acquire signals at 
an average rate below the Nyquist rate, by exploiting signal sparsity in some domain (e.g., the Fourier domain). CS 
asserts that exact reconstruction of the underlying Nyquist-sampled signals is guaranteed with high probability, upon 
solving an underdetermined system of linear equations subject to signal sparsity constraints. The latter is commonly 
formulated as a constrained 1  optimization problem whose solution is computationally costly.  

In this context, O’Connor et al.6 reported significant energy savings in a long-term field deployment of prototyped 
wireless sensors acquiring bridge acceleration response signals via a sub-Nyquist random sampling scheme based on the 
CS theory. Under the assumption of spectrally sparse measurements, the acquired signals are transmitted towards a base 
station and reconstructed to the uniform Nyquist grid by means of a standard CS signal recovery algorithm. The standard 
frequency domain decomposition (FDD) algorithm based on the singular value decomposition (SVD) for OMA was used 
to retrieve mode shapes of the considered bridge structure from the reconstructed signals. Similar CS-based acquisition 
and signal reconstruction steps have further been considered by Zou et al.7 and Bao et al.8 to address the issue of data 
loss during wireless transmission vibration-based health monitoring of large-scale civil engineering structures. In a 
different study, Park et al.9 recognized that signal reconstruction from CS measurements in time-domain is not required 
in undertaking OMA. Therefore, they proposed a singular value decomposition based algorithm to retrieve mode shapes 
(but not natural frequencies) directly from sub-Nyquist non-uniform randomly sampled measurements (i.e., without 
signal reconstruction) assuming a deterministic multi-tone non-decaying analog signal model. Although the adopted 
model corresponds to non-decaying free vibration response of undamped multi-degree-of-freedom structures, the 
proposed approach shows robustness in extracting mode shapes from noisy field acceleration measurements of lightly-
damped free vibrating structures. More recently, Yang and Nagarajaiah10 coupled CS-based sampling with the blind 
source separation method to extract mode shapes and modal responses directly from compressed/sub-Nyquist 
measurements of multi-mode response vibration signals. Signal retrieval in the time-domain is then applied by means of 
a CS-based signal reconstruction step for each modal response to retrieve the underlying modal natural frequencies and 
damping ratios via standard linear system identification approaches. 

All the aforementioned CS-based approaches pose signal sparsity conditions to the measured response acceleration 
signals, which may not hold true for noisy signals encountered in practice11,12. Further, response signals are treated as 
deterministic, which is not consistent with the theory of OMA assuming wide sense stationary stochastic input/excitation 
processes. Further, with the exception of the work by Park et al.9, all the above CS methods require computational 
expensive CS-based signal reconstruction from the compressed (sub-Nyquist) measurements upon wireless transmission.  

This paper builds on recent work by the authors13–16 to accomplish OMA and damage detection directly from compressed 
measurements of response acceleration stochastic processes (i.e., without signal reconstruction in the time-domain), and 
without posing any sparsity conditions by means of sub-Nyquist power spectrum blind sampling (PSBS). In particular, 
PSBS strategies aims to reconstruction of the covariance function of random signals or stochastic processes at all 
temporal lags of interest. This operation leads to an overdetermined optimization problem which can be solved with 
standard 2 minimization algorithms. Further, it has been shown that PSBS are suitable for spectral recovery of very 
weak compressed signals buried in high level noise12,17. In this respect, the proposed approach is based on non-uniform 
deterministic multi-coset sampling18,19 along with a particular PSBS method13–15. The adopted method approach was first 
considered by the authors14,15 for single-sensor spectrum estimation, showing promising results in retrieving the 
frequency response function of white-noise excited multi-degree-of-freedom systems. Herein, the multi-sensor case16 is 
employed to estimate the cross-power spectral density matrix directly from sub-Nyquist sampled structural response 
signals within a centralized cooperative WSN. The thus obtained matrix is used along with the FDD algorithm20, to 
retrieve the underlying structural modal properties (natural frequencies, mode shapes). Further, the extracted mode 
shapes are used for structural damage detection based on the modal strain energy index (MSEI)21.  

The remainder of the paper is organized as follows: Section 2 outlines the theory of the adopted multi-coset sub-Nyquist 
sampling and PSBS technique, Section 3 reviews the FDD algorithm for OMA and the MSEI for damage localization in 
linear frame/flexural structures, Section 4 furnishes numerical results pertaining to simulated response acceleration data 
to illustrate the applicability and effectiveness of the proposed approach for modal identification and damage detection, 
and Section 5 summarizes concluding remarks.  



 
 

 
 

 

2. SUB-NYQUIST SAMPLING STRATEGY AND BLIND SPECTRUM ESTIMATION 
2.1 Multi-coset sampling pattern and device 

Let x(t) be a continuous in time t real-valued wide-sense stationary random signal (or stochastic process) characterized in 
the frequency domain by the power spectrum Px(ω) band-limited by 2π/T. It is desired to sample x(t) at a rate lower than 
the Nyquist sampling rate 1/Τ (in Hz), and still be able to obtain a useful estimate of the power spectrum Px(ω). To this 
aim, a multi-coset sampling strategy is herein adopted19, according to which the uniform grid of Nyquist sampled 
measurements x(nT)= x[n], n=0,1,2,… is first divided into blocks of N consecutive samples. Then, from each block, a 
number of M samples (M<N) are selected having the same pre-defined position for all blocks. Therefore, the adopted 
sampling strategy yields non-uniform in time, deterministically selected N-periodic samples and can be implemented by 
utilizing M interleaved analog to digital converters (ADCs) operating at a sampling rate 1/(NT). A discrete-time model of 
such a multi-coset sampling device discussed in Ariananda and Leus18 is shown in Figure 1 in which the discrete-time 
signal x[n] enters M channels and at each m channel (m= 0,1,…,M-1), the signal is convolved (filtered) by an N-length 
sequence cm[n] and down-sampled by N.  

 
Figure 1. Discrete-time model of the adopted sampling device18. 

 

The selection of M samples within each N-length block is defined by the sampling sequence (or sampling pattern) 
T
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2.2 Input/ Output Cross-Correlation Function Relationships 

Consider an array of D identical sub-Nyquist multi-coset sampling devices recording the acceleration response at 
different locations of a white noise excited structure. Each device has M channels with output sequences [ ]d

my l  where 



 
 

 
 

m= 0,1,…, M−1 and d=1, 2,…, D. The cross-correlation function between two output sequences of the mi channel of the 
da device and of the mj channel of the db device is hereafter denoted by 
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d d
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r k y l  y l k= −  (5) 

where Ea{·} is the mathematical expectation operator with respect to a. Further, the cross-correlation function between 
the input signals [ ]dx m to the devices da and db is denoted by  
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To reduce communication overhead and computational complexity of sensors, it is assumed that all considered devices 
have the same sampling pattern across their channels within a signal-and-structure-agnostic sensing framework. Under 
this assumption, the common pattern cross-correlation function is expressed as  
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where δ[n] = 1 for n = 0 and δ[n] = 0 for n ≠ 0. Further, the above assumption allows to relate the cross-correlation 
functions of the output sequences in the array of devices as 
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which is a generalization of the previously considered in the literature single-sensor case13–15,18. In the last equation, 
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is the M2-by-D matrix collecting the output cross-correlation sequences 
,
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array, where “T” subscript denotes matrix transposition; 
T
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is the N-by-D matrix collecting the input cross-correlation sequences; and [ ]c lR  is the M2-by-N matrix defined as 
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By assuming that the input cross-correlation sequences [ ]a bx x
nr  take on negligible values outside the range −L ≤ k ≤ L, 

the input/output relationship can be cast in matrix form 
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x xa br  is the N(2L+1)-by-D matrix defined in a similar manner as y ya br , and cR  is the M2(2L+1)-by-N(2L+1) matrix given 
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Note that Eq. (12) defines an overdetermined system of linear equations which can be solved for 
ya by

r without any 

sparsity constraints provided that cR is full column rank. The latter condition is satisfied for 2M N≥ . 

2.3 Power Spectrum Blind Sampling from sub-Nyquist measurements 

Suppose that xa[n] and xb[n] are sampled at the Nyquist rate from the band-limited continuous-time processes xa(t) and 
xb(t) respectively. The cross power spectrum of xa(t) and xb(t) can be expressed within the 0 ≤ ω ≤ 2π range as  
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where 1.i = −  The latter expression is further discretized in the frequency domain and cast in matrix form  
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where (2 1)L N+F  is the N(2L+1)-by-N(2L+1) standard discrete Fourier transform (DFT) matrix and a bx x
s  is a N(2L+1)-by-D 

power spectrum matrix computed at the discrete frequencies ω= [0, 2π/((2L+1)N), …, 2π(2L+1)N−1/((2L+1)N)]. 

Consider the unbiased estimator of the output cross-correlation function 
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The following weighted least square criterion is herein adopted 
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in which the weighted version of the Euclidean norm is given by 2 T=
W

a a Wa , and W  is a weighting matrix. An estimate 
of the cross-spectrum matrix a bx x

s is obtained by 

( ) 1T 1 T 1
(2 1)ˆ ˆ ,a b a bL N c c cx x y y

−− −
+=s F R W R R W r  (19) 

where the “−1” superscript denotes matrix inversion. The cross-spectrum matrix in Eq. (19) is efficiently computed 
directly from the cross-correlation estimator 

y y
ˆ a br of the compressed acceleration measurements from the array of D 

sampling devices. This is achieved by exploiting the sparse structure of cR as detailed in13. 

 

3. OPERATIONAL MODAL ANALYSIS AND DAMAGE DETECTION STEPS 
3.1 Sub-Nyquist operational modal analysis using the frequency domain decomposition (FDD) algorithm  

In this work, the standard frequency domain decomposition (FDD) algorithm20 is employed, out of the numerous 
frequency domain algorithms for OMA found in the literature, to retrieve the structural modal properties from the cross-



 
 

 
 

spectral matrix in Eq. (19). In a nutshell, the FDD algorithm relies on the singular value decomposition of the cross-
spectral matrix ˆ a bx x

s , that is, 

Tˆ a bx x
=s UΣV  (20) 

where Σ is a diagonal positive semi-definite matrix populated by the singular values, and U, V are the unitary singular 
matrices collecting the left and right singular vectors respectively. The dominant (largest) singular values carry the 
information of the excited natural frequencies of the vibrating structure. Further, the pertinent mode shapes are extracted 
from the left singular vector U corresponding to the dominant singular values. More details on the FDD algorithm can be 
found in a recent text3 and in the therein references. For the purposes of this study, it is important to note that the herein 
proposed OMA approach retrieves both the mode shapes and the natural frequencies from the cross-spectral matrix in 
Eq.(19) estimated directly from the sub-Nyquist (compressed measurements). No acceleration signals reconstruction (i.e. 
retrieval of the x[n] input sequences to the considered array of sensors), and, more generally, no solution of any 1  
optimization problem is undertaken for the task as required by other recent compressive sensing based OMA approaches 
proposed in the literature6,10.    

3.2 Sub-Nyquist structural damage detection using the modal strain energy index (MSEI) 

Upon retrieval of the structural mode shapes, a further step is herein pursued towards vibration-based structural health 
monitoring of civil engineering structures directly from sub-Nyquist/compressed acceleration measurements acquired 
under operational conditions. To this aim, the modal strain energy index (MSEI)21 is adopted to achieve structural 
damage localization by relying on the mode shapes of a reference (healthy) state and of a potentially damaged state of a 
given structure derived from sub-Nyquist acceleration data as discussed in the previous sub-section. Focusing on rigid-
jointed frame structures, the computation of the MSEI requires dividing each structural member into Z number of 
segments along the local longitudinal axis u defined by the [uz, uz+1] intervals with z=1,2,…,Z and u1=0, uZ+1=λ, with λ 
being the length of the structural member. Under the assumption that at the damaged state, damage is localized within a 
few segments and, therefore, (i) the flexural rigidity of structural members of the healthy structure EI is equal to the 
flexural rigidity of structural members of the damaged structure EI*, and (ii) the strain energy stored due to modal 
deformation for each mode shape is also equal between the healthy and the damaged states, the MSEI is defined by the 
ratio21,22 

The above index achieves damage localization by detecting local changes to the flexural rigidity within each segment 
between the healthy and the damaged states. The flexural rigidities are computed from the modal curvatures (i.e., second 
derivative of the mode shapes) of the first R excited modes denoted by φr(u) and φ*

r(u), r=1,2,…,R for the healthy and 
the damaged structure, respectively. Therefore, the MSEI quantifies potential local stiffness reduction inferring damage 
in small segments of structures based on the differences of the first R modal curvatures or, equivalently, mode shapes. In 
the ensuing numerical work, the following normalized version of the MSEI is reported 
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−
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β
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β

σ
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where βµ is the mean, and βσ  the standard deviation of the MSEI computed across all considered segments. The 
damage index in Eq. (22) yields positives values at the damaged locations of the considered structure and negative values 
elsewhere. Overall, the MSEI is suitable when only incomplete modal information is available (e.g. only few mode 
shapes are excited)21, while there is no requirement on the normalization (mass, displacement, etc.) of the considered 
mode shapes23. Although it may overestimate damage severity21, it is shown to be a quite reliable damage index22 
especially in case of noisy data24.  
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4. NUMERICAL APPLICATION 
4.1 Finite Element (FE) modeling, response history analysis, and power spectrum blind estimation 

For numerical verification of the proposed approach, simulated acceleration data are generated by undertaking linear 
response history analyses for finite element (FE) models of a simply supported IPE300-profiled steel beam at one 
healthy and three different damage states. The considered beam, shown in Figure 2, has length λ=5m and flexural rigidity 
EI=16.78.103 kNm2 (i.e., elastic modulus E=210 GPa, moment of inertia around the z-axis I=7.99.10-5 m4). It is modelled 
in the commercial FE software SAP2000 using 100 Euler-Bernoulli beam elements of equal length with mass lumped at 
the nodes of the FE grid acting along the gravitational z-axis. It is assumed that the beam is instrumented with an array of 
15 sensors distributed along the beam length with locations marked by an “x” in Figures 2 and 3. Three different 
damaged states of increasing severity are defined by local stiffness reduction close to mid-span of 50% within a 0.1m 
width (damage state DS1), of 50% within a 0.2m width (damage state DS2), and of 80% within a 0.2m width (damage 
state DS3), as shown in Figure 3. 

 
Figure 2. Simply supported steel beam instrumented with 15 sampling devices measuring vertical acceleration response 
signals. 

 
Figure 3. Damage states; DS0: intact/healthy structure; DS1: 50% stiffness reduction over 0.1m beam length; DS2: 50% 
stiffness reduction over 4 beam element; DS3: 80% stiffness reduction over 4 beam element. 

Linear response history analysis is undertaken for the FE models of the above 3 damage states and of the 
healthy/reference state DS0 subjected to a low-amplitude Gaussian white noise base-excitation along the gravitational 
axis of 4s duration with time discretization step 0.0005s, corresponding to a Nyquist frequency of 1000Hz. A critical 
damping ratio of 1% for all modes of vibration is assumed in the analysis, and the vertical acceleration response signals 
are recorded at a sampling rate of 2000Hz (i.e., 8000 “Nyquist measurements” per signal) at the 15 points of the FE grid 
where the sampling devices of the considered array of sensors are deployed. The considered excitation is assumed to 
simulate ambient noise input under operational conditions. It excites the first three bending modes of vibration along the 
gravitational direction of the different states of the simply supported beam. Consequently, the obtained response 
acceleration signals are treated as typical noise-free vibration/acceleration data for OMA. 

Next, these signals are contaminated with additive Gaussian white noise at 3 different signal-to-noise ratios (SNRs): 
1020db (i.e., practically noise-free case), 20db, and 10db (extreme noise case). The noisy acceleration response signals 

[ ]dx n , (d=1,2,…,15), are multi-coset sampled by the device shown in Figure 1 assumed to have the same specifications 
for all 15 wireless sensors: number of channels M=5 channels and downsampling parameter N=16, achieving a 
compression ratio of M/N  31%. That is, only 8000*5/16= 2500 (compressed) measurements [k]dy  are acquired by 
each of the 15 sensors out of the 8000 Nyquist samples. The adopted sampling pattern in Eq. (1) is n=[0 1 2 5 8]T. This 



 
 

 
 

sequence is optimal in the mean square sense and has been derived by solution of a properly defined optimization 
problem13,15. Lastly, Eq. (18) is employed to derive the unbiased estimator of the cross-correlation matrix, 

y y
ˆ a br  

(a,b=1,2,…,15), which is subsequently used in Eq. (19) to approximate the underline cross-spectra ˆ a bx x
s  in the 

compressed domain, without any signal reconstruction operation, for the healthy DS0 and the three damaged states DS1-
DS3.  

4.2  Operational modal analysis results 

The FDD algorithm in sub-section 3.1 is applied to the estimated acceleration response spectrum matrix ˆ a bx x
s  to extract 

the modal properties of the 4 considered structural states DS0-DS3, for the three SNRs. The natural frequencies f1 to f3 
retrieved from the largest singular values in Eq.(20) corresponding to the first three vertical vibration modes from all 
structural states of the considered beam are reported in Tables 1 and 2 for the noiseless (SNR=1020dB) and extreme noisy 
(SNR=10dB) cases, respectively. In both tables, estimates of the natural frequencies obtained from the Nyquist 
measurements using conventional cross-spectral estimation and the FDD algorithm are also reported. It is seen that the 
noise level does not significantly affect the natural frequency estimation in this particular case. More importantly, the 
estimated natural frequencies extracted directly from the sub-Nyquist measurements by means of the proposed OMA 
approach lie very close to the estimates obtained from the Nyquist measurements (maximum observed error is 4.4%). As 
expected, the value of the natural frequencies decreases with increasing damage severity and this change in the values is 
more significant for natural frequencies corresponding to higher modes of vibration.  

 

Table 1. Nyquist FDD versus sub-Nyquist FDD for natural frequency estimation at DS0-DS3 for SNR=1020 dB.  

  f1 [Hz] f2 [Hz] f3 [Hz] 

 

Nyquist 
(8000 
samples) 

sub-Nyquist 
(2500 
samples) 

Nyquist 
(8000 
samples) 

sub-Nyquist 
(2500 
samples) 

Nyquist 
(8000 
samples) 

sub-Nyquist 
(2500 
samples) 

DS0 40.04 39.76 310.55 311.93 717.77 718.65 
DS1 39.06 39.76 310.55 311.93 716.80 712.54 
DS2 38.09 39.76 302.73 305.81 704.10 712.54 
DS3 35.16 33.64 288.09 287.46 676.76 678.90 

 

Table 2. Nyquist FDD versus sub-Nyquist FDD for natural frequency estimation at DS0-DS3 for SNR=10 dB.  

  f1 [Hz] f2 [Hz] f3 [Hz] 

 

Nyquist 
(8000 
samples) 

sub-Nyquist 
(2500 
samples) 

Nyquist 
(8000 
samples) 

sub-Nyquist 
(2500 
samples) 

Nyquist 
(8000 
samples) 

sub-Nyquist 
(2500 
samples) 

DS0 40.04 39.76 310.55 311.93 717.77 718.65 
DS1 39.06 39.76 310.55 311.93 704.10 712.54 
DS2 38.09 39.76 302.73 305.81 704.10 712.54 
DS3 35.16 33.64 288.09 287.46 676.76 678.90 

 

Moreover, Figure 4 plots the first three vertical modes of vibration for the healthy beam state derived from both the 
Nyquist (8000 measurements/sensor) and sub-Nyquist/compressed (2500 measurements/sensor) data for SNR=10dB. 
These mode shapes are retrieved from the left singular vector U of the decomposed spectral matrix in Eq. (20). It is seen 
that the estimated modes retrieved from about 70% less measurements from Nyquist sampling are visually close to the 
estimated ones from the Nyquist measurements.  



 
 

 
 

 
Figure 4. Nyquist FDD versus sub-Nyquist FDD for mode shape estimation at DS0 for SNR=10dB (the horizontal axis gives 
the relative distance from the left support of the beam normalized with its length). 

To quantify the level of accuracy for the extracted mode shapes, the modal assurance criterion (MAC)25  
2T

2 2

2 2

ˆ
ˆ( , )

ˆ
MAC =

ϕ ϕ
ϕ ϕ

ϕ ϕ
 (23) 

is considered which measures the statistical correlation between the modes shapes, ϕ̂  and ϕ , corresponding to mode 
shapes estimated by means of the FDD algorithm from sub-Nyquist and Nyquist samples, respectively. The normalized 
inner product in Eq. (23) yields a scalar value within the range of [0, 1] and values of 0.9 and higher suggests acceptable 
overall similarity/proximity between the ϕ̂  and ϕ vectors. Tables 3 and 4 report MAC values for the first three modes of 
vibration for all structural states of the beam considered (DS0-DS3) and for SNR=1020 dB and SNR=10dB noise levels, 
respectively. Most of the MAC values in Tables 3 and 4 are close to unity, demonstrating a high level of correlation 
between the estimated mode shapes ϕ̂  and ϕ and confirming the good accuracy of the proposed sub-Nyquist OMA 
approach. In fact, MAC drops below 0.9 only in the case of the third mode shape of the DS1. Finally, a comparison 
between Table 3 and Table 4 confirms that the obtained mode shape estimates from sub-Nyquist measurements are not 
sensitive to additive Gaussian white noise.  

Table 3. Modal Assurance Criterion (sub-Nyquist FDD versus Nyquist FDD) on the estimated mode shapes at DS0-DS3 for 
SNR=1020 dB.  

  MAC 1st mode MAC 2nd mode MAC 3rd mode 

 
sub-Nyquist/Nyquist sub-Nyquist/Nyquist sub-Nyquist/Nyquist 

DS0 1.000 0.999 0.987 
DS1 0.999 0.999 0.888 
DS2 0.998 0.996 0.988 
DS3 0.999 0.999 0.995 

 

Table 4. Modal Assurance Criterion (sub-Nyquist FDD versus Nyquist FDD) on the estimated mode shapes at DS0-DS3 for 
SNR=10 dB.  

  MAC 1st mode MAC 2nd mode MAC 3rd mode 

 
sub-Nyquist/Nyquist sub-Nyquist/Nyquist sub-Nyquist/Nyquist 

DS0 1.000 0.999 0.984 
DS1 0.999 0.999 0.852 
DS2 0.997 0.995 0.990 
DS3 0.999 0.999 0.991 

 



 
 

 
 

4.3 Damage localization results 

In this section, the potential of using the MSEI described in sub-section 3.2 for damage localization from mode shapes 
estimated directly from sub-Nyquist measurements is numerically illustrated. To this aim, the normalized damage index 

zβ  in Eq. (22) is computed from the estimated mode shapes, * * *
0 1 2 3, ,  ,  DS DS DS DSϕ ϕ ϕ ϕ corresponding to the healthy (DS0) 

and damaged states (DS1-DS3) respectively, upon dividing the beam in Figure 3 in Z=16 segments. The second 
derivatives appearing in Eq. (21) are numerically approximated with the standard finite difference method. The location 
of damage is inferred by the positive amplitudes of the normalized damage index zβ  plotted in Figures 5, 6, and 7 for 
SNR=1020 dB, SNR=20dB and SNR=10dB, respectively obtained from both Nyquist measurements (left figure panels) 
and sub-Nyquist measurements (right figure panels). It is seen that for the DS2 and DS3 states, the MSEI computed from 
the sub-Nyquist measurements can unambiguously identify the damage location (mid-span) and even discern the damage 
severity for SNR as low as 10db. In fact, the MSEI derived from sub-Nyquist measurements performs equally well with 
the MSEI from Nyquist measurements, although 70% fewer measurements are used in mode shape estimation. In the 
case of the least severe damaged state herein considered, DS1, the MSEI computed by the proposed approach performs 
relatively well in locating damage for the noise-less case. For noisy sub-Nyquist measurements, discriminating damage 
location becomes challenging (see right panel in Figure 6) for SNR=20db and practically not possible for SNR= 10db. 
Note, however, that this is pretty much the case for the MSEI obtained for Nyquist sampled measurements and, 
therefore, the fact that the MSEI cannot accurately and unambiguously locate the damage from noisy signals for the DS1 
case is a matter of the effectiveness of the particular damage index to locate relatively small damages and well-localized 
damage in noisy environments, rather than damage information loss due to the sub-Nyquist signal sampling.    

 
Figure 5. Nyquist (left) and sub-Nyquist (right) normalized modal strain energy index for DS0-DS3for SNR=1020dB.  

 

 
Figure 6. Nyquist (left) and sub-Nyquist (right) normalized modal strain energy index for DS0-DS3 for SNR=20dB.  



 
 

 
 

 

 
Figure 7. Nyquist (left) and sub-Nyquist (right) normalized modal strain energy index for DS0-DS3 for SNR=10dB.  

 

5. CONCLUDING REMARKS 
Motivated by a need to reduce energy consumption in wireless sensors for vibration-based structural health monitoring 
(SHM) associated with data acquisition and transmission, this work considered an approach for undertaking operational 
modal analysis (OMA) and damage localization relying on compressed vibrations measurements sampled at rates well 
below the Nyquist rate. Specifically, non-uniform deterministic sub-Nyquist multi-coset sampling of response 
acceleration signals in white noise excited linear structures has been considered in conjunction with a power spectrum 
estimation technique which retrieves/samples the power spectral density matrix from arrays of sensors directly from the 
sub-Nyquist measurements (i.e., in the compressed domain) without signal reconstruction in the time-domain and 
without posing any signal sparsity conditions. The frequency domain decomposition algorithm is then applied to the 
power spectral density matrix to extract natural frequencies and mode shapes as a standard OMA step. Further, the modal 
strain energy index (MSEI) was considered for damage localization based on the mode shapes extracted directly from the 
compressed measurements. The applicability and effectiveness of the proposed SHM approach based on 
compressed/sub-Nyquist output-only acceleration measurements has been numerically assessed by considering simulated 
vibration data pertaining to a white-noise excited simply supported beam in healthy and 3 damaged states, contaminated 
with Gaussian white noise. The first three mode shapes of the healthy beam have been estimated from an array of 15 
multi-coset devices sampling at a 70% slower than the Nyquist frequency rate, with MAC values well above 0.90 
compared to the mode shapes retrieved from Nyquist sampled signals and for SNRs as low as 10db. Moreover, the 
associated natural frequencies were estimated directly from the noisy compressed measurements with an error of less 
than 4.5%. Finally, damage localization of equal level/quality has been achieved by the MSEI applied to mode shapes 
derived from Nyquist and the sub-Nyquist (70% fewer) measurements for all damaged states considered and SNRs. 
Overall, the furnished numerical results demonstrate that the herein considered sub-Nyquist sampling and multi-sensor 
power spectral density estimation techniques coupled with standard OMA and damage detection approaches can achieve 
effective SHM from significantly fewer acceleration measurements even in noisy environments. Further numerical work 
involving more complex structures, field measurements, and higher compression ratios is undertaken by the authors to 
establish the limits of accuracy of the proposed compressed/sub-Nyquist based approach for OMA and damage 
detection.    
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